# Holographic Entanglement and Interaction

Shigenori Seki

#### RINS, Hanyang University and Institut des Hautes Études Scientifiques

"Intrication holographique et interaction" à l'IHES le 30 janvier 2014

### Contents

1. Quantum entanglement and holography [S. Ryu and T. Takayanagi, Phys.Rev.Lett. 96 (2006) 181602]

2. EPR = ER conjecture

[J. Maldacena and L. Susskind, arXiv:1306.0533]

3. Accelerating quark and anti-quark [K. Jensen and A. Karch, Phys.Rev.Lett. 111 (2013) 211602]

4. Gluon scattering

[SS and S.-J. Sin, to appear]

## Quantum entanglement and holography

### Quantum entanglement

Let's consider two systems: A and B

Hilbert space:  $\mathcal{H}_A \otimes \mathcal{H}_B$  $\{|i\rangle_A\} \ \{|i\rangle_B\}$  basis

A general state in total system is denoted by

$$|\psi\rangle_{tot} = \sum_{i,j} c_{ij} |i\rangle_A \otimes |j\rangle_B$$
  
If  $c_{ij} = c_i^A c_j^B$ , it is a non-entangled state.  
If  $c_{ij} \neq c_i^A c_j^B$ , it is an entangled state.

What is an order parameter of entanglement?

Density matrix: for  $|\Psi\rangle \in \mathcal{H}_A \otimes \mathcal{H}_B$ 

$$\rho_{\rm tot} = |\Psi\rangle\langle\Psi|$$

Reduced density matrix

$$\rho_A := \operatorname{tr}_B \rho_{\text{tot}} = \sum_j {}_B \langle j | (|\Psi\rangle \langle \Psi|) | j \rangle_B$$

The entanglement entropy is defined by Von Neumann entropy as

$$S_A := -\mathrm{tr}(\rho_A \log \rho_A)$$

# EPR pair

#### Einstein-Podolsky-Rosen pair



A and B are still entangled.

e.g. Consider the state

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\rangle_A \otimes |\downarrow\rangle_B - |\downarrow\rangle_A \otimes |\uparrow\rangle_B\right)$$

Since the reduced density matrix is

$$\rho_A = \frac{1}{2} \left( |\downarrow\rangle_A \left\langle \downarrow |_A + |\uparrow\rangle_A \left\langle \uparrow |_A \right) \right.$$

we obtain the entanglement entropy

$$S_A = -\mathrm{tr}(\rho_A \log \rho_A) = \log 2$$

Note that the pure state

$$\rho_P = \frac{1}{2} \left( \left| \downarrow \right\rangle_A + \left| \uparrow \right\rangle_A \right) \left( \left\langle \downarrow \right|_A + \left\langle \uparrow \right|_A \right)$$

has zero entanglement entropy

$$S_P = -\mathrm{tr}(\rho_P \log \rho_P) = 0$$

So the entanglement entropy works as an order parameter.

## Holographic entanglement entropy



# EPR = ER conjecture

# ER bridge

#### [Maldacena-Susskind, arXiv:1306.0533]

Consider the eternal AdS-Schwarzschild black hole. There are two boundaries and two CFTs.

$$H_{L,R}|n\rangle_{L,R} = E_n|n\rangle_{L,R}$$

This eternal BH is described by the entangle state,

$$|\Psi\rangle = \sum_{n} e^{-\beta E_n/2} |n\rangle_L \otimes |n\rangle_R$$

We can interpret this state in two ways:

1. a single black hole in thermal equilibrium [Israel, Phys.Lett.A57 (1976) 107]



2. two black holes in disconnected spaces with a common time [Maldacena, hep-th/0106112]

1. a single black hole in thermal equilibrium

Define a fictitious thermofield Hamiltonian,  $H_{tf} = H_R - H_L$ , which generates boosts.

$$|\Psi\rangle = \sum_{n} e^{-\beta E_n/2} |n\rangle_L \otimes |n\rangle_R$$

is an eigenvector of  $H_{\rm tf}$  with eigenvalue zero.

#### 2. two black holes in disconnected spaces with a common time

The time evolution is generated by  $H = H_R + H_L$ 

$$|\Psi(t)\rangle = \sum_{n} e^{-\beta E_n/2} e^{-2iE_n t} |\overline{n}\rangle_L \otimes |n\rangle_R$$

The state  $|\Psi\rangle$  describes the two black holes at a specific instant, t=0.

Even though the two black holes exist in separate non-interacting worlds, their geometry is connected by an Einstein-Rosen bridge (a wormhole).









# EPR = ER conjecture

From the example of eternal black hole, we studied



By extending this concept, Maldacena and Susskind conjectured



Further extension

Even for an entangled pair of particles, in a quantum theory of gravity, there must be a Planckian bridge between them.



### Accelerating quark and anti-quark

The holographic surface of accelerating quark and anti-quark



[Jensen-Karch, PRL 111 (2013) 211602]



Do other interacting particles also have ER bridge on world-sheet?

Fortunately, we know the minimal surface in AdS that describes a gluon-gluon scattering.

# Gluon scattering

## Minimal surface solution for gluon scattering

 $AdS_5$  (momentum space)

$$ds^2 = \frac{R^2}{r^2} (\eta_{\mu\nu} dy^{\mu} dy^{\nu} + dr^2)$$
$$\Delta u^{\mu} - 2\pi k^{\mu}$$

The solution of Nambu-Goto action  $y_{0} = \frac{\alpha \sqrt{1 + \beta^{2}} \sinh u_{1} \sinh u_{2}}{\cosh u_{1} \cosh u_{2} + \beta \sinh u_{1} \sinh u_{2}},$   $y_{1} = \frac{\alpha \sinh u_{1} \cosh u_{2}}{\cosh u_{1} \cosh u_{2} + \beta \sinh u_{1} \sinh u_{2}},$   $y_{2} = \frac{\alpha \cosh u_{1} \sinh u_{2}}{\cosh u_{1} \cosh u_{2} + \beta \sinh u_{1} \sinh u_{2}},$   $y_{3} = 0,$   $\alpha$ 

 $= \frac{\alpha}{\cosh u_1 \cosh u_2 + \beta \sinh u_1 \sinh u_2} \,,$ 

[Alday-Maldacena, JHEP 0706 (2007) 064]



Mandelstam variables:

$$-s(2\pi)^2 = \frac{8\alpha^2}{(1-\beta)^2},$$
$$-t(2\pi)^2 = \frac{8\alpha^2}{(1+\beta)^2}.$$

 $AdS_5$  (momentum space)

, "T-dual" transformation: 
$$\partial_m y^\mu = \frac{R^2}{z^2} \epsilon_{mn} \partial_n x^\mu$$
,  $z = \frac{R^2}{r}$ 

 $AdS_5$  (position space)

$$ds^{2} = \frac{R^{2}}{z^{2}} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2})$$

The Alday-Maldacena solution is mapped to

$$\begin{aligned} x_0 &= -\frac{R^2}{2\alpha} \sqrt{1+\beta^2} \sinh u_+ \sinh u_- \,, \\ x_+ &:= \frac{x_1 + x_2}{\sqrt{2}} = -\frac{R^2}{2\sqrt{2}\alpha} \left[ (1+\beta)u_- + (1-\beta) \cosh u_+ \sinh u_- \right] \,, \\ x_- &:= \frac{x_1 - x_2}{\sqrt{2}} = \frac{R^2}{2\sqrt{2}\alpha} \left[ (1-\beta)u_+ + (1+\beta) \sinh u_+ \cosh u_- \right] \,, \\ x_3 &= 0 \,, \\ z &= \frac{R^2}{2\alpha} \left[ (1+\beta) \cosh u_+ + (1-\beta) \cosh u_- \right] \end{aligned}$$

where  $u_{\pm} := u_1 \pm u_2$ . For later convenience, we introduce

$$X_{\mu} := \frac{\alpha}{R^2} x_{\mu} \quad (\mu = 0, +, -, 3), \quad Z := \frac{\alpha}{R^2} z \, (\ge 1)$$

### Causal structure on world-sheet

The induced metric on world-sheet

[SS-Sin, to appear]

$$\begin{split} ds_{\rm ws}^2 &= R^2 \left( g_{++} du_+^2 + 2g_{+-} du_+ du_- + g_{--} du_-^2 \right) \\ g_{++} &= \frac{4(1+\beta)^2 \sinh^2 u_+ + 4(1+\beta^2) - \left[(1+\beta) \cosh u_+ - (1-\beta) \cosh u_-\right]^2}{2 \left[(1+\beta) \cosh u_+ + (1-\beta) \cosh u_-\right]^2} \,, \\ g_{+-} &= \frac{2(1-\beta^2) \sinh u_+ \sinh u_-}{\left[(1+\beta) \cosh u_+ + (1-\beta) \cosh u_-\right]^2} \,, \\ g_{--} &= \frac{4(1-\beta)^2 \sinh^2 u_- + 4(1+\beta^2) - \left[(1+\beta) \cosh u_+ - (1-\beta) \cosh u_-\right]^2}{2 \left[(1+\beta) \cosh u_+ + (1-\beta) \cosh u_-\right]^2} \,. \end{split}$$

Horizons

$$g_{++} = 0: \quad (1-\beta)\cosh u_{-} = (1+\beta)\cosh u_{+} + 2\sqrt{(1+\beta)^{2}\sinh^{2}u_{+} + 1 + \beta^{2}}$$
$$g_{--} = 0: \quad (1+\beta)\cosh u_{+} = (1-\beta)\cosh u_{-} + 2\sqrt{(1-\beta)^{2}\sinh^{2}u_{-} + 1 + \beta^{2}}$$

$$\beta = 1$$
 Regge limit:  $-s \to \infty$  with  $-t$  fixed.

$$X_{0} = -\frac{1}{\sqrt{2}} \sinh u_{+} \sinh u_{-}, \quad X_{+} = -\frac{1}{\sqrt{2}} u_{-}, \quad X_{-} = \frac{1}{\sqrt{2}} \sinh u_{+} \cosh u_{-},$$
$$X_{3} = 0, \quad Z = \cosh u_{+}.$$



While  $g_{++}$  is positive definite,  $g_{--}$  is negative in  $\cosh u_+ > \sqrt{2}$  .

# EPR = ER = Interaction?

The entanglement is given by a wormhole.



Incoming gluons:  $|g_1(t_1)\rangle = |A_L(t_1)\rangle \otimes |A_R(t_1)\rangle$   $|g_2(t_1)\rangle = |B_L(t_1)\rangle \otimes |B_R(t_1)\rangle$ 

Outgoing gluons:  $|g_3(t_2)\rangle\rangle = |A_L(t_2)\rangle \otimes |B_R(t_2)\rangle$  $|g_4(t_2)\rangle\rangle = |B_L(t_2)\rangle \otimes |A_R(t_2)\rangle$ 

The entanglement is induced by gluonic interaction.

There are two ways to see entanglement.

1. Internal entanglement



 $|g_1(t_1)\rangle\rangle = |A_L(t_1)\rangle \otimes |A_R(t_1)\rangle$ 

The open string endpoints in each gluon are entangled by the open string going through the wormhole.

This is in the same way as the entanglement of quark and anti-quark.



#### 2. Entanglement of gluons

There are two channels.



How can we measure the entanglement of gluons?

i ) (naively) log of scattering amplitude

The scattering amplitude corresponds to the Wilson loop which is given by the area of minimal surface.

$$\mathcal{A} \sim e^{-\operatorname{Area}}, \quad S \sim \log \mathcal{A} = \frac{\sqrt{\lambda}}{2\pi} \left(\log \frac{1+\beta}{1-\beta}\right)^2 + (\operatorname{divergent part})$$

ii) the length between boundaries at the contacting points

We consider

$$\ell_{+}(\beta) = R \int_{-u_{+\infty}}^{+u_{+\infty}} du_{+} \sqrt{g_{++}} \big|_{u_{-}=0}, \quad \ell_{-}(\beta) = R \int_{-u_{-\infty}}^{+u_{-\infty}} du_{-} \sqrt{g_{--}} \big|_{u_{+}=0}$$

where we introduced the cutoff,  $z_{\infty} (\rightarrow \infty)$ .

$$2\frac{\alpha z_{\infty}}{R^2} = (1+\beta)\cosh u_{+\infty} + 1 - \beta = (1-\beta)\cosh u_{-\infty} + 1 + \beta$$
$$\ell_{\pm}(\beta) = R\left[\sqrt{6}\log\frac{2\alpha z_{\infty}}{R^2} + \sqrt{6}\log\frac{1}{1\pm\beta} + \mathcal{O}\left(\frac{1}{z_{\infty}}\right)\right]$$
$$S \sim \ell_{+}(\beta) + \ell_{-}(\beta) = R\left[\sqrt{6}\log\frac{1}{1-\beta^2} + (\text{divergent part})\right]$$

Anyway, S diverges at the Regge limit,  $\beta = 1$  and vanishes at  $\beta = 0$ .

### EPR = ER = Interaction