
Holographic Entanglement and Interaction

Shigenori Seki

RINS, Hanyang University
and

Institut des Hautes Études Scientifiques

1

“Intrication holographique et interaction” à l’IHES le 30 janvier 2014



Contents

1. Quantum entanglement and holography
                             [S. Ryu and T. Takayanagi, Phys.Rev.Lett. 96 (2006) 181602]

2. EPR = ER conjecture
                                               [J. Maldacena and L. Susskind, arXiv:1306.0533]

3. Accelerating quark and anti-quark
                             [K. Jensen and A. Karch, Phys.Rev.Lett. 111 (2013) 211602]

4. Gluon scattering
                                                                               [SS and S.-J. Sin, to appear]

2



Quantum entanglement and holography
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Quantum entanglement
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Let’s consider two systems: A and B

{|i�B}{|i�A}

Hilbert space: HA ⊗HB

A general state in total system is denoted by 

|ψ�tot =
�

i,j

cij |i�A ⊗ |j�B

If                  , it is a non-entangled state.cij = cAi c
B
j

If                  , it is an entangled state.cij �= cAi c
B
j

What is an order parameter of entanglement?

Entanglement Entropy

basis



Reduced density matrix

The entanglement entropy is defined by Von Neumann entropy as

Density matrix: for |Ψ� ∈ HA ⊗HB

ρtot = |Ψ��Ψ|

ρA := trBρtot =
�

j

B�j|(|Ψ��Ψ|)|j�B

SA := −tr(ρA log ρA)
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Einstein-Podolsky-Rosen pair

entangled two particles

A B

Separate them from    each other at long distance

A B

Observe A The state of B is determined.

e.g. a spin-0 particle decays to 
       two spin-1/2 particles.

A and B are still entangled.

[Einstein-Podolsky-Rosen, Phys.Rev. 47 (1935) 777]
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e.g. Consider the state

|Ψ� = 1√
2
(|↑�A ⊗ |↓�B − |↓�A ⊗ |↑�B)

ρA =
1

2
(|↓�A �↓|A + |↑�A �↑|A)

SA = −tr(ρA log ρA) = log 2

Since the reduced density matrix is

we obtain the entanglement entropy

Note that the pure state

has zero entanglement entropy

SP = −tr(ρP log ρP ) = 0

So the entanglement entropy works as an order parameter.

ρP =
1

2
(|↓�A + |↑�A) (�↓|A + �↑|A)
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Holographic entanglement entropy

[Ryu-Takayanagi, PRL 96 (2006) 181602]

AdS/CFT correspondence (Holography)

Field theory on boundary Gravity theory in bulk

ZCFT = e−Sgrav

�W � = e−Area(γ)

Partition function

Wilson loop

Entanglement entropy SA =
1

4GN
Area(γ)

8

minimal surface

boundary

AdS
A

z

A γ

z

A

A

A

γ



EPR = ER conjecture
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ER bridge
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Past interior
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Consider the eternal AdS-Schwarzschild black hole.
There are two boundaries and two CFTs. 

Penrose diagram

|n�L

|n�R

HL,R|n�L,R = En|n�L,R

This eternal BH is described by the 
entangle state,

|Ψ� =
�

n

e−βEn/2|n�L ⊗ |n�R

We can interpret this state in two ways:

1. a single black hole in thermal equilibrium

2. two black holes in disconnected spaces with a common time

[Maldacena-Susskind, arXiv:1306.0533]

[Israel, Phys.Lett.A57 (1976) 107]

[Maldacena, hep-th/0106112]



1. a single black hole in thermal equilibrium

Define a fictitious thermofield Hamiltonian,                          , 
which generates boosts.

Htf = HR −HL

|Ψ� =
�

n

e−βEn/2|n�L ⊗ |n�R

is an eigenvector of       with eigenvalue zero.Htf

2. two black holes in disconnected spaces with a common time

The time evolution is generated by H = HR +HL

|Ψ(t)� =
�

n

e−βEn/2e−2iEnt|n�L ⊗ |n�R

|Ψ�The state       describes the two black holes at a specific instant,         .t = 0

Even though the two black holes exist in separate non-interacting worlds, 
their geometry is connected by an Einstein-Rosen bridge (a wormhole).

[Einstein-Rosen, Phys.Rev. 48 (1935) 73]
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u(i u() H~(x)is regular in the lowerhalves of the complex
U(~)-planes;its spectrum therefore contains only po-
sitive frequencies with respect to ~ and ~ (“posi-
tive-frequency Kruskal modes”). Similarly, H~j)(x)
is asuperposition of negative-frequency Kruskal
modes.
A complete set ofeigenfunctionsf~/leads to sets

~ ~ which (together, of course,with their com-Wi’ WJ
plex conjugates) are complete over 91 U 91+, and

U t = const which satisfy orthonormality conditions

(H~,H~?1~)= (F(s) ~ )=e6~~’~jj’~(w—w’)(w>0),
Wi’ W’/’

with respect to the Klein—Gordon inner product (4)

(F1, F2) = if(F~’~F2)n”dE. (5)

The integral is to be taken over a complete Cauchy slice,
with a consistent choice of future-directed normal nn
(fig. 1). (The factor e in (4) arises from the contrapo-

Fig. 1. Generalized Kruskal map of a 2-space (0, ~) = const. sition of nn and ~ in 91 ~.)

To quantize a real Klein—Gordon field 4~(x)in terms
cation is that these “observers” have space-like orbits of the set of Killing modes F~)(w > 0), we expand
outside a nonstatic horizon. Since in this case space-
time is axisymmetric we may choose eigenfunctions ~i(x) = ~{a~F~(x) + a~tF~(x)}+ h.c. , (6)

WJ WJ WJ Wj
of the form fW ‘~ exp (—iwt) exp (—imp); these have W,j

frequency w” = — moH with respect to timelike and stipulate that the annihilation and creation ope-
Killing observers for whom the horizon rotates with rators satisfy the commutation relations
constant angular velocity WH.) On the sheets 9(

[a~ a~~’1=~ ~5..’~(w—w’) (7)
the asymptotic form of wave packets which are regular WJ’ W’J er V
there, is a superposition ofmodes (other commutators vanish). The summation over w

in (6) symbolizes the integral f~°dw.
fW(T, 0, ~ t) ~(e) (1) From (2) and (6) we obtain an alternative expansion

exp (—ie~~
1w in U( ))S~(O,p), ( = ±), of cI(x) in terms of Kruskal modes:

where SW is a regular analytic function, U(r) the future- 4(x) = ~{a(”~(~c)He)(x)+a ~(K)H~t~(x)}+ h.c.
Wj WJ WIdirected affine parameter along the generators of ~ W,I (8)

and K (a constant) the so-called surface gravity [21. The operatorsa~(K) also satisfy the commutation
Since 91+ and 91 are causally disjoint, we can relations (7) and are given by the Bogoliubov transfor-

associate with any given eigenfunctionf~(r,0,~p,t) mation
two “Killing modes” F~(x)with the property that

agrees withfW in ~ (e = ±),and vanishes a~.(K)= a~.cosh 0W — a~)t sinh OWWI WJ

(9)throughout ~ = exp(—iG) a~exp(iG)
According to (1), the two linear combinations [8]

H~(x) = F~~(x)coshOW +F~~kx)sinh 0W , (2) where we have defmed the Hermitean operator [61

will be analytic in ~ adn ~ on the horizon pro- G = ~i0W~a~3ta(~ — a~a~). (10)
WJ WJWJ

If 0> denotes the “Killing vacuum”, annihilated by
tanh0W = exp(—lrw/K). (3)
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EPR = ER conjecture

From the example of eternal black hole, we studied

entanglement two systems connected by ER bridgegeometric 
interpretation

Quantum mechanics Gravity

By extending this concept, Maldacena and Susskind conjectured

pairs of entangled particles

BH BH

separate at a long distance

ER bridge

12



Even for an entangled pair of particles, in a quantum theory of gravity, there 
must be a Planckian bridge between them.

ER bridge

Further extension

the stretched-horizon and zone of the black hole. Whether or not they were initially

scrambled, after a time of order M logM they will become scrambled and therefore highly

entangled in all combinations. It seems reasonable to expect the nucleus of figure 12 will

evolve into the interior of the black hole. In other words after the scrambling time (but long

before the Page time) the interior of the black hole is the Einstein-Rosen bridge system

that connects the massively entangled near-horizon system of a black hole.

3.6 Hawking Radiation

The Hawking radiation of a black hole is a scrambled cloud of radiation entangled with

the black hole. The obvious configuration of the Einstein-Rosen bridge would resemble

the standard two-black-hole case except that Alice’s black hole would be replaced by the

Hawking radiation. We can draw a very impressionistic cartoon of the black hole connected

to the radiation by a Einstein-Rosen bridge with many exits, see figure 13.

Black holeBlack hole

.

Hawking radiationBlack hole

Figure 13: Sketch of the entanglement pattern between the black hole and the Hawking
radiation. We expect that this entanglement leads to the interior geometry of the black
hole.

Another representation is shown in figure 14. This figure shows only the geometrical

Einstein-Rosen bridge part of space. On the far left the interior of a young, one-sided black

hole is shown. The black circle represents the horizon which should be identified with the

horizon as seen from the exterior side. In the beginning there is no Hawking radiation.

As we move to the right Hawking quanta are emitted, and since they are entangled with

the black hole, they have to be connected to the bridge. The red dots represent the places

where the Hawking quanta connect to the main body of the bridge. The earlier quanta

are to the right of the later quanta. The green circles represent slices through the bridge

that divide the system into two parts. To the right of the circle the quanta were emitted

21
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Accelerating quark and anti-quark
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[Jensen-Karch, PRL 111 (2013) 211602]

The quark and anti-quark are entangled by the 
wormhole that the open string goes through.

x2 = t2 + b2 − z2

2

! !
"#$%&!'#%()*!+#$,-#./!

0.1,23(0$4! 3(0$4!

FIG. 2. The holographic q-q̄ system entangled into a color-
neutral EPR pair.

quark in SYM is holographically dual to a fundamental
string stretching from the Poincare patch horizon to the
boundary of AdS. The string endpoint on the bound-
ary represents the quark. The action of the fundamental
string is proportional to (α�)−1 ∼

√
λ where λ is the ’t

Hooft coupling. Consequently its free energy, energy, and
entropy are all proportional to

√
λ. Maybe most inter-

estingly, a single quark has a zero temperature entropy
of S =

√
λ/2 [5]. Clearly these are not the properties of a

single quark in free SYM theory. In the strongly coupled
SYM the quark is really a colored quasiparticle formed
by the heavy test quark surrounded by a cloud of order√
λ gluons.

A color neutral state can be formed by making a quark
anti-quark (q-q̄) pair. By forcing the q-q̄ state to be
a color singlet, we automatically demand that the two
quasiparticles are entangled. In terms of the dual string,
such color singlet “meson” like states are described by a
single open string with both endpoints at the boundary.
String configurations dual to a separating q-q̄ had first
been numerically constructed in [6, 7]. Similar numer-
ical solutions for light quarks, this time dual to falling
strings, have been obtained in [8].

The string connecting the quasiparticles is the holo-
graphic dual of the color fluxtube between the two. Un-
like in a confining theory, in SYM the fluxtube does not
give rise to a linear potential. The force between the
q-q̄ falls off with a Coulombic 1/r as demanded by the
scale invariance of that theory. The q-q̄ can separate
arbitrarily far despite the flux between them. The flux
tube connecting the two however enforces that the q-q̄ is
entangled into a color singlet state.

An analytic solution for an accelerating q-q̄ pair was
found in [9]. The geometry of this solution is depicted
schematically in Fig. 2. In this solution the quark and
anti-quark are accelerated so that their velocity asymp-

totically approaches the speed of light. This is a crucial
feature, insofar as the two entangled particles are out of
causal contact. This is a property this system shares with
the original EPR pair. No signal emitted from particle
Alice can reach particle Bob in a finite amount of time.
It is exactly in this situation that MS claimed that en-
tanglement is encoded in the geometry of an ER bridge.
Using Poincáre patch coordinates in which the back-

ground AdS5 metric is

ds2 =
R2

z2
�
−dt2 + d�x2 + dz2

�
, (1)

the embedding of the string is given by the expanding
semicircle

x2 = t2 + b2 − z2 . (2)

The quark and anti-quark are located at x = ±
√
t2 + b2,

accelerating away from each other for all time. They
initially travel toward each other, until they turn around
at t = 0 at x = ±b, then fly away from each other. At
late times they go to x = ±∞ near the speed of light.
For infinitely heavy test quarks, one can simply prescribe
their trajectory as an external boundary condition. If
the quarks are very heavy dynamical objects, the string
needs to end on a flavor probe brane [10] at a small but
finite zm < b, which is related to the quark mass by
m =

√
λ/(2πzm). In this case, the boundary conditions

on the string require a constant electric field E = m/b
on the flavor brane. This electric field is responsible for
accelerating the quasiparticles.
The most important aspect of the worldsheet metric

for us is that it has two horizons located at z = b, as
indicated in Fig. 2. To understand the causal structure
on the string worldsheet, we have mapped out lightlike
geodesics in the two-dimensional universe living on the
string worldsheet in Fig. 3. One look at the picture shows
that this causal structure is identical to that of the eternal
AdS black hole pictured in Fig. 1. The holographic dual
of the EPR pair then has two horizons and an Einstein-
Rosen bridge connecting them. By an ER bridge here we
simply refer to a geometry with spacelike paths connect-
ing causally disconnected regions on the worldsheet.
For completeness, we elaborate briefly on the causal

structure. All lightlike geodesics on the worldsheet hit
either the left anti-quark or right quark exactly once at
a time we denote as t0. In terms of t0, the worldsheet
light rays are

x = ± t0t+ b2�
t20 + b2

, (3)

where we take the plus (minus) sign for a light ray which
hits the right (left) quark. One might worry that the
causal structure one obtains from the worldsheet is not
quite the causal structure one obtains from the bulk,

The holographic surface of accelerating quark and anti-quark

[Xiao, PLB 665 (2008) 173]

t

x

z

The trajectories of quark and anti-quark are 
causally disconnected on the world-sheet.
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Do other interacting particles also have ER bridge on world-sheet?

The entanglement of 
quark and anti-quark (EPR pair)

The interaction between 
quark and anti-quark

ER bridge (wormhole) 
on world-sheet

Fortunately, we know the minimal surface in AdS that describes a gluon-gluon 
scattering.



Gluon scattering
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Minimal surface solution for gluon scattering

[Alday-Maldacena, JHEP 0706 (2007) 064]

ds2 =
R2

r2
(ηµνdyµdyν + dr2)

AdS5 (momentum space)

∆yµ = 2πkµ

IR boundary conditionr = 0

y0 =
α
�

1 + β2 sinhu1 sinhu2

coshu1 coshu2 + β sinhu1 sinhu2
,

y1 =
α sinhu1 coshu2

coshu1 coshu2 + β sinhu1 sinhu2
,

y2 =
α coshu1 sinhu2

coshu1 coshu2 + β sinhu1 sinhu2
,

y3 = 0 ,

r =
α

coshu1 coshu2 + β sinhu1 sinhu2
,

−s(2π)2 =
8α2

(1− β)2
,

−t(2π)2 =
8α2

(1 + β)2
.

The solution of Nambu-Goto action

18

Mandelstam variables: 



AdS5 (position space)

AdS5 (momentum space)

ds2 =
R2

z2
(ηµνdxµdxν + dz2)

“T-dual” transformation: ∂myµ =
R2

z2
�mn∂nx

µ , z =
R2

r

x0 = −R2

2α

�
1 + β2 sinhu+ sinhu− ,

x+ :=
x1 + x2√

2
= − R2

2
√
2α

[(1 + β)u− + (1− β) coshu+ sinhu−] ,

x− :=
x1 − x2√

2
=

R2

2
√
2α

[(1− β)u+ + (1 + β) sinhu+ coshu−] ,

x3 = 0 ,

z =
R2

2α
[(1 + β) coshu+ + (1− β) coshu−]

u± := u1 ± u2where                        . For later convenience, we introduce

The Alday-Maldacena solution is mapped to

19

Xµ :=
α

R2
xµ (µ = 0,+,−, 3) , Z :=

α

R2
z (≥ 1)



Causal structure on world-sheet

The induced metric on world-sheet

g++ =
4(1 + β)2 sinh2 u+ + 4(1 + β2)− [(1 + β) coshu+ − (1− β) coshu−]

2

2 [(1 + β) coshu+ + (1− β) coshu−]
2 ,

g+− =
2(1− β2) sinhu+ sinhu−

[(1 + β) coshu+ + (1− β) coshu−]
2 ,

g−− =
4(1− β)2 sinh2 u− + 4(1 + β2)− [(1 + β) coshu+ − (1− β) coshu−]

2

2 [(1 + β) coshu+ + (1− β) coshu−]
2 .

Horizons

ds2ws = R2
�
g++du

2
+ + 2g+−du+du− + g−−du

2
−
�

g++ = 0 : (1− β) coshu− = (1 + β) coshu+ + 2
�
(1 + β)2 sinh2 u+ + 1 + β2

g−− = 0 : (1 + β) coshu+ = (1− β) coshu− + 2
�

(1− β)2 sinh2 u− + 1 + β2

20
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0 ≤ β < 1

!10 !5 5 10

!10

!5

5

10

!1.0 !0.5 0.5 1.0

!1.0

!0.5

0.5

1.0

β = 0

β = 1/2

red:              , 
dashed red:              , 
dotted blue:

g++ = 0
g−− = 0

g++ = g−−

X̂± :=
2

π
arctanX± ∈ [−1, 1]
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X± ∈ (−∞,+∞)
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Z = ∞

Z = 1



β = 1 Regge limit:                with      fixed.−s → ∞ −t

X0 = − 1√
2
sinhu+ sinhu− , X+ = − 1√

2
u− , X− =

1√
2
sinhu+ coshu− ,

X3 = 0 , Z = coshu+ .

!1.0 !0.5 0.5 1.0

!1.0

!0.5

0.5

1.0

!10 !5 5 10

!10

!5

5

10

While         is positive definite,        is negative in                       .g++ g−− coshu+ >
√
2
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EPR = ER = Interaction?

The entanglement is given by a wormhole.

The entanglement is induced by gluonic interaction.

Incoming gluons:

Outgoing gluons:

23

!1.0 !0.5 0.5 1.0

!1.0

!0.5

0.5

1.0

|g1(t1)�� = |AL(t1)� ⊗ |AR(t1)�
|g2(t1)�� = |BL(t1)� ⊗ |BR(t1)�

|g3(t2)�� = |AL(t2)� ⊗ |BR(t2)�

|g4(t2)�� = |BL(t2)� ⊗ |AR(t2)�



!1.0 !0.5 0.5 1.0

!1.0

!0.5

0.5

1.0

There are two ways to see entanglement.

1. Internal entanglement

The open string endpoints in each gluon are 
entangled by the open string going through 
the wormhole.

This is in the same way as the entanglement of quark and anti-quark.

|g1(t1)�� = |AL(t1)� ⊗ |AR(t1)�

24
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2. Entanglement of gluons

!1.0 !0.5 0.5 1.0

!1.0

!0.5

0.5

1.0

!1.0 !0.5 0.5 1.0

!1.0

!0.5

0.5

1.0

There are two channels.



2
αz∞
R2

= (1 + β) coshu+∞ + 1− β = (1− β) coshu−∞ + 1 + β

�+(β) = R

� +u+∞

−u+∞

du+
√
g++

��
u−=0

, �−(β) = R

� +u−∞

−u−∞

du−
√
g−−

��
u+=0

We consider

How can we measure the entanglement of gluons?

i ) (naively) log of scattering amplitude

ii) the length between boundaries at the contacting points

The scattering amplitude corresponds to the Wilson loop which is given by the 
area of minimal surface.
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A ∼ e−Area , S ∼ logA =

√
λ

2π

�
log

1 + β

1− β

�2

+ (divergent part)

S ∼ �+(β) + �−(β) = R

�√
6log

1

1− β2
+ (divergent part)

�
�±(β) = R

�√
6 log

2αz∞
R2

+
√
6 log

1

1± β
+O

�
1

z∞

��

where we introduced the cutoff,                 .z∞ (→ ∞)

Anyway,    diverges at the Regge limit,           and vanishes at          .β = 1S β = 0



EPR = ER = Interaction

27


