## Highly Excited Strings

Dimitri Skliros (KCL \& IHES)
IHES, Bures-sur-Yvette, 5 Nov 2014

based on work with:<br>E. Copeland, P. Saffin, M. Hindmarsh (2×XXX 2015, PRL 2013, PRL 2011, PRD 2011)

## Motivation

Highly Excited Strings (HES) are deeply rooted into the structure of string theory.

- they are related to the UV finiteness of string amplitudes;
- are energetically favourable at high energy densities (limiting Hagedorn temperature, ... ); ${ }^{1}$
- they provide a source of non-locality (desirable ${ }^{2}$ e.g. in resolving information paradox);
- their properties may even lead to signatures unique to string theory (e.g. in context of cosmic superstrings ${ }^{3}$ )

[^0]
## HES as Black Holes I

A major challenge for any theory of quantum gravity is to provide:
(a) a microscopic interpretation of the Bekenstein-Hawking entropy
(b) to resolve the black hole ( BH ) information paradox

Currently a large amount of effort to address these, one approach being the fuzzball proposal, where: ${ }^{4}$
(a) quantum effects important at the would-be BH horizon;
(b) quantum matter that makes up the black hole is of order the horizon scale

And even more radical proposals (e.g. firewall proposal ${ }^{5}$ )

[^1]
## HES as Black Holes II

Ultrarelativistic scattering of D-branes leads to copious production of (open) HES ${ }^{6}$ (velocity-dependent correction to open string mass). So expect enhanced string production as late-time in-falling observers are strongly boosted in near horizon ${ }^{7}$

Inline with earlier suggestions that ${ }^{8}$ HES effectively spread out on the horizon relative to external observer

In absence of RR charges a single ${ }^{9}$ HES the most likely BH microstate
$\Rightarrow$ An explicit handle on quantum HES should settle these speculations.

[^2]
## HES as Cosmic Strings I

Renewed interest in cosmic strings (CS) in recent years (warped compactifications, brane inflation, ...)

Compactifications of string theory lead to many potential cosmic string candidates: ${ }^{10}$

- F-strings
- D-strings
- ( $p, q$ )-strings
- wrapped D-branes
- solitonic strings
- electric and magnetic flux tubes

[^3]
## HES as Cosmic Strings II

General consensus on large scale evolution ${ }^{11}$
String inter-commutations ${ }^{12}$ and string decay ${ }^{13}$ play a fundamental role in the cosmological relevance of CS

Strongest signal from CS: gravitational wave bursts from string with cusps may be detectable in near future for string models with $G \mu \geq 10^{-13}(\text { LIGO2,LISA })^{14}$

However, back-reaction effects (which can play a crucial role) neglected

[^4]
## Effective Theory Description

One may discuss HES in terms of EFTs, e.g.: ${ }^{15}$

$$
\begin{aligned}
S_{\mathrm{eff}}=\frac{1}{16 \pi G_{D}} & \int d^{D} x \sqrt{-G} e^{-2 \Phi}\left(R_{(D)}+4(\nabla \Phi)^{2}-\frac{1}{12} H_{(3)}^{2}+\ldots\right) \\
& -\mu \int_{S^{2}} \partial X^{\mu} \wedge \bar{\partial} X^{\nu}\left(G_{\mu \nu}+B_{\mu \nu}\right)+\ldots
\end{aligned}
$$

Although adequate for certain purposes, these do not crucial stringy features, ${ }^{16}$ such as:

- couplings to infinite set of oscillator states
- inherently QM processes (such as string intercommutations)
- break down in UV and at small scales

[^5]
## HES in String Theory

Going beyond EFTs

Would like to phrase the above in terms of available tools in perturbative string theory: quantum vertex operators and associated string amplitudes

Although string computations with HES are non-trivial, new efficient tools appropriate for HES now available, making computations with HES tractable and efficient ${ }^{17}$
$\Rightarrow$ Trick is to consider strings in a coherent state basis ${ }^{18}$..

[^6]
## Overview of Talk

- Coherent vertex operator construction of HES
- Generic two-point amplitudes (at fixed-loop momenta) and duality (on $\mathbb{R}^{D-1,1} \times T^{26-D}$ )
- Example: decay rates and power associated to massless emission for special class of HES
- Effective field theory limit and $\alpha^{\prime}$ corrections


## Context

We will be working within simplest non-trivial superstring context,

$$
I=\frac{1}{2 \pi \alpha^{\prime}} \int d^{2} z \partial X^{M} \bar{\partial} X^{N} G_{M N}+\ldots
$$

in absence of RR charges, where ' . . ' denote fermions (and other background fields) that won't be relevant for the basic stringy picture. Here $X: \Sigma \rightarrow \mathcal{M}$ denote worldsheet embeddings into spacetime $\mathcal{M}$. We assume that topologically $\mathcal{M}=\mathbb{R}^{D-1,1} \times T^{D_{\text {tot }}-D}$, with $D=\#$ non-compact dimensions:

$$
d s^{2}=e^{2 A\left(Y_{0}\right)} \eta_{\mu \nu} d X^{\mu} d X^{\nu}+e^{-2 A\left(Y_{0}\right)} \eta_{a b} d Y^{a} d Y^{b}
$$

leading to effective string tension:

$$
\mu=\frac{e^{2 A\left(Y_{0}\right)}}{2 \pi \alpha^{\prime}}
$$

## Vertex Operators

Asymptotic states described by vertex operators, $V(z, \bar{z})$ :


Basic interaction is splitting and joining of open or closed strings $V(z, \bar{z})$ must be composed of fields present $\left(X^{M}, g_{\alpha \beta}\right)$ :

$$
V(z, \bar{z})=\sum_{i} P_{i}\left[\partial^{\#} X\right] e^{i k_{(i)} \cdot X(z)} \bar{P}_{i}\left[\bar{\partial}^{\#} X\right] e^{i \bar{k}_{(i)} \cdot X(\bar{z})}
$$

Q: For what choice of polynomials, $P_{i}, \bar{P}_{i}$, and momenta, $k_{i}, \bar{k}_{i}$ will $V(z, \bar{z})$ represent a HES?

Answer most elegantly expressed in terms of coherent vertex operators ...

## Coherent States in QM

Consider harmonic oscillator Hamiltonian,

$$
\hat{H}=\omega\left(a^{\dagger} a+\frac{1}{2}\right), \quad \text { with } \quad\left[a, a^{\dagger}\right]=1 \quad \text { and } \quad a|0\rangle=0,
$$

$a^{\dagger}, a$ are creation and annihilation operators. Coherent states are eigenstates of the annihilation operator, $a$,

$$
a|\lambda\rangle=\lambda|\lambda\rangle, \quad \text { with } \quad|\lambda\rangle=\exp \left(\lambda a^{\dagger}-\lambda^{*} a\right)|0\rangle,
$$

which therefore have classical expectation values

$$
\langle x(t)\rangle=\frac{1}{\sqrt{2}}\left(\lambda^{*} e^{i \omega t}+\lambda e^{-i \omega t}\right), \quad \text { with } \quad \frac{d^{2}}{d t^{2}}\langle x(t)\rangle=-\omega^{2}\langle x(t)\rangle .
$$

Note presence of continuous quantum numbers: $\lambda$

## QM $\rightarrow$ Strings

If we make use of operator-fields correspondence, $\alpha_{-n}^{\mu} \leftrightarrow \partial^{n} X^{\mu}$,

$$
\alpha_{-n}^{\mu} \cong \frac{i}{(n-1)!} \partial^{n} X^{\mu}(z), \quad \text { and } \quad|0,0 ; k\rangle \sim e^{i k \cdot X(z, \bar{z})},
$$

| H.O. | Strings |
| :---: | :---: |
| $\|0\rangle$ | $\|0,0 ; k\rangle$ |
| $a^{\dagger}, a$ | $\alpha_{-n}^{\mu}, \alpha_{n}^{\mu}$ |
| $\left[a, a^{\dagger}\right]=1$ | $\left[\alpha_{n}^{\mu}, \alpha_{m}^{\nu}\right]=n \eta^{\mu \nu} \delta_{n+m, 0}$ |
| $\|\lambda\rangle=\exp \left(\lambda a^{\dagger}\right)\|0\rangle$ | $\|V\rangle=\exp \left(\sum_{n} \lambda_{n} \cdot \alpha_{-n}\right)\|0 ; k\rangle$ |

... |V $\rangle$ not physical state unless we break covariance. . .
$\ldots$ in closed string theory, eigenstates of $\alpha_{n}, \tilde{\alpha}_{n}$ do not even exist ${ }^{19}$ (unless $X^{-}$compact), so need more general definition ...

## Coherent Vertex Operators

## Definition of closed string coherent state:

(a) is specified by a (possibly infinite) set of continuous labels $(\lambda, \bar{\lambda})$, which may be associated to the left- and right-moving modes;
(b) produces a resolution of unity,

$$
\mathbb{1}=\sum \int d \lambda d \bar{\lambda}\left|\lambda, \bar{\lambda}_{;} \ldots\right\rangle\langle\lambda, \bar{\lambda} ; \ldots|,
$$

so that the $|\lambda, \bar{\lambda} ; \ldots\rangle$ span the string Hilbert space. The dots "..." denote possible additional quantum numbers;
(c) transforms correctly under all symmetries of the string theory

## Coherent Vertex Operators

Construction of coherent vertex operators: define DDF operators, ${ }^{20}$

$$
A_{n}^{i}=\frac{1}{2 \pi} \oint d z \partial_{z} X^{i} e^{i n q \cdot X(z)}, \quad \bar{A}_{n}^{i}=\frac{1}{2 \pi} \oint d \bar{z} \partial_{\bar{z}} X^{i} e^{i n q \cdot X(\bar{z})}
$$

with $q^{2}=0, q \cdot A_{n}=0$ and $\left[A_{n}^{i}, A_{m}^{j}\right]=n \delta^{i j} \delta_{n+m, 0}$.

Generic states of the form:

$$
|\xi ; k\rangle=\xi_{i \ldots j ; k \ldots} A_{-n_{1}}^{i} \ldots A_{-n_{g}}^{j} \bar{A}_{-\bar{n}_{1}}^{k} \ldots \bar{A}_{-\bar{n}_{h}}^{\prime} e^{i p \cdot X(z, \bar{z})},
$$

are physical when: $p^{2}=2, p \cdot q=1$, and $N \equiv \sum_{j} n_{j}=\sum_{j} \bar{n}_{j}$, with momenta:

$$
k=p-N q, \quad k^{2}=2-2 N
$$

${ }^{20}$ Del Giudice, Di Vecchia, Fubini 72; Ademollo, Del Guidice, Di Vecchia 74

Any linear superposition of such states will also be physical, so we consider in particular: ${ }^{21}$

$$
\begin{aligned}
V(z, \bar{z})= & C \int_{0}^{2 \pi} đ s \exp \left\{\sum_{n=1}^{\infty} \frac{1}{n} e^{i n s} \lambda_{n} \cdot A_{-n}\right\} \\
& \times \exp \left\{\sum_{m=1}^{\infty} \frac{1}{m} e^{-i m s} \bar{\lambda}_{m} \cdot \bar{A}_{-m}\right\} e^{i p \cdot X(z, \bar{z})},
\end{aligned}
$$

with $\int$ đs the level-matching condition and $C$ a normalisation constant. $V$ in one-to-one correspondence with classical solutions:

$$
\begin{aligned}
& X^{0}(z, \bar{z})=-i M \ln z \bar{z}, \quad\left(M^{2}=\sum_{n}\left|\lambda_{n}\right|^{2}+\sum_{m}\left|\bar{\lambda}_{m}\right|^{2}-2\right) \\
& X^{i}(z, \bar{z})=\sum_{n} \frac{i}{n}\left(\lambda_{n}^{i} z^{-n}-\lambda_{n}^{* i} z^{n}\right)+\sum_{m} \frac{i}{m}\left(\bar{\lambda}_{m}^{i} \bar{z}^{-m}-\bar{\lambda}_{m}^{* i} \bar{z}^{m}\right),
\end{aligned}
$$

These states, $V(z, \bar{z}) \simeq|\lambda, \bar{\lambda} ; p, q\rangle$, satisfy all the above defining properties of a coherent state

A rest frame only exists in an expectation value sense:

$$
\left\langle\hat{p}^{\mu}\right\rangle \equiv M \delta_{0}^{\mu}, \quad M^{2}=\sum_{n}\left|\lambda_{n}\right|^{2}+\sum_{m}\left|\bar{\lambda}_{m}\right|^{2}-2, \quad M^{2} \in[-2, \infty)
$$

These strings have size, $\mathcal{R} \equiv \sqrt{\left\langle(\mathbf{X}(z, \bar{z})-\mathbf{x})^{2}\right\rangle}$, in the rest frame:

$$
\mathcal{R}^{2}=\sum_{n>0} \frac{1}{n^{2}}\left(\left|\lambda_{n}\right|^{2}+\left|\bar{\lambda}_{n}\right|^{2}-2 \operatorname{Re}\left(\lambda_{n} \cdot \bar{\lambda}_{n} e^{-2 i n \tau_{\mathrm{M}}}\right)\right)
$$

Non-zero mode components, $S^{\mu \nu}$, of the angular momenta, $J^{\mu \nu}=L^{\mu \nu}+S^{\mu \nu}$, read:

$$
\begin{aligned}
& \left\langle S^{i j}\right\rangle=\sum_{n>0} \frac{2}{n} \operatorname{Im}\left(\lambda_{n}^{* i} \lambda_{n}^{j}+\bar{\lambda}_{n}^{* i} \bar{\lambda}_{n}^{j}\right) \\
& \left\langle S^{-i}\right\rangle=\sum_{n>0} \sum_{\ell \in \mathbb{Z}} \frac{\sqrt{2}}{n M} \operatorname{Im}\left(\lambda_{n-\ell}^{*} \cdot \lambda_{\ell}^{*} \lambda_{n}^{i}+\bar{\lambda}_{n-\ell}^{*} \cdot \bar{\lambda}_{\ell}^{*} \bar{\lambda}_{n}^{i}\right),
\end{aligned}
$$

with all components involving the + directions equal to zero.

## Dual Vertex Operators

Any classical string trajectory $X=X_{L}(z)+X_{R}(\bar{z})$, with $\partial \bar{\partial} X=0$, and has a dual, defined by: ${ }^{22}$

$$
\left(X_{L}(z), X_{R}(\bar{z})\right) \rightarrow\left(X_{L}(z),-X_{R}\left(\bar{z}^{-1}\right)\right)
$$

In the quantum theory, the $X$ are mapped to coherent vertex operators and their duals are generated by:

$$
\lambda_{n} \rightarrow \lambda_{n}^{\prime}=\lambda_{n}, \quad \bar{\lambda}_{n} \rightarrow \bar{\lambda}_{n}^{\prime}=(-)^{n} \bar{\lambda}_{n}^{*}, \quad \text { for } \quad n=1,2 \ldots
$$

with $\lambda_{n}, \bar{\lambda}_{n}$ polarisation tensors of $V(z, \bar{z})$.

[^7]
## Example

Some explicit classical string trajectories ( $n, m, 0$ ) (when only two harmonics, $n, m$, are present) and their duals ( $n, m, \pi$ ).


## Quantum Nature

To extract quantum properties of coherent vertex operators, $V(z, \bar{z})$, we need to compute amplitudes and relate these to associated observables.

The simplest non-trivial quantity to consider is the one-loop two-point amplitude; in general, $\mathcal{M}=\sum_{h} \mathcal{M}_{h}$,

whose real and imaginary parts yield the mass shift ${ }^{23}$ (due to self-gravity, etc.) and decay rates ${ }^{24}$ :

$$
\delta M^{2} \sim \operatorname{Re} \mathcal{M}, \quad \Gamma=\frac{1}{M} \operatorname{Im} \mathcal{M}
$$

[^8]
## 2-Point Amlitudes (Notation \& Conventions)

At genus $h=1\left(\mathcal{A}_{1}=\frac{1}{2 M} \delta^{D}(0) \mathcal{M}_{1}\right)$ :

$$
\mathcal{A}_{1}=\frac{1}{2} \int_{\mathcal{F}_{1}} d^{2} \tau \int \mathcal{D}(b, c, X) e^{-1}|(\mu, b)|^{2} V^{\dagger} \hat{V}
$$

where $V \equiv \int d^{2} z V_{z \bar{z}}$ and $\hat{V} \equiv c^{z} \bar{c}^{z} V_{z \bar{z}}$ live in the cohomology of the BRST charge (and will be identified with coherent vertex operators), $b, c$ are the $\operatorname{Diff}(\Sigma)$ ghosts, $\tau, \bar{\tau}$ is the modular parameter of the torus

Here $I=I_{X}+I_{\text {ghosts }}$ and $\mu_{z}{ }^{\bar{z}}$ a Beltrami differential (specifying the gauge slice).

To make the energy scales in the loops manifest (and to chirally factorize the amplitudes ${ }^{25}$ ) we fix the loop momenta by inserting,

$$
1=\int d^{D} \mathbb{P} \delta^{D}(\mathbb{P}-\hat{\mathbb{P}}), \quad \hat{\mathbb{P}} \equiv \frac{1}{2 \pi \alpha^{\prime}} \int_{A_{1}}(\partial X-\bar{\partial} X),
$$

integrate out $b, c$ and slightly reorganise the various terms $\left(d \mathrm{M}_{1}=\frac{1}{2} d^{2} \tau d^{2} z|\eta(\tau)|^{4}\right):$

$$
\mathcal{A}_{1}=\int d^{D} \mathbb{P} \int d \mathbf{M}_{1} \int \mathcal{D} X e^{-/ \times} \delta^{D h}(\mathbb{P}-\hat{\mathbb{P}}) V_{z \bar{z}}^{\dagger} V_{w \bar{w}}
$$

Define:

$$
\left\langle\left\langle V_{z \bar{z}}^{\dagger} V_{w \bar{w}}\right\rangle\right\rangle \equiv|\eta(\tau)|^{52} \int \mathcal{D} X e^{-I x} \dot{\delta}^{D}(\mathbb{P}-\hat{\mathbb{P}}) V_{z \bar{z}}^{\dagger} V_{w \bar{w}},
$$

with $\eta(\tau)$ the Dedekind eta function.

The chiral splitting theorem ${ }^{26}$ the ensures that:

$$
\left\langle\left\langle V_{z \bar{z}}^{\dagger} V_{w \bar{w}}\right\rangle\right\rangle=i \delta(0) \sum_{N, M \in \mathbb{Z}^{d_{c}}} \int_{0}^{2 \pi} d s \Phi(z \mid \tau) \bar{\Phi}(\bar{z}, \mid \bar{\tau}),
$$

where $\Phi(z \mid \tau)$ depends on the chiral moduli and the chiral halves of the asymptotic state quantum numbers. ${ }^{27}$

The sum over $N, M$ is over instanton contributions associated to $T^{d_{c}}$, with $d_{c}=D_{\text {tot }}-D$.

Q: So what is $\Phi(z \mid \tau)$ for different choice of coherent vertex operators?

[^9]For $(1,1)$ leading Regge coherent vertex operators: ${ }^{28}$

$$
\begin{aligned}
& V(z, \bar{z})=: C \int_{0}^{2 \pi} d s \exp \left(e^{i s} i \zeta \cdot \partial_{z} X e^{-i q \cdot X(z)}\right) \\
& \quad \times \exp \left(e^{-i s} i \bar{\zeta} \cdot \partial_{\bar{z}} X e^{-i q \cdot X(\bar{z})}\right) e^{i p \cdot X(z, \bar{z})}:
\end{aligned}
$$

we find: ${ }^{29}$

$$
\begin{aligned}
\Phi(z \mid \tau) \equiv & C \eta(\tau)^{-24} e^{\pi i \tau \mathbb{P}^{2}} E^{-2} e^{-2 \pi i \mathbb{P} \cdot p} \\
& \times \exp \left\{e^{i s}\left|\lambda_{1}\right|^{2} e^{2 \pi i \mathbb{P} \cdot q z} E^{2} \partial_{z}^{2} \ln E\right\} \\
& \times 10\left(2 \sqrt{e^{i s}\left|\mathbb{P} \cdot \lambda_{1}\right|^{2} e^{2 \pi i \mathbb{P} \cdot q z}(2 \pi E)^{2}}\right),
\end{aligned}
$$

where the $I_{0}(x)$ are modified Bessel functions and $E(z)=\vartheta_{1}(z \mid \tau) / \vartheta^{\prime}(0 \mid \tau)$ the prime form.

$$
\begin{aligned}
& { }^{28} \zeta_{\mu} \equiv \lambda_{1}^{i}\left(\delta_{\mu}^{i}-p^{i} q_{\mu}\right), M^{2}=2|\zeta|^{2}-2, \text { and }|\zeta| \in \mathbb{R}^{+} \\
& { }^{2} \\
& \text { DS, Copeland, Saffin (2013) }
\end{aligned}
$$

For more general harmonics, $(n, m)$, we find: ${ }^{30}$

$$
\begin{aligned}
\Phi(z \mid \tau)= & C \eta(\tau)^{-24} e^{\pi i \tau \mathbb{P}^{2}} E^{-2} e^{-2 \pi i z \mathbb{P} \cdot p} \\
& \times \exp \left\{e^{i n s} \frac{1}{n^{2}}\left|\lambda_{n}\right|^{2} e^{2 \pi i(\mathbb{P} \cdot n q) z} E^{2 n} \mathcal{D}_{z}^{n} \mathcal{D}_{z}^{n} \ln E\right\} \\
& \times 10\left(2 e^{i n s} \frac{1}{n}\left|\mathbb{P} \cdot \lambda_{n}\right| e^{\pi i(\mathbb{P} \cdot n q) z} 2 \pi E^{p \cdot n q} \mathcal{S}_{n-1}\right),
\end{aligned}
$$

where,

$$
\begin{equation*}
\mathcal{D}_{z}^{n} \equiv \sum_{\ell=1}^{n} \frac{\mathcal{S}_{n-\ell}\left(a_{s}\right)}{(\ell-1)!} \partial_{z}^{\ell} \tag{1}
\end{equation*}
$$

and the arguments of elementary Schur polynomials, $\mathcal{S}_{n-\ell}\left(a_{s}\right)$, are

$$
a_{s} \equiv-\frac{n}{s!} \partial_{z}^{s} \mathcal{G}(z), \quad \text { with } \quad \mathcal{G}(z) \equiv-\ln |E(z)|^{2}+4 \pi(\mathbb{P} \cdot q) \operatorname{Im} z .
$$

In fact, in the most general case of arbitrary polarisation tensors and in a general Lorentz frame,

$$
\begin{aligned}
& \Phi(z \mid \tau)= C \eta(\tau)^{-24} \exp \left\{\pi i \tau \mathbb{P}^{2}-2 \pi i z \mathbb{P} \cdot p\right\} E^{-2} \\
& \times \exp \{ -\sum_{n, m>0} e^{i(n+m) s} \frac{(-)^{m} \lambda_{n}^{*} \cdot \lambda_{m}}{n m} e^{\pi i z \mathbb{P} \cdot q(n+m)} E^{n+m} \mathcal{D}_{z}^{n} \mathcal{D}_{z}^{m} \ln E \\
&+\sum_{n, m>0} e^{i(n+m) s} \frac{\lambda_{n}^{*} \cdot \lambda_{m}^{*}}{2 n m} e^{\pi i z \mathbb{P} \cdot q(n+m)} E^{n+m} \mathbb{S}_{n, m} \\
&\left.+\sum_{n, m>0} e^{i(n+m) s} \frac{(-)^{n+m} \lambda_{n} \cdot \lambda_{m}}{2 n m} e^{\pi i z \mathbb{P} \cdot q(n+m)} E^{n+m} \mathbb{S}_{n, m}\right\} \\
& \times I_{0}\left(2 i \sqrt{\sum_{n, m>0} e^{i(n+m) s} e^{\pi i \mathbb{P} \cdot q(n+m) z} E^{n+m} Y\left(\lambda_{n}\right) Y\left((-)^{m} \lambda_{m}^{*}\right)}\right)
\end{aligned}
$$

with

$$
Y\left(\lambda_{n}\right)=(-)^{n}\left(\frac{2 \pi \mathbb{P}_{I} \cdot \lambda_{n}}{n} \mathcal{S}_{n-1}\left(a_{s}\right)+\frac{1}{n} i p \cdot \lambda_{n} \mathcal{D}_{z}^{n} \ln E-\frac{1}{n} i p \cdot \lambda_{n} \mathcal{S}_{n}\left(a_{s}\right)\right)
$$

## Duality of 2-Point Amplitudes

Notice that all string 2-point amplitudes are invariant under:

$$
\lambda_{n} \rightarrow \lambda_{n}^{\prime}=(-)^{n} \lambda_{n}^{*}, \quad \bar{\lambda}_{n} \rightarrow \bar{\lambda}_{n}^{\prime}=\bar{\lambda}_{n}, \quad \text { for } \quad n=1,2 \ldots
$$

$\rightarrow$ distinct string trajectories have the same decay rates and mass shifts!


Does this persist at higher loops? ... unclear, the quantity $\left(\mathbb{P}_{I} \cdot \lambda_{n}^{*}\right) \mathcal{D}_{z}^{n} \int^{z} \omega_{l}\left(\mathbb{P}_{J} \cdot \lambda_{n}\right) \mathcal{D}_{w}^{n} \int^{w} \omega_{J}$ that would appear in Bessel function in $\Phi_{h}(z, w \mid \Omega)$ only invariant for $h=1$.

## String Decay



## Some History

A handful of references on (closed) HES string decay:

- Wilkinson, Turok, Mitchell (1990): leading Regge (bosonic) states, $\mathbb{R}^{25,1}$, (numerical), $\Gamma_{d=4} \propto L$ and $\Gamma_{d=26} \propto L^{-1}$
- Dabholkar, Mandal, Ramadevi (1998): higher genus bound on leading Regge Heterotic states, $\mathbb{R}^{3,1} \times T^{6}, \Gamma \lesssim M^{-1}$
- lengo, Russo (2002-6); Chialva, lengo, Russo (2004-5): leading Regge superstring states, $\mathbb{R}^{D-1,1} \times T^{10-D}$, (numerical),

$$
\Gamma \sim G_{D} \mu^{2}(M / \mu)^{5-D}, \quad \mu=\frac{1}{2 \pi \alpha^{\prime}}
$$

- Gutplerle \& Krym (2006); leading Regge Heterotic states, $\mathbb{R}^{8,1} \times S^{1}$, (numerical)


## Some History

A handful of references on decay rates of HES:

- Wilkinson, Turok, Mitchell (1990): leading Regge (bosonic) states, $\mathbb{R}^{25,1}$, (numerical), $\Gamma_{d=4} \propto L$ and $\Gamma_{d=26} \propto L^{-1}$
- Dabholkar, Mandal, Ramadevi (1998): higher genus bound on leading Regge Heterotic states, $\mathbb{R}^{3,1} \times T^{6}, \Gamma \lesssim M^{-1}$
- lengo, Russo (2002-6); Chialva, lengo, Russo (2004-5): leading Regge superstring states, $\mathbb{R}^{D-1,1} \times T^{10-D}$, (numerical),

$$
\Gamma \sim G_{D} \mu^{2}(M / \mu)^{5-D}, \quad \mu=\frac{1}{2 \pi \alpha^{\prime}}
$$

- Gutplerle \& Krym (2006); leading Regge Heterotic states, $\mathbb{R}^{8,1} \times S^{1}$, (numerical)


## String Decay Rates

From unitarity, $S^{\dagger} S=1$, one can show that decay rates can be extracted (to leading order in $g_{s}$ ) from:

$$
\Gamma=\frac{1}{M} \operatorname{Im} \int d^{D} \mathbb{P} \mathcal{M}_{1}(\mathbb{P}),
$$

which is of the form:

$$
\Gamma=\frac{1}{M} \int d^{D} \mathbb{P} \sum_{\left\{m_{j}, k^{\mu}\right\}}|\ldots|^{2} \delta\left(\mathbb{P}^{2}+m_{1}^{2}\right) \delta\left((k-\mathbb{P})^{2}+m_{2}^{2}\right)
$$

with $m_{1}^{2}=\left(\frac{N}{R}\right)^{2}+\left(\frac{M^{\prime} R}{2}\right)^{2}+r+\bar{r}-2, m_{2}^{2}=\ldots$

For massless radiation (i.e. $m_{1}^{2}=0$ ) from $(1,1)$ vertices, in the IR the result ressums: ${ }^{31}$

$$
\begin{aligned}
& \left.\frac{d \Gamma}{d \Omega_{S D-2}}\right|_{m_{1}^{2}=0}=\sum_{N} \frac{16 \pi G_{D} \mu^{2}}{(2 \pi)^{D-4}} \omega_{N}^{D-4-\delta} N^{2} \\
& \quad\left[J_{N}^{\prime 2}+\left(\frac{1}{z^{2}}-1\right) J_{N}^{2}+\ldots\right]\left[\bar{J}_{N}^{\prime 2}+\left(\frac{1}{\bar{z}^{2}}-1\right) \bar{J}_{N}^{2}+\ldots\right]
\end{aligned}
$$

where $J_{N}=J_{N}(N z), \bar{J}_{N}=J_{N}(N \bar{z})$, etc., and the frequency of emitted radiation, ${ }^{32}$

$$
\omega_{N}=\frac{4 \pi N}{L}, \quad \text { with } \quad N=1,2, \ldots
$$

Taking $\delta=1$ yields a decay rate, $\delta=0$ yields a power.

[^10]
## Effective Description

Remarkably, the above was shown ${ }^{33}$ to agree precisely with the effective theory,

$$
\begin{aligned}
S_{\mathrm{eff}}=\frac{1}{16 \pi G_{D}} & \int d^{D} x \sqrt{-G} e^{-2 \Phi}\left(R_{(D)}+4(\nabla \Phi)^{2}-\frac{1}{12} H_{(3)}^{2}+\ldots\right) \\
& -\mu \int_{S^{2}} \partial X^{\mu} \wedge \bar{\partial} X^{\nu}\left(G_{\mu \nu}+B_{\mu \nu}\right)+\ldots,
\end{aligned}
$$

where $\Phi, G_{\mu \nu}$ and $H_{(3)}$ are the dilaton, spacetime metric and 3-form field strength, $H=d B$, respectively
(We plug classical solutions for $X$ (from classical-CVO map) and compute perturbations in $G, B$ and $\Phi$ )

## Higher Harmonics

. . . the above correspondence acts as a guiding principle to write down the general result for arbitrary harmonics $(n, m):^{34}$

$$
\begin{aligned}
\left.\frac{d \Gamma}{d \Omega_{S D-2}}\right|_{m_{1}^{2}=}= & \sum_{N} \frac{16 \pi G_{D} \mu^{2}}{(2 \pi)^{D-4}} \omega^{D-4-\delta}(N u w g)^{2} \\
& {\left[J_{N w}^{\prime 2}(A)+\left((N w / A)^{2}-1\right) J_{N w}^{2}(A)\right] } \\
& {\left[J_{N u}^{\prime 2}(\bar{A})+\left((N u / \bar{A})^{2}-1\right) J_{N u}^{2}(\bar{A})\right] }
\end{aligned}
$$

with $n \equiv g u, m \equiv g w$, integers and $u, w$ relatively prime. ( $g$ can be interpreted as a winding number: $M \sim g \mathcal{R} / \alpha^{\prime}$, with $\mathcal{R}$ determined by dynamics.)

$$
{ }^{34} \text { Here } A=N w \sqrt{2}\left|\hat{\mathbb{P}} \cdot \hat{\lambda}_{\boldsymbol{n}}\right|, \overline{\boldsymbol{A}}=N u \sqrt{2}\left|\hat{\mathbb{P}} \cdot \hat{\lambda}_{\boldsymbol{m}}\right|
$$

## $\alpha^{\prime}$ corrections

The UV region of the emission spectrum is particularly important, as, e.g., this is where the characteristic cosmic string cusp signal is, which according to classical effective theory computations ${ }^{35}$ leads to the strongest GW signal: ${ }^{36}$

$$
\begin{aligned}
&\left.\frac{d \Gamma}{d \Omega_{S D-2}}\right|_{m_{1}^{2}=0}=\sum_{N} \frac{16 \pi G_{D} \mu^{2}}{(2 \pi)^{D-4}} \omega^{D-4-\delta} N^{2} \\
& {\left[J^{\prime 2}{ }_{N}+\left(\frac{1}{z^{2}}-1\right) J_{N}^{2}-(-)^{N} \frac{\omega}{M} J_{N} J_{N}^{\prime} z+\ldots\right] } \\
& {\left[\bar{J}_{N}^{\prime 2}+\left(\frac{1}{\bar{z}^{2}}-1\right) \bar{J}_{N}^{2}-(-)^{N} \frac{\omega}{M} \bar{J}_{N} J_{N}^{\prime} \bar{z}+\ldots\right] }
\end{aligned}
$$

The corrections become important when $\omega \sim \sqrt{M / \sqrt{\alpha^{\prime}}}$, long before the cutoff $\omega \sim M$.

${ }^{35}$ Damour, Vilenkin (2001)<br>${ }^{36}$ Skliros, Copeland, Saffin (2013)

## Summary

- Discussed construction of generic covariant coherent vertex operators and their classical analogues
- Explicit expression for generic two-point function (at fixed-loop momenta) (on $\mathbb{R}^{D-1,1} \times T^{26-D}$ ) $\rightarrow$ novel duality
- Analytically computed decay rates and powers associated to massless emission for special class of IHES states in IR
- Found effective field theory that reproduces the leading terms of these decay rates and powers
- Computed UV corrections, which can become very significant in the UV (where the interesting cusp radiation signal is).


## Chiral Splitting Theorem

To prove chiral splitting theorem, use point splitting to write a generic amplitude in the form:

$$
\left\langle\left\langle\prod_{j=1}^{\mathcal{I}}\left(D_{j} X^{\mu_{j}}+T_{j}^{\mu_{j}}\right) e^{i \int J \cdot X}\right\rangle\right\rangle,
$$

for generic $X$-independent operators $\left\{D_{j}, T_{j}, J\right\}$.

- Exponentiate delta functions, $\delta(\mathbb{P}-\hat{\mathbb{P}})=\int d y e^{i y(\mathbb{P}-\hat{\mathbb{P}})}$
- Expand $X=X_{\mathrm{cl}}+\tilde{X}$ and integrate out $\tilde{X}$ with propagator

$$
G(z, w)=-\ln |E(z, w)|^{2}+2 \pi \operatorname{Im} \int_{w}^{z} \omega_{l}(\operatorname{Im} \Omega)_{I J}^{-1} \operatorname{Im} \int_{w}^{z} \omega_{J}
$$

- Poisson-resum on integers $M \in \mathbb{Z}^{d_{c} h}$ of $X_{\mathrm{cl}}$
- Make use of (quasi-)periodicity properties of prime form, $E(z, w)$, and $\oint_{A_{I}} \omega_{J}=\delta_{I J}, \oint_{B_{I}} \omega_{J}=\Omega_{I J}$

To evaluate $\langle\langle\ldots\rangle\rangle$, for $X: \Sigma \rightarrow \mathbb{R}^{D-1,1} \times T^{26-D}$ :

- if $X \in \mathbb{R}^{D-1,1}$ :

$$
X=x+\tilde{X}, \quad x=\mathrm{const}
$$

- if $X \in T^{26-D}$ :

$$
\begin{gathered}
X=x+\gamma_{l} z+\bar{\gamma}_{l} \bar{z}+\tilde{X} \\
\oint_{A_{l}} d X_{\mathrm{cl}}^{a}=\left(2 \pi N_{l} R\right)^{a}, \quad \oint_{B_{l}} d X_{\mathrm{cl}}^{a}=\left(2 \pi M_{l} R\right)^{a},
\end{gathered}
$$

with $\gamma_{I}, \bar{\gamma}_{I}$ determined from the latter; $N, M \in \mathbb{Z}^{d_{c} h}$, and $\tilde{X}$ denote quantum fluctuations.

The result is the following.
Drop contact terms and the theorem is proven:
$\left\langle\left\langle\prod_{j=1}^{\mathcal{I}}\left(D_{j} X^{\mu_{j}}+T_{j}^{\mu_{j}}\right) e^{i \int J \cdot x}\right\rangle\right\rangle=i(2 \pi)^{D} \delta^{D}\left(\int J\right)\left(g_{D}^{2} \alpha^{\prime}(2 \pi)^{26}\right)^{h-1}$
$\left.\sum_{k=0}^{\lfloor\mathcal{I} / 2\rfloor} \sum_{\pi \in S_{\mathcal{I}} / \sim I=1} \prod_{I}^{k}\left\{-\eta^{\mu_{\pi(2 l-1)} \mu_{\pi(2 l)}}\left(D D \ln |E|^{2}\right)_{\pi(2 l-1) \pi(2 /)}\right)\right\}$
$\prod_{q=2 k+1}^{\mathcal{I}}\left\{i 4 \pi \mathbb{P}_{M}^{\mu_{\pi(q)}} D_{\pi(q)} \operatorname{Im} \int_{\omega_{M}}^{z_{\pi(q)}}-i \int J^{\mu_{\pi(q)}}\left(D \ln |E|^{2}\right)_{\pi(q)}+T_{\pi(q)}^{\mu_{\pi(q)}}\right\}$
$\sum_{N, M \in \mathbb{Z}^{d_{c} h}}\left|\exp \left\{\pi i \mathbb{P}_{l}^{\mu} \Omega_{I J} \mathbb{P}_{J \mu}+i 2 \pi \mathbb{P}_{I} \cdot \int d^{2} z J(z, \bar{z}) \int^{z} \omega_{l}\right\}\right|^{2}$
$\times \exp \left\{\frac{1}{2} \int d^{2} z \int d^{2} z^{\prime} J(z, \bar{z}) \cdot J\left(z^{\prime}, \bar{z}^{\prime}\right) \ln \left|E\left(z, z^{\prime}\right)\right|^{2}\right\}$

The result is quite complicated
However, when asymptotic states are identified with coherent vertex operators the result simplifies dramatically, especially at genus $h=0$ or 1

In particular, for coherent vertex operators the sum over $k$ and sum over permutations can be carried out explicitly


[^0]:    ${ }^{1}$ Deo, Jain, Tan (1987-1989); Tseytlin, Vafa (1991); Skliros, Hindmarsh (2008)
    ${ }^{2}$ Susskind (1993); Susskind (1995); Low, Polchinski, Susskind, ..., (1997); Giddings (2007); Hartman, Maldacena (2013);...
    ${ }^{3}$ Sen (1998); Dvali \& Vilenkin (2004); Copeland, Myers, Polchinski (2004); Hindmarsh (2011); DS, Copeland, Saffin (2013); ...

[^1]:    ${ }^{4}$ Mathur, Turton (2014); Mathur (2009); Bena, Warner (2007); Skenderis, Taylor (2008);.. Chen, Michel, Polchinski, Puhm (2014)
    ${ }^{5}$ Almheiri, Marolf, Polchinski, Sully (2013)

[^2]:    ${ }^{6}$ McAllister, Mitra (2004)
    ${ }^{7}$ Silverstein (2014)
    ${ }^{8}$ Susskind (1993); Susskind (1995); Low, Polchinski, Susskind, ... , (1997); Giddings (2007); Hartman, Maldacena (2013); ...
    ${ }^{9}$ Susskind (1993); Horowitz, Polchinski (1997); Damour, Veneziano (2000);

[^3]:    ${ }^{10}$ Sarangi, Tye (2002); Dvali, Vilenkin (2004); Copeland, Myers, Polchinski (2004); Polchinski (2006); Copeland, Kibble (2009); Sakellariadou (2009); Hindmarsh (2011); Banks, Seiberg (2011)

[^4]:    ${ }^{11}$ Vilenkin, Albrecht-Turok, Allen-Shellard, Hindmarsh, Urrestilla, Copeland, Kibble, Steer, Sakellariadou, Avgoustidis, Bevis
    ${ }^{12}$ Shellard '86, Jackson-Jones-Polchinski '04, Achúcarro-Putter '06
    13 Chialva-lengo-Russo (2003-06); Skliros, Copeland Saffin (2013)
    14 Damour, Vilenkin '00,'01, Siemens,Olum '03, Blanco-Pillado, Olum, Binetruy et al, ...

[^5]:    ${ }^{15}$ where $\Phi, G_{\mu \nu}$ and $H_{(3)}$ are the dilaton, spacetime metric and 3-form field strength, $H=d B$, respectively
    ${ }^{16}$ Tseytlin (1990); Dabholklar, Harvey (1989)

[^6]:    ${ }^{17}$ Skliros, Copeland, Saffin (PRL 2013)
    ${ }^{18}$ Hindmarsh, Skliros (PRL 2011); Skliros, Hindmarsh (PRD 2011)

[^7]:    ${ }^{22}$ Contrast with usual T-duality, $\left(X_{L}(z), X_{R}(\bar{z})\right) \rightarrow\left(X_{L}(z),-X_{R}(\bar{z})\right)$. Here dual directions non-compact, see e.g. Berkovits, Maldacena (2008)

[^8]:    ${ }^{23}$ Damour, Veneziano (2000)
    ${ }^{24}$ Chialva, lengo, Russo (2003-06);

[^9]:    ${ }^{26}$ D'Hoker, Phong (1989)
    ${ }^{27}$ For mass eigenstates the s integral is trivial, whereas for coherent vertex operators it enforces level-matching (invariance under space-like shifts).

[^10]:    ${ }_{32}^{31}$ DS, Copeland and Saffin (PRL 2013)
    ${ }^{32}$ Here $z=\sqrt{2}\left|\hat{\mathbb{P}} \cdot \hat{\lambda}_{1}\right|, \overline{\mathbf{z}}=\sqrt{2}\left|\hat{\mathbb{P}} \cdot \hat{\lambda}_{1}\right|$, the $J_{\boldsymbol{n}}(x)$ are Bessel and $M=\mu L, \mu=1 /\left(2 \pi \alpha^{\prime}\right)$

