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Motivation
Highly Excited Strings (HES) are deeply rooted into the structure
of string theory.

- they are related to the UV finiteness of string amplitudes;
- are energetically favourable at high energy densities (limiting
Hagedorn temperature, . . . );1

- they provide a source of non-locality (desirable2 e.g. in
resolving information paradox);

- their properties may even lead to signatures unique to string
theory (e.g. in context of cosmic superstrings3)

1Deo, Jain, Tan (1987-1989); Tseytlin, Vafa (1991); Skliros, Hindmarsh (2008)
2Susskind (1993); Susskind (1995); Low, Polchinski, Susskind, . . . , (1997); Giddings (2007);

Hartman, Maldacena (2013);. . .
3Sen (1998); Dvali & Vilenkin (2004); Copeland, Myers, Polchinski (2004); Hindmarsh (2011); DS,

Copeland, Saffin (2013); . . .



HES as Black Holes I
A major challenge for any theory of quantum gravity is to provide:

(a) a microscopic interpretation of the Bekenstein-Hawking entropy
(b) to resolve the black hole (BH) information paradox

Currently a large amount of effort to address these, one approach
being the fuzzball proposal, where:4

(a) quantum effects important at the would-be BH horizon;
(b) quantum matter that makes up the black hole is of order the
horizon scale

And even more radical proposals (e.g. firewall proposal5)

4Mathur, Turton (2014); Mathur (2009); Bena, Warner (2007); Skenderis, Taylor (2008);. . . Chen,
Michel, Polchinski, Puhm (2014)

5Almheiri, Marolf, Polchinski, Sully (2013)



HES as Black Holes II
Ultrarelativistic scattering of D-branes leads to copious production
of (open) HES6 (velocity-dependent correction to open string
mass). So expect enhanced string production as late-time in-falling
observers are strongly boosted in near horizon7

Inline with earlier suggestions that8 HES effectively spread out on
the horizon relative to external observer

In absence of RR charges a single9 HES the most likely BH
microstate

⇒ An explicit handle on quantum HES should settle these
speculations.

6McAllister, Mitra (2004)
7Silverstein (2014)
8Susskind (1993); Susskind (1995); Low, Polchinski, Susskind, . . . , (1997); Giddings (2007);

Hartman, Maldacena (2013);. . .
9Susskind (1993); Horowitz, Polchinski (1997); Damour, Veneziano (2000); . . .



HES as Cosmic Strings I
Renewed interest in cosmic strings (CS) in recent years (warped
compactifications, brane inflation, . . . )

Compactifications of string theory lead to many potential cosmic
string candidates:10

- F-strings
- D-strings
- (p, q)-strings
- wrapped D-branes
- solitonic strings
- electric and magnetic flux tubes

...
10Sarangi, Tye (2002); Dvali, Vilenkin (2004); Copeland, Myers, Polchinski (2004); Polchinski (2006);

Copeland, Kibble (2009); Sakellariadou (2009); Hindmarsh (2011); Banks, Seiberg (2011)



HES as Cosmic Strings II
General consensus on large scale evolution11

String inter-commutations12 and string decay13 play a fundamental
role in the cosmological relevance of CS

Strongest signal from CS: gravitational wave bursts from string
with cusps may be detectable in near future for string models with
Gµ ≥ 10−13 (LIGO2,LISA)14

However, back-reaction effects (which can play a crucial role)
neglected

11Vilenkin, Albrecht-Turok, Allen-Shellard, Hindmarsh, Urrestilla, Copeland, Kibble, Steer,
Sakellariadou, Avgoustidis, Bevis

12Shellard ’86, Jackson-Jones-Polchinski ’04, Achúcarro-Putter ’06
13Chialva-Iengo-Russo (2003-06); Skliros, Copeland Saffin (2013)
14Damour,Vilenkin ’00,’01, Siemens,Olum ’03, Blanco-Pillado,Olum, Binetruy et al, . . .



Effective Theory Description
One may discuss HES in terms of EFTs, e.g.:15

Seff =
1

16πGD

∫
dDx
√
−G e−2Φ

(
R(D) + 4(∇Φ)2 − 1

12
H2

(3) + . . .
)

− µ
∫

S2
∂Xµ ∧ ∂̄X ν

(
Gµν + Bµν

)
+ . . .

Although adequate for certain purposes, these do not crucial
stringy features,16 such as:

- couplings to infinite set of oscillator states
- inherently QM processes (such as string intercommutations)
- break down in UV and at small scales

15where Φ, Gµν and H(3) are the dilaton, spacetime metric and 3-form field strength, H = dB,
respectively

16Tseytlin (1990); Dabholklar, Harvey (1989)



HES in String Theory
Going beyond EFTs . . .

Would like to phrase the above in terms of available tools in
perturbative string theory: quantum vertex operators and
associated string amplitudes

Although string computations with HES are non-trivial, new
efficient tools appropriate for HES now available, making
computations with HES tractable and efficient17

⇒ Trick is to consider strings in a coherent state basis18 ..

17Skliros, Copeland, Saffin (PRL 2013)
18Hindmarsh, Skliros (PRL 2011); Skliros, Hindmarsh (PRD 2011)



Overview of Talk

- Coherent vertex operator construction of HES
- Generic two-point amplitudes (at fixed-loop momenta) and
duality (on RD−1,1 × T 26−D)

- Example: decay rates and power associated to massless
emission for special class of HES

- Effective field theory limit and α′ corrections



Context
We will be working within simplest non-trivial superstring context,

I =
1

2πα′

∫
d2z ∂XM ∂̄XNGMN + . . . ,

in absence of RR charges, where ‘. . . ’ denote fermions (and other
background fields) that won’t be relevant for the basic stringy
picture. Here X : Σ→M denote worldsheet embeddings into
spacetimeM. We assume that topologically
M = RD−1,1 × TDtot−D , with D = #non-compact dimensions:

ds2 = e2A(Y0)ηµνdXµdX ν + e−2A(Y0)ηabdY adY b

leading to effective string tension:

µ =
e2A(Y0)

2πα′



Vertex Operators
Asymptotic states described by vertex operators, V (z , z̄):

Basic interaction is splitting and joining of open or closed strings
V (z , z̄) must be composed of fields present (XM , gαβ):

V (z , z̄) =
∑

i

Pi
[
∂#X

]
e ik(i)·X (z) P̄i

[
∂̄#X

]
e i k̄(i)·X (z̄)

Q: For what choice of polynomials, Pi , P̄i , and momenta, ki , k̄i will
V (z , z̄) represent a HES?

Answer most elegantly expressed in terms of coherent vertex
operators . . .



Coherent States in QM
Consider harmonic oscillator Hamiltonian,

Ĥ = ω
(
a†a +

1
2

)
, with [a, a†] = 1 and a|0〉 = 0,

a†, a are creation and annihilation operators. Coherent states are
eigenstates of the annihilation operator, a,

a|λ〉 = λ|λ〉, with |λ〉 = exp
(
λa† − λ∗a

)
|0〉,

which therefore have classical expectation values

〈x(t)〉 =
1√
2

(
λ∗e iωt+λe−iωt), with

d2

dt2 〈x(t)〉 = −ω2〈x(t)〉.

Note presence of continuous quantum numbers: λ



QM→ Strings
If we make use of operator-fields correspondence, αµ−n ↔ ∂nXµ,

αµ−n
∼=

i
(n − 1)!

∂nXµ(z), and |0, 0; k〉 ∼ e ik·X (z,z̄),

H.O. Strings
|0〉 |0, 0; k〉
a†, a αµ−n, α

µ
n

[a, a†] = 1 [αµn , ανm] = nηµνδn+m,0

|λ〉 = exp
(
λa†
)
|0〉 |V 〉 = exp

(∑
n λn · α−n

)
|0; k〉

. . . |V 〉 not physical state unless we break covariance. . .

. . . in closed string theory, eigenstates of αn, α̃n do not even exist19

(unless X− compact), so need more general definition . . .

19Hindmarsh, Skliros (2011)



Coherent Vertex Operators
Definition of closed string coherent state:
(a) is specified by a (possibly infinite) set of continuous labels

(λ, λ̄), which may be associated to the left- and right-moving
modes;

(b) produces a resolution of unity,

1 =
∑∫
...

∫
dλd λ̄|λ, λ̄; . . . 〉〈λ, λ̄; . . . |,

so that the |λ, λ̄; . . . 〉 span the string Hilbert space. The dots
“ . . . ” denote possible additional quantum numbers;

(c) transforms correctly under all symmetries of the string theory



Coherent Vertex Operators
Construction of coherent vertex operators: define DDF operators,20

Ai
n =

1
2π

∮
dz ∂zX i e inq·X (z), Āi

n =
1
2π

∮
dz̄ ∂z̄X i e inq·X (z̄),

with q2 = 0, q · An = 0 and [Ai
n,A

j
m] = nδijδn+m,0.

Generic states of the form:

|ξ; k〉 = ξi ...j ;k...lAi
−n1 . . .A

j
−ng Āk

−n̄1 . . . Ā
l
−n̄h

e ip·X (z,z̄),

are physical when: p2 = 2, p · q = 1, and N ≡
∑

j nj =
∑

j n̄j , with
momenta:

k = p − Nq, k2 = 2− 2N

20Del Giudice, Di Vecchia, Fubini 72; Ademollo, Del Guidice, Di Vecchia 74



Any linear superposition of such states will also be physical, so we
consider in particular:21

V (z , z̄) = C
∫ 2π

0
d s exp

{ ∞∑
n=1

1
n
e insλn · A−n

}
× exp

{ ∞∑
m=1

1
m

e−ims λ̄m · Ā−m

}
e ip·X (z,z̄),

with
∫

d s the level-matching condition and C a normalisation
constant. V in one-to-one correspondence with classical solutions:

X 0(z , z̄) = −iM ln zz̄ , (M2 =
∑
n

|λn|2 +
∑
m

|λ̄m|2 − 2)

X i (z , z̄) =
∑
n

i
n
(
λi

n z−n− λ∗in zn)+
∑
m

i
m
(
λ̄i

m z̄−m− λ̄∗im z̄m),
These states, V (z , z̄) ' |λ, λ̄; p, q〉, satisfy all the above defining
properties of a coherent state

21Hindmarsh & Skliros PRL (2011)



A rest frame only exists in an expectation value sense:

〈p̂µ〉 ≡ Mδµ0 , M2 =
∑
n

|λn|2+
∑
m

|λ̄m|2−2, M2 ∈ [−2,∞)

These strings have size, R ≡
√
〈(X(z , z̄)− x)2〉, in the rest frame:

R2 =
∑
n>0

1
n2

(
|λn|2 + |λ̄n|2 − 2Re

(
λn · λ̄ne−2inτM

))
Non-zero mode components, Sµν , of the angular momenta,
Jµν = Lµν + Sµν , read:

〈S ij〉 =
∑
n>0

2
n
Im
(
λ∗in λ

j
n + λ̄∗in λ̄

j
n
)

〈S−i 〉 =
∑
n>0

∑
`∈Z

√
2

nM
Im
(
λ∗n−` · λ∗` λi

n + λ̄∗n−` · λ̄∗` λ̄i
n
)
,

with all components involving the + directions equal to zero.



Dual Vertex Operators
Any classical string trajectory X = XL(z) + XR(z̄), with ∂∂̄X = 0,
and has a dual, defined by:22(

XL(z),XR(z̄)
)
→
(
XL(z),−XR(z̄−1)

)
In the quantum theory, the X are mapped to coherent vertex
operators and their duals are generated by:

λn → λ′n = λn, λ̄n → λ̄′n = (−)nλ̄∗n, for n = 1, 2 . . .

with λn, λ̄n polarisation tensors of V (z , z̄).

22Contrast with usual T-duality,
(
XL(z),XR (z̄)

)
→

(
XL(z),−XR (z̄)

)
. Here dual directions

non-compact, see e.g. Berkovits, Maldacena (2008)



Example
Some explicit classical string trajectories (n,m, 0) (when only two
harmonics, n,m, are present) and their duals (n,m, π).



Quantum Nature
To extract quantum properties of coherent vertex operators,
V (z , z̄), we need to compute amplitudes and relate these to
associated observables.

The simplest non-trivial quantity to consider is the one-loop
two-point amplitude; in general,M =

∑
hMh,

Mh = ,

whose real and imaginary parts yield the mass shift23 (due to
self-gravity, etc.) and decay rates24:

δM2 ∼ ReM, Γ =
1
M

ImM
23Damour, Veneziano (2000)
24Chialva, Iengo, Russo (2003-06); . . .



2-Point Amlitudes (Notation & Conventions)

At genus h = 1 (A1 = 1
2M δ

D(0)M1):

A1 =
1
2

∫
F1

d2τ

∫
D(b, c ,X ) e−I |(µ, b)|2V †V̂

where V ≡
∫

d2zVzz̄ and V̂ ≡ cz c̄zVzz̄ live in the cohomology of
the BRST charge (and will be identified with coherent vertex
operators), b, c are the Diff(Σ) ghosts, τ, τ̄ is the modular
parameter of the torus

Here I = IX + Ighosts and µ z̄
z a Beltrami differential (specifying the

gauge slice).



To make the energy scales in the loops manifest (and to chirally
factorize the amplitudes25) we fix the loop momenta by inserting,

1 =

∫
dDPδD(P− P̂), P̂ ≡ 1

2πα′

∫
A1

(
∂X − ∂̄X

)
,

integrate out b, c and slightly reorganise the various terms
(dM1 = 1

2d2τd2z |η(τ)|4):

A1 =

∫
d DP

∫
dM1

∫
DX e−IX δDh(P− P̂

)
V †zz̄Vww̄ ,

Define:〈〈
V †zz̄Vww̄

〉〉
≡ |η(τ)|52

∫
DX e−IX δD(P− P̂

)
V †zz̄Vww̄ ,

with η(τ) the Dedekind eta function.

25D’Hoker, Phong (1989)



The chiral splitting theorem26 the ensures that:

〈〈
V †zz̄Vww̄

〉〉
= iδ(0)

∑
N,M∈Zdc

∫ 2π

0
d s Φ(z |τ)Φ̄(z̄ , |τ̄),

where Φ(z |τ) depends on the chiral moduli and the chiral halves of
the asymptotic state quantum numbers.27

The sum over N,M is over instanton contributions associated to
T dc , with dc = Dtot − D.

Q: So what is Φ(z |τ) for different choice of coherent vertex
operators?

26D’Hoker, Phong (1989)
27For mass eigenstates the s integral is trivial, whereas for coherent vertex operators it enforces

level-matching (invariance under space-like shifts).



For (1, 1) leading Regge coherent vertex operators:28

V (z ,z̄) = :C
∫ 2π

0
d s exp

(
e is iζ · ∂zX e−iq·X (z)

)
× exp

(
e−is i ζ̄ · ∂z̄X e−iq·X (z̄)

)
e ip·X (z,z̄) :,

we find:29

Φ(z |τ) ≡ C η(τ)−24eπiτP2E−2e−2πiP·p z

× exp
{

e is |λ1|2e2πi P·q zE 2∂2
z lnE

}
× I0

(
2
√

e is |P · λ1|2e2πi P·q z(2πE )2
)
,

where the I0(x) are modified Bessel functions and
E (z) = ϑ1(z |τ)/ϑ′(0|τ) the prime form.

28
ζµ ≡ λi

1(δiµ − pi qµ), M2 = 2|ζ|2 − 2, and |ζ| ∈ R+.
29DS, Copeland, Saffin (2013)



For more general harmonics, (n,m), we find:30

Φ(z |τ) =C η(τ)−24eπiτP2E−2e−2πiz P·p

× exp
{

e ins 1
n2 |λn|2 e2πi(P·nq)zE 2nDn

zDn
z lnE

}
× I0

(
2 e

ins
2
1
n
|P · λn| eπi(P·nq)z2πEp·nq Sn−1

)
,

where,

Dn
z ≡

n∑
`=1

Sn−`(as)

(`− 1)!
∂`z , (1)

and the arguments of elementary Schur polynomials, Sn−`(as), are

as ≡ −
n
s!
∂s

zG(z), with G(z) ≡ − ln |E (z)|2+4π(P·q)Im z .

30DS, Copeland, Saffin (to appear)



In fact, in the most general case of arbitrary polarisation tensors
and in a general Lorentz frame,

Φ(z |τ) = Cη(τ)−24 exp
{
πiτP2 − 2πizP · p

}
E−2

× exp

{
−
∑

n,m>0

e i(n+m)s (−)mλ∗n · λm

nm
eπizP·q (n+m)En+mDn

zDm
z lnE

+
∑

n,m>0

e i(n+m)s λ
∗
n · λ∗m
2nm

eπizP·q (n+m)En+mSn,m

+
∑

n,m>0

e i(n+m)s (−)n+mλn · λm

2nm
eπizP·q (n+m)En+mSn,m

}

× I0

(
2i
√ ∑

n,m>0

e i(n+m)seπiP·q (n+m)zEn+mY (λn)Y ((−)mλ∗m)

)
with

Y (λn) = (−)n
(2πPI · λn

n
Sn−1(as)+

1
n
ip·λnDn

z lnE−1
n

ip·λnSn(as)
)



Duality of 2-Point Amplitudes
Notice that all string 2-point amplitudes are invariant under:

λn → λ′n = (−)nλ∗n, λ̄n → λ̄′n = λ̄n, for n = 1, 2 . . .

→ distinct string trajectories have the same decay rates and mass
shifts!

Does this persist at higher loops? . . . unclear, the quantity
(PI · λ∗n)Dn

z
∫ z
ωI (PJ · λn)Dn

w
∫ w
ωJ that would appear in Bessel

function in Φh(z ,w |Ω) only invariant for h = 1.



String Decay



Some History
A handful of references on (closed) HES string decay:

- Wilkinson, Turok, Mitchell (1990): leading Regge (bosonic)
states, R25,1, (numerical), Γd=4 ∝ L and Γd=26 ∝ L−1

- Dabholkar, Mandal, Ramadevi (1998): higher genus bound on
leading Regge Heterotic states, R3,1 × T 6, Γ . M−1

- Iengo, Russo (2002-6); Chialva, Iengo, Russo (2004-5): leading
Regge superstring states, RD−1,1 × T 10−D , (numerical),

Γ ∼ GDµ
2(M/µ)5−D , µ =

1
2πα′

- Gutplerle & Krym (2006); leading Regge Heterotic states,
R8,1 × S1, (numerical)
...



Some History
A handful of references on decay rates of HES:

- Wilkinson, Turok, Mitchell (1990): leading Regge (bosonic)
states, R25,1, (numerical), Γd=4 ∝ L and Γd=26 ∝ L−1

- Dabholkar, Mandal, Ramadevi (1998): higher genus bound on
leading Regge Heterotic states, R3,1 × T 6, Γ . M−1

- Iengo, Russo (2002-6); Chialva, Iengo, Russo (2004-5): leading
Regge superstring states, RD−1,1 × T 10−D , (numerical),

Γ ∼ GDµ
2(M/µ)5−D , µ =

1
2πα′

- Gutplerle & Krym (2006); leading Regge Heterotic states,
R8,1 × S1, (numerical)
...



String Decay Rates

From unitarity, S†S = 1, one can show that decay rates can be
extracted (to leading order in gs) from:

Γ =
1
M

Im
∫

d DPM1(P),

which is of the form:

Γ =
1
M

∫
d DP

∑
{mj , kµ}

| . . . |2 δ(P2 + m2
1)δ
(
(k − P)2 + m2

2
)

with m2
1 =

(N
R

)2
+
(M′R

2

)2
+ r + r̄ − 2, m2

2 = . . .



For massless radiation (i.e. m2
1 = 0) from (1, 1) vertices, in the IR

the result ressums:31

dΓ

dΩSD−2

∣∣∣
m2
1=0

=
∑
N

16πGDµ
2

(2π)D−4 ωD−4−δ
N N2

[
J ′2N +

( 1
z2 − 1

)
J2
N + . . .

][
J̄N
′2

+
( 1

z̄2 − 1
)
J̄N

2
+ . . .

]
where JN = JN(Nz), J̄N = JN(Nz̄), etc., and the frequency of
emitted radiation,32

ωN =
4πN

L
, with N = 1, 2, . . .

Taking δ = 1 yields a decay rate, δ = 0 yields a power.

31DS, Copeland and Saffin (PRL 2013)
32Here z =

√
2|P̂ · λ̂1|, z̄ =

√
2|P̂ · ˆ̄λ1|, the Jn(x) are Bessel and M = µL, µ = 1/(2πα′)



Effective Description
Remarkably, the above was shown33 to agree precisely with the
effective theory,

Seff =
1

16πGD

∫
dDx
√
−G e−2Φ

(
R(D) + 4(∇Φ)2 − 1

12
H2

(3) + . . .
)

− µ
∫

S2
∂Xµ ∧ ∂̄X ν

(
Gµν + Bµν

)
+ . . . ,

where Φ, Gµν and H(3) are the dilaton, spacetime metric and
3-form field strength, H = dB , respectively

(We plug classical solutions for X (from classical-CVO map) and
compute perturbations in G ,B and Φ)

33DS, Copeland and Saffin (PRL 2013)



Higher Harmonics
. . . the above correspondence acts as a guiding principle to write
down the general result for arbitrary harmonics (n,m):34

dΓ

dΩSD−2

∣∣∣
m2
1=0

=
∑
N

16πGDµ
2

(2π)D−4 ω
D−4−δ(Nuwg)2

[
J ′2Nw

(
A
)

+
(

(Nw/A)2 − 1
)
J2
Nw
(
A
)][

J ′2Nu
(
Ā
)

+
(

(Nu/Ā)2 − 1
)
J2
Nu
(
Ā
)]

with n ≡ gu, m ≡ gw , integers and u,w relatively prime.
(g can be interpreted as a winding number: M ∼ gR/α′, with R
determined by dynamics.)

34Here A = Nw
√
2|P̂ · λ̂n|, Ā = Nu

√
2|P̂ · ˆ̄λm|



α′ corrections
The UV region of the emission spectrum is particularly important,
as, e.g., this is where the characteristic cosmic string cusp signal is,
which according to classical effective theory computations35 leads
to the strongest GW signal:36

dΓ

dΩSD−2

∣∣∣
m2
1=0

=
∑
N

16πGDµ
2

(2π)D−4 ωD−4−δN2

[
J ′2N +

( 1
z2 − 1

)
J2
N − (−)N ω

M
JNJ ′Nz + . . .

]
[
J̄N
′2

+
( 1

z̄2 − 1
)
J̄N

2 − (−)N ω

M
J̄N J̄N

′z̄ + . . .
]

The corrections become important when ω ∼
√

M/
√
α′, long

before the cutoff ω ∼ M.
35Damour, Vilenkin (2001)
36Skliros, Copeland, Saffin (2013)



Summary

- Discussed construction of generic covariant coherent vertex
operators and their classical analogues

- Explicit expression for generic two-point function (at fixed-loop
momenta) (on RD−1,1 × T 26−D) → novel duality

- Analytically computed decay rates and powers associated to
massless emission for special class of IHES states in IR

- Found effective field theory that reproduces the leading terms
of these decay rates and powers

- Computed UV corrections, which can become very significant
in the UV (where the interesting cusp radiation signal is).



Chiral Splitting Theorem
To prove chiral splitting theorem, use point splitting to write a
generic amplitude in the form:〈〈 I∏

j=1

(
DjXµj + Tµj

j
)

e i
∫

J·X
〉〉
,

for generic X -independent operators {Dj ,Tj , J}.

- Exponentiate delta functions, δ(P− P̂) =
∫

dye iy(P−P̂)

- Expand X = Xcl + X̃ and integrate out X̃ with propagator

G (z ,w) = − ln |E (z ,w)|2 + 2π Im
∫ z

w
ωI (ImΩ)−1

IJ Im
∫ z

w
ωJ

- Poisson-resum on integers M ∈ Zdch of Xcl
- Make use of (quasi-)periodicity properties of prime form,

E (z ,w), and
∮
AI
ωJ = δIJ ,

∮
BI
ωJ = ΩIJ



To evaluate
〈〈
. . .
〉〉
, for X : Σ→ RD−1,1 × T 26−D :

- if X ∈ RD−1,1:

X = x + X̃ , x = const

- if X ∈ T 26−D :

X = x + γI z + γ̄I z̄ + X̃ ,∮
AI

dX a
cl = (2πNIR)a,

∮
BI

dX a
cl = (2πMIR)a,

with γI , γ̄I determined from the latter; N,M ∈ Zdch, and X̃
denote quantum fluctuations.



The result is the following.
Drop contact terms and the theorem is proven:

〈〈 I∏
j=1

(
DjXµj + Tµj

j
)

e i
∫

J·X
〉〉

= i(2π)DδD
(∫

J
)

(g2
Dα
′(2π)26)h−1

bI/2c∑
k=0

∑
π∈SI/∼

k∏
l=1

{
− ηµπ(2l−1)µπ(2l)(DD ln |E |2)π(2l−1)π(2l))

}
I∏

q=2k+1

{
i4πPµπ(q)

M Dπ(q)Im
∫ zπ(q)

ωM − i
∫

Jµπ(q)(D ln |E |2)π(q) + T
µπ(q)

π(q)

}
∑

N,M∈Zdch

∣∣∣∣∣ exp
{
πiPµI ΩIJPJµ + i2πPI ·

∫
d2zJ(z , z̄)

∫ z
ωI

}∣∣∣∣∣
2

× exp
{
1
2

∫
d2z

∫
d2z ′J(z , z̄) · J(z ′, z̄ ′) ln |E (z , z ′)|2

}



. . . The result is quite complicated

However, when asymptotic states are identified with coherent
vertex operators the result simplifies dramatically, especially at
genus h = 0 or 1

In particular, for coherent vertex operators the sum over k and sum
over permutations can be carried out explicitly


