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Are there quantum miracles happening in 
maximal supergravity?



Ultraviolet Divergences in Gravity
Simple power counting in gravity and supergravity theories 
leads to a naïve degree of divergence 

in D spacetime dimensions. So, for D=4, L=3, one 
expects            . In dimensional regularization, only 
logarithmic divergences are seen (      poles,                     ), so 
8 powers of momentum would have to come out onto the 
external lines of such a diagram.
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Figure 11. A sample diagram whose divergence
part would need to be evaluated in order to deter-
mine the ultra-violet divergence of a supergravity
theory. The lines represent graviton propagators
and the vertices three-graviton interactions.

ready been used to show that at least for the case
of maximally supersymmetric gravity the onset of
divergences is delayed until at least five quantum
loops [49,50].

4. STATUS OF LOOP CALCULATIONS

Before surveying the main advance since the
last ICHEP conference, it is useful to survey the
status of quantum loop calculations. Here we do
not discuss tree-level calculations which have also
seen considerable progress over the years.

4.1. Status of one-loop calculations
In 1948 Schwinger dealt with one-loop three-

point calculations [18] such as that of the anoma-
lous magnetic moment of leptons described in
Section 2. It did not take very long be-
fore Karplus and Neuman calculated light-by-
light scattering in QED in their seminal 1951
paper [51]. In 1979 Passarino and Veltman pre-
sented the first of many systematic algorithms for
dealing with one-loop calculations with up to four
external particles, leading to an entire subfield de-
voted to such calculations. Due to the complexity
of non-abelian gauge theories, however, it was not
until 1986 that the first purely QCD calculation
involving four external partons was carried out in
the work of Ellis and Sexton [52].

The first one-loop five-particle scattering am-
plitude was then calculated in 1993 by Lance
Dixon, David Kosower and myself [53] for the
case of five-gluon scattering in QCD. This was
followed by calculations of the other five-point
QCD subprocesses [54], with the associated phys-

ical predictions of three-jet events at hadron col-
liders appearing somewhat later [55,56]. A num-
ber of other five-point calculations have also been
completed. One example of a state-of-the-art five-
point calculation was presented in a parallel ses-
sion by Doreen Wackeroth [57], who described the
calculation of pp → t̄tH at next-to-leading order
in QCD [58]. This process is a useful mode for
discovering the Higgs boson as well as measure-
ment of its properties. Other examples are NLO
calculations for e+e− → 4 jets [59,60,61], Higgs
+ 2 jets [62], and vector boson + 2 jet produc-
tion [59,63], which is also important as a back-
ground to the Tevatron Higgs search, if the jets
are tagged as coming from b quarks.

Beyond five-external particles, the only calcu-
lations have been in special cases. By making
use of advanced methods, for special helicity con-
figurations of the particles, infinite sequences of
one-loop amplitudes with an arbitrary number
of external particles but special helicity configu-
rations have been obtained in a variety of the-
ories [39,40]. For the special case of maximal
supersymmetry, six-gluon scattering amplitudes
have been obtained for all helicities [40]. There
has also been a recent calculation of a six-point
amplitude in the Yukawa model [64], as well as re-
cent papers describing properties of six-point in-
tegrals [65]. These examples suggest that that the
technical know-how for computing general six-
point amplitudes is available, though it may be
a rather formidable task to carry it through. An
efficient computer program for dealing with up to
three jets at hadron colliders now exists [56], sug-
gesting that it would be possible add one more
jet, once the relevant scattering amplitudes are
calculated. This would then give a much bet-
ter theoretical handle on multi-jet production at
hadron colliders.

4.2. Status of Higher Loop Computations
Over the years, an intensive effort has gone

into calculating higher loop Feynman diagrams.
A few samples of some impressive multi-loop cal-
culations are:

• The anomalous magnetic moment of lep-
tons, already described in Section 2.

∆ = (D−2)L+2

∆ = 8
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Local supersymmetry implies that the pure curvature part of 
such a D=4, 3-loop divergence candidate must be built from 
the square of the Bel-Robinson tensor

This is directly related to the        corrections to the 
superstring effective action, except that in the string context 
such contributions occur with finite coefficients. In string 
theory, the corresponding question is how poles might 
develop in             as one takes the zero-slope limit               
and how this bears on the ultraviolet properties of the 
corresponding field theory.

Deser, Kay & K.S.S 1977

Z √
−gTµνρσT µνρσ , Tµνρσ = Rµ

α
ν

βRρασβ + ∗Rµ
α

ν
β ∗Rρασβ

α�3

(α�)−1 α� → 0
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Berkovits 2007
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The consequences of supersymmetry for the ultraviolet structure 
are not restricted to  the requirement that counterterms be 
supersymmetric invariants, however.
There exist more powerful “nonrenormalization theorems” in 
superspace (where ∫ dθ θ = 1, ∫ dθ = 0) the most famous of which 
excludes infinite renormalization of chiral invariants in D=4, N=1 
supersymmetry, given in N=1 superspace by holomorphic 
integrals over just half the superspace:                                           
(as compared to full superspace                  )   
However, maximally extended SYM and supergravity theories do 
not have formalisms with all supersymmetries linearly realised 
“off-shell” in superspace. So the power of such 
nonrenormalization theorems is limited to the off-shell linearly 
realizable subalgebra.

Z
d2θW (φ(x,θ, θ̄)) , D̄φ = 0
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The degree of “off-shell” supersymmetry is the maximal  
supersymmetry for which the algebra can close without use of the 
equations of motion.

Knowing the extent of this off-shell supersymmetry is tricky, and 
may involve formulations (e.g. harmonic superspace) with infinite 
numbers of auxiliary fields.

For maximal N=4 Super Yang-Mills and maximal N=8 
supergravity, the linearly realizable supersymmetry has been 
believed since the 1980’s to be at least half the full supersymmetry 
of the theory. So at that time the first generally allowed 
counterterms were expected to have “1/2 BPS” structure as 
compared to the full supersymmetry of the theory.
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The 3-loop       candidate maximal supergravity counterterm 
has a structure very similar to that of an       N=4  super Yang-
Mills invariant. Both of these are 1/2 BPS invariants, 
involving integration over just half the corresponding full 
superspaces:

Versions of these supergravity and SYM operators do occur as 
counterterms at one loop in D=8. However, the one-loop level 
often has special renormalization features, so one needs to be 
careful not to make unwarranted conclusions about the general 
acceptability of such counterterms.

R4

Howe, K.S.S. & Townsend 1981
Kallosh 1981

F 4
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Of course, there are other symmetries in supergravity beside 
diffeomorphism invariance and supersymmetry. In particular, 
D=4, N=8 supergravity also has a rigid nonlinearly realised E7 

symmetry. At leading order, this symmetry is realised by 
constant shifts of the 70 scalars, which take their values in the 
coset space E7/SU(8).

The      candidate satisfies at least the minimal requirement of 
invariance under such constant shifts of the 70 scalars 
because, at the leading 4-particle order, the integrand may be 
written such that every scalar field is covered by a derivative.

8
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The calculational front has made impressive progress since the 
late 1990s.

These have led to unanticipated and surprising cancellations at 
the 3- and 4-loop orders, yielding new lowest possible orders 
for the super Yang-Mills and supergravity divergence onset.

                                                      plus 46 more topologies

    

Unitarity-based calculations

Max. SYM first divergences, 
current lowest possible 
orders.

Max. supergravity first 
divergences, current lowest 
possible orders.

Bern, Carrasco, Dixon, 
Johansson & Roiban 2007 ... 2011
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Blue: known divergences
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Another approach to analyzing the divergences in 
supersymmetric gauge theories, using the full supersymmetry, 
begins with the Callan-Symanzik equation for the 
renormalization of the Lagrangian as a operator insertion, 
governing, e.g., mixing with the half-BPS SYM 
operator                      . Letting the classical action be       , the 
C-S equation for SYM in dimension D is

where                           for                     .

From this one learns that                                 so the beta 
function for the                        operator is determined by the 
anomalous dimension       . 

Algebraic Renormalization
Dixon; Howe, Lindstrom & White;
Piguet & Sorella; Hennaux;
Stora; Baulieu & Bossard

S(4) = tr(F4) S(2)
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(n(4) − 1)β(4) = γ(4)

S(4) = tr(F 4)
γ(4)

µ
∂

∂µ
[S(2) · Γ] = (4−D)[S(2) · Γ] + γ(4)g

2n(4) [S(4) · Γ] + · · ·

n(4) = 4, 2, 1 D = 5, 6, 8



Combining the supersymmetry generator with a commuting 
spinor parameter to make a scalar operator               , the 
expression of SUSY invariance for a D-form density in D-
dimensions is                               . Combining this with the SUSY 
algebra                           and using the Poincaré Lemma, one finds 
(where           is the classical-level BRST operator for    )
                                                                               .

Hence, one can consider cocycles of the extended nilpotent 
differential                              acting on formal form-
sums                                         .

The supersymmetry Ward identities then imply that the whole 
cocycle must be renormalized in a coherent way. In order for an 
operator like        to mix with the classical action       , their 
cocycles need to have the same structure.

LD +LD−1 +LD−2 + · · ·

S(4) S(2)
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S(Q)|Σ

ii(�̄γ�)LD + S(Q)|ΣLD−1 + dLD−2 = 0

Q = �̄Q

QLD + dLD−1 = 0

Q2 = −i(�̄γµ�)∂µ

d+ S(Q)|Σ + ii(�̄γ�)

Q



The construction of supersymmetric invariants is isomorphic to 
the construction of cohomologically nontrivial closed forms in 
superspace:                          is invariant (where     is a pull-back to 
a section of the projection map down to the purely bosonic “body” 
subspace M0) if        is a closed form in superspace, and it is 
nonvanishing only if       is nontrivial.
Using the BRST formalism, handle all gauge symmetries 
including space-time diffeomorphisms by the nilpotent BRST 
operator s. The invariance condition for        is
                                 ,  where      is the usual bosonic exterior 
derivative. Since              and s anticommutes with     , one 
obtains                                         , etc.                                 

Ectoplasm Voronov 1992; Gates, Grisaru, Knut-Whelau, & Siegel 1998
Berkovits and Howe 2008; Bossard, Howe & K.S.S. 2009
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LD

LD

LD

d0

s2 = 0

I =
�

M0
σ∗LD σ∗

d0

sLD + d0LD−1 = 0

sLD−1 + d0LD−2 = 0



Solving the BRST Ward identities thus becomes a 
cohomological problem. Note that the supersymmetry ghost is 
a commuting field.  One needs to study the cohomology of the 
nilpotent operator                   , whose components              are 
(D-q) forms with ghost number q, i.e. (D-q) forms with q 
spinor indices. The spinor indices are totally symmetric since 
the supersymmetry ghost is commuting.

For gauge-invariant supersymmetric integrands, this establishes 
an isomorphism between the cohomology of closed forms in 
superspace (aka “ectoplasm”) and the construction of BRST-
invariant counterterms.

δ = s + d0 LD−q,q

13



Flat superspace has a standard basis of invariant 1-forms

dual to which are the superspace covariant derivatives

There is a natural bi-grading of superspace forms into even and 
odd parts:

Correspondingly, the flat superspace exterior derivative splits 
into three parts with bi-gradings (1,0), (0,1) & (-1,2):

where for a (p,q) form in flat superspace, one has

where for a (p,q) form in flat superspace, one has

Superspace cohomology

bosonic der. fermionic der. torsion
d = d0(1, 0) + d1(0, 1) + t0(−1, 2)
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Bonora, Pasti & Tonin 1987

Ea = dxa − i

2
dθα(Γa)αβθβ

Eα = dθα

Ωn = ⊕n=p+qΩp,q

(toω)a2···apβ1···βq+2 ∼ (Γa1)(β1β2ωa1···apβ3···βq+2)

d0 ↔ ∂a d1 ↔ ∂α



The nilpotence of the total exterior derivative d implies the three 
relations

Then, since                 , the lowest dimension nonvanishing 
component (or “generator”)              must satisfy                         
so             belongs to the t0 cohomology group               . 

Starting with the t0 cohomology groups        , one then defines a 
spinorial exterior derivative
by                     , where the [ ] brackets denote Ht classes. 

t20 = 0
t0d1 + d1t0 = 0

d2
1 + t0d0 + d0t0 = 0

LD−q,q

dLD = 0
t0LD−q,q = 0

LD−q,q H
D−q,q
t

H
p,q
t

ds : H
p,q
t → H

p,q+1
t

ds[ω] = [d1ω]
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One finds that ds is nilpotent,             , and so one can define 
spinorial cohomology groups                              .

This formalism gives a way to reformulate BRST 
cohomology in terms of spinorial cohomology. The lowest 
dimension component, or generator, of a counterterm’s 
superform must be ds closed, i.e. it must be an element 
of              .

Solving                           allows one to solve for all the higher 
components of        in terms of              for normal cocyles. 

H
p,q
s = Hds(H

p,q
t )

The groups            give multi pure spinors.H
0,q
s
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H
D−q,q
s

ds[LD−q,q] = 0
LD LD−q,q

Cederwall, Nilsson & Tsimpis 2002
Howe & Tsimpis 2003

d2
s = 0



To illustrate how this formalism works, consider N=1 
supersymmetry in D=10. Corresponding to the κ 
symmetries of strings and 5-branes, we have the D=10 
Gamma matrix identities                                       .

The second of these is relevant to the construction of d-
closed forms in D=10. One may have a generator

where                    . The simplest example of such a form 
corresponds to a full superspace integral over S:

where                  is constructed from the D=10 Gamma 
matrices; it is totally symmetric in        and totally 
antisymmetric in             .

L5,5 = Γ5,2M0,3

ds[M0,3] = 0

Tαβγ,δ1···δ5

αβγ

δ1 · · · δ5
17

t0Γ1,2 = 0 t0Γ5,2 = 0

Mαβγ = Tαβγ,δ1···δ5(D
11)δ1···δ5S

Berkovits & Howe 2008



Spinorial cohomology then allows one to derive non-
renormalization theorems for counterterms: the cocycle 
structure of candidate counterterms must match that of the 
classical action.

For example, in maximal SYM, this leads to non-
renormalization theorems ruling out the       counterterm 
that was otherwise expected at L=4 in D=5.

Similar non-renormalization theorems exist in 
supergravity, but their study is complicated by local 
supersymmetry and the density character of counterterm 
integrands.

Cohomological non-renormalization

F 4

18



Maximal supergravity has a series of duality symmetries 
which extend the automatic GL(11-D) symmetry obtained 
upon dimensional reduction from D=11, e.g. E7 in the N=8, 
D=4 theory, with the 70 scalars taking their values in an    
E7/SU(8) coset target space.

The N=8, D=4 theory can be formulated in a manifestly  E7  

covariant (but non-manifestly Lorentz covariant) formalism. 
Anomalies for SU(8), and hence E7, cancel.

Combining the requirement of continuous duality invariance 
with the spinorial cohomology requirements gives further 
restrictions on counterterms.

Duality invariance constraints

Marcus 1985

Bossard, Hillman & Nicolai 2010
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cf also Broedel & Dixon 2010



In order to realize E7 manifestly, one doubles the 
number of vector fields     , to make them fill out a 56 
representation of E7. Initially, the      field is not present 
in this formalism.

The      field equation                    is then solved by
                 which reintroduces the      field. This then 
implies a twisted self-duality condition for the vector 
field strengths

which establishes equivalence on-shell to the usual 
Lorentz-covariant formalism with just 28 vector fields.

εijk∂jEn
k = 0

En
i = ∂iA

n
0

Henneaux & Teitelboim 1992

F̂m
µν = − 1

2
√
−g

εµν
σρJm

nF̂
n
σρ
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Supergravity Duality Groups and String Theory discretizations:

The scalar target-space manifold is GD/KD. In string theory, the 

duality group becomes discretized to GD(ℤ), but this 

discretization occurs due to nonperturbative effects outside the 

context of field-theoretic supergravity.
21

D E11−D(11−D)(R) KD E11−D(11−D)(Z)
10A R+ 1 1
10B Sl(2,R) SO(2) Sl(2,Z)
9 Sl(2,R)× R+ SO(2) Sl(2,Z)
8 Sl(3,R)× Sl(2,R) SO(3)× SO(2) Sl(3,Z)× Sl(2,Z)
7 Sl(5,R) SO(5) Sl(5,Z)
6 SO(5, 5,R) SO(5)× SO(5) SO(5, 5,Z)
5 E6(6)(R) USp(8) E6(6)(Z)
4 E7(7)(R) SU(8)/Z2 E7(7)(Z)
3 E8(8)(R) SO(16) E8(8)(Z)
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In a curved superspace, an invariant is constructed from the top 
(pure “body”) component in a coordinate basis:   

Referring this to a preferred “flat” basis and identifying        
components with vielbeins and gravitinos, one has in D=4

Thus the “soul” components of the cocycle also contribute to 
the local supersymmetric covariantization.

 Since the gravitinos do not transform under the D=4 E7 duality, 
the LABCD form components have to be separately duality 
invariant. 22

rigid E7(7), the measure will be E7(7) invariant whereas the integrand will necessarily transform

non-trivially with respect to E7(7). It would then follow that the ∂6
R

4
invariant is not E7(7)

invariant, in agreement with the conclusion of the preceding section.

Note that this is not in contradiction with the existence of BPS duality invariants in higher

dimensions (such as R
4
in D = 8, ∂4

R
4
in D = 7 and ∂6

R
4
in D = 6), since the BPS invariants

are not unique in dimensions D > 5.

The non-existence of harmonic measures for the 1/2 and the 1/4 BPS invariants is not in

contradiction with the existence of these non-linear invariants in the full non-linear theory.

Indeed as we will discuss in the next section, not all supersymmetry invariants can be written

as harmonic superspace integrals, and some are only described in terms of closed super-D-form.

Non-linear consequences of linear invariants

A more general approach to the construction of superinvariants is afforded by the ectoplasm

formalism [28, 29, 30]. In D-dimensional spacetime, consider a closed super-D-form, LD, in the

corresponding superspace. The integral of the purely bosonic part of this form over spacetime

is then guaranteed to be supersymmetric by virtue of the closure property. Moreover, if LD is

exact it will clearly give a total derivative so that we are really interested in the Dth superspace

cohomology group. As we have seen in the preceding section, one cannot define a harmonic

measure for every invariant, and in particular, not for the 1/2 and 1/4 BPS invariants in N = 8

supergravity. However, according to the algebraic Poincaré Lemma, any supersymmetry invari-

ant necessarily defines a closed super-D-form.

In order to analyse superspace cohomology, it is convenient to split forms into their even and odd

parts. Thus a (p, q)-form is a form with p even and q odd indices, totally antisymmetric on the

former and totally symmetric on the latter. The exterior derivative can likewise be decomposed

into parts with different bi-degrees,

d = d0 + d1 + t0 + t1 , (13)

where the bi-degrees are (1, 0), (0, 1), (−1, 2) and (2,−1) respectively. So d0 and d1 are basically

even and odd derivatives, while t0 and t1 are algebraic. The former acts by contracting an even

index with the vector index on the dimension-zero torsion and then by symmetrising over all of

the odd indices. The equation d
2
= 0 also splits into various parts of which the most relevant

components are

t
2
0 = 0; d1t0 + t0d1 = 0; d

2
1 + t0d0 + d0t0 = 0 . (14)

The first of these equations allows us to define t0-cohomology groups, H
p,q
t [31], and the other two

allow us to introduce the spinorial derivative ds which maps H
p,q
t to H

p,q+1
t by ds[ωp,q] = [d1ωp,q],

where the brackets denote Ht cohomology classes, and which also squares to zero [32, 33].

The point of this is that one can often generate closed super-D-forms from elements of these

cohomology groups.

In the context of curved superspace it is important to note that the invariant is constructed

from the top component in a coordinate basis,

I =
1

D!

�
d
D
x εmD...m1 EmD

AD · · ·Em1
A1 LA1...AD(x, θ = 0) . (15)

6

One transforms to a preferred basis by means of the supervielbein EM
A. At θ = 0 we can

identify E
a
m with the spacetime vielbein em

a and Em
α with the gravitino field ψm

α (where α
includes both space-time α, α̇ and internal i indices for N = 8). In four dimensions, we therefore

have

I =
1

24

� �
e
a
∧e

b
∧e

c
∧e

d
Labcd + 4e

a
∧e

b
∧e

c
∧ψ

α
Labcα + 6e

a
∧e

b
∧ψ

α
∧ψ

β
Labαβ

+4e
a
∧ψ

α
∧ψ

β
∧ψ

γ
Laαβ γ + ψα

∧ψ
β
∧ψ

γ
∧ψ

δ
Lαβ γδ

�
. (16)

By definition, each component Labcd, Labcα, Labαβ , Laαβ γ , Lαβ γδ is supercovariant at θ = 0.

This is a useful formula because one can directly read off the invariant in components in this

basis.

In N = 8 supergravity, all the non-trivial t0-cohomology classes lie in Ht
0,4. Invariants are

therefore completely determined by their (0, 4) components Lαβ γδ, and all non-trivial L0,4 sat-

isfying [d1L0,4] = 0 in t0-cohomology define non-trivial invariants. Ht
0,4 is the set of functions

of fields in the symmetric tensor product of four 2 × 8 ⊕ 2 × 8 of SL(2,C) × SU(8) without

SU(8) contractions (since such functions would then be t0-exact). Because of the reducibility of

the representation, it will be convenient to decompose Lαβ γδ into components of degree (0, p, q)

(p+ q = 4) with p 2× 8 and q 2× 8 symmetrised indices.

We will classify the elements of Ht
0,4 into three generations.2 The first generation corresponds

to elements that lie in the antisymmetric product of four 2 × 8 ⊕ 2 × 8 of SL(2,C) × SU(8),

and can therefore be directly related to the top component L4,0 through the action of the

superderivatives. We will write M0,p,q for the corresponding components of a given L0,4. They

lie in the following irreducible representations of SL(2,C)× SU(8):
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In order to understand the constraints that these functions must satisfy in order for L0,4 to

satisfy the descent equation

[d1L0,4] = 0 , (18)

it is useful to look at the possible representations of d1L0,4 which define Ht
0,5 cohomology classes

in general, without assuming any à priori constraint. We will split d1 = d1,0 + d0,1 according to

the irreducible representations of SL(2,C)× SU(8). One computes that
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2We will avoid discussing the elements of Ht
0,4 of degree (0, 2, 2) in the [0, 0|0200020] representation, which do

not play any role.
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One transforms to a preferred basis by means of the supervielbein EM
A. At θ = 0 we can

identify E
a
m with the spacetime vielbein em

a and Em
α with the gravitino field ψm

α (where α
includes both space-time α, α̇ and internal i indices for N = 8). In four dimensions, we therefore

have

I =
1
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Supergravity Densities



At leading order, the E7/SU(8) coset generators of E7 simply 
produce constant shifts in the 70 scalar fields, as we have seen. 
This leads to a much easier check of invariance than analysing the 
full spinorial cohomology problem.

Although the pure-body (4,0) component            of the       
counterterm has long been known to be shift-invariant at lowest 
order (since all 70 scalar fields are covered by derivatives), it is 
harder for the fermionic “soul” components to be so, since they are 
of lower dimension.

Thus, one finds that the maxi-soul (0,4)          component is not 
invariant under constant shifts of the 70 scalars. Hence the D=4, 
N=8, 3-loop      1/2 BPS counterterm is not E7 duality invariant, so 
it is ruled out as an allowed counterterm.
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Laplace equations on sigma-model target space

Left out of control so far are some of the most interesting cases: 
L=5,6 in D=4 maximal supergravity, corresponding to the 1/4 
BPS          and 1/8 BPS          type counterterms.

Here, a different kind of duality-based argument comes into 
play.

In fact, the existence of the 1/2 BPS L=1, D=8      , the 1/4 BPS 
L=2, D=7          and the 1/8 BPS L=3, D=6          types of 
divergences together with the uniqueness of the corresponding 
D=4 counterterm structures allows one to rule out the 
corresponding D=4 candidates.
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Bossard, Howe & K.S.S. 2010 (from supergravity)
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2010
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The existence of these D=8, 7 & 6 divergences indicate that 
the corresponding forms of the                                 
counterterms have to be such that the purely gravitational parts 
of these invariants are not dressed by    scalar prefactors – 
otherwise, they would violate the corresponding

duality symmetries: lowest-order shift symmetries would then 
be violated.

Upon dimensional reduction down to D=4, the Einstein-frame 
classical N=8 action                           is arranged to have no 
scalar prefactors. But then dimensional reduction of the
                             counterterms in general causes such 
prefactors to appear.

R4, ∂4R4 & ∂6R4

eφ

SL(3,R)× SL(2,R), SL(5,R) & SO(5, 5)

R4, ∂4R4 & ∂6R4
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These dimensional reductions from D=8, 7 & 6 don’t have even 
the requisite SU(8) symmetry. But they can be rendered SU(8) 
invariant by averaging, i.e. by integrating the dimensionally 
reduced counterterms over
                                    ,                      or                                     .
The action of SU(8) on evident scalar combinations such as the 
compactification volume modulus                is highly nonlinear, so 
SU(8) averaging is difficult to do explicitly.
However, some ideas from string theory come to the rescue: scalar 
prefactors need to satisfy certain Laplace equations, even in the 
pure supergravity limit.
Starting from a known duality invariant in a higher dimension D, 
the dimensional reduction to D=4 giving the n-loop candidate                   
counterterm                  has a scalar prefactor          satisfying                           

SU(8)/(SO(3)× SO(2)) SU(8)/SO(5) SU(8)/(SO(5)× SO(5))
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Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 4 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 F 4 finite

Dimension D 11 10 8 7 6 5 4
Loop order L 2 2 1 2 3 2 3
Gen. form ∂12R4 ∂10R4 R4 ∂4R4 ∂6R4 R4 R4

Dimension D 10 8 7 6 5 4
Loop order L 1 1 2 3 6 ∞
Gen. form ∂2F 4 F 4 ∂2F 4 ∂2F 4 ∂2F 4 finite
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∆ +

D − 4

D − 2
n(32−D − n)

�
fn(φ) = 0 (1)
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Starting from the known infinities at L=1,2&3 loops in 
D=8,7&6, one thus learns the impossibility of E7 invariance in 
D=4 for all the corresponding dimensionally reduced &  SU(8) 
averaged D=4 operators: the 1/2 BPS      candidate, the 1/4 BPS 

         candidate and the 1/8 BPS         candidate since for them

Since these D=4 counterterm candidates are unique (as shown 
by conformal multiplet decomposition), just based on 
supersymmetry together with the linearly realised SU(8) 
symmetry, their failure to be E7 invariant completely rules out 
the corresponding candidate counterterms. Thus the 1/2, 1/4 and 
1/8 BPS                 and          N=8 counterterms are not allowed 
as counterterms.
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An unanticipated consequence of the counterterm studies 
is the recognition that not all on-shell supergravity 
invariants have a natural expression in superspace at the 
full nonlinear level, either as a subsurface BPS type 
integral or as a full superspace integral.

For example, the R⁴ counterterm has a 1/2 BPS form at 
linearized order (with just 4-point terms), but attempts to 
generalize this to the full nonlinear level fail.

All invariants can be viewed as integrals over pull-backs 
of closed forms in superspace, however. The relevant 
question then is the structure of their cocycles and 
whether they respect duality invariances.

Linearized versus full nonlinear invariants
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Another puzzling feature of full nonlinear invariants is the 
way the apparent BPS structure can differ between a 
linearized invariant and the full nonlinear invariant. The 
candidate         invariant at L=7, D=4 illustrates this.

At linearized order, this Δ = 16 invariant appears to be 
writable as a ∫ d³²θ full superspace integral.

The question then arises which manifestly covariant and 
manifestly duality invariant expression this could be.

The natural suggestion is the full volume of superspace,

 This is manifestly invariant under superdiffeomorphisms 
and under E7 duality transformations.
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The 7-loop situation, however, turns out to be more complex 
than anticipated: the superspace volume actually vanishes on-
shell.

Simply integrating out the volume                       using the 
superspace constraints implying the classical field equations 
would be an ugly task.

However, using an on-shell implementation of harmonic 
superspace together with a superspace implementation of the 
normal-coordinate expansion, one can nonetheless see that it 
vanishes on-shell for all supersymmetry extensions N.

Vanishing Volume

�
d4xd32θE(x, θ)

Bossard, Howe, K.S.S. & Vanhove 1105.6087
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N=8 supergravity has a natural SU(8) R-symmetry group 

under which the 8 gravitini transform in the 8 
representation. In (8,1,1) harmonic superspace, one 
augments the normal             superspace coordinates by an 
additional set of bosonic corrdinates                      
parametrising the flag manifold

Contracting the usual superspace basis vectors with these 
and their inverses, one has  

Then work just with manifest U(1)xU(6)xU(1)
covariance.

(xµ, θiα)

uI
j I = 1; r = 2, . . . , 7; 8
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Combining these with the dJI vector fields on the harmonic 
flag manifold, one finds that the subset

is in involution:

One can then define Grassman-analytic superfields 
annihilated by the dual superspace derivatives

Some non-vanishing curvatures are 

where                           is Grassman-analytic.

ÊÂ := {Ẽ1
α, Ẽα̇ 8, d

1
r, d

r
8, d

1
8} , 2 ≤ r ≤ 7

{ÊÂ, ÊB̂} = CÂB̂
Ĉ ÊĈ

Dα 1 , D̄
8
α̇

R1 1
αβ̇8, 1

= R1 8
αβ̇8, 8

= −Bαβ̇

Bαβ̇ = χ̄1ij

β̇
χα 8ij
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One can define normal coordinates

associated to the vector fields       .
Expanding the superspace Berezinian determinant in these, 
one finds the flow equation

Integrating, one finds the expansion of the determinant in the 
four fermionic coordinates                      :

However, since this has only      terms, integration over 
the four      vanishes.

Normal coordinates for a 28+4 split

ζÂ = {ζα = δαµθ
µ
i u

i
1 , ζ̄

α̇ = δα̇µ̇u
8
i θ̄

µ̇ i, zr1, z
8
r, z

8
1}

ÊÂ

ζα̂∂α̂ lnE = −1

3
Bαβ̇ζ

αζ̄ β̇ +
1

18
Bαβ̇Bαα̇ζ

αζβ ζ̄α̇ζ̄ β̇

ζα̂ = (ζα , ζα̇)

E(x̂, ζ, ζ̄) = E(x̂)
�
1− 1

6
Bαβ̇ζ

αζ β̇
�

ζα̂
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1/8 BPS E7 invariant candidate notwithstanding

Despite the vanishing of the full N=8 superspace volume, one 
can nonetheless use the harmonic superspace formalism to 
construct a different manifestly E7 -invariant candidate:

At the leading 4-point level, this invariant of generic           
structure can be written as a full superspace integral with 
respect to the linearised N=8 supersymmetry. It cannot, 
however, be rewritten as a full-superspace integral at the 
nonlinear level.

Full-superspace manifestly E7 -invariant candidates exist in 
any case from 8 loops onwards.

I8 :=

�
dµ(8,1,1) Bαβ̇ B

αβ̇
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As far as one knows, the first acceptable D=4 counterterm for 
maximal supergravity still occurs at L=7 loops (            ). 

Current divergence expectations for maximal supergravity are 
consequently:

Current outlook

Blue: known divergences Green: anticipated divergences

∆ = 16
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