Ultraviolet Divergences and Nonrenormalization Theorems in Maximal Supergravity

K.S. Stelle Institut des Hautes Études Scientifiques Bures-sur-Yvette October 6, 2011

G. Bossard, P.S. Howe & K.S.S. 0901.4661, 0908.3883, 1009.0743 G. Bossard, P.S. Howe, K.S.S. & P. Vanhove 1105.6087 Are there quantum míracles happening in maximal supergravity?

Outline

- Nonrenormalization theorems and BPS degree
- Unitarity-based calculations
- Ectoplasm & superspace cohomology
- Duality constraints on counterterms
- Linearized versus full nonlinear invariants
- Current outlook

Ultraviolet Divergences in Gravity

• Simple power counting in gravity and supergravity theories leads to a naïve degree of divergence

$$\Delta = (D-2)L+2$$

in D spacetime dimensions. So, for D=4, L=3, one expects $\Delta = 8$. In dimensional regularization, only logarithmic divergences are seen ($\frac{1}{\epsilon}$ poles, $\epsilon = D - 4$), so 8 powers of momentum would have to come out onto the external lines of such a diagram.

 Local supersymmetry implies that the pure curvature part of such a D=4, 3-loop divergence candidate must be built from the square of the Bel-Robinson tensor

$$\int \sqrt{-g} T_{\mu\nu\rho\sigma} T^{\mu\nu\rho\sigma} , \quad T_{\mu\nu\rho\sigma} = R_{\mu\nu}^{\ \alpha\beta} R_{\rho\alpha\sigma\beta} + {}^*R_{\mu\nu}^{\ \alpha\beta} R_{\rho\alpha\sigma\beta}$$

• This is directly related to the α'^3 corrections to the superstring effective action, except that in the string context such contributions occur with finite coefficients. In string theory, the corresponding question is how poles might develop in $(\alpha')^{-1}$ as one takes the zero-slope limit $\alpha' \to 0$ and how this bears on the ultraviolet properties of the corresponding field theory. Berkovíts 2007

Green, Russo & Vanhove 2007, 2010

- The consequences of supersymmetry for the ultraviolet structure are not restricted to the requirement that counterterms be supersymmetric invariants, however.
- There exist more powerful "nonrenormalization theorems" in superspace (where ∫dθ θ = 1, ∫dθ = 0) the most famous of which *excludes* infinite renormalization of chiral invariants in D=4, N=1 supersymmetry, given in N=1 superspace by holomorphic integrals over just *half* the superspace: ∫d²θW(φ(x,θ,θ)), Dφ = 0 (as compared to full superspace ∫d⁴θL(φ,φ))
- However, maximally extended SYM and supergravity theories do not have formalisms with all supersymmetries linearly realised "off-shell" in superspace. So the power of such nonrenormalization theorems is limited to the off-shell linearly realizable subalgebra.

- The degree of "off-shell" supersymmetry is the maximal supersymmetry for which the algebra can close without use of the equations of motion.
- Knowing the extent of this off-shell supersymmetry is tricky, and may involve formulations (*e.g.* harmonic superspace) with infinite numbers of auxiliary fields. Galperín, Ivanov, Kalítsín, Ogievetsky & Sokatchev
- For maximal N=4 Super Yang-Mills and maximal N=8 supergravity, the linearly realizable supersymmetry has been believed since the 1980's to be at least *half* the full supersymmetry of the theory. So at that time the first generally allowed counterterms were expected to have "1/2 BPS" structure as compared to the full supersymmetry of the theory.

The 3-loop R⁴ candidate maximal supergravity counterterm has a structure very similar to that of an F⁴ N=4 super Yang-Mills invariant. Both of these are 1/2 BPS invariants, involving integration over just half the corresponding full Howe, K.S.S. & Townsend 1981 Kallosh 1981

$$\Delta I_{SYM} = \int (d^4 \theta d^4 \bar{\theta})_{105} \operatorname{tr}(\phi^4)_{105} \qquad \blacksquare \qquad 105 \qquad \phi_{ij} \qquad \blacksquare \qquad 6 \text{ of } SU(4)$$
$$\Delta I_{SG} = \int (d^8 \theta d^8 \bar{\theta})_{232848} (W^4)_{232848} \qquad \blacksquare \qquad 232848 \qquad W_{ijkl} \qquad \blacksquare \qquad 70 \text{ of } SU(8)$$

• Versions of these supergravity and SYM operators do occur as counterterms at one loop in D=8. However, the one-loop level often has special renormalization features, so one needs to be careful not to make unwarranted conclusions about the general acceptability of such counterterms.

- Of course, there are other symmetries in supergravity beside diffeomorphism invariance and supersymmetry. In particular, D=4, N=8 supergravity also has a rigid nonlinearly realised E₇ symmetry. At leading order, this symmetry is realised by constant shifts of the 70 scalars, which take their values in the coset space E₇/SU(8).
- The R⁴ candidate satisfies at least the minimal requirement of invariance under such constant shifts of the 70 scalars because, at the leading 4-particle order, the integrand may be written such that every scalar field is covered by a derivative.

- The calculational front has made impressive progress since the late 1990s.
- These have led to unanticipated and surprising cancellations at the 3- and 4-loop orders, yielding new lowest possible orders for the super Yang-Mills and supergravity divergence onset.

plus 46 more topologies

Max. SYM first divergences, current lowest possible orders.

Max. supergravity first divergences, current lowest possible orders.

Dimension D	10	8	7	6	5	4
Loop order L	1	1	2	3	6?	∞
BPS degree	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
Gen. form	$\partial^2 F^4$	F^4	$\partial^2 F^4$	$\partial^2 F^4$	$\partial^2 F^4$	finite

Blue: known divergences

Dimension D	11	10	8	7	6	5	4
Loop order L	2	2	1	2	3	6?	5?
BPS degree	0	0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	0	$\frac{1}{4}$
Gen. form	$\partial^{12} R^4$	$\partial^{10} R^4$	R^4	$\partial^6 R^4$	$\partial^6 R^4$	$\partial^{12} R^4$	$\partial^4 R^4$

Algebraic Renormalization

Another approach to analyzing the divergences in supersymmetric gauge theories, using the full supersymmetry, begins with the Callan-Symanzik equation for the renormalization of the Lagrangian as a operator insertion, governing, e.g., mixing with the half-BPS SYM operator $S^{(4)} = tr(F^4)$. Letting the classical action be $S^{(2)}$, the C-S equation for SYM in dimension D is $\mu \frac{\partial}{\partial \mu} [S^{(2)} \cdot \Gamma] = (4 - D) [S^{(2)} \cdot \Gamma] + \gamma_{(4)} g^{2n_{(4)}} [S^{(4)} \cdot \Gamma] + \cdots$

where $n_{(4)} = 4$, 2, 1 for D = 5, 6, 8.

From this one learns that (n₍₄₎ - 1)β₍₄₎ = γ₍₄₎ so the beta function for the S⁽⁴⁾ = tr(F⁴) operator is determined by the anomalous dimension γ₍₄₎.

• Combining the supersymmetry generator with a commuting spinor parameter to make a scalar operator $Q = \bar{\epsilon}Q$, the expression of SUSY invariance for a D-form density in Ddimensions is $Q\mathcal{L}_D + d\mathcal{L}_{D-1} = 0$. Combining this with the SUSY algebra $Q^2 = -i(\bar{\epsilon}\gamma^{\mu}\epsilon)\partial_{\mu}$ and using the Poincaré Lemma, one finds (where $S_{(Q)|\Sigma}$ is the classical-level BRST operator for Q)

$$i_{i(\bar{\epsilon}\gamma\epsilon)}\mathcal{L}_D + S_{(\mathcal{Q})|\Sigma}\mathcal{L}_{D-1} + d\mathcal{L}_{D-2} = 0 \quad \cdot$$

- Hence, one can consider cocycles of the extended nilpotent differential $d + S_{(Q)|\Sigma} + i_{i(\bar{\epsilon}\gamma\epsilon)}$ acting on formal formsums $\mathcal{L}_D + \mathcal{L}_{D-1} + \mathcal{L}_{D-2} + \cdots$.
- The supersymmetry Ward identities then imply that the whole cocycle must be renormalized in a coherent way. In order for an operator like $S^{(4)}$ to mix with the classical action $S^{(2)}$, their cocycles need to have the same structure.

Ectoplasm

Voronov 1992; Gates, Grísaru, Knut-Whelau, & Síegel 1998 Berkovíts and Howe 2008; Bossard, Howe & K.S.S. 2009

- The construction of supersymmetric invariants is isomorphic to the construction of cohomologically nontrivial closed forms in superspace: I = ∫_{M₀} σ*L_D is invariant (where σ*is a pull-back to a section of the projection map down to the purely bosonic "body" subspace M₀) if L_D is a closed form in superspace, and it is nonvanishing only if L_D is nontrivial.
- Using the BRST formalism, handle all gauge symmetries including space-time diffeomorphisms by the nilpotent BRST operator s. The invariance condition for \$\mathcal{L}_D\$ is \$s\mathcal{L}_D + d_0\mathcal{L}_{D-1} = 0\$, where \$d_0\$ is the usual bosonic exterior derivative. Since \$s^2 = 0\$ and \$s\$ anticommutes with \$d_0\$, one obtains \$s\mathcal{L}_{D-1} + d_0\mathcal{L}_{D-2} = 0\$, etc.

- Solving the BRST Ward identities thus becomes a cohomological problem. Note that the supersymmetry ghost is a commuting field. One needs to study the cohomology of the nilpotent operator δ = s + d₀, whose components L_{D-q,q} are (D-q) forms with ghost number q, *i.e.* (D-q) forms with q spinor indices. The spinor indices are totally symmetric since the supersymmetry ghost is *commuting*.
- For gauge-invariant supersymmetric integrands, this establishes an isomorphism between the cohomology of closed forms in superspace (aka "ectoplasm") and the construction of BRSTinvariant counterterms.

Superspace cohomology

• Flat superspace has a standard basis of invariant 1-forms

$$E^{a} = dx^{a} - \frac{i}{2}d\theta^{\alpha}(\Gamma^{a})_{\alpha\beta}\theta^{\beta}$$
$$E^{\alpha} = d\theta^{\alpha}$$

dual to which are the superspace covariant derivatives (∂_a, D_α)

- There is a natural bi-grading of superspace forms into even and odd parts: $\Omega^n = \bigoplus_{n=p+q} \Omega^{p,q}$
 - Correspondingly, the flat superspace exterior derivative splits into three parts with bi-gradings (1,0), (0,1) & (-1,2):

$$d = d_0(1,0) + d_1(0,1) + t_0(-1,2)$$

bosonic der. fermionic der. torsion
$$d_0 \leftrightarrow \partial_a \quad d_1 \leftrightarrow \partial_\alpha$$

where for a (p,q) form in flat superspace, one has
$$(t_o \omega)_{a_2 \cdots a_p \beta_1 \cdots \beta_{q+2}} \sim (\Gamma^{a_1})_{(\beta_1 \beta_2} \omega_{a_1 \cdots a_p \beta_3 \cdots \beta_{q+2})}$$

• The nilpotence of the total exterior derivative *d* implies the three relations $t_0^2 = 0$

$$t_0 d_1 + d_1 t_0 = 0$$

$$d_1^2 + t_0 d_0 + d_0 t_0 = 0$$

- Then, since $d\mathcal{L}_D = 0$, the lowest dimension nonvanishing component (or "generator") $\mathcal{L}_{D-q,q}$ must satisfy $t_0\mathcal{L}_{D-q,q} = 0$ so $\mathcal{L}_{D-q,q}$ belongs to the t_0 cohomology group $H_t^{D-q,q}$.
- Starting with the t₀ cohomology groups H^{p,q}_t, one then defines a spinorial exterior derivative d_s : H^{p,q}_t → H^{p,q+1}_t
 by d_s[ω] = [d₁ω], where the [] brackets denote H_t classes.

Cederwall, Nílsson & Tsimpis 2002 Howe & Tsimpis 2003

- One finds that d_s is nilpotent, $d_s^2 = 0$, and so one can define spinorial cohomology groups $H_s^{p,q} = H_{d_s}(H_t^{p,q})$. The groups $H_s^{0,q}$ give multi pure spinors.
- This formalism gives a way to reformulate BRST cohomology in terms of spinorial cohomology. The lowest dimension component, or *generator*, of a counterterm's superform must be d_s closed, *i.e.* it must be an element of H^{D-q,q}_s.
- Solving $d_s[\mathcal{L}_{D-q,q}] = 0$ allows one to solve for all the higher components of \mathcal{L}_D in terms of $\mathcal{L}_{D-q,q}$ for normal cocyles.

- To illustrate how this formalism works, consider N=1 supersymmetry in D=10. Corresponding to the \varkappa symmetries of strings and 5-branes, we have the D=10 Gamma matrix identities $t_0\Gamma_{1,2} = 0$ $t_0\Gamma_{5,2} = 0$.
- The second of these is relevant to the construction of *d*closed forms in D=10. One may have a generator $L_{5,5} = \Gamma_{5,2}M_{0,3}$

where $d_s[M_{0,3}] = 0$. The simplest example of such a form

corresponds to a full superspace integral over S:

$$M_{\alpha\beta\gamma} = T_{\alpha\beta\gamma,\delta_1\cdots\delta_5} (D^{11})^{\delta_1\cdots\delta_5} S$$

where $T_{\alpha\beta\gamma,\delta_1\cdots\delta_5}$ is constructed from the D=10 Gamma matrices; it is totally symmetric in $\alpha\beta\gamma$ and totally antisymmetric in $\delta_1\cdots\delta_5$.

Cohomological non-renormalization

- Spinorial cohomology then allows one to derive nonrenormalization theorems for counterterms: the cocycle structure of candidate counterterms must match that of the classical action.
 - For example, in maximal SYM, this leads to nonrenormalization theorems ruling out the F^4 counterterm that was otherwise expected at L=4 in D=5.
 - Similar non-renormalization theorems exist in supergravity, but their study is complicated by local supersymmetry and the density character of counterterm integrands.

Duality invariance constraints

cf also Broedel & Díxon 2010

 Maximal supergravity has a series of duality symmetries which extend the automatic GL(11-D) symmetry obtained upon dimensional reduction from D=11, e.g. E₇ in the N=8, D=4 theory, with the 70 scalars taking their values in an E₇/SU(8) coset target space.

Bossard, Hillman & Nicolai 2010

- The N=8, D=4 theory can be formulated in a manifestly E₇ covariant (but non-manifestly Lorentz covariant) formalism.
 Marcus 1985
 Anomalies for SU(8), and hence E₇, cancel.
- Combining the requirement of continuous duality invariance with the spinorial cohomology requirements gives further restrictions on counterterms.

In order to realize E₇ manifestly, one doubles the number of vector fields Aⁿ_i, to make them fill out a <u>56</u> representation of E_{7.} Initially, the Aⁿ₀ field is not present in this formalism.

Henneaux & Teitelboim 1992

• The A_i^n field equation $\varepsilon^{ijk} \partial_j \mathcal{E}_k^n = 0$ is then solved by $\mathcal{E}_i^n = \partial_i A_0^n$ which reintroduces the A_0^n field. This then implies a twisted self-duality condition for the vector field strengths

$$\hat{F}^m_{\mu\nu} = -\frac{1}{2\sqrt{-g}} \varepsilon_{\mu\nu}{}^{\sigma\rho} J^m{}_n \hat{F}^n_{\sigma\rho}$$

which establishes equivalence on-shell to the usual Lorentz-covariant formalism with just 28 vector fields.

• Supergravity Duality Groups and String Theory discretizations:

D	$E_{11-D(11-D)}(\mathbb{R})$	K_D	$E_{11-D(11-D)}(\mathbb{Z})$
10A	\mathbb{R}^+	1	1
10B	$Sl(2,\mathbb{R})$	SO(2)	$Sl(2,\mathbb{Z})$
9	$Sl(2,\mathbb{R})\times\mathbb{R}^+$	SO(2)	$Sl(2,\mathbb{Z})$
8	$Sl(3,\mathbb{R}) \times Sl(2,\mathbb{R})$	$SO(3) \times SO(2)$	$Sl(3,\mathbb{Z}) \times Sl(2,\mathbb{Z})$
7	$Sl(5,\mathbb{R})$	SO(5)	$Sl(5,\mathbb{Z})$
6	$SO(5,5,\mathbb{R})$	$SO(5) \times SO(5)$	$SO(5,5,\mathbb{Z})$
5	$E_{6(6)}(\mathbb{R})$	USp(8)	$E_{6(6)}(\mathbb{Z})$
4	$E_{7(7)}(\mathbb{R})$	$SU(8)/\mathbb{Z}_2$	$E_{7(7)}(\mathbb{Z})$
3	$E_{8(8)}(\mathbb{R})$	SO(16)	$E_{8(8)}(\mathbb{Z})$

• The scalar target-space manifold is G_D/K_D . In string theory, the duality group becomes discretized to $G_D(\mathbb{Z})$, but this discretization occurs due to nonperturbative effects outside the context of field-theoretic supergravity.

Supergravity Densities

 In a curved superspace, an invariant is constructed from the top (pure "body") component in a coordinate basis:

$$I = \frac{1}{D!} \int d^{D}x \ \varepsilon^{m_{D}...m_{1}} \ E_{m_{D}}^{A_{D}} \cdots E_{m_{1}}^{A_{1}} \ L_{A_{1}...A_{D}}(x,\theta=0)$$

- Referring this to a preferred "flat" basis and identifying E_M^A components with vielbeins and gravitinos, one has in D=4

 I = ¹/₂₄ ∫ (e^a_∧e^b_∧e^c_∧e^d L_{abcd} + 4e^a_∧e^b_∧e^c_∧ψ^αL_{abcα} + 6e^a_∧e^b_∧ψ^α_∧ψ^β L_{abαβ}
 +4e^a_∧ψ^α_∧ψ^β_∧ψ^αL_{aαβγ} + ψ^α_∧ψ^β_∧ψ^γ_∧ψ^δL_{αβγδ})

 Thus the "soul" components of the cocycle also contribute to
 - the local supersymmetric covariantization.
- Since the gravitinos do not transform under the D=4 E₇ duality, the L_{ABCD} form components have to be *separately* duality invariant.

- At leading order, the E₇/SU(8) coset generators of E₇ simply produce *constant shifts* in the 70 scalar fields, as we have seen.
 This leads to a much easier check of invariance than analysing the full spinorial cohomology problem.
 - Howe, K.S.S. & Townsend 1981
- Although the pure-body (4,0) component L_{abcd} of the R^4 counterterm has long been known to be shift-invariant at lowest order (since all 70 scalar fields are covered by derivatives), it is harder for the fermionic "soul" components to be so, since they are of lower dimension.
- Thus, one finds that the maxi-soul (0,4) L_{αβγδ} component is *not* invariant under constant shifts of the 70 scalars. Hence the D=4, N=8, 3-loop R⁴ 1/2 BPS counterterm is not E₇ duality invariant, so it is ruled out as an allowed counterterm.

Laplace equations on sigma-model target space

Elvang & Kiermaier 2010 (from 11A string theory) Bossard, Howe & K.S.S. 2010 (from supergravity) Beisert, Elvang, Freedman, Kiermaier, Morales & Stiebeger 2010

- Left out of control so far are some of the most interesting cases: L=5,6 in D=4 maximal supergravity, corresponding to the 1/4 BPS $\partial^4 R^4$ and 1/8 BPS $\partial^6 R^4$ type counterterms.
 - Here, a different kind of duality-based argument comes into play.
- In fact, the *existence* of the 1/2 BPS L=1, D=8 R⁴, the 1/4 BPS L=2, D=7 ∂⁴R⁴ and the 1/8 BPS L=3, D=6 ∂⁶R⁴ types of Drummond, Heslop, Howe & Kerstan 2003 divergences together with the *uniqueness* of the corresponding D=4 counterterm structures allows one to rule out the corresponding D=4 candidates.

- The existence of these D=8, 7 & 6 divergences indicate that the corresponding forms of the R⁴, ∂⁴R⁴ & ∂⁶R⁴ counterterms have to be such that the purely gravitational parts of these invariants are not dressed by e^φ scalar prefactors otherwise, they would violate the corresponding SL(3, ℝ) × SL(2, ℝ), SL(5, ℝ) & SO(5, 5) duality symmetries: lowest-order shift symmetries would then be violated.
- Upon dimensional reduction down to D=4, the Einstein-frame classical N=8 action ∫ d⁴x(R√-g + ...) is arranged to have no scalar prefactors. But then dimensional reduction of the R⁴, ∂⁴R⁴ & ∂⁶R⁴ counterterms in general causes such prefactors to appear.

- These dimensional reductions from D=8, 7 & 6 don't have even the requisite SU(8) symmetry. But they can be rendered SU(8) invariant by averaging, *i.e.* by integrating the dimensionally reduced counterterms over $SU(8)/(SO(3) \times SO(2))$, SU(8)/SO(5) or $SU(8)/(SO(5) \times SO(5))$.
- The action of SU(8) on evident scalar combinations such as the compactification volume modulus $\phi = \vec{\alpha} \cdot \vec{\phi}$ is highly nonlinear, so SU(8) averaging is difficult to do explicitly.
- However, some ideas from string theory come to the rescue: scalar prefactors need to satisfy certain <u>Laplace equations</u>, even in the Green & Sethí 1999; Sinha 2002; Green & Vanhove 2005; Green, Russo & Vanhove 2010
- Starting from a known duality invariant in a higher dimension D, the dimensional reduction to D=4 giving the n-loop candidate counterterm $\partial^{2(n-3)} R^4$ has a scalar prefactor $f_n(\phi)$ satisfying $\left(\nabla_{\phi}^2 + \frac{D-4}{D-2}n(32-D-n)\right) f_n(\phi) = 0$ Bossard, Howe & K.S.S. 2010

26

- Starting from the known infinities at L=1,2&3 loops in D=8,7&6, one thus learns the impossibility of E_7 invariance in D=4 for all the corresponding dimensionally reduced & SU(8)averaged D=4 operators: the 1/2 BPS R^4 candidate, the 1/4 BPS $\partial^4 R^4$ candidate and the 1/8 BPS $\partial^6 R^4$ candidate since for them $f_n(\phi) \neq \text{const}$ Drummond, Heslop, Howe & Kerstan 2003 • Since these D=4 counterterm candidates are *unique* (as shown by conformal multiplet decomposition), just based on supersymmetry together with the linearly realised SU(8)
 - symmetry, their failure to be E7 invariant completely rules out
 - the corresponding candidate counterterms. Thus the 1/2, 1/4 and
 - 1/8 BPS R^4 , $\partial^4 R^4$ and $\partial^6 R^4$ N=8 counterterms are *not allowed*

as counterterms.

Linearized versus full nonlinear invariants

- An unanticipated consequence of the counterterm studies is the recognition that not all on-shell supergravity invariants have a natural expression in superspace at the full nonlinear level, either as a subsurface BPS type integral or as a full superspace integral.
- For example, the R⁴ counterterm has a 1/2 BPS form at linearized order (with just 4-point terms), but attempts to generalize this to the full nonlinear level fail.
 de Haro, Sinkovics & Skenderis 2003 Berkovits & Howe 2003
- All invariants can be viewed as integrals over pull-backs of closed forms in superspace, however. The relevant question then is the structure of their cocycles and whether they respect duality invariances.

- Another puzzling feature of full nonlinear invariants is the way the apparent BPS structure can differ between a linearized invariant and the full nonlinear invariant. The candidate $\partial^8 R^4$ invariant at L=7, D=4 illustrates this.
- At linearized order, this $\Delta = 16$ invariant appears to be writable as a $\int d^{32}\theta$ full superspace integral.
 - The question then arises which manifestly covariant and manifestly duality invariant expression this could be.
 - The natural suggestion is the full volume of superspace,

$$\int d^4x d^{32}\theta E(x,\theta)$$

E₇ invariant counterterms are long known to exist for L≥7: Howe & Lindstrom 1981 Kallosh 1981

This is manifestly invariant under superdiffeomorphisms and under E₇ duality transformations.

Vanishing Volume

- The 7-loop situation, however, turns out to be more complex than anticipated: the superspace volume actually *vanishes* on-shell.
- Simply integrating out the volume ∫ d⁴xd³²θE(x, θ) using the superspace constraints implying the classical field equations would be an ugly task.
- However, using an on-shell implementation of harmonic superspace together with a superspace implementation of the normal-coordinate expansion, one can nonetheless see that it vanishes on-shell for all supersymmetry extensions *N*.

N=8 supergravity has a natural SU(8) R-symmetry group under which the 8 gravitini transform in the 8 gravitation. In (8,1,1) harmonic superspace, one augments the normal (x^μ, θⁱ_α) superspace coordinates by an additional set of bosonic corrdinates u^I_j I = 1; r = 2,...,7;8 parametrising the flag manifold

 $S(U(1) \times U(6) \times U(1)) \setminus SU(8)$

- Contracting the usual superspace basis vectors with these and their inverses, one has $\tilde{E}_{I}^{\alpha} = u^{i}{}_{I}\tilde{E}_{i}^{\alpha}$ $\tilde{E}^{\dot{\alpha}I} = u^{I}{}_{i}\tilde{E}^{\dot{\alpha}i}$
 - Then work just with manifest U(1)xU(6)xU(1)covariance.

- Combining these with the $d^{J_{I}}$ vector fields on the harmonic flag manifold, one finds that the subset $\hat{E}_{\hat{A}} := \{\tilde{E}_{\alpha}^{1}, \tilde{E}_{\dot{\alpha}8}, d^{1}_{r}, d^{r}_{8}, d^{1}_{8}\}, \quad 2 \leq r \leq 7$ is in involution: $\{\hat{E}_{\hat{A}}, \hat{E}_{\hat{B}}\} = C_{\hat{A}\hat{B}}{}^{\hat{C}}\hat{E}_{\hat{C}}$
- One can then define Grassman-analytic superfields annihilated by the dual superspace derivatives $D_{\alpha 1}, \bar{D}^8_{\dot{\alpha}}$
- Some non-vanishing curvatures are

$$R_{\alpha\dot{\beta}8,\ 1}^{1\ 1} = R_{\alpha\dot{\beta}8,\ 8}^{1\ 8} = -B_{\alpha\dot{\beta}}$$

where $B_{\alpha\dot{\beta}} = \bar{\chi}_{\dot{\beta}}^{1ij}\chi_{\alpha\,8ij}$ is Grassman-analytic.

Normal coordinates for a 28+4 split

One can define normal coordinates
 Kuzenko & Tartaglino-Mazzucchelli 2008

$$\zeta^{\hat{A}} = \{\zeta^{\alpha} = \delta^{\alpha}_{\mu}\theta^{\mu}_{i}u^{i}{}_{1}, \bar{\zeta}^{\dot{\alpha}} = \delta^{\dot{\alpha}}_{\dot{\mu}}u^{8}{}_{i}\bar{\theta}^{\dot{\mu}\,i}, z^{r}{}_{1}, z^{8}{}_{r}, z^{8}{}_{1}\}$$
associated to the vector fields $\hat{E}_{\hat{A}}$.

• Expanding the superspace Berezinian determinant in these, one finds the flow equation 1 = 1 = 1 = 1

$$\zeta^{\hat{\alpha}}\partial_{\hat{\alpha}}\ln E = -\frac{1}{3}B_{\alpha\dot{\beta}}\zeta^{\alpha}\bar{\zeta}^{\dot{\beta}} + \frac{1}{18}B_{\alpha\dot{\beta}}B_{\alpha\dot{\alpha}}\zeta^{\alpha}\zeta^{\beta}\bar{\zeta}^{\dot{\alpha}}\bar{\zeta}^{\dot{\beta}}$$

- Integrating, one finds the expansion of the determinant in the four fermionic coordinates $\zeta^{\hat{\alpha}} = (\zeta^{\alpha}, \zeta^{\dot{\alpha}})$: $E(\hat{x}, \zeta, \bar{\zeta}) = \mathcal{E}(\hat{x}) \left(1 - \frac{1}{6} B_{\alpha \dot{\beta}} \zeta^{\alpha} \zeta^{\dot{\beta}}\right)$
 - However, since this has only \$\zeta^2\$ terms, integration over the four \$\zeta^{\heta}\$ vanishes.

1/8 BPS E7 invariant candidate notwithstanding

 Despite the vanishing of the full N=8 superspace volume, one can nonetheless use the harmonic superspace formalism to construct a different manifestly E₇ -invariant candidate:

$$I^8 := \int d\mu_{(8,1,1)} B_{\alpha\dot{\beta}} B^{\alpha\dot{\beta}}$$

- At the leading 4-point level, this invariant of generic ∂⁸R⁴ structure can be written as a full superspace integral with respect to the linearised N=8 supersymmetry. It cannot, however, be rewritten as a full-superspace integral at the nonlinear level.
- Full-superspace manifestly E₇ -invariant candidates exist in any case from 8 loops onwards.

Current outlook

- As far as one knows, the first acceptable D=4 counterterm for maximal supergravity still occurs at L=7 loops ($\Delta = 16$).
- Current divergence expectations for maximal supergravity are consequently:

Dimension D	11	10	8	7	6	5	4
Loop order L	2	2	1	2	3	6	7
BPS degree	0	0	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{8}$	0	0
Gen. form	$\partial^{12}R^4$	$\partial^{10}R^4$	R^4	$\partial^6 R^4$	$\partial^6 R^4$	$\partial^{12} R^4$	$\partial^8 R^4$

Blue: known divergences

Green: anticipated divergences