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Program

• Einstein’s work on gravitation before summer 1912

• Starting point in August 1912; programmatic aspects

• Coupling of material systems to gravitational fields

• In search for the gravitational field equation

• Final phase in Nov. 1915
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Einstein’s work on gravitation before summer 1912

1907: Equivalence principle (in special form); redshift; light de-

flection (by the Earth): in Chap. V (“Principle of Relativity and

Gravitation”) of CPAE, Vol. 2 Doc. 47 .

With the EP Einstein went beyond SR; became the guiding thread.

[Later recollections show that E. had tried before a special relativis-

tic scalar theory of gravity.]

Until 1911 no further publications about gravity. But: “Between

1909-1912 while I had to teach theoretical physics at the Zürich

and Prague Universities I pondered ceaselessly on the problem”.
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1911: Einstein realizes that gravitational light deflection should be

experimentally observable; takes up vigorously the problem of grav-

itation.

Begins to “work like a horse” in developing a coherent theory of the

static gravitational fields −→ variable velocity of light; non-linear

field equation (→ EP holds only in infinitesimally small regions).

Modification of equations of electrodynamics and thermodynamics

by static gravitational fields.

Begins to investigate the dynamical gravitational field.
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Starting point in August 1912

gµν is the relativistic generalization of Newton’s potential: field

equations ???

Einstein meets Marcel Grossmann:

I was made aware of these [works by Ricci and Levi-Civita] by my

friend Grossmann in Zürich , when I put the problem to investi-

gate generally covariant tensors, whose components depend only

on the derivatives of the coefficients of the quadratic fundamental

invariant. He at once caught fire, although as a mathematician he

had a somewhat sceptical stance towards physics. (...) He went

through the literature and soon discovered that the indicated math-

ematical problem had already been solved, in particular by Riemann,

Ricci and Levi-Civita. This entire development was connected to

the Gaussian theory of curved surfaces, in which for the first time

systematic use was made of generalized coordinates.
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Requirements to be satisfied by the future theory

• The theory reduces to the Newtonian limit for weak fields and

slowly moving matter.

• Conservation laws for energy and momentum must hold.

• The equivalence principle must be embodied.

• The theory respects a generalized principle of relativity to accel-

erating frames, taking into account that gravitation and inertia are

described by one and the same field gµν. Einstein expressed this

by the requirement of general covariance of the basic equations (to

become a much debated subject).
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Coupling of matter to gravity (Part 1)

• Einstein generalizes the eq. of motion for a point particle from

the static case to

δ
∫

ds = 0, ds2 = gµνdx
µdxν;

writes the geodesic equation in the form

d

dτ

(

gµν
dxν

dτ

)

− 1

2
∂µgαβ

dxα

dτ

dxβ

dτ
= 0;

• guesses the energy-momentum conservation for dust

1
√−g

∂ν(
√
−ggµλTλν)−

1

2
∂µgαβT

αβ = 0, Tµν = ρ0u
µuν

(g := det(gµν)). Einstein checks general covariance of this equation.
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In search of the gravitational field equations

Soon, Einstein begins to look for candidate field equations. The

pages before 27 of the Zürich Notebook show that he was not yet

acquainted with the absolute calculus of Ricci and Levi-Civita. On

p. 26 he considers for the case −g = 1 the equation

gαβ∂α∂βg
µν = κTµν,

and substitutes the left hand side into the last eq., but that produces

third derivatives and leads to nowhere.
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1. Einstein studies the Ricci tensor as a candidate

On p. 27, referring to Grossmann, Einstein writes down the expres-

sion for the fully covariant Riemann curvature tensor Rαβγδ. Next,

he forms by contraction the Ricci tensor Rµν. The resulting terms

involving second derivatives consist, beside gαβ∂α∂βgµν, of three ad-

ditional terms. Einstein writes below their sum: “should vanish”

[“sollte verschwinden”]. The reason is that he was looking for a

field equation of the following general form:

Γµν[g] = κTµν,

with

Γµν[g] = ∂α(g
αβ∂βg

µν) + terms that vanish in linear approximation.
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To simplfy the explicit lengthy expressions for Rµν in terms of gµν,

Einstein finally used coordinates that satisfy the harmonic condition

�xα = 0, � :=
1

√−g
∂µ(

√
−ggµν∂ν)

or Γα = 0, where

Γα := gµνΓαµν = −∂µgµα − 1

2
gαβgµν∂βgµν.

Einstein notes that now the only term with second derivatives is

−(1/2)gαβ∂α∂βgµν, and, therefore the result is of the desired form:
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In harmonic coordinates∗:

(h)Rµν = −1

2
gαβ∂α∂βgµν +Hµν(g, ∂g),

where Hµν(g, ∂g) is a rational expression of gµν and ∂αgµν (with

denominator g) that vanishes in the linear approximation. This is,

of course, a familiar result for us which plays an important role in

GR (for instance, in studying the Cauchy problem).

This seems to look good, and Einstein begins to analyse the linear

weak field approximation of the field equation

Rµν = κTµν.

∗In general coordinates the Ricci tensor is given by

Rµν =
(h)Rµν +

1

2
(gαµ∂νΓ

α + gαν∂µΓ
α).
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2. The weak field approximation

The linearized harmonic coordinate condition becomes for hµν :=

gµν − ηµν (ηµν: Minkowski metric)

∂µ(h
µα − 1

2
ηµαh) = 0

(h := hµµ, indices are now raised and lowered with the Minkowski

metric). This is nowadays usually called the Hilbert condition, but

Einstein imposed it already in 1912. The field equation becomes

�hµν = −2κTµν.

Einstein takes for Tµν his earlier expression for dust.

But now he runs into a serious problem: the trace T := Tµµ must

be a constant!
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From ∂νTµν = 0 in the weak field limit, it follows that �(∂νhµν) =

0, hence the harmonic coordinate condition requires �(∂νh) = 0,

and therefore the trace of the the field equation implies �h =

−2κT = const., T := Tµµ. For dust this requires that T = −ρ0 =

const. This is, of course, unacceptable. One would not even be able

to describe a star, with a smooth distribution of matter localized in

a finite region of space.

Non-linear version of this difficulty: Field equation plus ∇νTµν = 0

imply, using the contracted Bianchi identity ∇νRµν = 1
2∂µR, that

R = const., thus the trace of the field equation leads again to T =

const. Einstein discovered this, without knowing the Bianchi identity,

in fall 1915, when he reconsidered the candidate field equation. (To

be discussed.)
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Remark. From his studies of static gravity in Prague, Einstein was

convinced that in the (weak) static limit the metric must be of

the form (gµν) = diag(g00(x),1,1,1), thus spatially flat. But then

�h = const. would imply that △g00 = const. If the function g00 is

bounded on R
3, then g00(x) would have to be a constant.∗

∗A non-linear version of this remark may be of some interest. If the metric is
assumed to be static with flat spatial sections, then we obtain in coordinates
adapted to the static Killing field for the curvature scalar

R = −2

ϕ
△ϕ,

with g00 =: −ϕ2 . Since R is constant, we obtain the equation △ϕ = Λϕ, where
the constant Λ is equal to −κT/2. For ‘normal’ matter Λ is non-negative. If
Λ > 0 (T 6= 0) we conclude that ϕ = 0. Since ϕ must be everywhere positive,
it follows that a bounded ϕ has to be a constant, hence only the Minkowski
metric remains.
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3. Einstein’s modified linearized field equation

Now, something very interesting happens. Einstein avoids the first

problem by modifying the linearized field equation to

�(hµν −
1

2
ηµνh) = −2κTµν ⇐⇒ �hµν = −2κ(Tµν −

1

2
ηµνT).

Then the harmonic coordinate condition is compatible with ∂νTµν =

0. Remarkably, this is the linearized equation of the final theory

(in harmonic coordinates). One wonders why Einstein did not try

at this point the analogous substitution Rµν −→ Rµν − 1
2gµνR or

Tµν −→ Tµν − 1
2gµνT in the full non-linear equation.

Before we discuss the probable reasons for this, we go on with his

research notes.
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a) Energy-momentum conservation for weak fields

In linearized approximation

∂νTµ
ν − 1

2
∂µhαβT

αβ = 0.

Einstein replaces in the second term Tαβ by (−1/2κ) times the left

hand side of the modified field equation. This is rewritten as a total

divergence by performing several partial integrations:

�(hµν −
1

2
ηµνh)h

µν
,σ = −4κtσ

λ
,λ ,

tσ
λ = − 1

4κ

[

hµν
,λhµν,σ − 1

2
δλσhµν,ρh

µν,ρ − 1

2
(h,λh,σ − 1

2
δλσh,ρh

,ρ)

]

.

With this substitution the second term in (*) also becomes a total

divergence, and Einstein obtains the conservation law

∂ν(Tµ
ν + tµ

ν) = 0.
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b) The problem with the Newtonian limit

The problem with the Newtonian limit was, it appears, one of the

main reasons why Einstein abandoned the general covariance of

the field equations. Apparently, the modified field equations did not

reduce to the correct limit. That it leads to the Poisson equation for

g00(x) is fine, but because of the harmonic coordinate condition the

metric can not be spatially flat. Einstein found this unacceptable.

He was convinced, I recall, that for (weak) static gravitational fields

the metric must be of the form (gµν) = diag(g00(x),1,1,1), as he

already noted on p. 1 of his research notes.

“If wise men did not err, fools should despair” (Wolfgang Goethe)
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The Einstein-Grossmann field equations

Einstein’s difficulties, discussed previously, were among the reasons

that he abandoned general covariance for the field equations.

Another argument had to do with energy-momentum conservation.

Generalizing the argument to the full theory, i.e., replacing Tαβ in

the second term of the conservation law for matter should lead

to a conservation law for matter plus gravity of the form

∂ν[
√
−g(Tµν + tµ

ν)] = 0.

Now, Einstein thought that the gravitational part tµν in a covariant

theory should also be a tensor under general coordinate tensor. This

is, however, impossible.

Later, by November 1913, Einstein came up with yet another gen-

eral argument, related to determinism (‘hole’ argument). (To be

discussed later.)
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Ansatz for the lhs of the field equations Γµν[g] = Tµν:

Γµν[g] =
1

√−g
∂α(

√
−ggαβ∂βgµν) +Hµν(g, ∂g).

Einstein inserts this in the second term of the “conservation law”

1
√−g

∂ν(
√
−ggµλTλν)−

1

2
∂µgαβT

αβ = 0.

Tries to determine Hµν(g, ∂g) such that ∂µgαβΓ
αβ becomes a total

divergence. Finds such an object by applying several partial inte-
grations for the contribution of the first term of Γµν[g]:

Γµν[g] =
1

√−g
∂α(

√
−ggαβ∂βgµν)− gαβgσρ∂αg

µσ∂βg
νρ − κtµν,

−2κtµν = gαµgβν∂αgσρ∂βg
σρ − 1

2
gµνgαβ∂αgσρ∂βg

σρ.

With this expression for tµν the conservation law for matter plus gravity
holds. [Note. In GR: −1

2
∂µgαβG

αβ = 1√−g∂ν(
√−gtνµ); tνµ = Einstein pseudo-

tensor; ∂ν[
√−g(Gµ

ν + tµν)] = 0 is equivalent to Bianchi identity (κ=1).]
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This result is not unique, contrary to what E & G claim.

Einstein showed explicitly only later in 1913 in his famous Vienna

lecture that the Newtonian limit in his sense (with a flat spatial

metric) is indeed recovered.

In collaboration with his lifelong friend Michele Besso, Einstein stud-

ied the perihelion motion of Mercury on the basis of the “Entwurf””

theory. The result was 5/12 of what Einstein later (1915) found

for GR.

Further remarks on the two Einstein-Grossmann papers

• Einstein generalizes Maxwell’s equations to the generally covariant

equation we all know. This part has survived in GR.

• Is a Poincaré-invariant scalar theory of gravity possible?
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• In a second paper by Einstein and Grossmann, the authors investi-

gate the covariance properties of their field equation, and show that

the covariance group is larger than the linear group. As a tool they

establish the following variational principle for their field equation:

δ
∫

L[g]
√
−gd4x= κ

∫

Tµνδg
µν√−gd4x ,

with

L[g] = −1

2
gαβ∂αgµν∂βg

µν.

In later developments on the way to GR, variational principles were

often used by Einstein, but – before Hilbert – he did not consider

the curvature scalar.
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The Einstein-Fokker theory

Consistent scalar theory of gravity; non-linear generalization of Nord-

ström’s theory that embodies the equivalence principle (actually the

strong version). In a non-geometrical, flat-spacetime formulation:

L = −1

2
∂µϕ∂

µϕ+ Lmat
[

ψ; (1 + kϕ)2ηµν
]

(1 + kϕ)4;

in particular, the flat metric ηµν in Lmat is replaced by (1+ kϕ)2ηµν,

k2 = κ/2. One can get rid of the Minkowski metric, replacing it by

a “physical metric”:

gµν = (1+ kϕ)2ηµν .

For example, only relative to this metric the Compton wave length

is constant, i.e., not spacetime dependent.
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Einstein and Fokker gave a geometrical formulation of the theory.

This can be summarized as follows:

(i) spacetime is conformally flat: Weyl tensor = 0;

(ii) field equation: R = 24πGT ;

(iii) test particles follow geodesics.

In adapted coordinates, with gµν = φ2ηµν, one finds

R = −6φ−3ηµν∂µ∂νφ,

and the field equation becomes

ηµν∂µ∂νφ = −4πGφ3 T.
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Remarks

• The Einstein-Fokker theory is generally covariant (as emphasized

in the original paper), however, not generally invariant. The ob-

ject g̃µν = gµν/(−g)1/4 is an absolute tensor density, in that it is

diffeomorphic (as a tensor density) to ηµν. Therefore, the invari-

ance group is the conformal group, which is a finite dimensional

Lie group.

• Since the scalar theory of Nordström and the generalization by

Einstein and Fokker predict no global light deflection, Einstein

urged in 1913 astronomers to measure the light deflection during

the solar eclipse in the coming year in the Crimea. Moreover, both

predict -1/6 the Einsteinian value for the perihelion advance, in

contrast to observation.
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The ‘hole’ argument against general covariance

In a lecture given to the Annual Meeting of the Swiss Naturforschende

Gesellschaft in September 1913, Einstein stated: “It is possible to

demonstrate by a general argument that equations that completely

determine the gravitational field cannot be generally covariant with

respect to arbitrary substitutions.” He repeated this statement

shortly afterwards in his Vienna lecture of September 23, 1913.

Imagine a finite region D of spacetime – the ‘hole’ – in which the

stress energy tensor vanishes. Assume that a metric field g is a

solution of generally covariant field equations. Apply now a diffeo-

morphism ϕ on g, producing ϕ∗g (push-forward), and choose the

diffeomorphism such that it leaves the spacetime region outside D
pointwise fixed.
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Clearly, g and ϕ∗g are different solutions of the field equations that

agree outside D. In other words, generally covariant field equa-

tions allow huge families of solutions for one and the same matter

distribution (outside the hole). At the time, Einstein found this

unacceptable, because this was in his opinion a dramatic failure of

what he called the law of causality (now usually called determinism).

It took a long time until Einstein understood that this non-uniqueness

is an expression of what we now call gauge invariance, analogous

to the local invariance of our gauge theories in elementary particle

physics. On January 3, 1916 he wrote to Besso: “Everything in the

hole argument was correct up to the final conclusion”.
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Einstein to Besso on November 17, 1915:

I have worked with great success during these months. Gen-

eral covariant gravitational equations. Motions of the per-

ihelion quantitatively explained. Role of gravitation in the

structure of matter [im Bau der Materie]. You will be amazed.

I worked horribly strenuously [schauderhaft angestrengt], [it

is] strange that one can endure that. (...) .

Besso passed this card on to Zangger: “I enclose the historical card

of Einstein, reporting the setting of the capstone of an epoch that

began with Newton’s ‘apple’.”
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In a particularly instructive detailed technical letter of November 28,

1915 to Arnold Sommerfeld, Einstein summarizes his final strug-

gle. Here just two crucial sentences from this important document:

I realized ... that my previous gravitational field equations

were completely untenable. (...) After all confidence thus

had been lost in the results and methods of the earlier theory,

I saw clearly that only through a connection with the general

theory of covariants, i.e., with Riemann’s covariant [tensor],

could a satisfactory solution be found. (...)

30



Final phase in Nov. 1915

In what follows, I will rewrite Einstein’s arguments without changing

the content (calculational streamlining).

May shed some light on the Einstein-Hilbert relation.

Einstein to Lorentz (17.1.1916):

The basic equations are now finally good, but the derivations

abominable; this drawback still has to be removed.
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Useful identity (derived by E. in first review paper, Doc. 30, Eq.

(55)):

Gµ
α
,α

︸ ︷︷ ︸

Rµα,α−(1/2)R,µ

+ κ tµ
α
,α = 0 . (1)

• Doc. 21 (4. Nov. 1915), and Addendum Doc. 22 (11. Nov.

1915) : Rµν = κTµν.

1. From (1): κ(Tµα+ tµα),α = 1
2R,µ;

2. On the other hand:
1

2
gµν,λRµν

︸ ︷︷ ︸

E.:=κtλ
ν,ν

= κ12g
µν
,λTµν = −κTλν,ν ⇒

(Tµ
ν + tµ

ν),ν = 0 ;

1. & 2. imply R,µ = 0 ⇒ T = const.
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• Doc 25 (25. Nov. 1915): Gµν = κTµν .

Problem disappears:

1. From (1): (Tµα+ tµα),α = 0;

2. In unimodular coord. 1
2g
µν
,λGµν = κtλ

ν
,ν = κgµν,λTµν = −κTλν,ν.

different interpretation: field equation implies Tλ
ν
;ν = 0.

—————————-

Note that the identity (1), together with the identity

κ tµ
ν
,ν =

1

2
gαβ,µGαβ

(= 1
2g
αβ
,µRαβ in unimodular coordinates), is equivalent to the con-

tracted Bianchi identity.
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On Einstein’s approach to the field equations in Doc. 30,
20 March, 1916 (first review)

I rewrite Einstein’s arguments, presented in CPAP, Vol. 6, Doc. 30,

without changing the content.

Use well-known identity between the Einstein tensor Gµν and Ein-
stein’s pseudo-tensor tµν in unimodular coordinates (always used in
this Appendix):

Gµ
α+ κ tµ

α =
1

2
Uµ

αβ
,β ,

with the super-potential (Freud)

Uµ
αβ = gµσH

σραβ
,ρ , Hσραβ = gσαgρβ − gσβgρα .

(Not complicated to derive this identity with the tools developed in

Sect. 15 of the cited document.)
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Vacuum equation Rµν = 0 can be written as

1

2
Uµ

αβ
,β = κ tµ

α .

Equivalent to what Einstein does in a first step. Uµαβ,βα ≡ 0 ⇒
tµα,α = 0; tµα is interpreted by Einstein as the energy-momentum

complex (pseudo- tensor) of the gravitational field.

In the presence of matter, Einstein replaces tµα by the sum tµα+Tµα:

1

2
Uµ

αβ
,β = κ (tµ

α+ Tµ
α) .
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Field eqs. guarantee the conservation law (tµα + Tµα),α = 0. By

the identity above this form is equivalent to Gµα = κTµα, with the

correct trace term.

Note that the identity Uµαβ,βα ≡ 0 is equivalent to the contracted

Bianchi identity; use also the identity

κ tµ
ν
,ν =

1

2
gαβ,µGαβ

(= 1
2g
αβ
,µRαβ in unimodular coordinates). Contracted Bianchi iden-

tity was not yet known to Einstein (but is implicit in Doc. 30 since

it also contains Gµ
α
,α

︸ ︷︷ ︸
+ κ tµα,α = 0).
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Einstein to Hilbert on December 20, 1915:

“On this occasion I feel compelled to say something else

to you that is of much more importance to me. There has

been a certain ill-feeling between us, the cause of which I

do not wish to analyze. I have struggled against the feeling

of bitterness attached to it, and this with success. I think

of you again with unmixed congeniality and I ask that you

try to do the same with me. Objectively it is a shame when

two real fellows who have managed to extricate themselves

somewhat from this shabby world do not give one another

pleasure.”
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