Enhanced terms in the time delay and the direction of light propagation. Discussion for some solar system experiments

P. Teyssandier*

*Observatoire de Paris, Dépt SYRTE/CNRS-UMR 8630,UPMC

Séminaire IHES, 6 Mars 2014

Contents

- Introduction
- Interest of the time transfer functions (TTFs) for gravitational tests
- General considerations
- Expression of the static, spherically symmetric metric
- A natural idea which is useful, but reveals to be a false good idea...
- New methods for determining TTF for static, spherically symmetric metrics
- Expression of the TTF up to order G^{3}
- Enhanced terms in TTF up to order G^{3}
- Discussion for some solar system experiments
- Enhanced terms in the direction of light propagation
- Conclusion

Introduction

General framework: "metric theories of gravity"
\longrightarrow post-Newtonian parameters β, γ, \ldots in GR:
γ linked to the "curvature" of space and light propagation
β linked to the "non-linearity" of the field

- The best current value for γ is due to the CASSINI Mission:

$$
\gamma-1=(2.1 \pm 2.3) \times 10^{-5} \quad(\text { Bertotti et al 2003) }
$$

- Recent improvements on γ (and β) from INPOP13a (Verma et al 2013).
- Scalar field in primordial cosmology \longrightarrow expected violations of GR:
$\gamma-1<0$ and, possibly, in the range $10^{-7}-10^{-9} \quad$ (Damour \& Lilley 2008)
- \longrightarrow Many projects designed to measure γ at this level in the solar system: LATOR, ASTROD, ODYSSEY, SAGAS, GAME, ...

Interest of the time transfer functions (TTFs)

The basic ingredients:

- Space-time $\left(\mathcal{V}_{4}, g\right), g=$ physical metric $(+---)$.
- Geometric approximation : light is propagating along null geodesics of g.
- \mathcal{V}_{4} covered by a single quasi-Cartesian coordinate system : $x^{\alpha}=\left(x^{0}, \mathbf{x}\right)$, $x^{0}=c t, g_{00}>0$.
- Light rays emitted at \mathbf{x}_{A} at instant t_{A} and received at \mathbf{x}_{B} at instant t_{B}.

In many tests of GR, the relevant tool is the expression of the light travel time $t_{B}-t_{A}$ between \mathbf{x}_{A} and \mathbf{x}_{B} as a function of $\left(\mathbf{x}_{A}, t_{B}, \mathbf{x}_{B}\right)\left(\right.$ resp. $\left(t_{A}, \mathbf{x}_{A}, \mathbf{x}_{B}\right)$):

$$
t_{B}-t_{A}=\mathcal{T}_{r}\left(\mathbf{x}_{A}, t_{B}, \mathbf{x}_{B}\right)=\mathcal{T}_{e}\left(t_{A}, \mathbf{x}_{A}, \mathbf{x}_{B}\right) .
$$

$\mathcal{T}_{r}\left(\right.$ resp. $\left.\mathcal{T}_{e}\right)=$ "reception (resp. emission) time transfer function".

Interest of the time transfer functions (TTFs)

- Synchronization of distant clocks.
- Doppler tracking and time/frequency transfers

$$
\frac{\nu_{B}}{\nu_{A}}=\frac{\left(g_{00}+2 g_{0 i} \beta^{i}+g_{i j} \beta^{i} \beta^{j}\right)_{A}^{1 / 2}}{\left(g_{00}+2 g_{0 i} \beta^{i}+g_{i j} \beta^{i} \beta^{j}\right)_{B}^{1 / 2}} \frac{1-\frac{\partial \mathcal{T}_{r}}{\partial t_{B}}-c \boldsymbol{\beta}_{B} \cdot \nabla_{\mathbf{x}_{B}} \mathcal{T}_{r}}{1+c \boldsymbol{\beta}_{A} \cdot \nabla_{\mathbf{x}_{A}} \mathcal{T}_{r}}
$$

where $\boldsymbol{\beta}_{A / B}=\left(\beta_{A / B}^{i}\right)=\frac{1}{c}\left(\frac{d x_{A / B}^{i}}{d t}\right)$.

- Direction of light propagation at \mathbf{x}_{A} and \mathbf{x}_{B} (astrometry)

$$
\widehat{\underline{\boldsymbol{I}}}_{A}=\left(\frac{I_{i}}{I_{0}}\right)_{A}=c \nabla_{\mathrm{x}_{A}} \mathcal{T}_{r}, \quad \hat{\underline{\mathbf{I}}}_{B}=\left(\frac{I_{i}}{I_{0}}\right)_{B}=-c \frac{\nabla_{\mathrm{x}_{B}} \mathcal{T}_{r}}{1-\frac{\partial \mathcal{T}_{r}}{\partial t_{B}}},
$$

where $I_{\alpha}=g_{\alpha \beta} d x^{\beta} / d \lambda$ along the ray.

General considerations

Determining the TTFs in a given space-time is inextricably complicated!

- Infinity of null geodesics passing through \mathbf{x}_{A} and \mathbf{x}_{B} (cf. Schwarzschild, e.g.).
- Even in Schwarschild space-time, no full expression of any TTF.

Current assumptions:

- $\left(\mathcal{V}_{4}, g\right)$ asymptotically flat
- weak field:

$$
g_{\mu \nu}(x, G)=\eta_{\mu \nu}+\sum_{n=1}^{\infty} g_{\mu \nu}^{(n)}(x, G), \quad g_{\mu \nu}^{(n)}(x, G)=G^{n} h_{\mu \nu}^{(n)}(x)
$$

- light rays are "quasi-Minkowskian" null geodesics:

$$
\Longrightarrow \quad \mathcal{T}_{r}\left(\mathbf{x}_{A}, t_{B}, \mathbf{x}_{B}, G\right)=\frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c}+\sum_{n=1}^{\infty} \mathcal{T}_{r}^{(n)}\left(\mathbf{x}_{A}, t_{B}, \mathbf{x}_{B}, G\right)
$$

General considerations

General methods at your disposal:

- Integration of the null geodesic equations (Shapiro 1964, Richter \& Matzner 1983, Brumberg 1987, Kopeikin \& Schäfer 1999, Klioner 2003)
- Iterative determination of Synge's world function (John 1975, Linet \& Teyssandier 2002, Le Poncin-Lafitte et al 2004)
- Iterative solution of an eikonal equation (Teyssandier \& Le Poncin-Lafitte 2008)

A lot of results at order G
\longrightarrow contributions due to the non-sphericity or/and the motions of bodies.

General considerations

However, higher order terms for the mass monopole contributions will be needed in future experiments (Minazzoli \& Chauvineau 2011 and refs. therein).

Several works devoted to the calculation of TTF in static, spherically symmetric (sss) metrics (John 1975, Richter \& Matzner 1983, Brumberg 1987, Le Poncin-Lafitte et al 2004, Teyssandier \& Le Poncin 2008, Klioner \& Zschocke 2010). In sss space-time

$$
\mathcal{T}_{r}\left(\mathbf{x}_{A}, t_{B}, \mathbf{x}_{B}\right) \equiv \mathcal{T}_{e}\left(t_{A}, \mathbf{x}_{A}, \mathbf{x}_{B}\right)=\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right) .
$$

- Until recently, $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$ was known only up to order G^{2}.
- However, appearance of enhanced terms (Bertotti and Ashby, 2010)
\longrightarrow order G^{3} is necessary.
- New methods developped to determine \mathcal{T} at any order (Linet \& Teyssandier 2013).

Expression of the static, spherically symmetric metric

For a central body of mass $M\left(m=G M / c^{2}\right)$, in isotropic coordinates:

$$
d s^{2}=\mathcal{A}(r)\left(d x^{0}\right)^{2}-\mathcal{B}^{-1}(r) \delta_{i j} d x^{i} d x^{j}
$$

Assumption: $\exists r_{h} \sim m \quad \forall r>r_{h} \quad \mathcal{A}(r)>0, \mathcal{B}^{-1}(r)>0$ and

$$
\begin{aligned}
\mathcal{A}(r) & =1-\frac{2 m}{r}+2 \beta \frac{m^{2}}{r^{2}}-\frac{3}{2} \beta_{3} \frac{m^{3}}{r^{3}}+\beta_{4} \frac{m^{4}}{r^{4}}+\sum_{n=5}^{\infty} \frac{(-1)^{n} n}{2^{n-2}} \beta_{n} \frac{m^{n}}{r^{n}}, \\
\mathcal{B}^{-1}(r) & =1+2 \gamma \frac{m}{r}+\frac{3}{2} \epsilon \frac{m^{2}}{r^{2}}+\frac{1}{2} \gamma_{3} \frac{m^{3}}{r^{3}}+\frac{1}{16} \gamma_{4} \frac{m^{4}}{r^{4}}+\sum_{n=5}^{\infty}\left(\gamma_{n}-1\right) \frac{m^{n}}{r^{n}} .
\end{aligned}
$$

In GR:

$$
\beta=\beta_{3}=\beta_{4}=\beta_{5}=\cdots=1, \quad \gamma=\epsilon=\gamma_{3}=\gamma_{4}=\cdots=1
$$

Expression of the static, spherically symmetric metric

A null geodesic of g is also a null geodesic of the conformal metric

$$
d \tilde{s}^{2}=\left(d x^{0}\right)^{2}-\mathcal{U}(r) \delta_{i j} d x^{i} d x^{j},
$$

where

$$
\mathcal{U}(r)=\frac{1}{\mathcal{A}(r) \mathcal{B}(r)}=1+2(1+\gamma) \frac{m}{r}+2 \kappa \frac{m^{2}}{r^{2}}+2 \sum_{n=3}^{\infty} \kappa_{n} \frac{m^{n}}{r^{n}} .
$$

The parameters κ and κ_{3} are given by

$$
\begin{aligned}
& \kappa=2(1+\gamma)-\beta+\frac{3}{4} \epsilon, \\
& \kappa_{3}=2 \kappa-2 \beta(1+\gamma)+\frac{3}{4} \beta_{3}+\frac{1}{4} \gamma_{3} .
\end{aligned}
$$

In GR: $\quad \kappa=\frac{15}{4}, \quad \kappa_{3}=\frac{9}{2}$.

A natural, useful idea...

Assume that the ray has a unique pericentre $P\left(r=r_{P}\right)$, has no apocentre and passes through P. The null geodesic equations lead to

$$
\begin{aligned}
& t_{B}-t_{A}=\frac{1}{c}\left[\sqrt{r_{A}^{2}-r_{P}^{2}}+\sqrt{r_{B}^{2}-r_{P}^{2}}\right] \\
& +\frac{(1+\gamma) m}{c}\left[\ln \frac{\left(r_{A}+\sqrt{r_{A}^{2}-r_{P}^{2}}\right)\left(r_{B}+\sqrt{r_{B}^{2}-r_{P}^{2}}\right)}{r_{P}^{2}}+\sqrt{\frac{r_{A}-r_{P}}{r_{A}+r_{P}}}+\sqrt{\frac{r_{B}-r_{P}}{r_{B}+r_{P}}}\right] \\
& +\frac{m^{2}}{c r_{P}}\left\{2 \kappa\left[\arccos \frac{r_{P}}{r_{A}}+\arccos \frac{r_{P}}{r_{B}}\right]-\frac{(1+\gamma)^{2}}{4}\left[5 \sqrt{\frac{r_{A}-r_{P}}{r_{A}+r_{P}}}+5 \sqrt{\frac{r_{B}-r_{P}}{r_{B}+r_{P}}}\right.\right. \\
& \\
& \left.\left.\quad-\left(\frac{r_{A}-r_{P}}{r_{A}+r_{P}}\right)^{3 / 2}-\left(\frac{r_{B}-r_{P}}{r_{B}+r_{P}}\right)^{3 / 2}\right]\right\}+O\left(\frac{m^{3}}{c r_{P}^{2}}\right)
\end{aligned}
$$

where $r_{A}=\left|\mathbf{x}_{A}\right|$ and $r_{B}=\left|\mathbf{x}_{B}\right|$.
\Longrightarrow Determining γ at the level $10^{-8} \longleftrightarrow t_{B}-t_{A}$ at the level 0.7 ps .

which is a false good idea...

So, is there a problem? YES!
This expansion doesn't solve our problem : we don't know $r=r_{P}$ as a function of \mathbf{x}_{A} and \mathbf{x}_{B}.

Fortunately, several other methods may be used (see above).
Preference for procedures natively adapted to an emitter and a receiver both located at a finite distance of the origin of coordinates.

New methods for determining \mathcal{T} for sss metrics

First method: integration of an eikonal equation (Teyssandier \& Le Poncin 2008, Linet \& Teyssandier 2013)

- From

$$
\widehat{\underline{I}}_{A}=\left(\frac{I_{i}}{I_{0}}\right)_{A}=c \nabla_{\mathrm{X}_{A}} \mathcal{T}, \quad \hat{\mathbf{I}}_{B}=\left(\frac{I_{i}}{I_{0}}\right)_{B}=-c \nabla_{\mathrm{x}_{B}} \mathcal{T} .
$$

and $g^{\alpha \beta} I_{\alpha} I_{\beta}=0$, it is inferred that $\mathcal{T}\left(\mathbf{x}, \mathbf{x}_{B}\right)$ obeys the eikonal equation

$$
c^{2}\left|\nabla_{\mathbf{x}} \mathcal{T}\left(\mathbf{x}, \mathbf{x}_{B}\right)\right|^{2}=\mathcal{U}(r)=1+2(1+\gamma) \frac{m}{r}+2 \sum_{n=2}^{\infty} \kappa_{n}\left(\frac{m}{r}\right)^{n}
$$

for any $\mathbf{x}(r=|\mathbf{x}|)$ and any $\left|\mathbf{x}_{B}\right|$ such that $r>r_{h}$ and $r_{B}>r_{h}$.

- We are looking for light rays such that

$$
\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)=\frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c}+\sum_{n=1}^{\infty} \mathcal{T}^{(n)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right) .
$$

New methods for determining \mathcal{T} for sss metrics

The $\mathcal{T}^{(n)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)^{\prime}$'s are given by

$$
\mathcal{T}^{(n)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)=\frac{1}{C}\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right| F^{(n)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right),
$$

where the functions $F^{(n)}$ are determined by the recurrence law

$$
\begin{aligned}
F^{(1)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)= & (1+\gamma) m \int_{0}^{1} \frac{d \xi}{|\mathbf{z}(\xi)|} \\
F^{(n)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)= & \kappa_{n} m^{n} \int_{0}^{1} \frac{d \xi}{|\mathbf{z}(\xi)|^{n}} \\
& -\frac{c^{2}}{2} \sum_{p=1}^{n-1} \int_{0}^{1}\left[\nabla_{\mathbf{x}} \mathcal{T}^{(p)}\left(\mathbf{x}_{A}, \mathbf{x}\right) \cdot \nabla_{\mathbf{x}} \mathcal{T}^{(n-p)}\left(\mathbf{x}_{A}, \mathbf{x}\right)\right]_{\mathbf{x}=\mathbf{z}(\xi)} d \xi
\end{aligned}
$$

for $n \geq 2$, with integrations on the straight segment joining \mathbf{x}_{A} and \mathbf{x}_{B}

$$
\mathbf{z}(\xi)=\mathbf{x}_{A}+\xi\left(\mathbf{x}_{B}-\mathbf{x}_{A}\right) .
$$

New methods for determining \mathcal{T} for sss metrics

The recurrence law implies

- the uniqueness of \mathcal{T} for quasi-Minkowskian light rays
- a property of analyticity:

The $\mathcal{T}^{(n)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$'s are analytic functions if $\mathbf{x}_{A} \neq \mathbf{x}_{B}$ and $\mathbf{n}_{B} \neq-\mathbf{n}_{A}$.
\longrightarrow of crucial interest for the second method.

The validity of the method is ensured only if \mathbf{x}_{A} and \mathbf{x}_{B} are such that

$$
\left|\mathbf{x}_{A}+\xi\left(\mathbf{x}_{B}-\mathbf{x}_{A}\right)\right|>r_{h} \quad \forall \xi \in[0,1] .
$$

New methods for determining \mathcal{T} for sss metrics

Second method: integro-differential eq. inferred from the geodesic eqs. (Linet \& Teyssandier 2013)
Since $\mathcal{T}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$ is analytic, we may assume that \mathbf{x}_{A} and \mathbf{x}_{B} are such that:

- The light ray joining \mathbf{x}_{A} and \mathbf{x}_{B} does not pass through a pericentre.
- At any point of the light ray

$$
r_{C}<r_{A} \leq r \leq r_{B}
$$

where r_{c} is the Euclidean distance between the origin and the line passing through \mathbf{x}_{A} and \mathbf{x}_{B}, i.e.

$$
r_{C}=\frac{r_{A} r_{B} \sqrt{1-\mu^{2}}}{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}
$$

with

$$
\mu=\mathbf{n}_{A} \cdot \mathbf{n}_{B}, \quad \mathbf{n}_{A}=\frac{\mathbf{x}_{A}}{r_{A}}, \quad \mathbf{n}_{B}=\frac{\mathbf{x}_{B}}{r_{B}} .
$$

New methods for determining \mathcal{T} for sss metrics

Second method: integro-differential eq. inferred from the geodesic eqs. (Linet \& Teyssandier 2013)
Then

$$
c\left(t_{B}-t_{A}\right)=b \arccos \mu+\int_{r_{A}}^{r_{B}} \frac{1}{r} \sqrt{r^{2} \mathcal{U}(r)-b^{2}} d r
$$

where b is the impact parameter (intrinsic quantity). Since b is linked to \mathcal{T} by

$$
b=-c \sqrt{1-\mu^{2}} \frac{\partial \mathcal{T}\left(r_{A}, r_{B}, \mu\right)}{\partial \mu}
$$

we have an integro-differential equation for $\mathcal{T}\left(r_{A}, r_{B}, \mu\right)$.

New methods for determining \mathcal{T} for sss metrics

Assuming that

$$
b=r_{c}\left[1+\sum_{n=1}^{\infty} q_{n}\left(\frac{m}{r_{c}}\right)^{n}\right]
$$

we find

$$
\mathcal{T}^{(n)}\left(r_{A}, r_{B}, \mu\right)=\frac{1}{c}\left(\frac{m}{r_{c}}\right)^{n} \int_{r_{A}}^{r_{B}} \sum_{k=0}^{3 n-4} U_{k n}\left(q_{1}, \ldots, q_{n-1}\right) r_{c}^{3 n-k-2} \frac{r^{k-n+1}}{\left(r^{2}-r_{c}^{2}\right)^{2 n-1} \frac{2}{2}} d r
$$

where the $U_{k n}$'s are polynomials in q_{1}, \ldots, q_{n-1}. Using

$$
b=-c \sqrt{1-\mu^{2}} \frac{\partial \mathcal{T}\left(r_{A}, r_{B}, \mu\right)}{\partial \mu} \Longrightarrow q_{n}=-c\left(\frac{r_{c}}{m}\right)^{n} \frac{\sqrt{1-\mu^{2}}}{r_{c}} \frac{\partial \mathcal{T}^{(n)}\left(r_{A}, r_{B}, \mu\right)}{\partial \mu}
$$

it may be seen that

$$
\mathcal{T}^{(1)}, \ldots, \mathcal{T}^{(n-1)} \longrightarrow q_{1}, \ldots, q_{n-1} \longrightarrow \mathcal{T}^{(n)}
$$

The analytic extension theorem \Longrightarrow expressions of the $\mathcal{T}^{(n)}$'s valid even if the initial assumptions are not met.

Expression of \mathcal{T} up to order G^{3}

All the integrals can be calculated with any symbolic computer program.
The two methods lead to the same results for $n=1,2,3$:

$$
\begin{aligned}
\mathcal{T}^{(1)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)= & \frac{(1+\gamma) m}{c} \ln \left(\frac{r_{A}+r_{B}+\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{r_{A}+r_{B}-\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}\right), \\
\mathcal{T}^{(2)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)= & \frac{m^{2}}{r_{A} r_{B}} \frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c}\left[\kappa \frac{\arccos \mu}{\sqrt{1-\mu^{2}}}-\frac{(1+\gamma)^{2}}{1+\mu}\right], \quad \text { (Le Poncin et al 2004) } \\
\mathcal{T}^{(3)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)= & \frac{m^{3}}{r_{A} r_{B}}\left(\frac{1}{r_{A}}+\frac{1}{r_{B}}\right) \frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c(1+\mu)}\left[\kappa_{3}-(1+\gamma) \kappa_{2} \frac{\arccos \mu}{\sqrt{1-\mu^{2}}}\right. \\
& \left.+\frac{(1+\gamma)^{3}}{1+\mu}\right]
\end{aligned}
$$

where

$$
\mu=\mathbf{n}_{A} \cdot \mathbf{n}_{B}, \quad \mathbf{n}_{A}=\frac{\mathbf{x}_{A}}{r_{A}}, \quad \mathbf{n}_{B}=\frac{\mathbf{x}_{B}}{r_{B}} .
$$

Enhanced terms up to order G^{3}

Case where \mathbf{x}_{A} and \mathbf{x}_{B} are in almost opposite directions (i.e. $\mu \sim-1$)

$$
\mu \sim-1 \Longrightarrow \frac{1}{1+\mu} \sim \frac{2 r_{A} r_{B}}{\left(r_{A}+r_{B}\right)^{2}} \frac{r_{A} r_{B}}{r_{C}^{2}},
$$

where

$$
r_{C}=\frac{r_{A} r_{B} \sqrt{1-\mu^{2}}}{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}
$$

Enhanced terms up to order G^{3}

Asymptotic expressions of the $\mathcal{T}^{(n)}$ in a conjunction \longrightarrow enhanced terms:

$$
\begin{aligned}
& \mathcal{T}_{\text {enh }}^{(1)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right) \sim \frac{(1+\gamma) m}{c} \ln \left(\frac{4 r_{A} r_{B}}{r_{C}^{2}}\right), \\
& \mathcal{T}_{\text {enh }}^{(2)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right) \sim-2 \frac{(1+\gamma)^{2} m^{2}}{c\left(r_{A}+r_{B}\right)} \frac{r_{A} r_{B}}{r_{C}^{2}}, \\
& \mathcal{T}_{\text {enh }}^{(3)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right) \sim 4 \frac{(1+\gamma)^{3} m^{3}}{c\left(r_{A}+r_{B}\right)^{2}}\left(\frac{r_{A} r_{B}}{r_{C}^{2}}\right)^{2} .
\end{aligned}
$$

(cf. Ashby \& Bertotti 2010)

Enhanced terms up to order G^{3}

These expressions are reliable for $n=1,2,3$ for configurations such that

$$
\left|\mathcal{T}^{(n)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)\right| \ll\left|\mathcal{T}^{(n-1)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)\right|, \quad \text { with } \mathcal{T}^{(0)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)=\frac{1}{c}\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|
$$

These conditions are satisfied if

$$
\begin{equation*}
\frac{2 m}{r_{A}+r_{B}} \frac{r_{A} r_{B}}{r_{C}^{2}} \ll 1 \tag{C}
\end{equation*}
$$

Condition (C) is met in the solar system. For $r_{B}=1$ au and $r_{A} \geq r_{B}$, one has

$$
\frac{2 m_{\odot}}{r_{A}+r_{B}} \frac{r_{A} r_{B}}{r_{C}^{2}} \leq 9.12 \times 10^{-4} \times \frac{R_{\odot}^{2}}{r_{C}^{2}}, \quad R_{\odot}=\text { solar radius. }
$$

\Longrightarrow Our results may be applied to the solar system experiments.

Discussion for solar system experiments

Determination of γ in a SAGAS-like scenario: $r_{\mathrm{A}} \approx 50 \mathrm{au}, r_{\mathrm{B}} \approx 1 \mathrm{au}$

$$
\begin{aligned}
\text { Shapiro's formula } & \Longrightarrow \Delta \mathcal{T} \approx \frac{1}{2} \Delta \gamma \mathcal{T}^{(1)} \\
R_{\odot}<r_{c}<5 R_{\odot} \Longrightarrow & 158 \mu \mathrm{~s}>\mathcal{T}_{\text {enh }}^{(1)}>126 \mu \mathrm{~s} \\
& \Downarrow \\
\gamma \text { at the level } 10^{-8} & \Longleftrightarrow \mathcal{T} \text { at the level } 0.7 \mathrm{ps}
\end{aligned}
$$

Discussion for solar system experiments

In this configuration (times given in ps):

r_{c} / R_{\odot}	$\left\|\mathcal{T}_{s}^{(1)}\right\|$	$\mathcal{T}_{J_{2}}^{(1)}$	$\mathcal{T}_{\text {enh }}^{(2)}$	$\mathcal{T}_{\kappa}^{(2)}$	$\mathcal{T}_{\text {enh }}^{(3)}$
1	10	2	-17616	123	31.5
2	5	0.5	-4404	61.5	2
5	2	0.08	-704.6	24.6	0.05

Conclusion: $\mathcal{T}_{\text {enh }}^{(3)}$ must be taken into account for rays almost grazing the Sun.

Moreover, $\mathcal{T}_{\text {enh }}^{(3)}$ can be greater than

- the 1rst-order gravitomagnetic effect: $\left|\mathcal{T}_{S}^{(1)}\right| \sim \frac{2(1+\gamma) G S_{\odot}}{c^{4} r_{C}}$, with $S_{\odot} \approx 2 \times 10^{41} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$;
- the 1 rst-order mass quadupole effect: $\mathcal{T}_{J_{2}}^{(1)} \sim \frac{(1+\gamma) m_{\odot}}{c} J_{2 \odot} \frac{R_{\odot}^{2}}{r_{c}^{2}}$, with $J_{2 \odot} \approx 2 \times 10^{-7}$.

Discussion for solar system experiments

This irruption of a G^{3}-enhanced term is paradoxical. Remember that

$$
\begin{aligned}
& t_{B}-t_{A}=\frac{1}{c}\left[\sqrt{r_{A}^{2}-r_{P}^{2}}+\sqrt{r_{B}^{2}-r_{P}^{2}}\right] \\
& +\frac{(1+\gamma) m}{C}\left[\ln \frac{\left(r_{A}+\sqrt{r_{A}^{2}-r_{P}^{2}}\right)\left(r_{B}+\sqrt{r_{B}^{2}-r_{P}^{2}}\right)}{r_{P}^{2}}+\sqrt{\frac{r_{A}-r_{P}}{r_{A}+r_{P}}}+\sqrt{\frac{r_{B}-r_{P}}{r_{B}+r_{P}}}\right] \\
& +\frac{m^{2}}{c r_{P}}\left\{2 \kappa\left[\arccos \frac{r_{P}}{r_{A}}+\arccos \frac{r_{P}}{r_{B}}\right]-\frac{(1+\gamma)^{2}}{4}\left[5 \sqrt{\frac{r_{A}-r_{P}}{r_{A}+r_{P}}}+5 \sqrt{\frac{r_{B}-r_{P}}{r_{B}+r_{P}}}\right.\right. \\
& \left.\left.\quad-\left(\frac{r_{A}-r_{P}}{r_{A}+r_{P}}\right)^{3 / 2}-\left(\frac{r_{B}-r_{P}}{r_{B}+r_{P}}\right)^{3 / 2}\right]\right\}+O\left(\frac{m^{3}}{c r_{P}^{2}}\right) .
\end{aligned}
$$

Numerically : $\quad \frac{m_{\odot}}{c}=4.9 \mu \mathrm{~s}, \quad \frac{m_{\odot}^{2}}{c R_{\odot}}=10.4 \mathrm{ps}, \quad \frac{m_{\odot}^{3}}{c R_{\odot}^{2}}=0.02 \mathrm{fs}$.

Discussion for solar system experiments

Assume $r_{A}=r_{B}=1$ au and $r_{P}=R_{\odot}$
Oth-order term : 499 s
1st-order term : $139 \mu \mathrm{as}$
2nd-order term : $162 \mathrm{ps} \Longrightarrow$ no enhanced effect predicted
3rd-order term <1 fs $\quad \Longrightarrow \quad$ no enhanced effect predicted; negligible

How can we surmount this apparent contradiction?

Discussion for solar system experiments

r_{P} and b are linked by $b=r_{P} \sqrt{\mathcal{U}\left(r_{P}\right)}$. Eliminating b between this relation and

$$
b=r_{c}\left[1+q_{1} \frac{m}{r_{c}}+q_{2} \frac{m^{2}}{r_{c}^{2}}+q_{3} \frac{m^{3}}{r_{c}^{3}}+\cdots\right]
$$

and then using

$$
q_{n}=-c\left(\frac{r_{c}}{m}\right)^{n} \frac{\sqrt{1-\mu^{2}}}{r_{c}} \frac{\partial \mathcal{T}^{(n)}\left(r_{A}, r_{B}, \mu\right)}{\partial \mu}
$$

r_{P} may be expressed as a function of \mathbf{x}_{A} and \mathbf{x}_{B} :

$$
\begin{aligned}
r_{P}=r_{c}\{ & 1-\left(1+\gamma-q_{1}\right) \frac{m}{r_{c}}-\frac{1}{2}\left[2 \kappa-(1+\gamma)^{2}-2 q_{2}\right] \frac{m^{2}}{r_{c}^{2}} \\
& \left.-\frac{1}{2}\left[2 \kappa_{3}-2 \kappa q_{1}+(1+\gamma)^{2} q_{1}-2 q_{3}\right] \frac{m^{3}}{r_{c}^{3}}+\cdots\right\}
\end{aligned}
$$

Discussion for solar system experiments

Substituting this expansion in the above expression of $t_{B}-t_{A}$ leads to

$$
t_{B}-t_{A}=\frac{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}{c}+\mathcal{T}^{(1)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)+\mathcal{T}^{(2)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)
$$

$$
\left.+ \text { enhanced term of order } G^{3}+\text { some regular terms of order } G^{3}\right)
$$

When $\mu \sim-1$

$$
\begin{aligned}
& q_{1}=(1+\gamma) \frac{r_{A}+r_{B}}{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|} \frac{\sqrt{1-\mu}}{\sqrt{1+\mu}} \sim 2(1+\gamma) \frac{\sqrt{r_{A} r_{B}}}{r_{A}+r_{B}} \frac{\sqrt{r_{A} r_{B}}}{r_{C}}, \\
& q_{2} \sim-q_{1}^{2} \\
& q_{3} \sim 2 q_{1}^{3} \\
& \longrightarrow r_{A}=r_{B}=1 \text { au, } r_{c} \approx R_{\odot} \quad \Longrightarrow q_{1} \approx 430 \Longrightarrow r_{P}-r_{c} \approx 630 \mathrm{~km} \\
& \longrightarrow r_{A}=50 \text { au, } r_{B}=1 \text { au, } r_{c} \approx R_{\odot} \Longrightarrow q_{1} \approx 843 \Longrightarrow r_{P}-r_{c} \approx 1240 \mathrm{~km}
\end{aligned}
$$

So r_{P} and r_{c} are significantly different in a configuration of quasi-conjunction.
Compare with $b-r_{P} \approx(1+\gamma) m_{\odot} \approx 3 \mathrm{~km}$.

Enhanced terms in the direction of light propagation

Substituting the $\mathcal{T}^{(n)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)$ into

$$
\widehat{\underline{\mathbf{I}}}_{A}=\left(\frac{I_{i}}{I_{0}}\right)_{A}=c \nabla_{\mathrm{x}_{A}} \mathcal{T}_{r}, \quad \widehat{\underline{\mathbf{I}}}_{B}=\left(\frac{I_{i}}{I_{0}}\right)_{B}=-c \nabla_{\mathrm{x}_{B}} \mathcal{T}_{r}
$$

\longrightarrow expansions of $\widehat{\underline{I}}_{A}$ and $\widehat{\underline{I}}_{B}$ in series in powers of $\frac{m}{r_{C}}$

Enhanced terms in the direction of light propagation

$$
\begin{aligned}
\widehat{\mathbf{l}}_{B}^{(0)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)= & -\mathbf{N}_{A B}, \\
\widehat{\underline{\mathbf{l}}}_{B}^{(1)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)= & -\frac{(1+\gamma) m}{r_{C}} \frac{r_{A}}{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}\left[\sqrt{1-\mu^{2}} \mathbf{N}_{A B}-(1-\mu) \mathbf{P}_{A B}\right] \\
\widehat{\underline{\mathbf{l}}}_{B}^{(2)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)= & -\frac{m^{2}}{r_{C}^{2}} \frac{r_{A}^{2}}{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|^{2}}\left\{[\cdots] \mathbf{N}_{A B}\right. \\
& \left.+\left[\cdots+(1+\gamma)^{2}\left(\frac{r_{B}}{r_{A}}+1\right) \frac{(1-\mu)^{3 / 2}}{\sqrt{1+\mu}}\right] \mathbf{P}_{A B}\right\}, \\
\widehat{\underline{l}}_{B}^{(3)}\left(\mathbf{x}_{A}, \mathbf{x}_{B}\right)= & -\frac{m^{3}}{r_{C}^{3}} \frac{r_{A}^{3}(1-\mu)}{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|^{3}}\left\{\left\{(1+\gamma)^{3}\left[2+\frac{r_{B}}{r_{A}}(1-\mu)\right] \frac{\sqrt{1-\mu}}{\sqrt{1+\mu}}+\cdots\right\} \mathbf{N}_{A B}\right. \\
& \left.-\left[2(1+\gamma)^{3}\left(1+\frac{r_{B}}{r_{A}}\right)^{2} \frac{1-\mu}{1+\mu}+\cdots\right] \mathbf{P}_{A B}\right\},
\end{aligned}
$$

where

$$
\mathbf{N}_{A B}=\frac{\mathbf{x}_{B}-\mathbf{x}_{A}}{\left|\mathbf{x}_{B}-\mathbf{x}_{A}\right|}, \quad \quad \mathbf{P}_{A B}=\mathbf{N}_{A B} \times\left(\frac{\mathbf{n}_{A} \times \mathbf{n}_{B}}{\left|\mathbf{n}_{A} \times \mathbf{n}_{B}\right|}\right)
$$

Enhanced terms in the direction of light propagation

When $\mu \sim-1$

- no enhanced term in $\underline{\underline{I}}_{B}^{(1)}$
- enhanced terms at higher orders:

$$
\begin{aligned}
& \left(\hat{\underline{\mathbf{I}}}_{B}^{(2)}\right)_{\text {enh }} \sim-\frac{4(1+\gamma)^{2} m^{2}}{r_{C}^{2}} \frac{r_{B}}{r_{C}} \frac{r_{A}^{2}}{\left(r_{A}+r_{B}\right)^{2}} \mathbf{P}_{A B}, \\
& \left(\underline{\mathbf{I}}_{B}^{(3)}\right)_{\text {enh }} \sim \frac{16(1+\gamma)^{3} m^{3}}{r_{C}^{3}} \frac{r_{B}^{2}}{r_{C}^{2}} \frac{r_{A}^{3}}{\left(r_{A}+r_{B}\right)^{3}} \mathbf{P}_{A B} .
\end{aligned}
$$

Enhanced terms in the direction of light propagation

1. Deflection of light in a LATOR-like experiment: $r_{A}=r_{B}=1 \mathrm{au}$

For a ray passing near the Sun

$$
\Delta \chi^{(2)} \sim\left|\left(\hat{\underline{I}}_{B}^{(2)}\right)_{e n h}-\left(\hat{\underline{l}}^{(2)}\right)_{e n h}\right| \sim \frac{4(1+\gamma)^{2} m^{2}}{r_{C}^{2}} \frac{r_{A} r_{B}}{r_{C}\left(r_{A}+r_{B}\right)}
$$

and

$$
\Delta \chi^{(3)} \sim\left|\left(\hat{\underline{I}}_{B}^{(3)}\right)_{e n h}-\left(\underline{\underline{I}}_{A}^{(3)}\right)_{e n h}\right| \sim \frac{16(1+\gamma)^{3} m^{3}}{r_{C}^{3}} \frac{r_{A} r_{B}}{\left(r_{A}+r_{B}\right)^{2}} \frac{r_{A} r_{B}}{r_{C}^{2}}
$$

For $r_{c}=R_{\odot}$,

$$
\begin{aligned}
& \Delta \chi^{(2)} \approx 1.6 \text { mas } \\
& \Delta \chi^{(3)} \approx 3 \mu \text { as } \quad \text { (compare with Hees et al 2013). }
\end{aligned}
$$

Enhanced terms in the direction of light propagation

2. Deflection of light coming from infinity, with $r_{B}=1$ au (GAME, e.g.)

$$
\Delta \chi^{(2)} \sim \frac{4(1+\gamma)^{2} m^{2}}{r_{c}^{2}} \frac{r_{B}}{r_{c}}
$$

and

$$
\Delta \chi^{(3)} \sim \frac{16(1+\gamma)^{3} m^{3}}{r_{c}^{3}}\left(\frac{r_{B}}{r_{c}}\right)^{2}
$$

For $r_{B}=1$ au and $r_{c}=R_{\odot}$,

$$
\begin{aligned}
& \Delta \chi^{(2)} \approx 3.2 \mathrm{mas} \\
& \Delta \chi^{(3)} \approx 12 \mu \mathrm{as}
\end{aligned}
$$

Enhanced terms in the direction of light propagation

The choice of r_{c} is not truly relevant.
Using the impact parameter b and inverting the expansion

$$
b=r_{c}\left[1+\sum_{n=1}^{\infty} q_{n}\left(\frac{m}{r_{c}}\right)^{n}\right]
$$

we get for the dominant terms in $\widehat{\underline{I}}_{B} \cdot \mathbf{P}_{A B}$

$$
\begin{aligned}
& \widehat{\mathbf{I}}_{B} \cdot \mathbf{P}_{A B} \approx \frac{2(1+\gamma) m}{b} \frac{r_{A}}{r_{A}+r_{B}}+\frac{\kappa \pi m^{2}}{b^{2}} \frac{r_{A}}{r_{A}+r_{B}} \\
& \quad+\frac{m^{3}}{b^{3}} \frac{r_{A}}{r_{A}+r_{B}}\left\{4 \kappa_{3}+2(1+\gamma) \kappa\left[1+\frac{r_{A}^{2}}{\left(r_{A}+r_{B}\right)^{2}}\right]\right\}+O\left(\frac{m^{4}}{b^{4}}\right)
\end{aligned}
$$

\Longrightarrow The enhanced contributions are "absorbed" by using b.

Enhanced terms in the direction of light propagation

This conclusion

- could be expected from the total bending of light

$$
\Delta \widehat{\chi}=\underbrace{\frac{2(1+\gamma) m}{b}}+\underbrace{\frac{\kappa \pi m^{2}}{b^{2}}}+\underbrace{\frac{m^{3}}{b^{3}}\left[4 \kappa_{3}+4(1+\gamma) \kappa-\frac{2}{3}(1+\gamma)^{3}\right]}+O\left(\frac{m^{4}}{b^{4}}\right)
$$

with

for a light ray grazing the Sun

- is maintained using r_{P} instead of b. One has

$$
b=r_{P} \sqrt{\mathcal{U}\left(r_{P}\right)}=r_{P}\left\{1+\frac{(1+\gamma) m}{r_{P}}+\frac{1}{2}\left[2 \kappa-(1+\gamma)^{2}\right] \frac{m^{2}}{r_{P}^{2}}+O\left(\frac{m^{3}}{r_{P}^{3}}\right)\right\} .
$$

Conclusion

For quasi-Minkowskian light rays:

- Two new methods available for directly calculating the TTF and the direction of light propagation in s.s.s. symmetric space-times, at any given order in G.
- These calculations can be performed with any symbolic computer program.
- They can be extended to more general cases (stationary metrics, e.g.).
- It is explicitly checked that the two procedures lead to the same expressions of TTF up to order G^{3}.
- We confirm the occurrence of enhanced terms of order G^{3} which must be taken into account for modelling
- time measurements reaching 1 ps
- light deflection at the level 1μ as
- They can be absorbed by using expansions in series in powers of $\frac{m}{r_{P}}$ or $\frac{m}{b}$ instead of $\frac{m}{r_{c}}$.

References

- Ashby N \& Bertotti B 2010 Class. Quantum Grav. 27145013
- Bertotti B, less L \& Tortora P 2003 Nature 425374
- Brumberg V A 1987 Kinematics Phys. Celest. Bodies 36
- Damour T \& Lilley M 2008 "String Theory, Gravity and Experiment", Les Houches Summer School in Theoretical Physics Session 87; arXiv:0802.4169v1
- Hees A, Bertone S \& Le Poncin-Lafitte C 2013 Journées 2013 (poster)
- Hees A, Bertone S \& Le Poncin-Lafitte C 2014 arXiv:1401.7622
- John R W 1975 Exp. Tech. Phys. 23127
- Klioner S A 2003 Astron. J. 1251580
- Klioner S A \& Zschocke S 2010 Class. Quantum Grav. 27075015
- Kopeikin S M \& Schäfer G 1999 Phys. Rev. D 60124002
- Le Poncin-Lafitte C, Linet B \& Teyssandier P 2004 Class. Quantum Grav. 214463
- Linet B \& Teyssandier P 2002 Phys. Rev. D 66024045
- Linet B \& Teyssandier P 2013 Class. Quantum Grav. 30175008
- Minazzoli O \& Chauvineau B 2011 Class. Quantum Grav. 28085010
- Richter G W \& Matzner R A 1983 Phys. Rev. D 283007
- Shapiro II 1964 Phys. Rev. Lett. 13789
- Teyssandier P\& C. Le Poncin-Lafitte 2008 Class. Quantum Grav. 25145020
- Teyssandier P 2012 Class. Quantum Grav. 29245010
- Velma A K, Fienga A, Kaskar J, Manche H \& Gastineau M 2013 arXiv:1306.5569v2

