

Clifford Will Washington University, St. Louis

IHES Bures-sur-Yvette, 26 May, 2011

20th century themes

- High precision technology (clocks, space)
- Frameworks for comparing and testing theories
- Theory-experiment synergy

21st century themes - Beyond Einstein

- Strong-field gravity
- Gravitational-waves
- Extreme-range gravity

Introduction - what is "strong"?

- Astrophysical tests
- Cosmic barbers: Are black holes really bald?
- Counting hair using gravitational waves
- Counting hair using SgrA*

Introduction - what is "strong"?

- Astrophysical tests
- Cosmic barbers: Are black holes really bald?
- Counting hair using gravitational waves
- Counting hair using SgrA*

Astrophysical tests of strong gravity

Steady luminosity in LMXB: BH or NS?

Accretion spectrum: radius of the ISCO?

a/m ~ 0.65 - 0.85 (GRS 1915+105, 4U 1543-47, GRO J1655-40)

Broadening of iron fluorescence lines in BH accretion

Astrophysical tests of strong gravity

High resolution imaging of hot spot in accretion onto BH at Galactic Center
45° inclination
a=0 and 0.998

See the "Living Review" by Dimitrios Psaltis - http://relativity.livingreviews.org/Articles/Irr-2008-9/

Introduction - what is "strong"?

- Astrophysical tests
- Cosmic barbers: Are black holes really bald?
- Counting hair using gravitational waves
- Counting hair using SgrA*

Cosmic Barbers: Are black holes really bald?

J. Michell (1784):

If there should really exist in nature any bodies whose density is not less than that of the sun, and whose diameters are more than 500 times the diameter of the sun, since their light could not arrive at us... we could have no information from sight; yet if any other luminous bodies should happen to revolve about them we might still [infer] the existence of the central ones....

P. S. Laplace (1796):

... the attractive force of a heavenly body could be so large that light could not flow out of it.

1.6 X 10⁸ M_{sun}

Cosmic Barbers: Are black holes really bald?

The 3 Stooges: Moe, Curly & Larry (1934 - 46)

Rotating black holes in general relativity

The Schwarzschild solution (1916)

- unique static, spherical asymptotically flat vacuum solution
- matches smoothly to matter interior star
- non-singular event horizon
- non-rotating black hole

The Kerr solution (1963)

- unique stationary axisymmetric, asymptotically flat vacuum solution with non-singular event horizon
- no reasonable fluid interior solution ever found
- rotating black hole if $J \leq GM^2/c$

External potentials of charge and mass distributions

Electromagnetism (axisymmetric body)

$$\Phi: \frac{e}{r} + \frac{DP_1(\cos\theta)}{r^2} + \frac{Q_2P_2(\cos\theta)}{r^3} + A^i: \frac{\mu^i}{r^2} + \frac{M_2\tilde{P}_2^i(\cos\theta)}{r^3} + \dots$$

Newtonian gravity (axisymmetric body)

$$\begin{split} U &: \frac{M}{r} + \frac{Q_2 P_2(\cos \theta)}{r^3} + \frac{Q_3 P_3(\cos \theta)}{r^4} + \dots \\ Q_\ell &= M R^\ell j_\ell \\ \\ \text{Earth: } j_2 &= 10^{-3}, j_3 = -2 \times 10^{-6}, j_4 = -1.5 \times 10^{-6}, \dots \end{split}$$

Black holes have no hair

Exterior geometry of Kerr

Symmetries and conserved quantities Symmetry: $x^{\alpha} \rightarrow x^{\alpha} + \xi^{\alpha} \text{ and } g_{\mu'\nu'}(x^{\alpha'}) = g_{\mu\nu}(x^{\alpha}) \left(\text{or } L(x^{\alpha'}) = L(x^{\alpha}) \right)$ $\xi_{\alpha;\beta} + \xi_{\beta;\alpha} = 0$ Killing vector If **p** is tangent to a geodesic: $\xi \cdot \vec{p} = \text{constant} (\text{or } p_{\alpha} = \text{const})$ Schwarzschild:

 $\begin{cases} \xi_{(t)} \Rightarrow E \\ \xi_{(\varphi)} \Rightarrow L_z \\ \xi_{(1)} \Rightarrow L_x \\ \xi_{(2)} \Rightarrow L_y \end{cases} \Rightarrow \text{orbital plane fixed} \end{cases}$

Symmetries and conserved quantities

Kerr:

Animation by Steve Drasco, JPL

The Carter constant of the motion Hamilton-Jacobi methods (B. Carter 1968) $C = f(L^2, L_z^2, E^2, a, \cos \theta)$

Killing tensor $\xi_{\alpha\beta}$:

$$\xi_{\alpha\beta;\gamma} + \xi_{\gamma\alpha;\beta} + \xi_{\beta\gamma;\alpha} = 0$$

$$\xi_{\alpha\beta} p^{\alpha} p^{\beta} = \text{constant}$$

Remark: geodesic motion in Kerr is completely integrable (reducible to quadratures)

Introduction - what is "strong"?

- Astrophysical tests
- Cosmic barbers: Are black holes really bald?
- Counting hair using gravitational waves
- Counting hair using SgrA*

LISA: a space interferometer for 2020

Inspiralling Compact Binaries - Strong Gravity GR Tests?

Fate of the binary pulsar in 100 My
GW energy loss drives pair toward merger

LIGO-VIRGO

Last few minutes (10K cycles) for NS-NS
40 - 700 per year by 2014
BH inspirals could be more numerous

LISA

MBH pairs(10⁵ - 10⁷ M_s) in galaxies to large Z ~ 15
 EMRIs

Hair counting using GW from EMRIs

- EMRI: extreme mass-ratio inspiral
- GW source for LISA
- particle probes strong-field BH geometry

F. Ryan (1997) Babak & Glampedakis (2006) Hughes (2006) Vigeland & Hughes (2009)

accurate template waveforms needed

$$\xi_{(t)} \Rightarrow E \quad \xi_{(\varphi)} \Rightarrow L_z \quad \xi_{\alpha\beta} \Rightarrow C$$

- change of E, Lz calculable from flux to infinity
- no analogous flux known for C
- ad hoc or "kludge" approaches to find dC/dt
- post-Newtonian theory (Flanagan & Hinderer)
- "Capra program" to calculate local self force

Hair counting using GW from EMRIs

Hair counting using GW from EMRIs

- EMRI: extreme mass-ratio inspiral
- GW source for LISA
- particle probes strong-field BH geometry

F. Ryan (1997) Babak & Glampedakis (2006) Hughes (2006) Vigeland & Hughes (2009)

accurate template waveforms needed

$$\xi_{(t)} \Rightarrow E \quad \xi_{(\varphi)} \Rightarrow L_z \quad \xi_{\alpha\beta} \Rightarrow C$$

- change of E, Lz calculable from flux to infinity
- no analogous flux known for C
- ad hod or "kludge" approaches to find dC/dt
- post-Newtonian theory (Flanagan & Hinderer)
- "Capra program" to calculate local self force

Temporary hair: Perturbed black holes

Ringdown

- collapse or merger produces distorted black hole
- hole radiates "ringdown" waves to shed hair
- final state a stationary Kerr black hole
- quasi-normal modes

$$\omega = \omega_{\ell mn} + i \left(\frac{\pi \omega_{\ell mn}}{2Q_{\ell mn}} \right)$$

Hair counting using ringdown waves

 LISA will detect massive binary black hole inspirals to large Z

 SNR from ringdown waves is large for M > 10⁵ M_{sun}

 M, j can be measured with high accuracy

 multimode detection needed to test no-hair theorems

WUGRAV

Introduction - what is "strong"?

- Astrophysical tests
- Cosmic barbers: Are black holes really bald?
- Counting hair using gravitational waves
- Counting hair using SgrA*

Counting hairs on the galactic center black hole SgrA*

- No hair theorems:
 - $M_L + iJ_L = M(ia)^L$
- $J = Ma; Q = -Ma^2$
- relativistic effects: periholion advance, redshift
 Doppler shifts, Shapiro delays
- Frame dragging (J) and quadrupole moment (Q) produce precessions of planes

SgrA* - a 3.6 X 10⁶ M_{sun} rotating black hole

Jaroszynski (1998) Fragile & Mathews (2000) Rubilar & Eckart (2001) Weinberg et al. (2005) Zucker et al. (2006) Kraniotis (2007)

Counting hairs on the galactic center black hole SgrA*

- No hair theorems:
 - $M_L + iJ_L = M(ia)^L$
- $J = Ma; Q = -Ma^2$
- relativistic effects: periholion advance, redshift Doppler shifts, Shapiro delays
 Frame dragging (J) and quadrupole moment (Q) produce precessions of planes

Orbital plane precessions as no-hair tests for SgrA*

	ω	Ω	i
Μ	>		
J	~	~	✓*
Q	~	~	~
dirt	~	V	V

$$A_M = 6\pi \frac{M}{\overline{a}(1-e^2)}$$
$$A_J = 4\pi \frac{J}{M^2} \left(\frac{M}{\overline{a}(1-e^2)}\right)^{3/2}$$
$$A_Q = 3\pi \frac{Q}{M^3} \left(\frac{M}{\overline{a}(1-e^2)}\right)^2$$

a/M > 0.5 P ~ 0.1 yr, d < 10⁻³ pc, e ~ 0.9 => Precessions ~ 10 μas/yr

WUGRAV WARNEY

CMW, Ap J Lett. 647, L25 (2008)

The observational challenge

GRAVITY: near IR adaptive optics instrument for the Very Large Telescope Interferometer

ASTRA: extending the Keck interferometer

Effect of other stars/BH in the central mpc

10-year precession of orbital planes, for a/M = 1

$$M_{S/BH}$$
 (<1 mpc) = 10 M_{sun}

 $M_{S/BH}$ (<1 mpc) = 30 M_{sun}

$M_{S/BH}$ (<1 mpc) = 100 M_{sun}

D. Merritt, T. Alexander, S. Mikkola, CMW, arXiv:0911.4718 L. Sadeghian & CMW, in preparation

Effect of other stars/BH in the central mpc

Orbital perturbations due to a third body

Time-averaged perturbation

$$\overline{\frac{dx}{dt}} \equiv \frac{1}{T} \int_0^T \frac{dx}{dt} dt = f(a, e, \omega, \Omega, i; a', e', \omega', \Omega', i')$$

Average over a distribution of perturbing stars

$$\left\langle \frac{dx}{dt} \right\rangle \equiv \int \frac{dx}{dt} \mathcal{N}(a', e', \omega', Q',) a'^2 da' de'^2 d\omega' \sin i' di' d\Omega'$$

because of spherical symmetry

Estimate discreteness effects via RMS change

$$\left\langle \overline{\frac{dx}{dt}} \right\rangle_{\rm RMS}^2 \quad \equiv \quad \frac{1}{8\pi^2} \int \left(\overline{\frac{dx}{dt}} \right)^2 \tilde{\mathcal{N}}(a', \, e') \, a'^2 da' de'^2 d\omega' \sin i' di' d\Omega'$$

Orbital perturbations due to a third body

RMS change in inclination over one orbit (outer perturbing star)

$$P^2 \left\langle \frac{\overline{di}}{dt} \right\rangle_{\rm RMS}^2 = \frac{3\pi^2}{40} \left(\frac{m_3}{M}\right)^2 \int \tilde{\mathcal{N}}(a', e') \left(\frac{a}{a'}\right)^6 \frac{(2+6e^2+17e^4)}{(1-e^2)(1-e'^2)^3} a'^2 \, da' de'^2$$

Normalized distribution in a', e': $\int \tilde{\mathcal{N}}(a', e') a'^2 da' de'^2 = N$

Note
$$\langle \Delta i \rangle \propto \left(\frac{Nm_3}{M}\right) N^{-1/2} \to 0 \text{ as } N \to \infty \text{ for fixed } Nm_3$$

Stellar distribution assumptions: $1 M_{sun}$ stars & $10 M_{sun}$ BH

$$\tilde{\mathcal{N}}(a', e') \propto a'^{-\gamma} (1 - e'^2)^{-\beta}$$
 $R = N_{BH}/N_*$

$$\gamma = \begin{cases} 0 : \text{constant density} \\ 2 : \text{mass segregated} \end{cases}$$
$$\beta = 1 - \sigma_t^2 / \sigma_n^2$$

$$= 0$$
 : isotropy

WUGRAV

Counting black hole hair at the galactic center

Future work:

effects of tidal distortions at close approach to the BH

Covariance analysis of actual astrometric observations of N candidate stars

effects of a dark matter distribution (Sadeghian & Ferrer)

Introduction - what is "strong"?

- Astrophysical tests
- Cosmic barbers: Are black holes really bald?
- Counting hair using gravitational waves
- Counting hair using SgrA*

