Nonlocal Cosmology

arXiv:1401.0254 arXiv:0705.0153 & 1307.6693 (Deser) arXiv:0904.0961 (Deffayet)

Problem: What is making the universe accelerate?

- FLRW: $ds^2 = -dt^2 + a^2(t) d\mathbf{x} \cdot d\mathbf{x}$ • $H(t) = \frac{a}{a} \rightarrow H_0 \sim 67 \frac{\mathrm{km}}{\mathrm{s-Mpc}}$ • $q(t) \equiv -1 - \frac{\mathrm{H}}{\mathrm{H}^2} \rightarrow q_0 \sim -.54$
- General Relativity with $\frac{a_0}{a(t)} \equiv 1 + z$ $\Rightarrow 3H^2 = 3H_0^2 \left[\Omega_r (1+z)^4 + \Omega_r (1+z)^3 + \Omega_\Lambda\right]$ $\Rightarrow -2\dot{H} - 3H^2 = 3H_0^2 \left[\frac{1}{2}\Omega_r (1+z)^4 + 0 - \Lambda\right]$

• ACDM works

• $r \sim 8.5 \times 10^{-5}$, $I_n \sim .306$, $\Lambda \sim .692$ • But why is GA so small and why dominant NOW?

Scalar Quintessence Works

• $\mathcal{L} = -\frac{1}{2}\partial_{\mu}\phi\partial_{\nu}\phi g^{\mu\nu}\sqrt{-g} - V(\phi)\sqrt{-g}$ • $3H^{2} = 8\pi G[\frac{1}{2}I^{2} + V(f)]$ • $-2\dot{H} - 3H^{2} = 8\pi G[\frac{1}{2}I^{2} - V(f)]$

• Given $a(t) \rightarrow \text{Reconstruct } V(\phi)$

♦ -2H = 8πG²(t) → f(t) = f₀ ± ∫₀^t dt' √ $\frac{-H(t')}{4\pi G}$ ♦ Monotonic → t[f]

♦ (t) + 3H²(t) = 8πGV → V(f) = $\frac{(t[f]) + 3H^{2}(t[f])}{8\pi G}$

• But who ordered that?

Why is φ(t, x)~ f(t) so homogeneous?
 Why is G²V(f)~10⁻¹²² so small?
 Why is there no observed scalar force?

f(R) models don't really work

- $\mathcal{L} = \frac{f(R)\sqrt{-g}}{16\pi G}$
- Unique solution which gives Λ CDM is . . . $\Rightarrow f(R) = R 2$
 - Dunsby et al., arXiv:1005.2205
- Hence deviations occur even at 0th order!
- And there are other problems
 Why now?

 new scales
 New scalar DoF
 needs screening

Modifications of Gravity

- f(R) only local, invariant, stable & $g_{\mu\nu}$ -based
- Retain locality and sacrifice invariance
 Horava gravity
 Horava gravitons
- Retain invariance and sacrifice locality for:
 Summing QIR effects from primordial inflation
 Explaining late time acceleration w/o Dark Energy
 Explaining galactic structure w/o Dark Matter

Isaac Newton's Take on Nonlocality

"that one body may act upon another at a distance thro' a Vacuum, without the Mediation of any thing else, by and through which their Action and Force may be conveyed from one to another, is to me so great an Absurdity that I believe no Man who has in philosophoical Matters a competent Faculty of thinking can ever fall into it."

Was Newton too Harsh?

I don't think so

Fundamental theory is local

- But quantum effective field equations are not
- M = 0 loops could give big IR corrections
- Primordial Inflation -> IR gravitons
 - $*N(t,k) = \left[\frac{Ha(t)}{2ck}\right]^2$ for EVERY wave vector
 - Perhaps their attraction stops inflation
 - Late time modifications from vacuum polarization
 Would affect large scales most
- But for now, just model-building

Late-Time Acceleration (arXiv:0705.0153 with Deser)

- Nonlocality via $\frac{1}{\Box}$ for $\Box \equiv \frac{1}{\sqrt{-g}} \partial_{\mu} \left(\sqrt{-g} g^{\mu\nu} \partial_{\nu} \right)$
- Act it on $R \rightarrow X \equiv \frac{1}{\Box}R$ is dimensionless
- $\mathcal{L} = \frac{R[1+f(X)]\sqrt{-g}}{16\pi G}$
 - f(X) the "nonlocal distortion function"
- Field equations: $G_{\mu\nu} + \Delta G_{\mu\nu} = 8\pi G T_{\mu\nu}$

 $G_{\mu\nu} = \left[G_{\mu\nu} + g_{\mu\nu}\Box - D_{\mu}D_{\nu}\right] \left(f(X) + \frac{1}{\Box}[Rf'(X)] + \left[\delta_{\mu}^{(\rho}\delta_{\nu}^{\sigma)} - \frac{\gamma_{2}g_{\mu\nu}g^{\rho\sigma}}{2}\right]\partial_{\rho}X \partial_{\sigma}\left(\frac{1}{\Box}[Rf'(X)]\right)\right]$

Field Equations Causal & Conserved

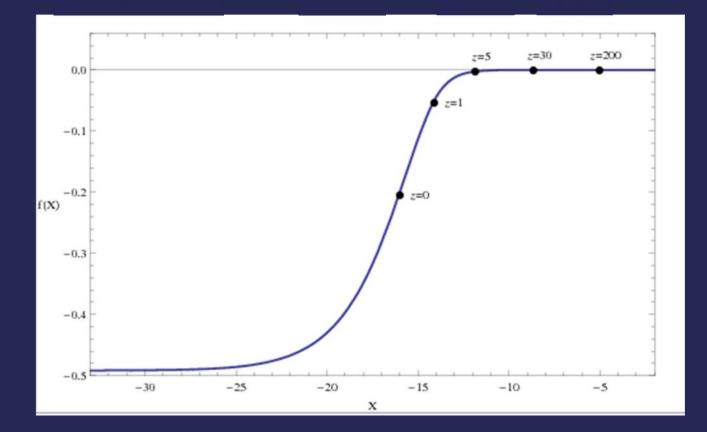
- Invariance implies conservation
- But variational symmetry precludes causality
 - $\mathbf{Eg} S[q] = \int dt' q(t') \int dt'' q(t'') G(t';t'')$
 - $\mathbf{r}_{\frac{\delta S[q]}{\delta a(t)}} = \int dt' \left[G(t;t') + G(t';t) \right] \mathbf{q}(t')$
- "Partial Integration Trick"
 Make causal by changing (¹/_n)_{adv} to (¹/_n)_{ret}
 Conservation only requires ¬(¹/_n) = 1
- True derivation from Schwinger-Keldysh

Specialization to FLRW: $ds^2 = -dt^2 + a^2(t)d\mathbf{x} \cdot d\mathbf{x}$

• $R = 6\dot{H} + 12H^2$

- $\left[\frac{1}{n}f\right](t) = -\frac{t}{0}\frac{dt'}{a^{3}(t')}\int_{0}^{t'}dt'' a^{3}(t'')f(t'')$
- Two Built-In Delays:
 - - ★ X = $\frac{1}{r}R \sim -\frac{7}{3}\ln\left(\frac{1}{t_{eq}}\right)$ during Matter domination → X ~ - 15 at t ~ 10¹⁰ years

Reconstructing Λ CDM (arXiv:0904.0961 with Deffayet) $f(X) \approx \frac{1}{4} \left[tan_{1} \left(\frac{X}{3} + \frac{11}{2} \right) - 1 \right]$



Screening

- Solar system a problem for f(R) models
 R > 0 for cosmology AND solar system
 Need "screening mechanism" to suppress deviations inside solar system
- $f\left(\frac{1}{\Box}R\right)$ models avoid this problem • $\tau = -\partial_t^2 + \nabla^2 \rightarrow \frac{1}{\Box}$ provides a \pm sign
 - $\frac{1}{\Box}R < 0$ for cosmology
 - $\frac{1}{\pi}R > 0$ for gravitationally bound systems
 - f(X) = 0 for X > 0 means NO solar system changes

Local Version Is Haunted (Nojiri & Odintsov, arXiv:0708.0924) • $R\left[1 + f\left(\frac{1}{\Box}R\right)\right] \Rightarrow R\left[1 + f(\varphi)\right] + []\varphi - R]$ * Varying with respect to ξ enforces = R* NB both scalars have 2 pieces of initial value data

•
$$\rightarrow -\partial_{\mu}\xi\partial_{\nu}\varphi g^{\mu\nu}$$

 $= -\frac{1}{4}\partial_{\mu}(\xi + \phi)\partial_{\nu}(\xi + \phi)g^{\mu\nu} + \frac{1}{4}\partial_{\mu}(\xi -)\partial_{\nu}(\xi -)g^{\mu\nu}$

- – ' has negative kinetic energy
- Mixing with gravity doesn't help

No new initial value data for the original nonlocal version

- Synchronous gauge: $ds^2 = -dt^2 + h_{ij}(t, x)dx^i dx^j$
- GR initial value data: h_{ij}(0, x) & h_{ij}(0, x) = 6 + 6
 \$4+4 constrained fields
 \$2+2 dynamical gravitons
- NC initial value data \rightarrow count the ∂_t 's • $R \sim \partial_t^2$ & $\frac{1}{n} \sim \frac{1}{\partial_t^2} \rightarrow \frac{1}{n} R \sim (\partial_t)^0$ • $G_{\mu\nu}$ has up to $\partial_t^2 \frac{1}{n}$
- Hence $h_{ij}(0, \mathbf{x}) \& h_{ij}(0, \mathbf{x})$, but what are they?

Initial Value Constraints Identical to General Relativity

• Recall $G_{\mu\nu} + \Delta G_{\mu\nu} = 8\pi G T_{\mu\nu}$ • Retarded BC \rightarrow both $\frac{1}{2}$ & $\partial_t \frac{1}{2}$ vanish at t = 0• Synchronous constraints $\rightarrow \Delta G_{00}$ and ΔG_{0i}

No Ghosts \rightarrow Check the ∂_t^2 Terms

- Recall $G_{\mu\nu} + \Delta G_{\mu\nu} = 8\pi G T_{\mu\nu}$ $G_{\mu\nu} = [G_{\mu\nu} + g_{\mu\nu}\Box - D_{\mu}D_{\nu}](f(X) + \frac{1}{\Box}[Rf'(X)])$ $+ [\delta^{(\rho}_{\mu}\delta^{\sigma)}_{\nu} - \varkappa g_{\mu\nu}g^{\rho\sigma}]\partial_{\rho}X \partial_{\sigma}(\frac{1}{\Box}[Rf'(X)])$ • Dynamical equations $\Rightarrow G_{ij} + \Delta G_{ij} = 8\pi G T_{ij}$

 - $\Rightarrow \Delta G_{ij} = 2n_{ij}\kappa_f(\lambda) + O(O_t)$
 - $R_{ij} = \frac{1}{2}h_{ij} + O(\partial_t)$ and $R = h^{\kappa t}h_{kl} + O(\partial_t)$
- G_{ij} + ^AG_{ij} → ½{1 + f(X) + ¹/_□[Rf'(X)]}h_{ij} + Irrelevant
 No graviton ever becomes a ghost
 Still might have a potential energy instability

A problem with how the model reproduces Λ CDM without Λ • For FLRW with slowly varying H(t) $\Rightarrow G_{\mu\nu} + \Delta G_{\mu\nu} \approx \left\{1 + f(X) + \frac{1}{\mu} [Rf'(X)]\right\} G_{\mu\nu} = 8n T_{\mu\nu}$ • This is effectively a time-varying Newton constant $\Rightarrow G_{eff}(t) = \frac{G}{1 + f(X) + \frac{1}{\mu} [Rf'(X)]}$

♦ Balances the Friedmann Eqn: $3H^2 \approx 8 G_{eff}(t) \times \frac{pm}{\sigma^3(t)}$

But G_{eff}(t) also strengthens the force of gravity
 Not relevant for solar system
 Should increase structure formation
 Dodelson & Park have confirmed this, & it's bad

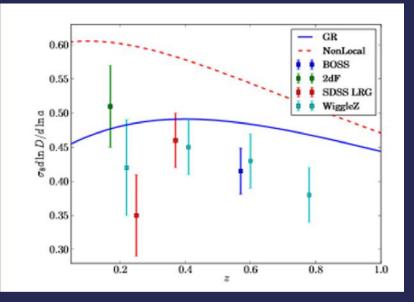
What Dodelson & Park Did (arXiv:1209.0836 & 1310.4329)

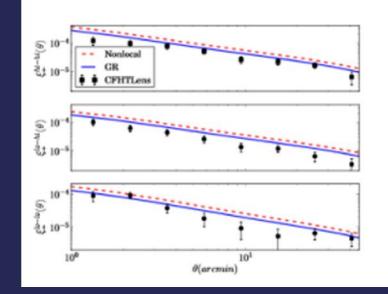
- Plane wave scalars: $\delta (G_{\nu}^{\mu} + \Delta G_{\nu}^{\mu}) = 8\pi G \delta T_{\nu}^{\mu}$
 - $ds^{2} = \left[1 + 2\Psi(t)e^{i\mathbf{k}\cdot\mathbf{x}}\right]dt^{2} + a^{2}(t)\left[1 + 2\Phi(t)e^{i\mathbf{k}\cdot\mathbf{x}}\right]d\mathbf{x} \cdot d\mathbf{x}$

 - $\Phi \, \delta G_0^0 = -\frac{2k^2}{a^2} \Phi 6H \dot{\Phi} + 6H^2 \Psi$
 - ♦ $\delta G_j^i = \frac{(k^i k^j k^2 \delta^{ij})}{n^2} [\Phi +] 2\delta^{ij} [+ H(3d) (2 + 3H^2) \Psi]$
- $\delta f(X) = f'(\bar{X}) \, \delta X$
 - $\delta X = \int_0^t dt' G(t;t') \left[\frac{k^2}{a^2} (4\Phi + 2\Psi) + 6\tilde{\Phi} + 6H (4\Phi \Psi) + \tilde{X}(3\Phi) \right]$ $\delta G(t;t') = -i\theta(t-t')a^3(t) [u(t)u^*(t') - u^*(t)u(t')]$
 - $\ddot{u} + 3^{L_1}\dot{u} + \frac{k^2}{a^2}u = 0$ and $u\dot{u}^* \dot{u}u^* = \frac{i}{a^3}$
 - WKB: $G(t;t') \rightarrow -\frac{\theta(t-t')a^2(t')}{ka(t)}sin\left[k\int_{t'}^t \frac{dt''}{a(t')}\right]$

What Dodelson and Park Found $ds^2 = -\left[1 + 2\Psi(t)e^{i\mathbf{k}\cdot\mathbf{x}}\right]dt^2$ $+ a^{2}(t) \left[1 + 2\Phi(t)e^{i\mathbf{k}\cdot\mathbf{x}} \right] d\mathbf{x} \cdot d\mathbf{x}$ Nonlocal Cosmology predicts: • Relevant data sets: • Preference of GR over Nonlocal Cosmology: Data favors a less highly evolved universe

Most data below BOTH Nonlocal Cosmology & General Relativity





Beyond $\Delta \mathcal{L} \coloneqq \frac{Rf(X)\sqrt{-g}}{16\pi G}$ for $X \equiv \frac{1}{\Gamma}R$

- Model gives $G_{eff}(t)$ but we want $\Lambda_{eff}(t)$
- arXiv:0904.2368 (with Tsamis)
 - $T_{\mu\nu}[g] = (\rho + p)v_{\mu}v_{\nu} + pg_{\mu\nu}$
 - Fix $p[g] = -\frac{\Lambda}{8\pi G} + \Lambda^2 F(-G\Lambda X[g])$
 - Determine $\rho[g]$ and $v_{\mu}[g]$ by conservation
 - For ANY F(z) which increases without bound
 - Universe inflates, then $T_{\mu\nu} = 0$ for radiation domination
 - But disaster at matter domination
- arXiv:1001.4929 (with Tsamis)

• Change $F\left(-G\Lambda \frac{1}{\alpha}[R]\right)$ to $F\left(G\frac{1}{\alpha}[Ru^{\mu}u^{\nu}R_{\mu\nu}]\right)$

• FLRW: $u^{\mu}u^{\nu}R_{\mu\nu} = -3(...+H^2) \sim -3H^2$ for inflation,

- $= \frac{-g^{\mu\nu} \partial_{\mu} x}{\sqrt{-g^{\,\alpha\beta} \partial_{\alpha} x \partial_{\beta} x}}$, $+ \frac{3}{2} H^2$ for matter
- arXiv:1106.4984 (with Deffayet & Esposito-Farese)
 - Also need $u^{\mu}u^{
 u}R_{\mu
 u}$ for nonlocal MOND

Conclusions

- Nonlocal gravity not fundamental
 - Infrared QG corrections from primordial inflation
 Purely phenomenological for now
- Simplest model based on $Rf\left(\frac{1}{\Box}R\right)$
 - Built-in delays explain cosmic coincidence
 - Simple f(X) reproduces ACDM without A
 - But structure formation heavily favors GR
- Probably BETTER than GR with 2nd invariant
- Desirable properties
 - Perfect screening for gravitationally bound systems
 - No new degrees of freedom
 - Initial value constraints identical to GR
 - No kinetic energy instabilities