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Fields and their interactions

Fields with spins lower or equal than two (s ≤ 2) interact happily
with each other and with themselves,

s = 0 s = 1
2 s = 1 s = 3

2 s = 2
φ Ψ Aµ Ψµ gµν

φ X X X X X
Ψ X X X X
Aµ X X X
Ψµ X X
gµν X

but the situation changes dramatically for fields with s > 2:



Free higher spin field theories (Fronsdal equations)

Free equations of motion for higher spin fields can be built in a
very symmetric and algorithmic way,

spin equation gauge symmetry

s = 1 �Aσ − ∂σ∂νAν = 0 δAσ = ∂σε

s = 2 �hσν − ∂σ∂ρhρν − ∂ν∂ρhσρ δhσν = ∂σεν + ∂νεσ
+∂σ∂νh = 0

s = 3 �hσνσ − ∂σ∂ρhρνσ..... = 0 δhσνρ = ∂σενρ + ∂ρεσν + ∂νερσ
...

...
...

but adding interactions and/or self-interactions is a difficult
problem.



Interactions – preserving gauge invariance.

I Self interactions for vector (s = 1) and tensor (s = 2) fields
are not restricted (by gauge invariance):

Is=1 =

∫ (
FσνF

σν + f (FσνF
σν)
)

Is=2 =

∫ √
g(R + f (R) + · · · )

(Of course, at s = 2,
√
gR is already an interacting theory.)

I Self-interactions of s > 2 higher spin fields described by
symmetric tensors

gµνρ, gµνρσ, ...

are severely restricted. The only known interacting action
(Vasiliev) involves the whole tower of fields with all s.



In three dimensions life is easier

The magic is provided by the Chern-Simons action,

I [Aµ] =
k

4π

∫ (
AdA +

2

3
A3

)
, A = Aµdx

µ ∈ G.

I This action has a cubic A3 interaction.

I Gauge and diffeomorphism (trivial) invariant

δλA
a
µ = Dµλ

a, δξA
a
µ = F a

µνξ
ν ≈ 0

I Possess non-trivial solutions on topologically non-trivial
manifolds. And applications to knot theory

I Provides a gauge field theory formulation of three-dimensional
gravity



SL(2,<)× SL(2,<) and three-dimensional gravity
Consider two SL(2,<) Chern-Simons fields,

Aµ =

(
aµ bν
cµ −aµ

)
, Āµ =

(
āµ b̄ν
c̄µ −āµ

)
then, the following equality follows (Achúcarro-Townsend 1986)

I [A]− I [Ā] =
1

16πG

∫
d3x
√
g(R + Λ).

The dictionary between A, Ā and metric variables is

gµν = Tr(eµeν) where eµ = Aµ − Āµ

Γµλρ = (e−1 w e + e−1∂e)µλρ where wµ = Aµ + Āµ

k =
`

4G



SL(N ,<)× SL(N ,<) and higher spin fields

Let Aσ, Āσ be two SL(N,<) Chern-Simons fields and

eµ = Aµ − Āµ.

Define now N − 1 metrics (Cayley-Hamilton theorem)

gµν = Tr(eµeν)
gµνρ = Tr(e(µeνeρ))
gµνρσ = Tr(e(µeνeρeσ))

...
gσ1σ2...σN = Tr(e(σ1eσ2 · · · eσN))

1. These fields satisfy Fronsdal equations, when linearized, on
the AdS background. Thus Chern-Simons theory provides
interactions for higher spin gauge fields, preserving gauge
invariance.

2. Asymptotic symmetries are WN algebras (Henneaux et al,
Campoleoni et al (2010))



Black holes

Not a lot is known yet about these theories.... But black holes
have been found.

For N = 3, gµν and gµνρ have the structure:

gσνdx
σdxν = f2(r)dt2 +

dr2

f2(r)
+ r2dφ2,

gσνρdx
σdxνdxρ = dφ

(
f3(r)dt2 +

dr2

χ(r)f3(r)
+ z23 (r)dφ2

)
where f2(r) and f3(r) vanishes at the same point.

See, for example, Gutperle-Kraus (2011) and Castro el at (2012).



Our plan

1. Topological characterization of solutions.

2. Regularity conditions (→ Hawking temperature)

3. The Euclidean on-shell action (‘free energy’) for black holes.

We shall not discuss the emergence of WN algebras. See the
extensive recent –and not too recent– literature for details:

SL(N,<) Chern-Simons → 2d affine algebras |reduced →

WN algebras



3d Euclidean black holes live on a solid torus

Example: ds2 = +(r2 −M)dt2 +
dr2

r2 −M
+ r2dφ2

In the Euclidean geometry, the time coordinate is compact.

φ
t

horizon

ρ

ρ=0

0 < ρ <∞ ρ = r −M1/2

0 ≤ t < β, contractible loop

0 ≤ φ < 2π, non-contractible loop

The three dimensional spacetime topology can be seen as a

torus×<+ = disc× S1.



Interesting (not zero), regular, solutions
Interesting solutions Aµ = {At ,Ar ,Aφ} ∈ SL(N,<) must satisfy:

1. The Chern-Simons equations of motion Fµν = 0

2. Must have a non-trivial holonomy along φ:

Pe
∮
Aφdφ 6= 1

If this holonomy was trivial, the solution can be set to zero by
a gauge transformation.

3. Must have a trivial holonomy along t.

Pe
∮
Atdt = 1.

If this holonomy is not trivial, the field will be singular,
because the time cycle is contractible.

Solutions are then characterized by conditions on At and Aφ.

Note, that At and Aφ are coupled through Ftφ = 0.



Building the general solution in radial gauge Ar = 0

I Fµν = 0 in the gauge Ar = 0 imply

At(t, φ), Aφ(t, φ), ∂tAφ − ∂φAt + [At ,Aφ] = 0.

I Furthermore, for black holes, we consider static and
spherically symmetric fields. That is, we take At ,Aφ to be
constant matrices. The equations reduce to:

[At ,Aφ] = 0

In summary, our game will be to find constant SL(N,<) matrices
Aφ,At that commute, and satisfy the holonomy conditions.

Pe
∮
Aφdφ = e2πAφ 6= 1, Pe

∮
Atdt = eAt = 1



Aφ and charges

Let Aφ be a general SL(N,<) matrix,

Aφ =


a11 a12 ... a1N
a21 a22 .. a2N

...
...

. . .
...

aN1 ... ... aNN

 , aij ∈ <

with
Tr(Aφ) = 0, Pe

∫ 2π
0 Aφ 6= 1

The coefficients aij are not really relevant, but only the N − 1
Casimirs or charges,

Q2 = Tr(A2
φ), Q3 = Tr(A3

φ), ... QN = Tr(AN
φ ),

All physical quantities will depend on these charges. See below.



At and chemical potentials
For a given Aφ we seek At such that [At ,Aφ] = 0, for all charges.
One concludes that At must be a function of Aφ,

At = f (Aφ).

Furthermore, the most general function is (Cayley-Hamilton
theorem)

At = σ2Aφ + σ3A
2
φ + · · ·+ σNA

N−1
φ − Trace

Besides the N − 1 charges, At brings in N − 1 new parameters
σ2, σ3, ...σN . Solutions are characterized by pairs {σ1,Q1},
{σ2,Q2}... which turn out to be canonically conjugated.

Finally, the trivial holonomy condition (regularity)

Pe
∮
At = 1,

imply exactly N − 1 equations that fix the chemical potentials σn
as functions of the charges Qn, or the other way around.



Example N = 3

A good parametrization for Aφ is:

Aφ =

 0 1 0
0 0 1
Q3 Q2 0

 , At = σ2Aφ + σ3

(
A2
φ −

1

3
Tr(A2

φ)

)

(Q2 = Tr(A2
φ), Q3 = Tr(A3

φ).)

The condition Pe
∮
Atdt = 1 becomes:

0 = −16σ33 Q
3
2 + 72σ3(1 + σ2)2Q2

2 + 54σ23 (1 + σ2)Q3Q2

+27σ33 Q
2
3 + 27 (1 + σ2)3Q3 ,

8π2 = 4Q2 (1 + σ2)2 + 6Q3 (1 + σ2)σ3 +
8

3
Q2

2 σ
2
3 .

These 2 equations express Q2,Q3 as functions of σ2, σ3. Then, the
black hole has two independent parameters (spin 2 and spin 3
charge).



Integrability and free energy

From these relations Gutperle and Kraus discover a “coincidence”:

∂Q2

∂σ3
=
−16σ3Q

2
2 + 9 (1 + σ2)Q3

8σ23 Q2 − 3 (1 + σ2)2
=

∂Q3

∂σ2

This equality implies that there must exists a function W (σ2, σ3)
such that,

Q2 =
∂W (σ2, σ3)

∂σ2
, Q3 =

∂W (σ2, σ3)

∂σ3
,

What does W mean?



The partition function

Gutperle and Kraus conjectured the identification,

e−W (σ2,σ3) = TrH e−(σ2Q2+σ3Q3),

W (σ2, σ3) is the free energy and

Q2 =
∂W (σ2, σ3)

∂σ2
, Q3 =

∂W (σ2, σ3)

∂σ3
,

is not a “coincidence” but derived from the partition function.

I We will see that this idea is indeed correct. In the
semiclassical limit, we shall prove that the on-shell action

k

4π

∫ (
AdA +

2

3
A3

)∣∣∣∣
solution

≡W (σ2, σ3)

is in fact the solution to the integrability condition.



Plugging a solution into its action seems easy...

I Often the solution in globally defined coordinates is not
known. Black holes, for example, need two patches.

For free theories, this is easily solved:

I [Φ] =
1

2

∫
dx
√
g

(
−gσν ∂Φ

∂xσ
∂Φ

∂xν
−m2Φ2

)
,

=
1

2

∫
dx
√
gΦ
(
�Φ−m2Φ

)
−
∫
r→∞

dΣν Φ∂νΦ,

= 0 −
∫
r→∞

dΣν Φ∂νΦ

I The bulk part is zero for all solutions. We only need the field
in one patch (at infinity) to find I [Φ]on-shell

But for an interacting theory, life is not as easy.



diff-invariant Hamiltonian theories. Time quantization
For static solutions, the Hamiltonian action provides an alternative

I =

∫
(pi q̇

i − NH− N iHi ) + B∞ − B+

= 0 + B∞ − B+

The bulk part is zero on-shell (H = 0) for static fields (q̇ = 0).
Good.

I B∞ = β(M + ΩJ) + other charges. Well understood.

I This procedure, however, still needs the field in two patches;
infinity and horizon.

I In fact, B+ arises because Schwarzschild coordinates are
singular at horizon. In all known cases (to me) B+ =Entropy.

I However, a general expression for B+ valid for any theory is
not known. For higher spin black holes, is not known yet.



The trick: Angular quantization
Consider now the angle φ as ‘time’: angular foliation.

φ
t

horizon

ρ

ρ=0

The foliation is now
regular everywhere

I =

∫
(pi∂φq

i − ÑH̃ − Ñ iH̃i ) + B ′∞

= 0 + B ′∞

I Spherical symmetry (∂φq = 0) plus the constraints make the
bulk part again equal to zero.

I We are left with a term on only one patch, at infinity. Easily
calculated.



Chern-Simons action in angular quantization.

A 2+1 angular decomposition: xµ = φ, xα.

ICS =
k

4π

∫
εσνρ

(
Aσ∂ρAν +

2

3
AσAνAρ

)
=

k

4π

∫
εαβ (Aα∂φAβ + AφFαβ)− k

4π

∫
∞
dtdφTr(AtAφ)

= −k

2
Tr(AtAφ).

I We have 4 parameters Q2,Q3, σ2, σ3, plus two relations.
Which is the right choice?

ICS(σ2, σ3)? ICS(σ2,Q3)? ICS(σ3,Q2)? ICS(Q2,Q3)?

I This information is encoded in the variation of the action.



Action variation
I Varying the Chern-Simons action we have,

δICS =
k

4π

∫
F δA− k

4π

∫
∞
dtdφTr(AtδAφ − AφδAt)

The boundary term tells us what is fixed. Plugging

At = σ2Aφ + σ3A
2
φ + · · ·+ σNA

N−1
φ − (Trace)

to obtain (after some rearrangements),

δICS = (eom) + k
∑
n

Qnδσn − δ

(
k

2

∑
n

(2− n)σnQn

)
So, ICS is neither a function of {Q2,Q3, ...} nor {σ2, σ3, ...}.

I Consider instead,

W ≡ ICS +
k

2

∑
n

(2− n)σnQn

δW = k
∑
n

Qnδσn → W (σ2, σ3)



N = 3

W (σ2, σ3) =
k

4π

∫ (
AdA +

2

3
A3

)
−
(

2kσ3Q3

)
= 2k

(
3σ2σ3Q3 +

4

3
σ23Q

2
2 + 2(σ22 − 1)Q2 − σ3Q3

)
.

I And the crucial check (a fantastic partial derivative exercise)

∂W

∂σ2
= kQ2,

∂W

∂σ3
= kQ3

as discovered by Gutperle and Kraus.



Regularity and Invertibility. Giving up the gauge Ar = 0.

I On the torus, the vector field ∂
∂t has a fixed point at the

horizon: At should vanish there for Atdt to be well-defined.
But our At is constant!

I Also, if Ar = 0 the metric is not invertible.

These two problems can be tackled by changing the gauge.
Consider r−dependent group elements g1(r), g2(r),

A→ g−11 Ag1 + g−11 dg1, Ā→ g−12 Ā g2 + g−12 dg2,

The fields are still static and spherically symmetric.

I Everything we said before (gauge invariant) still holds!

I Ar , Ār are now different from zero and the metric

eµ = Aµ − Āµ, gµν = Tr(eµeν)

is invertible.



Regularity is more subtle:

I We cannot impose both At = 0 and Āt = 0 at the horizon,
while keeping the solution static and spherically symmetric.

I But we can impose half of the conditions:

et = At − Āt = 0 (at r = r0)

while leaving the spin−N connection to be singular

wt = At + Āt 6= 0, (at r = r0).

I The curvature will be regular.

I and, since et vanishes at the horizon, the metric fields

gtt = Tr(e2t ), gttt = Tr(e3t ), gttφ = Tr(e2t eφ), ...

all vanish at the horizon, and thus are regular as well.



Holonomies and Hawking temperature

Following this construction one builds invertible metrics:

gσνdx
σdxν = f2(r)dt2 +

dr2

f2(r)
+ r2dφ2,

gσνρdx
σdxνdxρ = dφ

(
f3(r)dt2 +

dr2

χ(r)f3(r)
+ z2(r)dφ2

)
with a regular horizon and the nice property:

I The holonomy conditions are exactly equivalent to periodicity
conditions on t (leading to Hawking’s temperature).



For the future

1. In general, the entropy is not equal to Area/4. A nice
geometrical formula for S is still missing.

2. The Cardy formula does not work in full generality for all
black holes, with arbitrary charges.

3. Rotating solutions. The most general black hole not yet been
built.

4. The geometry of higher spin fields is not well understood. It
would be nice to have an action involving only the metric-like
fields.

5. One would like to define curvatures for gµνρ, analogous to the
Riemann curvature for gµν .

6. AdS/CFT and correlators on black hole backgrounds.

Thank you


