Gravitational self force in extreme-mass-ratio binary inspirals

Leor Barack

University of Southampton (UK)

December 16, 2010

Theory Meets Data Analysis at Comparable and Extreme Mass Ratios

Perimeter Institute, June 2010

Conference summary by **Steve Detweiler** [arXiv 1009.2726, 15 September 2010]

. . .

. . .

As a member of the Capra community, I am pleased to report that we are reaching the end of a long, difficult adolescence. In the self-force portion of the meeting, a few serious meaningful applications of the gravitational self-force were described that allow for detailed comparisons among each other as well as with corresponding post-Newtonian analyses. The gravitational self-force has arrived.

- Motivation: EMRIs as sources for LISA
- Self force theory
- Implementation methods
- Conservative effects of the gravitational self force

2-body problem in relativity

EMRIs as probes of strong-field gravity

EMRI parameter extraction accuracies with LISA (SNR=30)							
S/M^2	0.1	0.1	0.5	0.5	1	1	
$e_{ m LSO}$	0.1	0.3	0.1	0.3	0.1	0.3	
$\Delta M/M$	2.6e-4	5.6e-4	2.7e-4	9.2e-4	2.8e-4	2.5e-4	
$\Delta(S/M^2)$	3.6e-5	7.9e-5	1.3e-4	6.3e-4	2.6e-4	3.7e-4	
Δm/m	6.8e-5	1.5e-4	6.8e-5	9.2e-5	6.1e-5	9.1e-5	
$\Delta(e_0)$	6.3 <i>e</i> -5	1.3 <i>e</i> -4	8.5 <i>e</i> -5	2.8 <i>e</i> -4	1.2 <i>e</i> -4	$1.1e{-4}$	
$\Delta(\cos\lambda)$	6.0 <i>e</i> -3	1.7 <i>e</i> -2	1.3e-3	5.8 <i>e</i> -3	6.5 <i>e</i> -4	8.4 <i>e</i> -4	
$\Delta(\Omega_s)$	1.8 <i>e</i> -3	1.7 <i>e</i> -3	2.0 <i>e</i> -3	1.7 <i>e</i> -3	2.1 <i>e</i> -3	1.1 <i>e</i> -3	
$\Delta(\Omega_K)$	5.6 <i>e</i> -2	5.3 <i>e</i> -2	5.5 <i>e</i> -2	5.1 <i>e</i> -2	5.6 <i>e</i> -2	5.1 <i>e</i> -2	
$\Delta[\ln(\mu/D)]$	8.7 <i>e</i> -2	3.8 <i>e</i> -2	3.8 <i>e</i> -2	3.7 <i>e</i> -2	3.8 <i>e</i> -2	7.0 <i>e</i> -2	
$\Delta(t_0)\nu_0$	4.5 <i>e</i> -2	$1.1e{-1}$	2.3e-1	1.3e-1	2.5e-1	3.2 <i>e</i> -2	

. · · ·

[LB & Cutler (2004)]

"Self force" description of the motion

Equations of motion

•
$$mu^{\beta} \nabla_{\beta} u^{\alpha} = F^{\alpha}_{\text{self}} \ (\propto m^2)$$

$$2 \Box \bar{h}_{\mu\nu}^{\text{ret}} + 2R^{\alpha}{}_{\mu}{}^{\beta}{}_{\nu}\bar{h}_{\alpha\beta}^{\text{ret}} = -16\pi T_{\mu\nu}$$

"Self force" description of the motion

Equations of motion

$$I mu^{\beta} \nabla_{\beta} u^{\alpha} = F^{\alpha}_{\rm self} \ (\propto m^2)$$

$$2 \Box \bar{h}_{\mu\nu}^{\text{ret}} + 2R^{\alpha}{}_{\mu}{}^{\beta}{}_{\nu}\bar{h}_{\alpha\beta}^{\text{ret}} = -16\pi T_{\mu\nu}$$

3
$$F^{lpha}_{
m self}=F^{lpha}_{
m self}(ar{h}^{
m ret}_{lphaeta})=?$$

Challenges:

- regularization
- make sense of "point particle" in curved space
- self-interaction is not instantaneous in curved space ("tail" effect)
- self force (and orbit) are gauge dependent
- Lorenz-gauge condition dictates geodesic motion

Regularization: Dirac's method and its failure in curved space

Decomposition of the EM vector potential for an electron in flat space:

$$A_{\alpha}^{ret} = \frac{1}{2} (A_{\alpha}^{ret} + A_{\alpha}^{adv}) + \frac{1}{2} (A_{\alpha}^{ret} - A_{\alpha}^{adv})$$
$$\equiv A_{\alpha}^{S} \equiv A_{\alpha}^{R}$$
Symmetric/Singular Radiative/Regular

$$ightarrow F_{
m self}^{lpha} = e
abla^{lpha eta} A_{eta}^{R}$$

Regularization: Dirac's method and its failure in curved space

Decomposition of the EM vector potential for an electron in flat space:

$$A_{\alpha}^{ret} = \frac{1}{2} (A_{\alpha}^{ret} + A_{\alpha}^{adv}) + \frac{1}{2} (A_{\alpha}^{ret} - A_{\alpha}^{adv})$$
$$\equiv A_{\alpha}^{S} \equiv A_{\alpha}^{R}$$
Symmetric/Singular Radiative/Regular

$$ightarrow F_{
m self}^{lpha} = e \nabla^{lpha eta} A_{eta}^{R}$$

Difficulty: Local Radiative potential becomes non-causal in curved space!

• Mino, Sasaki & Tanaka (1997):

via Hadamard expansion + integration across in a thin worldtube

- Mino, Sasaki & Tanaka (1997), Poisson (2003), Pound (2010): via Matched Asymptotic Expansions
- Quinn & Wald (1997):

via an axiomatic approach based on comparison to flat space

• Gralla& Wald (2008):

by taking "far/near"-zone limits of a family of spacetimes

• Harte (2010):

from generalized Killing fields

The gravitational self-force

$$F_{\text{self}}^{\alpha} = \lim_{x \to z(\tau)} \nabla^{\alpha \mu \nu} h_{\mu \nu}^{\text{tail}}$$

=
$$\lim_{x \to z(\tau)} \nabla^{\alpha \mu \nu} \left(h_{\mu \nu}^{\text{ret}} - h_{\mu \nu}^{\text{dir}} \right)$$

.

Detweiler–Whiting reformulation (2003)

Dirac-like decomposition of $h_{\alpha\beta}^{\rm ret}$ for a mass particle in curved space:

$$h_{\alpha\beta}^{ret} = \frac{1}{2} (h_{\alpha\beta}^{ret} + h_{\alpha\beta}^{adv}) - H_{\alpha\beta} + \frac{1}{2} (h_{\alpha\beta}^{ret} - h_{\alpha\beta}^{adv}) + H_{\alpha\beta}$$

$$\equiv h_{\alpha\beta}^{S} \qquad \equiv h_{\alpha\beta}^{R}$$

Symmetric/Singular Radiative/Regular

$$\int_{retarded}^{\tau} \int_{advanced}^{\tau} \int_{singular}^{\tau} \int_{singular}^{\tau} \int_{radiative}^{\tau} \int_{radiativ$$

Detweiler-Whiting reformulation (2003)

Dirac-like decomposition of $h_{\alpha\beta}^{\text{ret}}$ for a mass particle in curved space:

$$h_{\alpha\beta}^{ret} = \frac{1}{2} (h_{\alpha\beta}^{ret} + h_{\alpha\beta}^{ady}) - H_{\alpha\beta} + \frac{1}{2} (h_{\alpha\beta}^{ret} - h_{\alpha\beta}^{ady}) + H_{\alpha\beta}$$

$$\equiv h_{\alpha\beta}^{S} \qquad \equiv h_{\alpha\beta}^{R}$$

Symmetric/Singular Radiative/Regular
$$\rightarrow F_{self}^{\alpha} = m \nabla^{\alpha\beta\gamma} h_{\beta\gamma}^{R}$$

• $h_{\alpha\beta}^R$ is a vacuum solution of the Einstein equations. Interpretation: orbit is a geodesic of $g_{\alpha\beta} + h_{\alpha\beta}^R$.

Mode-sum method [LB & Ori (2000-2003)]

Define $F_{\mathrm{ret}/S} \equiv m \nabla h^{\mathrm{ret}/S}$ (as fields), then write

$$F_{\text{self}} = (F_{\text{ret}} - F_{\text{S}})|_{\text{p}}$$

$$= \sum_{\ell=0}^{\infty} (F_{\text{ret}}^{\ell} - F_{\text{S}}^{\ell})|_{\text{p}} \quad (\ell \text{-mode contributions are finite})$$

$$= \sum_{\ell=0}^{\infty} [F_{\text{ret}}^{\ell}(p) - AL - B - C/L] - \sum_{\ell=0}^{\infty} [F_{\text{S}}^{\ell}(p) - AL - B - C/L]$$

$$= \sum_{\ell=0}^{\infty} [F_{\text{ret}}^{\ell}(p) - AL - B - C/L] - D \quad (\text{where } L = \ell + 1/2)$$

Mode-sum method [LB & Ori (2000-2003)]

Define $F_{\text{ret}/S} \equiv m \nabla h^{\text{ret}/S}$ (as fields), then write

$$F_{\text{self}} = (F_{\text{ret}} - F_{\text{S}})|_{\text{p}}$$

$$= \sum_{\ell=0}^{\infty} (F_{\text{ret}}^{\ell} - F_{\text{S}}^{\ell})|_{\text{p}} \quad (\ell \text{-mode contributions are finite})$$

$$= \sum_{\ell=0}^{\infty} [F_{\text{ret}}^{\ell}(p) - AL - B - C/L] - \sum_{\ell=0}^{\infty} [F_{\text{S}}^{\ell}(p) - AL - B - C/L]$$

$$= \sum_{\ell=0}^{\infty} [F_{\text{ret}}^{\ell}(p) - AL - B - C/L] - D \quad (\text{where } L = \ell + 1/2)$$

Regularization Parameters A^α, B^α, C^α, D^α derived analytically for generic orbits in Kerr [LB & Ori (2003), LB (2009)].

year	Schwarzschild	Kerr
2000	static	
2000	head-on	
2001		static
2002	head-on	
2003	circular	
2007	eccentric	
2007	<u>static</u>	
2007	<u>circular</u>	
2009		circular-equatorial
2009	<u>eccentric</u>	
2010		eccentric-equatorial
2010		circular-inclined

gravitational self force / scalar-field toy model

The gauge problem

- Original regularization formulated in Lorenz gauge (div $\bar{h} = 0$).
 - Linearized Einstein equation takes a neat hyperbolic form
 - ► Particle singularity is "isotropic" and Coulomb-like

The gauge problem

- Original regularization formulated in Lorenz gauge (div $\bar{h} = 0$).
 - Linearized Einstein equation takes a neat hyperbolic form
 - ► Particle singularity is "isotropic" and Coulomb-like

- Unfortunately Lorenz-gauge equations are not easily amenable to numerical treatment.
- Options: Work out the singular gauge transformations, or develop methods to integrate the Lorenz-gauge equations.

Direct Lorenz-gauge implementation [LB & Lousto (2005)]

• Start with 10 coupled perturbation equations + 4 gauge conditions:

$$\Box \bar{h}_{\alpha\beta} + 2R^{\mu}{}_{\alpha}{}^{\nu}{}_{\beta}\bar{h}_{\mu\nu} = -16\pi m \int_{-\infty}^{\infty} \frac{\delta[x^{\mu} - z^{\mu}(\tau)]}{\sqrt{-g}} u_{\alpha}u_{\beta}d\tau$$

$$Z_{lpha}\equiv
abla^{eta}ar{h}_{lphaeta}=0$$

• Add "constraint damping" terms, $-\kappa t_{(\alpha} Z_{\beta)}$

Direct Lorenz-gauge implementation [LB & Lousto (2005)]

• Start with 10 coupled perturbation equations + 4 gauge conditions:

$$\Box \bar{h}_{\alpha\beta} + 2R^{\mu}{}_{\alpha}{}^{\nu}{}_{\beta}\bar{h}_{\mu\nu} = -16\pi m \int_{-\infty}^{\infty} \frac{\delta[x^{\mu} - z^{\mu}(\tau)]}{\sqrt{-g}} u_{\alpha}u_{\beta}d\tau$$

$$Z_{lpha}\equiv
abla^{eta}ar{h}_{lphaeta}=0$$

- Add "constraint damping" terms, $-\kappa t_{(\alpha} Z_{\beta)}$
- Expand in tensor harmonics,

$$ar{h}_{lphaeta} = \sum_{l,m} \sum_{i=1}^{10} h^{(i)lm}(r,t) Y^{(i)lm}_{lphaeta}$$

Obtain 10 coupled scalar-like eqs for $h^{(i)lm}(r, t)$

Direct Lorenz-gauge implementation [LB & Lousto (2005)]

• Start with 10 coupled perturbation equations + 4 gauge conditions:

$$\Box \bar{h}_{\alpha\beta} + 2R^{\mu}{}_{\alpha}{}^{\nu}{}_{\beta}\bar{h}_{\mu\nu} = -16\pi m \int_{-\infty}^{\infty} \frac{\delta[x^{\mu} - z^{\mu}(\tau)]}{\sqrt{-g}} u_{\alpha}u_{\beta}d\tau$$

$$Z_lpha\equiv
abla^etaar h_{lphaeta}=0$$

- Add "constraint damping" terms, $-\kappa t_{(\alpha} Z_{\beta)}$
- Expand in tensor harmonics,

$$\bar{h}_{\alpha\beta} = \sum_{l,m} \sum_{i=1}^{10} h^{(i)lm}(r,t) Y^{(i)lm}_{\alpha\beta}$$

Obtain 10 coupled scalar-like eqs for $h^{(i)lm}(r, t)$

- Solve numerically using time-domain evolution in characteristic coordinates
- Use as input for the mode-sum formula

Sample numerical results [LB & Sago (2010)]

Gravitational self-force in Schwarzschild

IHES seminar

Towards self force in Kerr: the Puncture method

$$\Box(\underbrace{h^{\text{ret}} - h^{\text{punc}}}_{h^{\text{Res}}}) = S - \Box h^{\text{punc}} \equiv S^{\text{Res}}$$
$$F^{\text{self}} = m \lim_{x \to z} \nabla h^{\text{Res}}$$

• Does not rely on separability

Towards self force in Kerr: the Puncture method

$$\Box(\underbrace{h^{\text{ret}} - h^{\text{punc}}}_{h^{\text{Res}}}) = S - \Box h^{\text{punc}} \equiv S^{\text{Res}}$$
$$F^{\text{self}} = m \lim_{x \to z} \nabla h^{\text{Res}}$$

IHES seminar

Conservative gauge-invariant effects of the self force

Conservative piece of the gravitational self force

Conservative piece of the gravitational self force

$$F^{\text{self}} = \underbrace{\frac{1}{2} \left(F^{\text{ret}} - F^{\text{adv}} \right)}_{F^{\text{diss}}} + \underbrace{\frac{1}{2} \left(F^{\text{ret}} + F^{\text{adv}} \right)}_{F^{\text{cons}}}$$

Why study gauge-invariant conservative effects?

- secular effect on phase evolution
- tests of SF formalism & codes against PN theory
- strong-field calibration data for approximate analytic methods (EOB)
- inform development of "Kludge" orbital evolution schemes

1. The "red shift" invariant [Detweiler (2008)]

• The "red shift" invariant for circular orbits (Detweiler 2008):

$$u^t \equiv \frac{dt}{d\tau}$$

• $u^t(\Omega_{\varphi})$ is gauge invariant.

• Generalization to eccentric orbits (LB & Sago 2010):

$$\langle u^t \rangle \equiv \left\langle \frac{dt}{d\tau} \right\rangle_{\tau} = \frac{t \text{ period}}{\tau \text{ period}}$$

$$\langle u^t \rangle (\Omega_{arphi}, \Omega_r)$$
 is gauge invariant.

SF correction to the red shift function for circular orbits: comparison with PN

[Blanchet, Detweiler, Le Tiec and Whiting 2010]

SF correction to the red shift function for eccentric orbits: comparison with PN

[LB, Le Tiec & Sago (preliminary)]

IHES seminar

2. ISCO frequency as an accurate strong-field benchmark [LB & Sago (2009)]

2. ISCO frequency as an accurate strong-field benchmark [LB & Sago (2009)]

- used to break the degeneracy between the EOB parameters a₅ & a₆ [Damour 2010].
- used to inform an "empirical" formula for the remnant masses and spins in BBH mergers [Lousto et al 2010]
- used for an exhaustive comparative study of PN methods [Favata 2010]

ISCO shift as an accurate strong-field benchmark

Method	c_{Ω}^{PN}	$\Delta_{c_{\Omega}}$
A4PN-P _A	1.132	-0.0955
A4PN- T_A	1.132	-0.0955
C ₀ 3PN	1.435	0.1467
e2PN-P	1.036	-0.1717
KWW-1PN	1.592	0.2726
A3PN-P	0.9067	-0.2754
A3PN-T	0.9067	-0.2754
A4PN-P _B	0.8419	-0.3272
A4PN-T _B	0.8419	-0.3272
j3PN-P	1.711	0.3671
j2PN-P	0.6146	-0.5088
KWW-S	0.5610	-0.5515
$C_0 2 P N$	0.5833	-0.5338
E_h 3PN	0.4705	-0.6240
e3PN-P	2.178	0.7409
A2PN-P	0.2794	-0.7767
A2PN-T	0.2794	-0.7767
$E_h 2PN$	0.0902	-0.9279
$E_h 1 PN$	-0.01473	-1.011
E _h -S	-0.05471	-1.044
HH-S	-0.1486	-1.119
j1PN-P	-0.1667	-1.133
KWW-2PN	-1.542	-2.232
j-P-S	-2.104	-2.682
KWW-3PN	4.851	2.877
HH-1PN	6.062	3.844
HH-2PN	-12.75	-11.19
HH-3PN	25.42	19.32

Results from M Favata 2010

3. Precession effect for slightly eccentric orbits: comparison with PN-calibrated EOB [LB, Damour & Sago 2010]

3. Precession effect for slightly eccentric orbits: comparison with PN-calibrated EOB [LB, Damour & Sago 2010]

$$\rho^{PN} = \rho_2 x^2 + \rho_3 x^3 + (\rho_4^c + \rho_4^{\log} \ln x) x^4 + (\rho_5^c + \rho_5^{\log} \ln x) x^5 + O(x^6)$$

(• terms known analytically • terms not yet known)

4. Precession effect for slightly eccentric orbits: strong-field calibration of EOB functions [LB, Damour & Sago 2010]

Is it possible to obtain a good global fit for $\rho(x)$ based on a minimal, "easy" set of SF data?

Pink line is a 2-point Padé model 0.9 $\rho_{\text{pade2}}(x) = ax^2 \frac{1+bx}{1+cx+dx^2}$ numerical data 0.8 2-pt Pade model 0. based only on PN with 4PN & 5PN logs 0.6 $\{\rho''(0), \rho'''(0)\}$ (from PN) $\{\rho(1/6), \rho'(1/6)\}$ (from SF) 0.5 9 0.4 $max\{|\rho_{pade2} - \rho_{data}|\} = 0.0024$ 0.3 0.2 With a 3-pt Padé using 0.1 $\{\rho(\infty), \rho'(\infty), \rho(1/6), \rho(1/10)\}$ this gets better still: 0.08 0 06 0 1 0 12 x $max\{|
ho_{pade3}ho_{data}|\}=0.0002$

0 14

0 16

- More work on calibrating EOB (using marginally bound zoom-whirl orbits? equi-frequency separatrix?)
- Kerr codes, in both time and frequency domains
- More efficient numerical algorithms (mesh refinement, finite elements, improved initial conditions,...)
- Orbital evolution
- Ind-order self force