Gravitational self force in extreme-mass-ratio binary inspirals

Leor Barack
University of Southampton (UK)

December 16, 2010

Theory Meets Data Analysis at Comparable and Extreme Mass Ratios

Perimeter Institute, June 2010
Conference summary by

Steve Detweiler

[arXiv 1009.2726, 15 September 2010]

As a member of the Capra community, I am pleased to report that we are reaching the end of a long, difficult adolescence. In the self-force portion of the meeting, a few serious meaningful applications of the gravitational self-force were described that allow for detailed comparisons among each other as well as with corresponding post-Newtonian analyses. The gravitational self-force has arrived.

In this review:

- Motivation: EMRIs as sources for LISA
- Self force theory
- Implementation methods
- Conservative effects of the gravitational self force

2-body problem in relativity

EMRIs as probes of strong-field gravity

EMRI parameter extraction accuracies with LISA (SNR=30)

S / M^{2}	0.1	0.1	0.5	0.5	1	1
$e_{\text {LSO }}$	0.1	0.3	0.1	0.3	0.1	0.3
$\Delta \mathrm{M} / \mathrm{M}$	2.6e-4	5.6e-4	2.7 e	9.2 e	2.8	2.5e-4
$\Delta\left(\mathrm{S} / \mathrm{M}^{2}\right)$	3.6e-5	$7.9 \mathrm{e}-5$	1.3e-4	6.3e-4	2.6e-4	3.7e-4
$\Delta \mathrm{m} / \mathrm{m}$	$6.8 \mathrm{e}-5$	1.5e-4	6.8e-5	9.2e-5	6.1e-5	9.1e-5
$\Delta\left(e_{0}\right)$	$6.3 e-5$	$1.3 e-4$	$8.5 e-5$	$2.8 e-4$	1.2e-4	$1.1 e-4$
$\Delta(\cos \lambda)$	$6.0 e-3$	$1.7 e-2$	$1.3 e-3$	$5.8 e-3$	$6.5 e-4$	8.4e-4
$\Delta\left(\Omega_{s}\right)$	$1.8 e-3$	$1.7 e-3$	$2.0 e-3$	$1.7 e-3$	$2.1 e-3$	1.1e-
$\Delta\left(\Omega_{K}\right)$	$5.6 e-2$	$5.3 e-2$	5.5e-2	$5.1 e-2$	$5.6 e-2$	5.1e-2
$\Delta[\ln (\mu / D)]$	$8.7 e-2$	$3.8 e-2$	$3.8 e-2$	$3.7 e-2$	$3.8 e-2$	$7.0 e-2$
$\Delta\left(t_{0}\right) \nu_{0}$	$4.5 e-2$	$1.1 e-1$	$2.3 e-1$	$1.3 e-1$	$2.5 e-1$	$3.2 e-2$

[LB \& Cutler (2004)]

"Self force" description of the motion

Equations of motion

(1) $m u^{\beta} \nabla_{\beta} u^{\alpha}=F_{\text {self }}^{\alpha}\left(\propto m^{2}\right)$
(2) $\square \bar{h}_{\mu \nu}^{\mathrm{ret}}+2 R^{\alpha}{ }_{\mu}{ }_{\nu} \bar{h}_{\alpha \beta}^{\mathrm{ret}}=-16 \pi T_{\mu \nu}$
(3) $F_{\text {self }}^{\alpha}=F_{\text {self }}^{\alpha}\left(\bar{h}_{\alpha \beta}^{\text {ret }}\right)=$?

"Self force" description of the motion

Equations of motion

(1) $m u^{\beta} \nabla_{\beta} u^{\alpha}=F_{\text {self }}^{\alpha}\left(\propto m^{2}\right)$
(2) $\square \bar{h}_{\mu \nu}^{\mathrm{ret}}+2 R^{\alpha}{ }_{\mu}{ }_{\nu} \bar{h}_{\alpha \beta}^{\mathrm{ret}}=-16 \pi T_{\mu \nu}$
(3) $F_{\text {self }}^{\alpha}=F_{\text {self }}^{\alpha}\left(\bar{h}_{\alpha \beta}^{\text {ret }}\right)=$?

Challenges:

- regularization
- make sense of "point particle" in curved space
- self-interaction is not instantaneous in curved space ("tail" effect)
- self force (and orbit) are gauge dependent
- Lorenz-gauge condition dictates geodesic motion

Regularization:

Dirac's method and its failure in curved space

Decomposition of the EM vector potential for an electron in flat space:

$$
\begin{gathered}
A_{\alpha}^{r e t}=\frac{1}{2}\left(A_{\alpha}^{r e t}+A_{\alpha}^{a d v}\right)+\frac{1}{2}\left(A_{\alpha}^{r e t}-A_{\alpha}^{a d v}\right) \\
\equiv A_{\alpha}^{S} \equiv A_{\alpha}^{R}
\end{gathered}
$$

$$
\rightarrow \quad F_{\text {self }}^{\alpha}=e \nabla^{\alpha \beta} A_{\beta}^{R}
$$

Regularization:

Dirac's method and its failure in curved space

Decomposition of the EM vector potential for an electron in flat space:

$$
\begin{gathered}
A_{\alpha}^{r e t}=\frac{1}{2}\left(A_{\alpha}^{r e t}+A_{\alpha}^{a d v}\right)+\frac{1}{2}\left(A_{\alpha}^{r e t}-A_{\alpha}^{a d v}\right) \\
\equiv A_{\alpha}^{S} \\
\equiv A_{\alpha}^{R}
\end{gathered}
$$

$$
\rightarrow \quad F_{\text {self }}^{\alpha}=e \nabla^{\alpha \beta} A_{\beta}^{R}
$$

Difficulty: Local Radiative potential becomes non-causal in curved space!

Regularization of the gravitational self-force

- Mino, Sasaki \& Tanaka (1997): via Hadamard expansion + integration across in a thin worldtube
- Mino, Sasaki \& Tanaka (1997), Poisson (2003), Pound (2010): via Matched Asymptotic Expansions
- Quinn \& Wald (1997):
via an axiomatic approach based on comparison to flat space
- Gralla\& Wald (2008):
by taking "far/near"-zone limits of a family of spacetimes
- Harte (2010):
from generalized Killing fields

The gravitational self-force

$$
\begin{aligned}
F_{\text {self }}^{\alpha} & =\lim _{x \rightarrow z(\tau)} \nabla^{\alpha \mu \nu} h_{\mu \nu}^{\text {tail }} \\
& =\lim _{x \rightarrow z(\tau)} \nabla^{\alpha \mu \nu}\left(h_{\mu \nu}^{\mathrm{ret}}-h_{\mu \nu}^{\mathrm{dir}}\right)
\end{aligned}
$$

Detweiler-Whiting reformulation (2003)

Dirac-like decomposition of $h_{\alpha \beta}^{\text {ret }}$ for a mass particle in curved space:

$$
\begin{gathered}
h_{\alpha \beta}^{r e t}=\frac{1}{2}\left(h_{\alpha \beta}^{r e t}+h_{\alpha \beta}^{a d v}\right)-H_{\alpha \beta}+\frac{1}{2}\left(h_{\alpha \beta}^{r e t}-h_{\alpha \beta}^{a d v}\right)+H_{\alpha \beta} \\
\equiv h_{\alpha \beta}^{S} \\
\equiv h_{\alpha \beta}^{R} \\
\text { Symmetric/Singular } \\
\text { Radiative/Regular }
\end{gathered}
$$

Detweiler-Whiting reformulation (2003)

Dirac-like decomposition of $h_{\alpha \beta}^{\mathrm{ret}}$ for a mass particle in curved space:

$$
\begin{aligned}
h_{\alpha \beta}^{r e t}= & \frac{1}{2}\left(h_{\alpha \beta}^{r e t}+h_{\alpha \beta}^{a d v}\right)-H_{\alpha \beta}+\frac{1}{2}\left(h_{\alpha \beta}^{r e t}-h_{\alpha \beta}^{a d v}\right)+H_{\alpha \beta} \\
\equiv h_{\alpha \beta}^{S} & \equiv h_{\alpha \beta}^{R} \\
& \text { Symmetric/Singular }
\end{aligned}
$$

$$
\rightarrow F_{\mathrm{self}}^{\alpha}=m \nabla^{\alpha \beta \gamma} h_{\beta \gamma}^{R}
$$

- $h_{\alpha \beta}^{R}$ is a vacuum solution of the Einstein equations.

Interpretation: orbit is a geodesic of $g_{\alpha \beta}+h_{\alpha \beta}^{R}$.

Mode-sum method [LB \& Ori (2000-2003)]

Define $F_{\text {ret } / S} \equiv m \nabla h^{\text {ret } / S}$ (as fields), then write

$$
\begin{aligned}
F_{\text {self }} & =\left.\left(F_{\text {ret }}-F_{\mathrm{S}}\right)\right|_{\mathrm{p}} \\
& =\left.\sum_{\ell=0}^{\infty}\left(F_{\text {ret }}^{\ell}-F_{S}^{\ell}\right)\right|_{\mathrm{p}} \quad(\ell \text {-mode contributions are finite }) \\
& =\sum_{\ell=0}^{\infty}\left[F_{\text {ret }}^{\ell}(p)-A L-B-C / L\right]-\sum_{\ell=0}^{\infty}\left[F_{S}^{\ell}(p)-A L-B-C / L\right] \\
& =\sum_{\ell=0}^{\infty}\left[F_{\text {ret }}^{\ell}(p)-A L-B-C / L\right]-D \quad(\text { where } L=\ell+1 / 2)
\end{aligned}
$$

Mode-sum method [LB \& Ori (2000-2003)]

Define $F_{\text {ret } / S} \equiv m \nabla h^{\text {ret } / S}$ (as fields), then write

$$
\begin{aligned}
F_{\text {self }} & =\left.\left(F_{\text {ret }}-F_{\mathrm{S}}\right)\right|_{\mathrm{p}} \\
& =\left.\sum_{\ell=0}^{\infty}\left(F_{\text {ret }}^{\ell}-F_{S}^{\ell}\right)\right|_{\mathrm{p}} \quad(\ell \text {-mode contributions are finite }) \\
& =\sum_{\ell=0}^{\infty}\left[F_{\text {ret }}^{\ell}(p)-A L-B-C / L\right]-\sum_{\ell=0}^{\infty}\left[F_{S}^{\ell}(p)-A L-B-C / L\right] \\
& =\sum_{\ell=0}^{\infty}\left[F_{\text {ret }}^{\ell}(p)-A L-B-C / L\right]-D \quad(\text { where } L=\ell+1 / 2)
\end{aligned}
$$

- Regularization Parameters $A^{\alpha}, B^{\alpha}, C^{\alpha}, D^{\alpha}$ derived analytically for generic orbits in Kerr [LB \& Ori (2003), LB (2009)].

Implementations so far (geodesic orbits, no evolution yet)

year	Schwarzschild	Kerr
2000	static	
2000	head-on	
2001		static
2002	head-on	
2003	circular	
2007	eccentric	
2007	$\underline{\text { static }}$	
2007	$\underline{\text { circular }}$	
2009		circular-equatorial
2009	eccentric	
2010		eccentric-equatorial
2010		circular-inclined

gravitational self force / scalar-field toy model

The gauge problem

- Original regularization formulated in Lorenz gauge ($\operatorname{div} \bar{h}=0$).
- Linearized Einstein equation takes a neat hyperbolic form
- Particle singularity is "isotropic" and Coulomb-like

The gauge problem

- Original regularization formulated in Lorenz gauge ($\operatorname{div} \bar{h}=0$).
- Linearized Einstein equation takes a neat hyperbolic form
- Particle singularity is "isotropic" and Coulomb-like

Radiation gauge

- Unfortunately Lorenz-gauge equations are not easily amenable to numerical treatment.
- Options: Work out the singular gauge transformations, or develop methods to integrate the Lorenz-gauge equations.

Direct Lorenz-gauge implementation [LB \& Lousto (2005)]

- Start with 10 coupled perturbation equations +4 gauge conditions:

$$
\begin{gathered}
\square \bar{h}_{\alpha \beta}+2 R_{\alpha}^{\mu}{ }_{\alpha}{ }_{\beta} \bar{h}_{\mu \nu}=-16 \pi m \int_{-\infty}^{\infty} \frac{\delta\left[x^{\mu}-z^{\mu}(\tau)\right]}{\sqrt{-g}} u_{\alpha} u_{\beta} d \tau \\
Z_{\alpha} \equiv \nabla^{\beta} \bar{h}_{\alpha \beta}=0
\end{gathered}
$$

- Add "constraint damping" terms, $-\kappa t_{(\alpha} Z_{\beta)}$

Direct Lorenz-gauge implementation [LB \& Lousto (2005)]

- Start with 10 coupled perturbation equations +4 gauge conditions:

$$
\begin{gathered}
\square \bar{h}_{\alpha \beta}+2 R_{\alpha}^{\mu}{ }_{\alpha}{ }_{\beta} \bar{h}_{\mu \nu}=-16 \pi m \int_{-\infty}^{\infty} \frac{\delta\left[x^{\mu}-z^{\mu}(\tau)\right]}{\sqrt{-g}} u_{\alpha} u_{\beta} d \tau \\
Z_{\alpha} \equiv \nabla^{\beta} \bar{h}_{\alpha \beta}=0
\end{gathered}
$$

- Add "constraint damping" terms, $-\kappa t_{(\alpha} Z_{\beta)}$
- Expand in tensor harmonics,
$\bar{h}_{\alpha \beta}=\sum_{l, m} \sum_{i=1}^{10} h^{(i) / m}(r, t) Y_{\alpha \beta}^{(i) / m}$
Obtain 10 coupled scalar-like eqs for $h^{(i) / m}(r, t)$

Direct Lorenz-gauge implementation [LB \& Lousto (2005)]

- Start with 10 coupled perturbation equations +4 gauge conditions:

$$
\begin{gathered}
\square \bar{h}_{\alpha \beta}+2 R_{\alpha}^{\mu}{ }_{\alpha}{ }_{\beta} \bar{h}_{\mu \nu}=-16 \pi m \int_{-\infty}^{\infty} \frac{\delta\left[x^{\mu}-z^{\mu}(\tau)\right]}{\sqrt{-g}} u_{\alpha} u_{\beta} d \tau \\
Z_{\alpha} \equiv \nabla^{\beta} \bar{h}_{\alpha \beta}=0
\end{gathered}
$$

- Add "constraint damping" terms, $-\kappa t_{(\alpha} Z_{\beta)}$
- Expand in tensor harmonics,
$\bar{h}_{\alpha \beta}=\sum_{l, m} \sum_{i=1}^{10} h^{(i) / m}(r, t) Y_{\alpha \beta}^{(i) / m}$
Obtain 10 coupled scalar-like eqs for $h^{(i) / m}(r, t)$
- Solve numerically using time-domain evolution in characteristic coordinates
- Use as input for the mode-sum formula

Sample numerical results [LB \& Sago (2010)]

Gravitational self-force in Schwarzschild

Towards self force in Kerr: the Puncture method

$$
\begin{gathered}
\square(\underbrace{h^{\text {ret }}-h^{\text {punc }}}_{h^{\text {Res }}})=S-\square h^{\text {punc }} \equiv S^{\text {Res }} \\
F^{\text {self }}=m \lim _{x \rightarrow z} \nabla h^{\text {Res }}
\end{gathered}
$$

- Does not rely on separability

Towards self force in Kerr: the Puncture method

$$
\begin{gathered}
\square(\underbrace{h^{\text {ret }}-h^{\text {punc }}}_{h^{\text {Res }}})=S-\square h^{\text {punc }} \equiv S^{\text {Res }} \\
F^{\text {self }}=m \lim _{x \rightarrow z} \nabla h^{\text {Res }}
\end{gathered}
$$

- Does not rely on separability
- Can be implemented in
- 1+1D [Vega \& Detweiler (2007)]
- 2+1D [LB \& Golbourn (2007)]
[Lousto \& Nakano (2008)]
[Dolan \& LB (2010)]
- 3+1D [Vega et al (2009)]

Conservative gauge-invariant effects of the self force

Conservative piece of the gravitational self force

$$
F^{\text {self }}=\underbrace{\frac{1}{2}\left(F^{\mathrm{ret}}-F^{\mathrm{adv}}\right)}_{F^{\mathrm{diss}}}+\underbrace{\frac{1}{2}\left(F^{\mathrm{ret}}+F^{\mathrm{adv}}\right)}_{F^{\mathrm{cons}}}
$$

Conservative piece of the gravitational self force

$$
F^{\text {self }}=\underbrace{\frac{1}{2}\left(F^{\mathrm{ret}}-F^{\mathrm{adv}}\right)}_{F^{\text {diss }}}+\underbrace{\frac{1}{2}\left(F^{\mathrm{ret}}+F^{\mathrm{adv}}\right)}_{F^{\mathrm{cons}}}
$$

Why study gauge-invariant conservative effects?

- secular effect on phase evolution
- tests of SF formalism \& codes against PN theory
- strong-field calibration data for approximate analytic methods (EOB)
- inform development of "Kludge" orbital evolution schemes

1. The "red shift" invariant [Detweiler (2008)]

- The "red shift" invariant for circular orbits (Detweiler 2008):

$$
u^{t} \equiv \frac{d t}{d \tau}
$$

- $u^{t}\left(\Omega_{\varphi}\right)$ is gauge invariant.
- Generalization to eccentric orbits (LB \& Sago 2010):

$$
\left\langle u^{t}\right\rangle \equiv\left\langle\frac{d t}{d \tau}\right\rangle_{\tau}=\frac{t \text { period }}{\tau \text { period }}
$$

- $\left\langle u^{t}\right\rangle\left(\Omega_{\varphi}, \Omega_{r}\right)$ is gauge invariant.

SF correction to the red shift function for circular orbits:

 comparison with PN
[Blanchet, Detweiler, Le Tiec and Whiting 2010]

SF correction to the red shift function for eccentric orbits:

 comparison with PN

[LB, Le Tiec \& Sago (preliminary)]

2. ISCO frequency as an accurate strong-field benchmark

 [LB \& Sago (2009)]$$
\begin{gathered}
\Delta r_{i s c o}=-3.269 \mathrm{~m}\left(G / c^{2}\right) \\
\frac{\Delta \Omega_{i s c o}}{\Omega_{i s c o}}=0.4870 \mathrm{~m} / \mathrm{M}
\end{gathered}
$$

2. ISCO frequency as an accurate strong-field benchmark [LB \& Sago (2009)]

$$
\begin{gathered}
\Delta r_{i s c o}=-3.269 \mathrm{~m}\left(G / c^{2}\right) \\
\frac{\Delta \Omega_{i s c o}}{\Omega_{i s c o}}=0.4870 \mathrm{~m} / \mathrm{M}
\end{gathered}
$$

- used to break the degeneracy between the EOB parameters $a_{5} \& a_{6}$ [Damour 2010].
- used to inform an "empirical" formula for the remnant masses and spins in BBH mergers [Lousto et al 2010]
- used for an exhaustive comparative study of PN methods [Favata 2010]

ISCO shift as an accurate strong-field benchmark

Method	c_{Ω}^{PN}	$\Delta_{c_{\Omega}}$
A4PN-P $_{A}$	1.132	-0.0955
A4PN-T $_{A}$	1.132	-0.0955
C $_{0} 3 P N$	1.435	0.1467
e2PN-P	1.036	-0.1717
KWW-1PN	1.592	0.2726
A3PN-P	0.9067	-0.2754
A3PN-T $_{\text {A4PN-P }}^{B}$	0.9067	-0.2754
A4PN-T	0.8419	-0.3272
j3PN-P	0.8419	-0.3272
j2PN-P	1.711	0.3671
KWW-S	0.6146	-0.5088
C $_{0} 2 P N$	0.5610	-0.5515
$E_{h} 3 P N$	0.5833	-0.5338
e3PN-P	0.4705	-0.6240
A2PN-P	2.178	0.7409
A2PN-T	0.2794	-0.7767
$E_{h} 2 P N$	0.2794	-0.7767
$E_{h} 1 P N$	0.0902	-0.9279
$E_{h}-S$	-0.01473	-1.011
HH-S	-0.05471	-1.044
j1PN-P	-0.1486	-1.119
KWW-2PN	-0.1667	-1.133
j-P-S	-1.542	-2.232
KWW-3PN	-2.104	-2.682
HH-1PN	4.851	2.877
HH-2PN	6.062	3.844
HH-3PN	-12.75	-11.19

Results from M Favata 2010

3. Precession effect for slightly eccentric orbits:

 comparison with PN-calibrated EOB [LB, Damour \& Sago 2010]$$
\begin{aligned}
& x=\left(M_{\text {total }} \Omega_{\varphi}\right)^{2 / 3}=\frac{M_{\text {total }}}{R} \\
& \frac{\Omega_{r}^{2}}{\Omega_{\varphi}^{2}}=1-6 x+\frac{m}{M} \rho(x)+O\left(\frac{m}{M}\right)^{2} \\
& \rho(x) \text { is gauge invariant }
\end{aligned}
$$

3. Precession effect for slightly eccentric orbits:

 comparison with PN-calibrated EOB [LB, Damour \& Sago 2010]$$
\begin{gathered}
x=\left(M_{\text {total }} \Omega_{\varphi}\right)^{2 / 3}=\frac{M_{\text {total }}}{R} \\
\frac{\Omega_{r}^{2}}{\Omega_{\varphi}^{2}}=1-6 x+\frac{m}{M} \rho(x)+O\left(\frac{m}{M}\right)^{2} \\
\rho(x) \text { is gauge invariant }
\end{gathered}
$$

$$
\rho^{P N}=\rho_{2} x^{2}+\rho_{3} x^{3}+\left(\rho_{4}^{c}+\rho_{4}^{\log } \ln x\right) x^{4}+\left(\rho_{5}^{c}+\rho_{5}^{\log } \ln x\right) x^{5}+O\left(x^{6}\right)
$$

(• terms known analytically • terms not yet known)

4. Precession effect for slightly eccentric orbits:

 strong-field calibration of EOB functions [LB, Damour \& Sago 2010]Is it possible to obtain a good global fit for $\rho(x)$ based on a minimal, "easy" set of SF data?

- Pink line is a 2-point Padé model

$$
\rho_{\mathrm{pade} 2}(x)=a x^{2} \frac{1+b x}{1+c x+d x^{2}}
$$

based only on
$\left\{\rho^{\prime \prime}(0), \rho^{\prime \prime \prime}(0)\right\}$ (from PN)
$\left\{\rho(1 / 6), \rho^{\prime}(1 / 6)\right\}$ (from SF)

$$
\max \left\{\left|\rho_{\mathrm{pade} 2}-\rho_{\mathrm{data}}\right|\right\}=0.0024
$$

- With a 3-pt Padé using $\left\{\rho(\infty), \rho^{\prime}(\infty), \rho(1 / 6), \rho(1 / 10)\right]$ this gets better still:

$$
\max \left\{\left|\rho_{\text {pade3 }}-\rho_{\text {data }}\right|\right\}=0.0002
$$

What's next?

- More work on calibrating EOB (using marginally bound zoom-whirl orbits? equi-frequency separatrix?)
- Kerr codes, in both time and frequency domains
- More efficient numerical algorithms (mesh refinement, finite elements, improved initial conditions,...)
- Orbital evolution
- 2nd-order self force

