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Bianchi cosmological models : presentation

Bianchi spacetimes are spatially homogeneous (not isotropic)
cosmological models.

Raisons d’être :

I natural finite dimensional class of spacetimes ;

I BKL conjecture : generic spacetimes “behave like” spatially
homogeneous spacetimes close to their initial singularity.
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Bianchi cosmological models : definitions

I A Bianchi spacetime is a globally hyperbolic spatially
homogeneous (but not isotropic) spacetime.

I A Bianchi spacetime is a spacetime (M, g) with

M ' I × G g = −dt2 + ht

where I = (t−, t+) ⊂ R,
G is 3-dimensional Lie group,
ht is a left-invariant riemannian metric on G .

I A Bianchi spacetime amounts to a one-parameter family of
left-invariant metrics (ht)t∈I on a 3-dimensional Lie group G .
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Bianchi cosmological models : definitions

We will consider vacuum type A Bianchi models.

I Type A : G is unimodular.

I Vacuum : Ric(g) = 0.

The results would certainly also hold in the case where :

I G is not unimodular.

I the energy-momentum tensor corresponds to a non-tilted
perfect fluid.



Bianchi cosmological models : definitions

We will consider vacuum type A Bianchi models.

I Type A : G is unimodular.

I Vacuum : Ric(g) = 0.

The results would certainly also hold in the case where :

I G is not unimodular.

I the energy-momentum tensor corresponds to a non-tilted
perfect fluid.



Einstein equation

A Bianchi spacetime can be seen as a one-parameter family of
left-invariant metrics (ht)t∈I on a 3-dim Lie group G

+ The space of left-invariant metrics on G is finite-dimensional

=⇒ the Einstein equation Ric(g) = 0 is a system of ODEs.



Einstein equation : coordinate choice

Proposition. — Consider a Bianchi spacetime (I ×G , −dt2 + ht).
There exists a frame field (e0, e1, e2, e3) such that :

I e0 = ∂
∂t ;

I e1, e2, e3 are tangent to {·} × G and left-invariant ;

I ∇e0ei = 0 for i = 1, 2, 3 ;

I (e1, e2, e3) is orthonormal for ht ;

I [e1, e2] = n3(t)e3 ;
[e2, e3] = n1(t)e1 ;
[e3, e1] = n2(t)e2 ;

I the second fundamental form of ht is diagonal in (e1, e2, e3).
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Why taking an orthonormal frame ?

I One studies the behavior of the structure constants n1, n2, n3
instead of the behavior of metric coefficients ht(ei , ej) ;

I Key advantage : the various 3-dimensional Lie groups are
treated altogether.
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Variables

I The three structure constants n1(t), n2(t), n3(t) ;

I The three diagonal components σ1(t), σ2(t), σ3(t) of the
traceless second fundamental form ;

I The mean curvature of θ(t).

.

Actually, it is convenient to replace

I ni and σi by Ni =
ni
θ

and Σi =
σi
θ

I t by τ such that
dτ

dt
= −θ

3
.

(Hubble renormalisation ; the equation for θ decouples).
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The phase space

With these variables, the phase space B is a (non-compact) four
dimensional submanifold in R6.

B =
{

(Σ1,Σ2,Σ3,N1,N2,N3) ∈ R6 | Σ1 + Σ2 + Σ3 = 0 , Ω = 0
}

where

Ω = 6−(Σ2
1+Σ2

2+Σ2
3)+

1

2
(N2

1 +N2
2 +N2

3 )−(N1N2+N1N3+N2N3).
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Wainwright-Hsu equations

d

dτ
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.



Wainwright-Hsu equations

We denote by XB the vector field on B corresponding to this
system of ODEs.

The vaccum type A Bianchi spacetimes can be seen as the orbits
of XB.



Dynamics of XB

The dynamics of XB appears to be rich and interesting. The study
of this dynamics yields to :

I a non-uniformly hyperbolic chaotic map of the circle ;

I original questions on continued fractions ;

I problems of ”linearization” (or existence of ”normal forms”) ;

I delicate problems concerning the absolute continuity of stable
manifols in Pesin theory ;

I “Bowen’s eye-like phenomena” yielding to non-convergence of
Birkhoff sums.
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Dynamics of XB

Fundamental remark. — The classification of Lie algebras gives
rise to an XB-invariant stratification of the phase space B.



Bianchi classification

Name N1 N2 N3 g

I 0 0 0 R3

II + 0 0 heis3
VI0 + − 0 so(1, 1) nR2

VII0 + + 0 so(2) nR2

VIII + + − sl(2,R)

IX + + + so(3,R)



Type I models (g = R3 , N1 = N2 = N3 = 0)

I The subset of B corresponding to type I Bianchi spacetimes is
a euclidean circle : the Kasner circle K.

I Every point of K is a fixed point for the flow.



Type I models (g = R3 , N1 = N2 = N3 = 0)

I The subset of B corresponding to type I Bianchi spacetimes is
a euclidean circle : the Kasner circle K.

I Every point of K is a fixed point for the flow.



Type I models (g = R3 , N1 = N2 = N3 = 0)

I For every p ∈ K, the derivative DXB(p) has :
I two distinct negative eignevalues,
I a zero eigenvalue,
I a positive eigenvalue.

I Except if p is one of the three special points T1,T1,T3, in
which case DXB(p) has :

I a negative eigenvalue,
I a triple-zero eigenvalue.
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Type II models (g = hein3 , one of the Ni ’s is non-zero)

I The subset BII of B corresponding to type II models is the
union of three ellipsoids which intersect along the Kasner
circle.

I Every type II orbit converges to a point of K in the past, and
converges to another point of K in the future.

I The orbits on one ellipsoid “take off” from one third of K,
and “land on” the two other thirds.
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The Kasner map

I We restrict to the subset B+ of B where the Ni ’s are
non-negative.

I For every p ∈ K, there is one (and only one) type II orbit
“taking off” from p. In the future, this orbit “land on” at
some point f (p) ∈ K.

I This defines a map f : K −→ K : the Kasner map.
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The Kasner map

The Kasner map defines a chaotic dynamical system on the circle.

I The Kasner map f is topologically conjugated to θ 7→ −2θ.

I The Kasner map f is not uniformly hyperbolic (its derivative
is equal to -1 at the Taub points T1,T2,T3).

I There exists an arc K0 of K such that the map induced by f
on K is the Gauss map.
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Type VIII and IX models (g = so(3,R) or sl(2,R), all the
Ni ’s are non-zero)

I Vague conjecture. The dynamics of of type VIII and IX orbits
“reflects” the dynamics of the Kasner map.

I Example of more precise conjecture. Almost every type IX

orbit accumulates on the whole Kasner circle.
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Ringström’s theorem

Let A := K ∪ BII be the union of all type I and type II orbits.

Theorem (Ringström 2000). A is attracting all type IX orbits
(except for the Taub-NUT type orbits).

Taub-NUT ⇐⇒ ∃i , j ∈ {1, 2, 3} such that Σi = Σj and Ni = Nj .
(codimension 2 submanifold of the phase space)



Ringström’s theorem

I Ringström’s result does not imply that the dynamics of type
IX orbits “reflects” the dynamics of the Kasner map.

I For example, it could be possible that every type IX orbit is
attracted by the period 3 orbit of f .



Dynamics of type VIII or IX orbits

Let q ∈ K, and r ∈ B. I say that the XB orbit of r shadows the
f -orbit of q if there exist t0 < t1 < t2 < . . . such that

I dist(X tn
B (r), f n(q)) −→

n→∞
0 ;

I the distance between the piece of orbit
{X t
B(r) ; tn ≤ t ≤ tn+1} and the type II orbit connecting

f n(q) to f n+1(q) goes to 0.

The point r is necessarly of type VIII or IX.

Given q ∈ K, I denote by W s(q) the set of points r such that the
XB orbit of r shadows the f -orbit of q.



Dynamics of type VIII or IX orbits

Theorem (Béguin 2010) There exists k0 ∈ N with the following
property. Consider q ∈ K such that the closure of the f -orbit of q
does not contain any periodic orbit of period ≤ k0.
Then W s(q) is non-empty.

Actually, W s(q) is a three-dimensional injectively immersed
manifold which depends continuously on q (when q ranges in a
closed f -invariant subset of K without any orbit of period ≤ k0).

Proposition. The set of the points q satisfying the hypothesis of
the theorem above is dense in K, but has zero Lebesgue measure.
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Dynamics of type VIII or IX orbits

Theorem (Georgi, Häterich, Liebscher, Webster, 2010).
Consider a point q ∈ K which is periodic point for f .
Then W s(q) is non-empty.

Theorem (Reiterer, Trubowitz, 2010). There is a full Lebesgue
measure subsets of points q in K such that W s(q) is non-empty.

Caution. This does not imply that almost every Bianchi spacetime
is in W s(q) for some q.
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Dynamics of type VIII or IX orbits

Conjecture. — La réunion des W s(q) pour q ∈ K est de mesure
positive dans B.

Question. — Does the union of the W s(q) has full Lebesgue
measure ?

Remark. — For most points, Birkhoff sums should not converge.
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Dynamics of type VIII or IX orbits

Informal interpretation of the results. Close to the initial
singularity :

I For all Bianchi spacetimes, the spacelike slice G × {t} is
curved in only one direction (Ringström).

I For “many” Bianchi spacetimes, this direction oscillates in a
complicated periodic or aperiodic way.

I The way this direction oscillates is sensitive to initial
conditions.
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Asymptotic silence

A Bianchi spacetime is said to be asymptotically silent if
“different particles cannot have exchanged information arbitrarily
close to the initial singularity”.



Asymptotic silence

Formally : for every past inextendible timelike curve γ, the
diameter of the set J+(γ) ∩ ({t} × G ) goes to 0 as t → t−.



Asymptotic silence

Theorem. For q as in one of the three preceding theorems, the
orbits in W s(q) correspond to asymptotically silent spacetimes.



About the proof of the theorem.

The key is to understand what happens to type IX orbits when
they pass close to the Kasner circle. Indeed :

I close to the Kasner circle, there should be some ”supra-linear
contraction-dilatation phenomena” ;

I far from the Kasner circle, everything is ”at most linear”.



Hartman Grobman theorem.

Consider a vector field X and a point p such that X (p) = 0.

Theorem. Assume that DX (p) does not have any purely
imaginary eigenvalue.

Then, there is a C 0 local coordinate system on a neighborhood
of p, such that X is linear in these coordinates.



Sternberg’s theorem

Theorem. Assume that DX (p) does not have any purely
imaginary eigenvalue. Assume moreover that the eigenvalues of
DX (p) are independent other Q.

Then, there is a C∞ local coordinate system on a neighbourhood
of p, such that X is linear in these coordinates.



Takens’ theorem

Generalization of Sternberg’s theorem to the case where DX (p)
has some purely imaginary eigenvalues.

There is a C r local coordinate system on a neighbourhood of p,
such that “X depends linearly on the coordinates corresponding to
non purely imaginary eigenvalues”.



Linearization of the Wainwright-Hsu vector field near of
point of K

Let XB be the Wainwright-Hsu vector field and p be a point of the
Kasner circle which is not one of the three Taub points.

Proposition. If the three non-zero eigenvalues of DXB(p) are
independant over Q, then there is a C∞ local coordinate system
(x , x ′, y , z) on a neighbourhood of p, such that

X (x , x ′, y , z) = λs(y)x
∂

∂x
+ λs ′(y)x ′

∂

∂x ′
+ λu(y)z

∂

∂z

with λs(y) < λs ′(y) < 0 < λu(y).
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Characterization of linearizable points

Proposition. For p ∈ K, the following conditions are equivalent :

1. the non-zero eigenvalues of DX (p) are independent over Q ;

2. the orbit of p under the Kasner map is not pre-periodic.



Dulac map close to a “good” point p ∈ K

X (x , x ′, y , z) = λs(y)x ∂
∂x + λs ′(y)x ′ ∂∂x ′ + λu(y)z ∂

∂z

Φ(1, x ′, y , z) =
(
z−λs(y)/λu(y) , x ′.z−λs

′(y)/λu(y) , y , 1
)
.
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(
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′(y)/λu(y) , y , 1
)
.

Important observation. The negative eigenvalues are stronger
than the positive ones :

−λs(y)/λu(y) > 1 − λs ′(y)/λu(y) > 1.

Consequence. Φ can be extended on M ∩ {z = 0} as a C 1 map.

If z(q) = 0, then dΦ(q). ∂∂x ′ = dΦ(c). ∂∂z = 0

dΦ(q). ∂∂y = ∂
∂y
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Dulac map near a point p ∈ K

I The distance from an orbit to the attractor A = BI ∪ BII is
contracted when the orbit passes close to the Kasner circle K.
This contraction is “super-linear”.

I The drift in the direction tangent to A is neglectible as
compared to this contraction.

=⇒ No matter what happens far from the Kasner circle ! (this will
never compensate the “super-linear contraction”.)
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Dulac map near a point p ∈ K

I The distance from an orbit to the attractor A = BI ∪ BII is
contracted when the orbit passes close to the Kasner circle K.
This contraction is “super-linear”.

I The drift in the direction tangent to A is neglectible as
compared to this contraction.

=⇒ No matter what happens far from the Kasner circle ! (this will
never compensate the “super-linear contraction”.)



End of the proof

I One constructs a section.

I One shows that the return map is hyperbolic (or rather can be
extended to a hyperbolic map).

I One applies a stable manifold theorem.



Control of a set of orbits with positive Lebesgue measure ?

I No linéarization results apply. One needs to prove ”by brute
force” some estimates of the contraction, the drift...

I One needs to control the size of the neighbourhood of p
where the estimates hold. This size goes to zero exponentially
fast as p approaches a Taub point.

I One needs to show that “many” orbits fall each time in the
neighbourhoods where the estimates holds. Uses some results
on the continued fraction development of almost every point.

I One needs to adapt Pesin theory.


