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The current model of cosmology

A snapshop of the 
universe 377,000 years 
after the Big Bang: CMB 
temperature fluctuations



A "concordant" model of cosmology but  that 
contains three puzzling ingredients:

‣ An inflationary stage
‣ dark matter 
‣ dark energy or a cosmological 

constant responsible for the 
(recent) acceleration of the 
universe

low redshift manifestations 
through the way the large-
scale structure of the 
universe forms and evolves?



What is at stake? 
  - using LSS data to constrain models

What do we want to learn?
- Initial metric perturbations, spectra, primordial 
non-Gaussianities
- constraints on the dark matter particles - mass 
of the neutrinos
- dark energy/modification of the gravity in the 
expansion/growth of structure (fifth force)

 Nonlinear effects are ubiquitus!

- Redshift space distortions - Cosmic shear maps



A self-gravitating 
expanding dust fluid
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A self-gravitating expanding dust fluid

The Vlasov equation (collision-less Boltzmann equation) - f(x,p) 
is the phase space density distribution - are fully nonlinear.

This is what N-body codes aim at simulating...
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‣ Data show that large-scale structure has formed from small density inhomogeneities since time of 
matter dominated universe with a dominant cold dark matter component

Peebles 1980; Fry 1984
FB, Colombi, Gaztañaga, 
Scoccimarro, Phys. Rep. 
2002

The rules of the game: 
single flow equations

X

Yoo et al., PRD, 2009...GR correction effects are usually small
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The linear regime
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The solution (scalar modes)

Connexion with the 
physics of the early 
universe (Hu, PhD thesis)

�(x, t) = D+(t)�+(x) +D�(t)��(x)
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The development of cosmological 
instabilities across time and scale

Large-scale structure

CMB

Nonlinear growth

Hu, Sugiyama '95, '96
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A glimpse into the nonlinear regime
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Eventually objects form and their properties 
decouple from the global expansion

Davis, Peebles  '77

Hierarchical models are based on self-
similar growth of correlation functions + 
stable clustering ansatz.  They were 
popular in the eighties.

Radius

time

E>0 E=0

E<0

Rmax

1/2 Rmax

The collapse of a spherical object can be 
computed exactly.

The virialization processes are complex but 
should lead to the formation of objects roughly 
half the size of their maximal extension.

Virialization

Hamilton et al.  '95
Balian, Schaeffer '89
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The halo model
The complex matter distribution is 
replaced by a set of halos characterized by 
their mass distribution and density profile. 

Perturbation 
theory

Cooray, Sheth  '02
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Perturbation Theory
• To get insights into the development of 

gravitational instabilities;
• to test/complement N-body simulations;
•  provide predictions from first principles in a 

large variety of models, and for a large numbers 
of parameters. 
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One more rule: it is possible to analytically expand the 
cosmic fields with respect to initial density fields

�(x, t) = �(1)(x, t) + �(2)(x, t) + . . .



‣ A reformulation of the theory with a FT like approach
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doublet linear propagator
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‣ Linear solution
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‣ Dynamical equations (now in Fourier space)
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 Vlasov equation of a single flow pressure-less fluid  

Scoccimarro 1997
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‣ Diagrammatic representation

Note : detailed effects of baryons versus DM can be taken into account (Somogyi & 
Smith 2010; FB, Van de Rijt, Vernizzi '12) with a 4-component multiplet, for neutrinos it 
is more complicated...
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k

Ψα(1)(k) Ψβ(1)(k)

Pα'β' (k,η0) 

Ψβ(1)(k)Ψα(3)(k,q,-q)
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Ψα(2)(q,k-q) Ψβ(2)(q,k-q)
++

‣ Integral representation of the motion equations
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linear evolution mode coupling terms



- The system is not invariant over time translation: it is actually an unstable (non-
equilibrium) system, where perturbations grow with time (as ~ power-law). The late 
time behavior of this system is probably non trivial and there is no known solution to 
it.

- Loop corrections are not due to virtual particle productions but to mode couplings 
effects, modes being set in the initial conditions.

- Vertices have a non-trivial k-dependence but which is entirely due to the 
conservation equation and is independent of the energy content of the universe. Only 
2 →1 vertices exist (quadratic couplings). This is not the case generically for modified 
gravity models (like chameleon, DGP ...)

- Due to the shape of CDM spectrum, there are no UV divergences (nor IR). Loops, 
e.g. ”Renormalizations”, are all finite. 

‣ Not a quantum field theory problem...

‣ More closely related to hydrodynamic turbulence



Time-flow (renormalization) equations         M. Pietroni ’08
From the field evolution equation to the multi-
spectra evolution equation

Anselmi & Pietroni  '12

The closure theory Taruya & Hiramatsu,  ApJ 2008, 2009

Valageas P.,  A&A, 2007

Motion equations for correlators are derived using the Direct-Interaction (DI) approximation in 
which one separates the field expression in a DI part and a Non-DI part.  At leading order in Non-
DI >> DI, one gets a closed set of equations, 

These equations can more rigorously be derived in a 
large N expansion.

The eikonal approximation
FB, Van de Rijt & Vernizzi  2012

Methods of Field Theory

Effective Theory approaches
Pietroni et al '12, Carrasco et al. '12 

Renormalization Perturbation Theory                                             Crocce & Scoccimarro ’05, 06

Beyond standard PT : "resumming", redefining the series expansions

Inspired by hydro turbulence resummation schemes, see L'vov & Procaccia ’95



The Multi-Point 
Propagator expansion 
(Gamma expansion)



The diagram contributing to the power spectrum 
up to 2-loop order:

linear power spectrum



The key ingredients : the (multipoint) propagators
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Scoccimarro and Crocce PRD, 2005

Gab(k) = k

FB, Crocce, Scoccimarro, PRD, 2008

�(2)
abc(k1,k2,k3) =

�(p)
ab1...bp

(k1, . . . ,kp, ⇥)�D(k� k1...p) =
1
p!

�
�p⇥a(k, ⇥)

�⇤b1(k1) . . . �⇤bp(kp)

⇥



‣ This suggests another scheme: to use the n-point propagators as 
the building blocks
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Sum of positive terms

‣The reconstruction of the power spectrum :

‣ Also provide the building 
blocks for higher order 
moments...

FB, Crocce, Scoccimarro, PRD, 2008

‣ re-organisation(s) of the perturbation series

Γ-expansion method



Reconstruction of the power spectrum: from sPT 
to Multi-point propagator reconstruction



The "IR" domain 
with the eikonal 
approximation

FB, Van de Rijt, Vernizzi  2011 
and 2012



‣ In wave propagations: it leads to geometrical optics

‣ In quantum field theory such as QED and QCD 

photon wavelength is much shorter than any other lengths

p� l in

The eikonal approximation :

"Relativistic eikonal expansion",  Abarbanel and Itzykson, 1969



dynamics : @
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�a(k, ⌘) + ⌦ b

a(⌘)�b(k, ⌘) = � bc
a (k1,k2)�b(k1)�c(k2)

Impact of the long-wave modes into the short wave modes (of interest)

1. Split the interaction term into 2 parts: 

2. Compute the first part using simplified form for the vertices

 It leads to a "renormalized" theory that takes into account the 
long wave modes in a nonlinear manner.

3. Taking ensemble average over Ξ	 leads to the standard results 
assuming linear growing modes and Gaussian initial conditions.

• k1 ⇤ k2 or k2 ⇤ k1 (soft domain)
• k1 ⇥ k2 (hard domain)
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Non trivial k dependence!

The IR modes in the eikonal approximation :
FB, Van de Rijt, Vernizzi  2011



velocity field component only

The "renormalized" theory at linear order

What is in this new term ?

A multi-component fluid analysis with adiabatic modes 
and iso-curvature/density modes 

adiabatic term non-adiabatic term

=

Z
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Impact of the adiabatic modes :

(adiabatic) displacement field

Consequences for propagators (building blocks for PT calculations)
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Consequences for equal-time poly-spectra : none

Crocce & Scoccimarro ’05, 06

FB, Crocce & Scoccimarro ’08
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A regularization scheme = how to interpolate between 
n-loop results and the large-k behavior ?

An ad-hoc solution was provided by Crocce and Scoccimarro (RPT) for the 
one-point propagator but it cannot be generalized all cases.

‣The proposed form is the following
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‣This is our proposition for regularized propagators: 
our best guess!

FB, Crocce, Scoccimarro '12



The two-point propagator 
at 1-loop and 2-loop orders



Comparison with numerical 
simulations at tree and one-loop order 
for the 3-point propagator
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Power spectra up to 1-loop and 2-loop order

•  Public codes for fast 
computations of power spectra 
at 2-loop order are now 
available.
http://maia.ice.cat/
crocce/mptbreeze/

http://www-
utap.phys.s.u-
tokyo.ac.jp/
~ataruya/
regpt_code.html

•Theoretical predictions are 
within 1% accuracy.
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Equal-time spectra 
in the eikonal 
approximation



η2k

 a(k, ⌘;⌅
adiab.) = ⇠ b

a (k, ⌘, ⌘0;⌅
adiab.) b(⌘0)

Consequence 1: multi-spectra are independent on the large-scale adiabatic 
modes (in the eikonal limit)

This is a direct consequence of the functional dependance on the large-scale 
adiabatic displacement field.

Consequence 2: multi-spectra are independent on the large-scale adiabatic 
modes at any order in standard Perturbation Theory

One-loop correction to power spectrum
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FB, Van de Rijt, Vernizzi, '12 
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But not necessarily so for all PT schemes...



What is true for adiabatic modes is not true for non-adiabatic 
modes!

η2
+

η2k +
η2k  ≠ 0

Resulting power spectrum in the eikonal limit (beyond one-loop results)

z=40 z=10

non-adiabatic 
modes

FB, Van de Rijt, Vernizzi, '12 in prep.

modes mainly produced at horizon scale at decoupling
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D. Tseliakhovich and C. Hirata, PRD, '10

Formation of first structures is modulated and anisotropic



Bad news for biasing: Galaxy formation is potentially modulated 
by large scale velocity modes (at 100-10 Mpc scales).

Dalal, Pen, Seljak '10
Yoo, Dalal, Seljak '11

In general however non-adiabatic modes have very little 
(totally negligible ?) impact on modes of interest here.

FB, Van de Rijt, Vernizzi  2011

Somogyi & Smith 2010

Enriching the content of the universe is likely to induce similar 
effects beyond linear theory results. This is potentially the case 
for massive neutrinos (whose velocities differ from the velocity 
of the cold dark matter component). The full non-linear 
hierarchy of equations in case of massive neutrinos is now 
known. We have started to investigate the impact of non-
adiabatic modes .

PhD thesis of Nicolas van de Rijt '12



The "UV" domain 
and the Galilean 

invariance 



Kernels in Perturbation Theory calculations

k=0.1 h Mpc-1

k=0.5 h Mpc-1

k
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P ]�loop
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Z
dq

q
K]�loop(k, q) Plin.(q)

FB, Taruya, Nishimichi, '12
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Expression of the density kernel for the propagator at 1-loop order
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Kernels for the 2-point propagators at p-loop order

k

Convergence properties

1-loop

P ]�loop

NL (k) =

Z
dq

q
K]�loop(k, q) Plin.(q)

Should it be regularized or taken into account with Effective Theory approaches?
Pietroni et al. '11, Carrasco et al. '12
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• UV shape of kernels is key to the validity of PT calculations and 
comparison with numerical simulations

• It comes from the IR behavior of coupling functions
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•  UV regularization seems necessary (starting at 2-loop order and 
for z < 0.5): it is not cleat if it can be obtained from re-summations of 
contributing diagrams or from extra physical effects (in particular shell 
crossings, etc...)

•  Modified gravity models alter the coupling structure and therefore might 
change the converging properties of theory.  This is suggested by preliminary 
results obtained in some classes of modified gravity models (with a 
dynamical dilaton field with Damour-Polyakov mechanism for instance). 

•  Something to learn from these results for the backreaction 
problem, that is the impact of the small scale structure on the large 
ones.
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Large-Scale Structure studies 
offer new opportunities for 
precision cosmology 
calculations;

An interesting playground for 
field theory calculations

Conclusions


