

4P

The Planck concept/challenge

- to perform the "ultimate" measurement of the Cosmic Microwave Background (CMB) temperature anisotropies:
 - full sky coverage & angular resolution / to survey all scales at which the CMB primary anisotropies contain information (~5')
 - sensitivity / essentially limited by ability to remove the astrophysical foregrounds
 - ⇒ enough sensitivity within large frequency range [30 GHz, 1 THz] (~CMB photon noise limited for ~1yr in CMB primary window)
- get the best performances possible on the polarization with the technology available
- \Rightarrow ESA selection in 1996 (after ~ 3 year study)
- NB: with the Ariane 501 failure delaying us by several years (03 \rightarrow 07) and WMAP then flying well before us, polarization measurements became more and more a major goal

François R. Bouchet, "Planck main cosmological results", 17/06/2013 "Cosmology & Fundamental Physics with Planck", CERN

Felescope	1.5 m (proj. ape	rture) ap	planatic;	shared f	ocal pla	ne; syster	n emissi	vity 1%
nstrument	-	LFI	arrection	1 onset o	5 from	spin axis	Field of	i view o	
Center Freq. (GHz)	30	44	70	100	143	217	353	545	857
Detector Technology	HEN	IT LNA	arrays	100	110	Bolomet	er array		007
Detector Temperature		~20 K		1		0.	1 K		-
Cooling Requirements	H ₂ s	orption o	ooler	H ₂ so	rption +	4KJ-T	stage +]	Dilution	cooler
Number of Unpol. Detectors	0	0	0	0	4	4	4	4	4
Number of Linearly Polarised Detectors	4	6	12	8	8	8	8	0	0
Angular Resolution FWHM, arcmin)	33	24	14	9.5	7.1	5	5	5	5
Bandwidth (GHz)	6	8.8	14	33	47	72	116	180	283
Average $\Delta T/T_1^*$ per bixel [#]	2.0	2.7	4.7	2.5	2.2	4.8	14.7	147	6700
Average $\Delta T/T_{U,O}$ per	2.8	3.9	6.7	4.0	4.2	9,8	29.8		

AP.

- > We include PS templates for
 - Poisson Point sources (arbitrary level per frequency, A_v^{PS})
 - Clustered Infrared sources (CIB) ($A_v^{CIB} I^y, r_{vv'}^{CIB}$)
 - SZ clusters (A^{tSZ}, A^{kSZ} *ksz-l-template)
 - $tSZ X CIB correlation (\xi^{tSZ X cib})$

ois R. Bouchet, "Planck main cosmological results", 17/06/2013

- (Dust residual in some configurations PLIK)
- And we include calibration and (correlated) beam uncertainties

"Cosmology & Fundamental Physics with Planck", CERN

	PI	anck alone	_	
	Planck	(CMB+lensing)	-	
Parameter	Best fit	68 % limits		
$\Omega_{ m b}h^2$	0.022242	0.02217 ± 0.00033		
$\Omega_{\rm c}h^2$	0.11805	0.1186 ± 0.0031		
100θ _{MC}	1.04150	1.04141 ± 0.00067		
r	0.0949	0.089 ± 0.032		
n _s	0.9675	0.9635 ± 0.0094		
$\ln(10^{10}A_{\rm s})$	3.098	3.085 ± 0.057		
The sound horizon positions of the per with 0. (links together Ω_bh^2	n, 0, determine aks (7), is now 07% precision , Ω_ch^2 , H_0 - he	d by the Ex determined are as Ω_mh^3) (a	act scale invariance of fluctuations is ruleo s predicted by base	of the primordial d out <i>, at ~4σ</i> inflation models)
François R. Bouchet, "Planck ma	ain cosmological results",	17/06/2013	Page 88	European Space Agency
$\theta_* = (1.04148 \pm 0.00$	$066) \times 10^{-2} = 0.596724^{\circ} \pm$	0.00038"		

GRAVITATIONAL LENSING DISTORTS IMAGES

*Cosmology & Fundamental Physics with Planck: CEPI Prograds 8. Boschet. * Sanch main cosmological results; 1700/2013

	Planck	(CMB+lensing)	Planck+	WP+highL+BAO
Parameter	Best fit	68 % limits	Best fit	68 % limits
$\Omega_{\rm b}h^2$	0.022242	0.02217 ± 0.00033	0.022161	0.02214 ± 0.00024
$\Omega_{\rm c}h^2$	0.11805	0.1186 ± 0.0031	0.11889	0.1187 ± 0.0017
100θ _{MC}	1.04150	1.04141 ± 0.00067	1.04148	1.04147 ± 0.00056
τ	0.0949	0.089 ± 0.032	0.0952	0.092 ± 0.013
n _s	0.9675	0.9635 ± 0.0094	0.9611	0.9608 ± 0.0054
$\ln(10^{10}A_{\rm s})$	3.098	3.085 ± 0.057	3.0973	3.091 ± 0.025

We tested many extension to the simplest, base, 6 parameters, LCDM model: - Curved space, Ω_k ($\neq 0$?) - Dynamical dark energy, w ($\neq -1$?) - Non-standard abundance of primordial Helium fraction, Y_p ($\neq 0.2477$?) - Neutrino properties, i.e. how many and how massive (N_{eff} , $\Sigma m_v \neq 3.046$, 0.06? - Curvature of the power spectrum of primordial fluctuations (running dn_/dlnk $\neq 0$ - Existence of primordial gravitational waves, $r_{0.002}$ ($\neq 0$?) - no compelling evidence for any of them Ψ - $\frac{Pionsk WP - Biost KWP-Biost - R_{eff}, M_{eff}, M$	Dey	ona the	e standa	ira moa	ei	esa	
Planck+WP Planck+WP+light Planck+WP+light <th cols<="" th=""><th>We tes - Curr - Dyn - Non</th><th>ted many ex ved space, s amical dark -standard c</th><th>ktension to t Ω_k (≠ energy, w abundance of</th><th>the simplest 0 ?) (≠ -: f primordial ow many and</th><th>, base, 6 1 ?) Helium fro 1 how mass</th><th>parameters, LCDM model: action, Yp (≠ 0.2477 ?) sive (N ,, Σm ≠3 046, 0.06 ?)</th></th>	<th>We tes - Curr - Dyn - Non</th> <th>ted many ex ved space, s amical dark -standard c</th> <th>ktension to t Ω_k (≠ energy, w abundance of</th> <th>the simplest 0 ?) (≠ -: f primordial ow many and</th> <th>, base, 6 1 ?) Helium fro 1 how mass</th> <th>parameters, LCDM model: action, Yp (≠ 0.2477 ?) sive (N ,, Σm ≠3 046, 0.06 ?)</th>	We tes - Curr - Dyn - Non	ted many ex ved space, s amical dark -standard c	ktension to t Ω _k (≠ energy, w abundance of	the simplest 0 ?) (≠ -: f primordial ow many and	, base, 6 1 ?) Helium fro 1 how mass	parameters, LCDM model: action, Yp (≠ 0.2477 ?) sive (N ,, Σm ≠3 046, 0.06 ?)
Parameter Best fit 95% limits <	 Neu Curv Exis no 	vature of th stence of pr compelling e	ie power spe imordial gra vidence for	ectrum of pr vitational wa any of them	rimordial fl aves, r _{o.oo2} n ♥	uctuations (running dn _c /dlnk≠ 0? (≠ 0 ?)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	 Neu Curv Exis no 	vature of th stence of pr compelling e Plankt+WP	imordial gra vidence for Planck+WP+BAQ	ectrum of pr vitational wa any of them Planck+WP+highL	rimordial fl aves, r _{0.002} n ♥ Planck+WP+hiphL	uctuations (running dn,/dlnk≠ 0; (≠ 0 ?)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	– Neu – Curr – Exis → no Parameter	vature of the stence of properties of properties of properties of the stence of properties of the stence of the st	ne power spe imordial gra vidence for Planck+WP+BAO Best fil 95% limits	ectrum of provitational we any of them Planck+WP+hight Best fit 95% limits	rimordial fl aves, r _{0.002} n ↓ Planck+WP+highL Best fit 95% hin	uctuations (running dn,/dlnk≠ 0; (≠ 0 ?)	
Na Na<	— Neu — Cur ⁿ — Exis → no Parameter Ω _e	vature of the stence of property of the stence of processing end of the stence of processing end of the stence of	re power spe imordial grav vidence for Planck+WP+BAO Bet fit 95% limits 0.0000 0.0000-0000	ectrum of pr vitational we any of them Planck+WP+hight Best fit 95% limits -00111 -0042-0008	Minordial fl aves, r _{0.002} ↓ <u>Planck+WP+hight</u> <u>Best fit</u> 95% him 0.0009 -0.0005	uctuations (running dn,/dlnk≠ 0; (≠ 0 ?) IBMO NB: no compelling evidence either for: Existence of an "isocurvature" part in the primordial fluctuations Existence of cosmic strings Existence of cosmic strings	
Tp: 0.2585 0.2575 0.2776 0.283 (mail = 0.2015) 0.2612 0.266 (mail = 0.2615) 0.267 (mail = 42±75) fortho=.25±39.68%CL] dn/dlnk -0.0000 -0.012 (mail = 0.015) -0.0104 -0.0104 -0.0104 Fourity (mail = 0.0104)	- Neu - Cur ^{n} - Exis - No - Exis - No - Exis - No - Exis - No - Exis - No - Exis - No	vature of the stence of property of the compelling e <u>Plank+WP</u> Best fit 95% limits -0.0105 -0.037-minit 0.022 < 0.933	Planck+WP+BAO Best fil 95% limits 0.0002 < 0.247	ectrum of pr vitational wa any of them <u>Planck+WP+hight</u> <u>Best fit 95% limits</u> -0.0111 -0.042 ^{-0.000} 0.023 < 0.663	imordial fl aves, r _{0.002} ↓	uctuations (running dn,/dlnk≠ 0; (≠ 0 ?) BMO NB: no compelling evidence either for: Existence of an "isocurvature" part in the primordial fluctuations Existence of cosmic strings U (Glu/c ² cl.3.10 ²) U (Glu/c ² cl.3.10 ²)	
dbi/dbik0.0090 -0.013 -0.0102 -0.013 -0.0106 -0.015 -0.0101 -0.014 -0.01 - Evolution of the fine structure	- Neu - Cur ⁿ - Exis \rightarrow no Parameter Ω_k $\Sigma m_r [eV]$ N_{eff}	Planck+WP Best fin 95% limits -0.0105 -0.037 -003 3.06 3.51 -0.03 -0.02 < 0.933 3.06 3.51 -0.03 -0.0105 -0.037 -0.037 -0.037 -0.03 -0.0105 -0.037 -0.03	Planck+WP+BAO Planck+WP+BAO Best fit 95% limits 0.000 < 0.0247 3.08 3.40 + 100 0.0247	Planck+WP+hight. Planck+WP+hight. Planck+WP+hight. Best to 95% limits. -0.0111 -0.042-0003 3.23 -3.56-0003 3.23 -3.56-0000	imordial fl aves, r _{0.002} n ♥ Planck+WP+hight. Best fit 95% hin 0.0009 -0.0055 0.000 < 0.27 3.22 3.30 th	uctuations (running dn _e /dlnk≠ 0; (≠ 0 ?) NB: no compelling evidence either for: Existence of an "isocurvature" part in the primordial fluctuations (Gi/2<1.3 10 ⁷) Non-Gaussian signatures of non- minimal inflation (feed=2.745.8,	
	- Neu - Curr - Exis \rightarrow no Parameter Ω_{μ} $\Sigma_{m_{e}}[eV]$ N_{et} Y_{p}	Prime proper vature of stence of compelling e Plank+WP Best fit Best fit 95% 0.002 <0.033	ne power spe imordial gra vidence for Pland + WP+BA0 Bet fit 95% limits 0.000 0.0000 - 0000 0.002 < 0.247	ectrum of pr vitational wa any of them Plands WP-hight Beet in 995 limits -0.0111 -0.042cm 0.0023 - 0.0660 3.23 - 3.36cm 0.2612 - 0.266cm	imordial fl aves, r _{0.002} n	uctuations (running dn,/dlnk≠ 0; (≠ 0 ?) NB: no compelling evidence either for: Existence of an "isocurvature" part in the primordial fluctuations (Gu/2-1.3.10 ⁻⁷) Non-Gaussian signatures of non- minimal inflation (focur2.7.55.8, focure -2.2.55.9 G88CL)	
R ₀₀₀ − 1000 < 01.120 0.0000 < 01.122 0.0000 < 0.1000 < 0.111 constant, dark matter annihilation,	- Neu - Curr - Exis \rightarrow no Parameter Ω_{k} $\Sigma_{m}[eV]$ N_{et} Y_{P} $d_{n}/d\ln k$	Primite proper vature of th stence of pr compelling e Planki+WP Best fit 956 limits -0000 -0007 emilion 0.022 <0.033	Planck+WP+BA0 Planck+WP+BA0 Beet fit 95% limits 0.0000 0.0000 classe 0.0000 4.0247 0.025% 0.035% class 0.027% 0.035% class 0.027% 0.035% class 0.027% 0.035% class 0.027% 0.035% class 0.027% 0.035% class 0.035% class 0.0000 classe 0.0000 class 0.0000 class 0.00000 class 0.00000000 class 0.0000	ectrum of pr vitational wa any of them Pland+WP+hight Befin 995 limits -0.0111 -0.042 dim 0.023 < 0.063	Imordial fl aves, r _{0.002}	Interventions (running dn,/dlnk≠ 0; (≠ 0 ?) (≠ 0 ?) (≠ 0 ?) (∀ 0 ?)	

