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Part 1. The 3 sins of massive gravity

1.1. Introduction: why « massive gravity » ?

1.2. Quadratic massive gravity: the Pauli-Fierz theory and the vDVZ
discontinuity

1.3. Non linear Pauli-Fierz theory and the Vainshtein Mechanism

1.4. The Goldstone picture (and « decoupling limit ») of non linear
massive gravity, and what can one get from it ?



1.1. Introduction: Why « massive gravity » ?

) One way to modify gravity at « large distances »
... and get rid of dark energy (or dark matter) ?

Changing the dynamics Dark matter
of gravity ? dark energy ?



for this idea to work...

l.e. to « replace » the cosmological constant by a
non vanishing graviton mass...

m) One obviously needs
a very light graviton
(of Compton length
of order of the size of
the Universe)



for this idea to work...

l.e. to « replace » the cosmological constant by a
non vanishing graviton mass...

NB: It seems one of the
Einstein’s motivations to
Introduce the cosmological
constant was to try to « give a
mass to the graviton »

(see « Einstein’s mistake and the
cosmological constant »
by A. Harvey and E. Schucking,

Am. J. of Phys. Vol. 68, Issue 8 (2000))




1.2. Quadratic massive gravity: the Pauli-Fierz theory
and the vDVZ discontinuity

Pauli-Fierz action: second order action
for a massive spin two h,uy
fd4a3\/§Rg + m? f d4xhu,/ha5 (77“0‘77”5 - 77‘“’770‘5)
——

second orderinh, =g, 7n,,

@ Only Ghost-free (quadratic) action for a
massive spin two Pauli, Fierz 1939

The propagators read

mmgator fOI- m:O DGLVQB(p) _ nuanvﬁ+guanua_ 7721/;7;13 —I— O(p)

2p

vV a3 Qg VY a5}
popagator for A0 D) (p) = I~ 1 O (p)




Coupling the graviton with a conserved energy-momentum tensor

Sfmt — fd433 \/gh’u,/T’uV

@ W = [DH (g — 2T, p(x")d '

The amplitude between two conserved sources T and S

Is given by A= [d*x 5" (z)h,, ()

A

For a massless graviton: Ay = ( Y émwT) S

In Fourier
Space
For a massive graviton: A,, = (ATW _ %WAT) Guv



e.g. amplitude between two non relativistic sources:

T" x diag(m,0,0,0)

2 A A 1~ A
> A~ 31111102 Instead of A~ 511112

S" x diag(mis, 0,0, 0)

7

@ Rescaling of Newton constant  Gnewton = §G<4>

appearing in
the action

defined from Cavendish

experiment

but amplitude between an electromagnetic probe
and a non-relativistic source Is the same as in the

massless case (the only difference between massive and massless
case is in the trace part) => Wrong light bending! (factor %4)



N.B., the PF mass term reads
Ml%m2 f d*x (h”hw — 2hoiho; — hiz’hjj —+ 2hiih00)

hyo enters linearly both in the kinetic
part and the mass term, and is thus a
Lagrange multiplier of the theory...

... Which equation of motion enables to eliminate
one of the a priori 6 dynamical d.o.f. h;

By contrast the h,; are not Lagrange multipliers

@ 5 propagating d.o.f. in the quadratic PF

h,, Is transverse traceless in vacuum.



1.3. Non linear Pauli-Fierz theory and the « Vainshtein Mechanism »

Can be defined by an action of the form | sham. Salam. Strathdee. 1971

S fd4£l?\/ PR ‘|‘L ‘|‘Sznt[fag]7

msteln Hllbert action
for the g metrlc

Interaction term coupling
the metric g and the non
dynamical metric f

Matter action
(coupled to metric Q)




1.3. Non linear Pauli-Fierz theory and the « Vainshtein Mechanism »

Can be defined by an action of the form | sham. Salam. Strathdee. 1971

S = fd4$\/ —g (%Rg +Lg) + Sintlf 9],

The interaction term S,,.;[f, g], 1S chosen such that

e |t IS Invariant under diffeomorphisms
e |t has flat space-time as a vacuum
* When expanded around a flat metric

(gpv = npv T huv’ fuv = npv)
It gives the Pauli-Fierz mass term

Leads to the e.o.m. MZG,, = (T +T9,(f,9))

Matter energy-momentum tensor / K

Effective energy-momentum
tensor ( f,g dependent)




Some working examples

2 1 T p o VT 14 oT
Sz(n% — _ngMl%/d4x \/_f H,UI/HO"T (f/i f — f/i f )

; 1 Boulware Deser, 1972, BD in the following
S,L(n% = —§m2M123 / d4$ vV —g H,U,VHJT (g/,cagur - g'LWgO-T)

Arkani-Hamed, Georgi, Schwarz, 2003
AGS in the following

with

H,uz/ — Juv — f,uz/
(infinite number of models with similar properties)

(in the « Pauli-Fierz universality class » [Damour, Kogan, 2003])

> Look for static spherically symmetric solutions



With the ansatz (not the most general one)

gapdz?dz® = —J(r)dt® + K(r)dr® + L(r)r?dQ?
fapdeidz® = —dt® +dr® + r?dQ?
Gauge transformation
gudetde” = —e’Bdt? 4 A BIR? 4 R%2dO3
/ 2
{ fudztdz” = —dt* + (1 - R“Q(R)> e "R GR? + e~ M P R240?

Which can easily be compared to Schwarzschild

Then look for an expansion In
Gy (orin Rg oc Gy M) of the would-be solution



gudrrde” = —e"Pdt* + 2 AR? + R2O?

v(R) = — =51 +
MR) =41 2+

Wrong light bending!

This coefficient equals +1
In Schwarzschild solution



gudrrde” = —e"Pdt* + 2 AR? + R2O?

V(R) = — 251 +O(1)e+..
. Wlth € — oo 33
A (R) — 75(1 -+ 0(1)6 +... Vainshtein 1972

In « some kind »
[Damour et al. 2003]

Wrong light ben8iAg "¢ P

This coefficient equals +1
In Schwarzschild solution

Introduces a new length scale R in the problem
below which the perturbation theory diverges!

For the sun: bigger than solar system! with R, = (Rgm~4)/?



So, what is going on at smaller distances?

@ Vainshtein 1972

There exists an other perturbative expansion at smaller distances,
defined around (ordinary) Schwarzschild and reading:

75{1+(9(R5/2/R5/2)} with R 5/2 _ 2R—1/2
AR) = +5 {1+ 0 (R2/RY?) | "

-~/

» This goes smoothly toward Schwarzschild as m goes to zero

» This leads to corrections to Schwarzschild which are non
analytic in the Newton constant



To summarize: 2 regimes

Rs

V(R) = == (1+O()e+-) with e =%

N\ 1/5
Valid for R > Ry with Ry = (RSN%} I

Standard
perturbation theory

A
\around flat space

Crucial question: can one join the two
regimes in a single existing non singular
(asymptotically flat) solution? Boulware beser 72)

— =

/Expansion around o Is 5/2 ) 152
Schwarzschild v(1t) = z) (l +0 (I [ Ry ))

. Solution Valid for R < Ry




This was investigated (by numerical integration) by
Damour, Kogan and Papazoglou (2003)

@ No non-singular solution found
matching the two behaviours (always
singularities appearing at finite radius)

(see also Jun, Kang 1986)

In the 2nd part of this talk:

A new look on this problem using in
particular the « Goldstone picture » of
massive gravity in the « Decoupling limit. »

(in collaboration with E. Babichev and R.Ziour
2009-2010)



1.4. The Goldstone picture (and « decoupling limit »)
of non linear massive gravity, and what can one get from it ?

Originally proposed in the analysis of Arkani-Hamed,
Georgi and Schwartz (2003) using « Stuckelberg »
fields ...

and leads (For a generic theory in the PF universality
class) to the cubic action in the scalar sector (helicity
0) of the model

L(Ve)? - MLPqBT + = {(V%P + . }

W

Other cubic terms omitted

« Strong coupling scale »
(hidden cutoff of the model ?) With A = (m* M)




Basic idea

The theory considered has the usual diffeo invariance
{gw(aﬁ) = 0,3 (2)0,2" (2)gg, (¢'(2))
fuv(x) = 0,2" ()03 (z)fy, (2'(2))

This can be used to go back and forth from a « unitary
gauge » where fap = maB

To a « non unitary gauge » where some of the
d.o.f. of the g metric are putinto f thanks to a
gauge transformation of the form

g e = AN (X6
wlz) = 8MXA )0, X P (2)gap (X(x
kag;\ AP v () \é]() (z)gaB (X (x))

(324 ( A XA: 4 scalar fields
[cf. Chamseddine, Mukhanov 2010-2011]




Expand then the theory around the unitary gauge as
( XA(x) = 5;‘:13“ + 74 ()

e N

{ Unitary gauge « pion » fields
coordinates

m(z) = 6, (A*(2) + 0" 9, 9).

\

The interaction term S;,:|f, g] expanded
at quadratic order in the new fields A# and ¢ reads

—MimQ / d'z [k = hu b

—4(hOA — hy, 0" AY) —|4(h8" 0§ — hy, 08" 9)]

A# gets a kinetic term via the mass term
¢ only gets one via a mixing term



One can demix ¢ from h by defining

Py = Ry — mQUW(b

And the interaction term reads then at quadratic order

~

The canonically normalized ¢is given by ¢ = Mpm?¢

Taking then the
« Decoupling Limit »

( Mp — o0
m — 0 One is left with ...
A= m*Mp)t/5 ~  const

N Tyw/Mp ~ const,




« Strong coupling scale »

(hidden cutoff of the modelB g g

. 1 - 1
3 = 10T = 5 o (08 + 5 (06 6, 6

With A = (m* Mp)Y>  and o and 3 model dependent coefficients

In the decoupling limit, the Vainshtein radius is kept fixed, and
one can understand the Vainshtein mechanism as

Interaction M/M ; of The cubic interaction above generates

th_ehex~ternal source O(1) coorrection at R= R, = (Rgym™)/°
with &




An other non trivial property of non-linear Pauli-Fierz: at non

linear level, it propagates 6 instead of 5 degrees of freedom,
the energy of the sixth d.o.f. having no lower bound!

Using the usual ADM decomposition of the metric, the
non-linear PF Lagrangian reads (for n,, flat)

M3 /d% {(7g;; — NR® — N;R')

—m? (hijhij — 2N;N; — hiihj; + 2Ry (1 — N? + ngklNl))}

— _/
e
With [ N = (—¢%)7"" Neither N., nor N are
N; = go; Lagrange multipliers

@ The e.o.m. of N; and N determine those as

functions of the other variables
@ Boulware, Deser ‘72

6 propagating d.o.f., corresponding to the g;



Moreover, the reduced Lagrangian for

those propagating d.o.f. read Boulware, Deser 1972

1 - m
le (n — hiz’g)lrri R

M3 /d4x {Wijgij —m? (hijhij — hihy;) —

1
i (R 2m

N—— e

= Unbounded from below Hamiltonian

@ This can be understood in the « Goldstone » description

C.D., Rombouts 2005
(See also Creminelli, Nicolis, Papucci, Trincherini 2005)

Indeed the action for the scalar polarization
H(VO)? = ol + & { (V20 + ... |

Leads to order 4 E.O.M. =, it describes two
scalars fields, one being ghost-like



Summary of the first part: the 3 sins of massive gravity

They can all be seen at the Decoupling Limit level

( « Strong coupling scale » )
g (hidden cutoff of the model ?) ) v

m ) y — — T — - ; N3 4 3
2P\ T ? A-“{“ (De)” +

With A = (m* Mg)"®  and « and 3 model

In th Qi inshtein radius i nd

» 3. Low Strong Coupling scale """, 5 Boylware Deser ghost
@ Can one have a higher cutoff ’PSOWC @ Can one get rid of it ?

@. ..................... + . +
= Pridd S
> I . -
Interaction M/M ;. of The cubic interaction above generates

the external sour
with 4

1. vDVZ discontinuity
@ Cured by the Vainshtein mechanism ?

O(1) coorrection at R =R, =(Rsm )1;5




The end of part 1



Part 2. Some cures and open issues.

2.1. The Vainshtein mechanism

2.2. Vainshtein does not work for Black Holes.

2.3. Getting rid of the Boulware-Deser ghost

2.4. Strong coupling and UV completion (back to DGP like models ?)

2.5. Some other approaches to non linear massive gravity



2.1. The Vainshtein mechanism Babichev, C.D., Ziour, 2009, 2010

Framework: non linear Pauli-Fierz theory

S = [d'ay=g (R +Ly) + Sinilf.d]

\/JXB&

Leads to the e.0.m. (T + T7,(f, 9))

Matter energy-momentum tensor / K

Effective energy-momentum

. . _ tensor (f,g) dependent
Bianchi indentity = V“Tgu — ()

_ | , T ) ot
S = —gm.zﬂ[ 2 / d'r /=g H,Hyr (¢"7g"" — " g"")

(Arkani-Hamed, Georgi, Schwartz)



Ansatz (« A, 1, v » gauge)

gudrtdz” = —e’Bdt? 4 AMBGR? + R2dO3
/ 2
fuvdzda” = —dt* + (1 - RNZ(R)) e MM dR? 4+ e B R2dO?

With this ansatz the e.o.m (+ Bianchi) read

” » L ! 1 )
Gtt —> € A(E—Fﬁ(eA—l)) — 87TGN(Tt€5—|—p€ )
/
1
"Gpp' /> %-F ﬁ(l—e)‘) = 8nlGy (T}%R—I—P(i)‘)

” Bianchi” => VM = 0

79 _ L 27A12 f mg 23752 ¢ g 2472
1y =m Mp ft, 1Tjpp=m"Mp fr. V#T#R = —m"Mpf,.



X [(BE”’JFV + et — QEV) (1 —

[
fo="
E—M—Eﬁ
fr=—

f B (1 R‘U,F> e~ A—2p—v
g = — _

2

< [8 (et — 1) (3ert

Ry’
2

Ru'\*
; ) + e (2t — V) — B TH (27 4+ et — 2&”)]

2
) + et (2e# + e¥) — 3eMH (—2e"TV + et + 2¢e¥)

—et — ") + 2R ((3e! ™ —2e") (N +4p' — V') — e (N + 44" + 1))

_RZ ((geg—l—y B 23”) ( f’uf B 21”’” B P_nyf n (,L-:f)z) M ( r’uf B 2‘[‘:” 4 ,u,fyf n (’u!)g) _9e¥ (ﬁ!)?)]



To obtain our solutions, we used the Decoupling Limit, we
first...

« shooted »

Then « relaxed »




We used a combination of shooting and relaxation
methods

+ some analytic insight relying on (asymptotic)
expansions,

with appropriate Boundary conditions
(asymptotic flatness, no singularity in R=0)

For setting boundary (or initial) conditions for the
numerical integration, and better understand the result,
we used crucially the Decoupling Limit.



To obtain the Decoupling Limit here, first do the rescaling

(U = Mpv
X N = Mpl
i = m?Mp And then let
( Mp — o0
m — 0
) A= m*Mp)t/5 ~ const
N T.w/Mp ~ const,

The full (non linear) system of e.o.m collapses to

PUBEEDY 1 .- oo, - | System of
Tt = —5Ba+TRE)+ ) yStel
S equations to be
%_% — g solved in the DL
A v QW)
R2 2R ' AS




PUBEEDY 1 .- oo, - | System of
Tt = —5Ba+TRE)+ ) yStel
S equations to be
z - % - g solved in the DL
A v QW)
R2 2R ' AS

a5 [6Q(R) + 2RQ(A) ] + §A+ §R i =

Which can be integrated once to yield the first integral



This first integral —% — —Q( ) = £3

fapdztda® = —d* + dr? + r2dQ?
Recall that p is encoding @
upon the substitution | the gauge transformation
il ’(R)>2 o—1(R) JR2

; 2 1/ ydetde” = —dt* +(1-
p=-—%0 e (1=
+e ) R2dQ°

Yields exactly one which is obtained using the
Stuckelberg field in the scalar sector gb

1/ / ! 111 199 11 4(3) » 1(3)
32 4 2 {3a < 19 +2¢2+2"5¢3 ¢¢3>+

R A5 R4 R3 R?

R
/ ! 11 1" (3) 1 1(3)
+ﬂ<(£j+2¢¢%%¢2 ¢¢3 ¢¢3>}

4
R4 R3 R_l_




To summarize, in the decoupling limit the full non linear

system reduces to

Lo
—5 B+ Ri) +p

_|_
T[> B >

i

nv] N =VI g

~ K
H=—"F,3

Do

f) +

/N

2
As @

Which can be shown to give the leading behaviour of the
solutionintherange Ry <« R < mt
N\ J
Y

The Vainshtein radius is in this range




Solving the DL (one only needs to solve the non linear ODE)

3 ~ 2 ~\ _ K
S b+ Q1) = — 53
Depends on the interaction term S;,,;[f, ¢]
E.g. in the Case of the two interaction terms (a+p=0)

1 T r (o vT vV poOT
SZ = —gmtM [ dte VoF HuHor (2757 — 7 57)
(Boulware Deser)
1 VT vV OT
Sl = —ngM%/d% V=9 HuHor (979" — " g°7)

(Arkani-Hamed, Georgi, Schwarz)

This equation boils down to the simple form

3w—3<w2—|—2ww | 8“”‘"\) = 2%

3 £?
With s = + 1 and the (w = (R,m) *u
dimensionless quantities ! & = R/Ry
K

\CO_

R2AB




3w—s(w2+2ww | 8“”’) _ 2

3 &3
With s = + 1 and the (w = (Rym) *p
dimensionless gquantities I & = R/Ry
B K
\ €0 R%/A5

How to read the Vainshtein mechanism and scalings ?

@ For € > 1 Keep the

linear part
<

Assume a power
law scaling



Indeed ... 3w — S (UJ2 + 2 8wé_’cb) _ 25%

At large & (expect w o 1/ £3)

A power law expansion of the would-be solution to this
problem can be found (here with ¢, =1)
2 4 1024 712960 104910848 225030664192

w(é) = — + s—— : S -
(£) .‘3£3 - H:Eh‘;'b - E‘T{-'l?’ * 243 &;’15 - 243 593 2187 {-'28

@ Unique « solution » of perturbation theory

However... this series is divergent....

+ 5 -+ ...



... but seems to give a good asymptotic expansion of the
numerical solution at large &

e This can easily been checked numerically for

s= -1 (Boulware Deser)

(where the Vainshtein solution does not exist at small &,
becoming complex [Damour, Kogan, Papazoglou, 2003] !)

* For s=+1 (Arkani-Hamed et al.) solution is
numerically highly unstable, singularities are
seemingly arising at finite ...

However by using a combination of relaxation
method / Runge-Kutta/ Asymptotic expansion ,

one can see that solutions (infinitely many !) with
Vainshtein asymptotics at large £ do exist.



In our case, using « extended »
Borel resummation (J. Ecalle)

Borel transform

Formal an &k ar  Fh—1
: . k ' e
(divergent) serie Zk § Zk (k_l)!f

Laplace transform or rather
« convolution average»
extension

Solution of the ODE

$=-1 7 (oroof provided to \S:‘ 1
us by J. Ecalle)

Unigue solution The difference " Infinitely many
with w oc 1/ €3 belt"‘;_ee” any two ) solutions with

- soitons IS given 3
decay at infinity (asymptotically) by w o< 1/ &° decay

53/2 exp (—k 3/5 55/2) _ at infinity
(with integer k )
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So, In the s=+1, the perturbation theory
does not uniquely fix the solution of the
DL at infinity.



Back to the full non linear case

Flat space perturbation theory, Vo

Starting with

(z=Rmtand € x G,) < Ao
9 Fo

(AN = Mo+ N+

N Vo= Vgp+1V+ ...

LU = o+ M1+ ...

where A;, v;, 11; are assumed to be proportional to €

[ -‘u,n p—

One finds the \, =
unigue expansion <
At large z (large R)

i+1

n—l—l — :rH—l
( E P'nz«

T=— 00

entl, —(:rH—l § /\711

T=— 00

1=0

En—l—lﬁ—(n#—l]z z : -Un,'j;-;l



However, this misses a subdominant (non \
perturbative) correction of the form

3 ’
é h; ! — F )l exn —_—— 2 EE;E
0f ~(2)ex] Uj:

.2 o
N A = —Fo(2)gexp (‘%:6”2)

2 V€
/e - 3

With  Fo(z) ~ O (ez/4z_3/2)

@ Hence, the solution at large z is not unique !




At small & (expect w o 1/ EV2 when the solution is real)

Here we discuss only the s=+1 case (Arkani-Hamed et al.)
2

~ 56

Does not lead to a unigue small distance (¢ < 1)
behaviour (and solution)...

w

In this case the large distance behaviour w(¢)

108~
10°k h
104_ ‘\_\

100 It R

ST



108

105

10%

100

[
™

w ﬁ w x 1/ &3 (large distance)

w o< 1/ €2 (new « Q » scaling)

h

w o< 1/ €2 (new « Q » scaling)

Vel
\\/ ]

\\ .,

\ W oc 1/ £V/2 (Vairiﬁé‘ﬁtem)%

. M R . . M R . . . .
0.005 0.01 0.05 0.1 05 1. &-'

NB: in other cases (e.g. s=-1),
the Vainshtein scaling can be absent



Most general case (general a, )
3

( 1
20Q0(w)+ —w=—
We have ) () 2 &3
to solve W , ; -
AT 1 - ) _. > _ o ‘) .?2 L UL
. Qw) = 59 3¢ (zfu + zu W+ 2w + : )
3 . ho.. o 10ww
+ (—L’u w4 —ww + B -+ )
2 2 ¢
A ~
() Vainshtein scailing
B Q-scaling

both scalings

o=/P/2

AGS potential /

BD potential — S~ o__

N —i3ps  Small =€ scalings

o=-—08




To summarize our DL findings

e One can find non singular solutions in the DL (but this
can be hard because of numerical instabilities).

e The ghost does not prevent the existence of those
solutions.

* The perturbative expansion (at large R) can be
(depending on the potential) not enough to fix uniquely
the solution.

* There is a new possible scaling at small R
 Solution with the correct large R asymptotics cannot

always be extended all the way to small R (depending
on parameters « and ().



Numerical solutions of the full non linear system

106}

1079}

R/Ry,

100



The vDVZ discontinuity gets erased for
distances smaller than R,, as expected

—V/A

—Vv/A ,DL = = =

0.001 0.01 0.1 |



Corrections to GR in the R < R,, regime

10719 -

-11

10713
0.001

h-hGR
7o Y, MECEITTEIE (first « Vainshtein »
correction to GR)
001 0.1

R/R+;




C
C

Solutions were obtained for very low density
objects. We did (and still do) not know what
IS happening for dense objects (for BHs we

now do know, see thereafter).

The « Q-scaling » does not lead to a
physical solution (singularities in R=0)



Conclusion (Vainshtein mechanism in massive gravity)

e It works (numerical results also confirmed by Volkov).

« What is going on for dense object ?

» Black Holes (see next part) ?

e |[n other models ?

« Gravitational collapse ?



2.2. (Standard) Vainshtein mechanism does not work for black holes.

C.D.,T. Jacobson, CQG 2012
« On horizon structure of bimetric spacetimes »

Can be applied to many cases where one considers space-times
hosting two « metrics » [rank-2 covariant tensors]

S
S

Bimetric theories

Belinfante-Swihart-Lightman-Lee (1957), Isham-Salam-Strathdee (1971),
Rosen (1973), Ni (1973), Rastall (1975)...

Theories with a prefered frame (with a unit vector ua’)
where some mode can propagate in an effective metric

(’e'») _ 2

9.5 = 9ap + (v; — Duguy
e.g. Einstein-Aether (Jacobson, Mattingly), Horava gravity, ...
Bimetric theory for MOND (milgrom), Ghost-condensate

related (Dubovsky, Sibiryakov), K-essence (Babichev, Mukhanov,
Vikman) ...

(old and recent) « Massive gravity »
(Isham, Salam, Strathdee; Gababadze, de Rham, Tolley)

fw/ — auXAar/XBT]AB




2.2.1. Generic properties of horizon structure
(and some consequences)

C.D.,T.Jacobson, CQG 2012

Consider a theory with two metrics, g, and f

We want to investigate the consequence of one of the metrics (say Q)
to have a Killing horizon (in the static-spherically symmetric or
stationary-axisymmetric cases)

Consider first the case where the two metrics are static
and spherically symmetric

Proposition 1: Suppose the Killing vector d; is null at r = ry with respect to
Guw- Then if both metrics are diagonal and describe smooth geometries at 7.
J¢ must also be null with respect to f,, at r =rpg.

l.e. both metric must have the same horizon



First proof (1a)

@ When both metrics are static and spherically symmetric, they
can be put in the form (in a common coordinate system)

i da” —J(r)dt? + K (r)dr? + r2dQ?
gudztdz” = —A(r)dt* + 2B(r)dtdr + C(r)dr* + D(r)dQ?

Consider the scalar (assuming B=0 at the horizon)

G fop = JJA+ K/C +2r2/D

It must be regular at the horizon r=r,, if both metrics are regular there

But A(r,)=0, and J/A, K/C and r?/D have the same sign, so cannot cancel

mmmm)> One must have J(r,) =0

(and hence the killing horizon of g is also one for f)



Second proof (1b)
(based on theorems by Racz and Wald 1992, 1996)

@ If a space-time has a Killing horizon, then, under rather general
assumptions, it has a « virtual » bifurcation surface.

@ More precisely:

if a space-time is static (with « t » reflection symmetry) or
stationary axisymmetric with « t-¢ » reflection symmetry, and if
the surface gravity of the horizon is non zero (and then
constant)

then

There is an extension of a neighborhood of the horizon to one
with a bifurcate Killing horizon

(i.e. a Killing horizon which contains a bifurcation surface)

(NB: this applies to any space-time without assuming
anything concerning the field equations)



@ Moreover (Racz-Wald 1996)

Any Killing invariant tensor field sharing the t or the t-¢ reflection
symmetry of the metric

can be extended globally to the enlarged space-time.

Proof 1b: It both metrics f,, and g, are diagonal then g,, shares the ¢
reflection symmetry ot f,,. If the surface gravity of the g-horizon is nonzero,
then the Racz-Wald theorem mmplies that both metrics can be extended to a
regular bifurcation surface of the g, Killing horizon for g. The scalar f,, x*x" =
J(r) vanishes at the bifurcation surface where Y = 0, and it cannot change
along the Killing flow, so 1t vanishes everywhere at » = rg.

(where y is the killing vector)

NB: This extends to the stationary-axisymmetric case



@ This does not preclude the existence of two geometries one with a
Killing horizon and one without....

But only implies that the non-horizon geometry cannot possess the
t reflection symmetry

E.g.: the existence of a non zero dt dr component in the g metric
can allow both geometries to be regular at the horizon.

fadetde” = —J(r)dt?® + K (r)dr* + r2dQ?
gudrtdr” = —A(r)dt* +2B(r)dtdr + C(r)dr* + D(r)dQ?

When this is the case (i.e. when the Killing horizon is not a
Killing horizon for the other metric)

@ The bifurcation surface of the g spacetime
cannot lie in the interior of the f space-time

mm) Conversely, when the horizons coincide, they must
have the same surface gravity



This can be put together as

If a Killing horizon of a metric g has a bifurcation surface that
lies in the interior of the spacetime of another metric f with the same Killing
vector, then 1t must also be a Killing horizon of f, and with the same surface
gravity.



2.2.2. Some consequences for non-linear Pauli Fierz

S = [d'z\/—g (%RQ +Lg) + Sinilf,d

 (Standard) Vainshtein mechanism does not
work for black holes

« Causal structure of static spherically
symmetric solutions




o (Standard) Vainshtein mechanism does not work for
black holes

Indeed, in the standard way of looking at Vainshtein mechanism
of « massive gravity » one has two bi-diagonal metric

« Massive

metric » ~ gapdzidz® = —J(r)dt* + K(r)dr?® + L(r)r?dQ?
Flat fapdrtdz® = —dt® + dr? + r2dQ?
metric

In any theory where the Vainshtein mechanism is working for recovering a
solution close to the Schwarschild Black Hole, the g metric must have a
(spherical) Killing horizon at r=r,, ... this must also be a killing horizon for f

@ Impossible:

Minkowski ST has no spherical Killing horizons (but only planar)

NB: this applies also to the new massive gravity of
de Rham, Gabadadze, Tolley (and in particular to
solutions of Nieuwenhuizen; Gruzinov, Mirbabayi)



o Causal structure of « type | » static
spherically symmetric solutions

f,u,f/dxﬂdmy = _J(if’)dtg e K('T’)d“)”2 .5 r?d§)?
gudatde” = —A(r)dt* + 2B(r)dtdr + C(r)dr® + D(r)dQ*

« Type | » solutions: those with B #0  Salam, Strathdee 1977
Isham, Storey 1978

(as opposed to « type Il » solutions, with B = 0, such as
the ones discussed so far when addressing the Vainshtein
mechanism - (cf. « A\, u, v ansatz ») previous part of this

talk)



2.2.1. some Type | solutions are known analytically and simple

(Salam, Strathdee 1977, Isham, Storey, 1978, Damour, Kogan, Papazoglou 2003;
see also Berezhiani, Comelli, Nesti, Pilo, 2008)

gudztdz” = (1 — q)dt* — (1 — q) " tdr? — r? (df? + sin?0d¢?)
Juvdztdz” = %(1 — p)dt* — 2Ddtdr — Adr? — 2/3r? (d6? + sin*0d¢$?)

_ 2 \
A= @(1 —q)” (ﬁq Integration constant

With )
D2:(%> (1-¢)*(p—q)(p+B8-1-0q)
Both metric are of
and { p= 2]‘ff 4 %TZ Schwarzschild-(A)dS form
2M, | A, 9 (no sign of vDVZ or
1= 37 massive gravity!)

: r 1 v (p—a)(p+B—1—Bq)
Namely, the change of variable dt = 75 {dt F a0y dfr}

Put the metric f, ,in the usual static form of S(A)dS:
fuvdztdz” = 2 {(1 —p)dt? — (1 — p)~tdr? — r? (df? + sin” 6d¢?) }




Blas, C.D., Garriga 2005

Causal Structure

E.g. de Sitter (ry) with
Schwarzschild (r.) with r, <r,

Part of the dS horizon Part of the Schwarzshild

horizon mapped into the

Bifipication sphereehmane spacelfimédses iotlie in

mapped into the past
timelike infinity of r=r

the interior of the other ... "~'s 2-sphere of de Sitter



Conclusions

There exist interesting global constraints on putting
together two metrics on a same manifold

@ One simple conseqguence: failure of the
usual Vainshtein mechanism to recover
Black holes (but there exist non
diagonal solutions crossing the horizon)

@ Consequence for superluminal issues ?

@ One simple question: What is the
ending point of spherical collapse ?



2.3. Getting rid of the Boulware Deser ghost

de Rahm, Gabadadze; de Rham, Gababadze, Tolley 2010, 2011

Claim: the most general massive gravity (in the sense above) devoid
of a Boulware Deser ghost is given by the 3 (4 counting A)
parameters set of theories:

( )

3
S = ]\/[]%/d’il:z:\/—g { R+ 2m? Zﬁnen (K) »

With \ n=1 y
KK/JJV = \/g"" f,,

er (K) = trK
1
e (K) = 5 ((tr K)? — tr K?)
1
es (K) = G ((t'r K)‘3 —3trKitr K2+2tr Kg)




The absence of ghost is first seen in the decoupling limit

(using the observations of C.D., Rombouts 2005; Creminelli, Nicolis,
Papucci, Trincherini 2005)

Which instead of the generic

S
AS{ (06) + ﬁ(ch)cchB‘“”}

Looks like (de Rham, Gabadadze, 2010) With A = (m* Mp)Y°
1~ =~ ( @
2
. Fﬁ 5", ,L.,J,,,cb o _ )
3
T

With A, = (M2 M,)2/3



The absence of ghost in the full theory has been heavily
debated (NB: nothing clear about positivity of the

Hamiltonian) Gabadadze, de Rham, Tolley;
Alberte, Chamseddine, Mukhanov:;

Hassan, Rosen, Kluson...
@ One simple reason for which one gets an
extra constraint: (C.D., Mourad, Zahariade in preparation;
Hinterblicher, Rosen arXiv:1203.5783 [hep-th])

with  ewp, = epwa,

uy AB 1 v
{9 = 1) T €ep
A B

f;u/ WABWMWI/

The mass term

3
S = J\L%mg /d‘l:z:\/—gz,@nen (K)

n=1
. y vr22 [ oA A A
Can be written as L.C. of 5, = Mpm / d*vdet (kw; —e;))



2.4. Strong coupling and UV completion

A crucial question for the sake of massive
gravity and also .... for the DGP model:

Find a proper UV completion of the model .

For DGP
model —,) Yes/ May be ?
Antoniadis, Minasian, Vanhove; Kohlprath, Vanhove;
_ Kiritsis, Tetradis, Tomaras; Corley, Lowe, Ramgoolam.
String —> No/ May be not ?
theory?

Adams, Arkani-Hamed, Dubovsky, Nicolis, Rattazzi.



2.5. Some other approaches to Non-Linear massive gravity

@ « Torsion massive gravity »

Nair, Randjbar-Daemi, Rubakov, 2009
Nikiforova, Randjbar-Daemi, Rubakov, 2009
C.D., Randjbar-Daemi, 2011

.o U
S (u,u) =

—g(ujju"? —u?)

_ Swiu,u) /\ﬁrﬂ’[l;lju” &
@ « New Massive Gravity » in 3D and 4D

Bergshoeff, Hohm, Townsend, 2009
Bergshoeff, Fernandez-Melgarejo, Rosseel, Townsend, 2012



Conclusions

@ Massive gravity Is a nice arena to explore large
distance modifications of gravity.

@ A first, possibly consistent (?), non linear theory
has recently been proposed (after about 10
years of progresses following the DGP model)...

... with many things still to be explored (in
particular, stability issues).
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