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This talk is based on arXiv:1207.0886, 1301.3722, 1301.3738, 1301.7062 
and on ongoing research which will soon appear on the archive.

Many thank’s to Jan Troost, for very useful discussions, and to my students 
Antonin Rovai and Micha Moskovic with whom this project is being 
continued.
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A BIG question that remains open, in spite of decades of intensive 
developments, is

what is the correct starting point for a theory of quantum gravity?

Naïve and straightforward approaches are plagued by possibly 
insurmountable difficulties.

Infinities, perturbative non-renormalizability
Space of metrics on a given manifold unknown

Breakdown of the renormalization group ideas

Background independence, general covariance, lack of local observables 

Black holes in high energy scattering, UV/IR relations, 
holographic properties, ...
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Gravity is likely to be of an entirely different nature that the other known 
forces that are described by local quantum fields...

Text

Could gravity be an emergent phenomenon?
Sakharov 60s

Weinberg and Witten 1980: rules out the simplest models 
(something that background independence and the lack of local observables 

clearly do)

-Continuous fluid dynamics from microscopic atoms and molecules
-Nuclear forces (pions) from strongly coupled QCD
- etc.......
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There is one way out of the Weinberg-Witten theorem,
 and plausibly only one consistent way out.

Text

A theory of emergent gravity must also be a theory of emergent space.

This means that the very notion of space should be approximate and emerge 
alongside with geometric properties like the metric and the other physical 

fields propagating on it.

Moreover, typical field theory calculations yield expansions in the coupling 
constants, from which it is highly non-trivial to find hints about a geometrical 

interpretation.

Our main example of a theory of emergent space along these ideas is of 
course the AdS/CFT correspondence. However, the correspondence has been 

mainly used to study properties of strongly coupled large N field theories 
from gravity. The other direction in the correspondence, studying gravity from 
field theory, is much less explored. This is not surprising: classical gravity is 

more tractable that strongly coupled field theories... 
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and to briefly review a few simple applications, like for a model of D-particles 
in the presence of a large number of D4-branes in type IIA or D-instantons in 

the presence of a large number of D3-branes in type IIB.

Step one: we have to introduce a convenient set of observables from which 
the geometry can be straightforwardly read off.

Step two: we have to understand how to sum up the usual multi-loop large N 
diagrams that are relevant to the observables mentioned in step one.

We shall explicitly find full supergravity backgrounds, including non-trivial 
dilaton profile, Neveu-Schwarz B field and correctly quantized Ramond-
Ramond forms, without ever solving a supergravity equation of motion. To 
our knowledge, such detailed information on the backgrounds has never 
been obtained by any other method.

Results

We shall explicitly see, from the above microscopic calculation, how 
dimensions of space emerge. Dorey, Hollowood, Khoze, Mattis, Vandoren 1999



Maybe more importantly, the basic ideas we use can be applied to many other 
cases, even in the absence of conformal invariance and supersymmetry.



+

+⌃B

h

h



+

+⌃B

h

h

N ! 1
gs ⇠ 1/N



⇠ hOOiYM
+

+⌃B

h

h

N ! 1
gs ⇠ 1/N



⇠ hOOiYM
+

+⌃B

h

h

N ! 1
gs ⇠ 1/N

Near horizon limit ↵0 ! 0



⇠ hOOiYM
+

+⌃B

h

h ⇠
+

+

h

h

N ! 1
gs ⇠ 1/N

Near horizon limit ↵0 ! 0



⇠ hOOiYM
+

+⌃B

h

h ⇠
+

+

h

h

N branes
Gauge theory microscopic 

calculation

N ! 1
gs ⇠ 1/N

Near horizon limit ↵0 ! 0



⇠ hOOiYM
+

+⌃B

h

h ⇠
+

+

h

h

N branes
Gauge theory microscopic 

calculation

N ! 1
gs ⇠ 1/N

No brane
 Non-trivial emergent gravitational 

background

Near horizon limit ↵0 ! 0



⇠ hOOiYM

⇠
+

+

h

h

N branes
Gauge theory microscopic 

calculation

N ! 1
gs ⇠ 1/N

No brane
 Non-trivial emergent gravitational 

background

Near horizon limit ↵0 ! 0

⌃L



⇠ hOOiYM

N branes
Gauge theory microscopic 

calculation

N ! 1
gs ⇠ 1/N

No brane
 Non-trivial emergent gravitational 

background

Near horizon limit ↵0 ! 0

⌃L

⇤h = 0⇠



X

B



N ! 1
gs ⇠ 1/N

Near horizon limit ↵0 ! 0

X

B



N ! 1
gs ⇠ 1/N

Near horizon limit ↵0 ! 0

X

B

⇠ NSD-brane(Z)



N ! 1
gs ⇠ 1/N

Near horizon limit ↵0 ! 0

X

B

⇠ NSD-brane(Z)

⇠



N ! 1
gs ⇠ 1/N

Near horizon limit ↵0 ! 0

X

B

⇠ NSD-brane(Z)

⇠

K probe branes

Gauge theory microscopic 
calculation

N background branes



N ! 1
gs ⇠ 1/N

Near horizon limit ↵0 ! 0

X

B

⇠ NSD-brane(Z)

⇠

K probe branes

Gauge theory microscopic 
calculation

N background branes
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 Non-trivial emergent gravitational 
background
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The coefficients in the effective action depend on the closed string 
background and thus computing the effective action is a very effective tool 

to derive the background.
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model of the left-hand side, in such a way that their quantum fluctuations are 
suppressed at large N. If the number of variables Z is independent of N, this 
property is automatically encoded in the right-hand side of the formula.

Z
dµD3

Z
dµD(-1) e

�SD3�SD(-1) =

Z
dZ e�NSD-brane(Z)

We can then read off the full background from SD-brane(Z), by expanding 
around Z=z.

These variables (or some of them, in the D(-1)/D3 case the (10-4)K2 = 6K2 
variables associated with the 6 dimensions that are not present in the SYM 
theory) will be composite from the point of view of the microscopic model.

If the action for Z can be interpreted geometrically, along the lines explained 
previously, then we can say that some of the dimensions have emerged.



The a priori hard part is of course to construct Z and to show that the left 
hand side can be computed from the right hand side for some suitable and 

computable action SD-brane(Z).
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There are really two classes of diagrams that appear in the microscopic 
theory.

These “bubble diagrams” can be easily summed up: they are vector models 
diagrams!

These diagrams may look like complicated multiloop diagrams, but they are 
really tree diagrams in a dual representation,
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The large N diagrams of this model are bubble diagrams, and they are 
summed up by the usual trick of introducing an auxiliary field
to rewrite the potential as 
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��2 + 2
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The elementary fields     can then be integrated out exactly, producing an 
effective action for      which is proportional to N.         

~�
�

At large N, the field     thus become classical! The Feynman diagrams in terms 
of     are precisely the dual representation of the bubble diagrams of the 
original model. 

�
�

Analogues of the field    , associated with the sum of the bubble diagrams, are 
thus natural candidates for the emergent coordinates of space.

�



But we also have to deal with the diagrams of the second class, for example

which are associated with the interactions between the D3-D(-1) and the D3-
D3 strings or, in other words, with the couplings between the D-instanton 
moduli and the D3-branes fields. 

The bubble diagrams are associated with the interactions between the strings 
stretched between the background branes and the probe branes, for example 

the D3-D(-1) strings.



These diagrams are the typical “matrix model” diagrams that are so hard to 
deal with. For the simple case of the D3 brane background, we shall see that 
a simple argument implies that their contribution to the integral

is trivial.

More generally, for example in non-supersymmetric set-ups, these diagrams 
will play a rôle. However, let us note that the sum over the undecorated 
bubble diagrams is already a sum over an infinite number of loops that yields 
a highly non-trivial dependence on the ‘t Hooft coupling. Evaluating, in such 
circumstances, to what extent the “decoration” of the bubbles modifies the 
result can be investigated in simple models.
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�SD3�SD(-1) =

Z
dZ e�NSD-brane(Z)

Ferrari, to appear
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X
SD3 is the N=4 super Yang-Mills action

Aµ , ⇥A , ��a , �̄�̇a

SO(4)⇥ SO(6)Bosonic symmetries of the D3/D(-1) system:

� , �̇ , µ a , A

To get              we have to consider three types of string diagrams SD(�1)

XX

X
X

X

X

X

X

X

X

X

Xµ , �̄�̇a q̃�Ii , q�Ii , �̃aIi , �a
Ii

�̃'�

Green and Gutperle 2000, Billó, Frau, Pesando, Fucito, Lerda, Liccardo 2002
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YA ! YA � �̂A(X̂)

� ! �� �̂(X̂)

D ! D � F+(X̂)

X̂ =
1

K
trX +O(�̄)

The coupling to the D3 brane fields is through local operators evaluated at 
one point, the position of the instanton.



Z
dµD3dXd⇥̄dY d�dD dq̃dqd�̃d� e�SD3�SD(�1)

=

Z
dXd�̄dY d�dD he�Seff (X,Y,�̄,�;O(xinst))i

=

Z
dXd�̄dY d�dD e�SD-brane(X,Y,�̄,�)



Xµ = xµ + l2s �
µ

Y A = yA + l2s �
A



Xµ = xµ + l2s �
µ

Y A = yA + l2s �
A

SD-brane =
4⌅2l4s
⇤

tr
n

�[⇥A, �µ][⇥A, �µ] + 2i[�µ, �� ]Dµ�

o

+

ln det
n

⌃y2 ⇥ I2 + 2l2s⌃y · ⌃⇥ ⇥ I2 + l4s⌃⇥
2 ⇥ I2 + il4sDµ� ⇥ ⇧µ�

o

�

ln det
n

yA ⇥ �A + l2s ⇥
AI4 ⇥ �A

o



Xµ = xµ + l2s �
µ

Y A = yA + l2s �
A

SD-brane =
4⌅2l4s
⇤

tr
n

�[⇥A, �µ][⇥A, �µ] + 2i[�µ, �� ]Dµ�

o

+

ln det
n

⌃y2 ⇥ I2 + 2l2s⌃y · ⌃⇥ ⇥ I2 + l4s⌃⇥
2 ⇥ I2 + il4sDµ� ⇥ ⇧µ�

o

�

ln det
n

yA ⇥ �A + l2s ⇥
AI4 ⇥ �A

o

To get the full type IIB background, one must integrate out D exactly from this 
action and then expand in    and     up to terms of order six. This is some 
rather tedious algebra, but the calculation is completely straightforward.

✏ ⌘
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General conclusions

A conceptually important (and certainly well-known!) comment can be made 
by way of conclusion. 
The fluctuations of space and geometry are traditionally associated with the 
quantum corrections to a purely classical picture of gravity and thus, strictly 
speaking, to the genuine quantum gravity effects. 
This interpretation is misleading in the present context. Indeed, the 
microscopic, pre-geometric model we start with will always be treated 
quantum mechanically, and the emergence of space and gravity are possible 
only as a consequence of strong quantum mechanical effects in this model. In 
other words, the notions of space and gravity are fundamentally quantum 
mechanical, including in the regime where they superficially look classical. 



This property is a generic feature of any model of emergent space and gravity. 
It contradicts sharply the standard lore about the difficulties in quantum 
gravity, which is still advocated by a large fraction of the modern literature 
which presents gravity and quantum mechanics as incompatible or at best 
hard to reconcile. If space emerges, as in the model we have discussed, there 
is really nothing to reconcile. Quite the contrary, we can find space and 
gravity only as a consequence of quantum mechanics. 

This tantalizing paradigm for gravity, which underlies most of our modern 
thinking about string theory, would certainly be universally accepted if only 
more effort were devoted to the construction of tractable models, which we 
have modestly tried to do in the simplest and most symmetric case.



Thank you for your attention!


