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e QFT Treatment of Gravity (PT and non-PT)

e QFT/RG Motivations for a Running G(k)

e Effective Covariant Field Equations with G(Box)

With R.M. Williams and R. Toriumi



Diagrams



Dimensional Considerations

Coupling dimensions in gravity different from electrodynamics ...

Ohy, = GT,
DA,LL — ej,u

... as can be seen already from Poisson’s equation :

A¢ = 4mep p~1/1°

A¢ = 4 Gp 0 @Z3



Simple Consequences of Lorentz Invariance

Lf\«{aa: ~ _auAu ot A”

~ +(A) = (VxA)?

Lyraw ~ +(hij)* — (Vh)? + ...

In Maxwell’s theory like charges repel :

1
fp'_vg'p = Bipe >0

... Whereas in gravity like charges always attract :

—/Too' : T = Ej <0
N2



Vertices

Infinitely many interaction terms in L (unlike QED)

L = (T]W +Ghy, + Gg(hg)w + .. ) -Oh - Oh

.
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One Loop M{i

One loop diagram quartically divergent in d=4.

Electrodynamics : ~ ¢ /d4 log divergence

p+k



Two Loops

dip, d*
4 1 G P2 2\ 4 4 6
v / P
First required counterterm :
2
R? ~ (@h)* ~ 7% andalso (82h) ~ [°

W po

L = R+ o0cR?+ocRP + ...

Perturbation th. badly divergent ... wrong ground state ?



Counterterms

1
— d o d
| = )\fdas\/ﬁ 16WG/dx¢@

Radiative corrections generate lots of new interactions ...

1 1 h ny Gk’Q
F((fi?)J: 1—d 167 2/ ~L\/_( Ry R +1 (G) — 1 + const. Gk® +

@ 1 209
div =4 2880 16?1’

/d%\/_R /7 R, R

= (string) UV cutoff

I —))\/dd:c g —

1 d
167G /d TVIR

Perturbative renormalization in 4d requires the introduction of higher derivative terms ...
High momentum behavior dominated by R2 terms [Dewitt & Utiyama 1962] ...
Issues with unitarity ?



Higher Derivative Quantum Gravity (pert. renormalizable)

= /d‘& N [/10 +kR+aRy R* — L (b+ a)Rﬂ

AY = W\f—d} {B(Riy — IR*) + BsR*+ BsR+Ps }

with the coefficients for the divergent parts given by

133
h=Tg
Bz = g w’ +§m +% Asymptotically free ... PT no good in IR

;3 _L §+L _|_i E_Fi
ST a2kt \ 2 8w? akt \ 3 3w/

Here @ = b/a and A is the dimensionless combination of the cosmolog

Newton’s constant A = %on“d’ with k2 = 167G. [ Fradkin and Tseylin;

Avramiddy and Barvinky ]



Evaluate Options...

(1) Denial : Gravity should not be quantized, only matter fields.
... goes against rules of QM & QFT.

(2) Keep gravity, but resort to “other” methods: Nontrivial RG fixed point
(a.k.a. asymptotic safety), Lattice Gravity, Truncations, LQG...

(3) Add more fields so as to reduce (or eliminate) divergences:
N=8 Sugra — 70 massless scalars...

(4) Embed gravity in a larger non-local (finite) theory : e.g. Superstrings.

Gravity then emerges as an effective theory. .<!
0



N =8 Supergravity

= Restore applicability of P.T. in d=4 - by adding suitably tuned
additional multiplets ...

E.g. One-loop G-coupling beta function of N=8 Sugra:
Bo=-4-1+2.8-11.2842.56+1.35=0

Should be a finite theory (correspondence to N=4 SYM) ... at least to six loops
... but then we might not know for a few more years.

One also would like to understand, eventually, when and how SUSY is broken ...



A Second Look at Non-Ren.Theories

An often repeated statement ...

“ A non-renormalizable theory needs new counter-terms added at
every new order of the perturbative expansion.

“ This implies an infinite number of experiments to fix
all their values, and an infinite number of “physical” parameters.”

“ This is at the core of the lack of predictive power of non-
renormalizable theories, such as quantum gravity.”

It can’t get any more hopeless than this ...




Infinite or Zero ?

The QFT beta-function at one loop for the ¢* theoryind =4 is:

3
= 16,29 TO0) >©<

So the sign suggests that the coupling constant might go to zero at
low energies (Symanzik, Wilson 1973). If this behavior persists at
large couplings, it would indicate quantum triviality.

The question can ultimately only be answered non-perturbatively (lattice), since it
involves strong coupling.

Also, in d > 4 this is a non-renormalizable theory !




Proof of Triviality of (Non-Ren.) Ad*

PHYSICAL REVIEW
LETTERS

VOLUME 47 6 JULY 1981 NUMBER 1

Proof of the Triviality of @,* Field Theory and Some Mean-Field Features
of Ising Models for d > 4

Michael Aizenman
Depavtment of Physics, Princeton Universily, Princeton, New Jersey 08544
(Received 23 April 1981)

It is rigorously proved that the continuum limits of Euclidean @ lattice fields are free
fields ind > 4. An exact geometric characterization of criticality in Ising models is in-
troduced, and used to prove other mean-field features for d> 4 and hyperscaling in d = 2.

PACS numbers: 03.50.—z, 05.50.+q, 11.10.— z.

(1) The main vesult.— A constructive approach to the Euclidean ¢,* field (in R?) is to define it as a
continuum limit of lattice fields, with the distribution

TTd¢,) expl- 20o0.* +B,9.%) * ZI) +J¢,¢,]/norm. oH)

x=y|®1

A FREE field theory ... situation seems rather confusing, to say the least.



Perturbatively Non-Renorm. Interactions

Some early work :

+ K.G. Wilson, Quantum Field Theory Models ind <4, PRD 1973.

*  G. Parisi, Renormalizability of Not Renormalizable Theories, LNC 1973.

»  G. Parisi, Theory of Non-renormalizable Interactions - Large N, NPB 1975.

« K. Symanzik, Renormalization of Nonrenormalizable Massless ¢ *Theory, CMP 1975.

* E. Brézin and J. Zinn-Justin, Nonlinear o Model in 2+& Dimensions, PRL 1976; PRD 1976.

e D. Gross and A. Neveu, PRD 1974 ...

(Un) fortunately not very relevant for particle physics ...



[Cargese 1976]

ON NON-RENORMALIZABLE INTERACTIONS

G. PARISI
(I,H.E.S. - BURES-sur-YVETTE)

1. Introduction

Nonrenormalizable interactions have always been the black
sheep of field theory. Long time ago (1) it was supposed that non-
renormalizable interactions are characterized by having Green func-
tions which are not C° in the coupling constant : if this inter-
pretation is correct, the ultraviolet divergences found in.thé
perturbative expansion arise from the non existence bf the quﬁn}'
tities which are computed in the standard apprbach-(i.e}; the coef-

ficients of the Taylor expansion for zero coupling constant).

The first attempts in this direction were done using or the
E-limiting procedure (2) or the peratization technique (3). Ho&e#er
they were mainly inconclusive ; the full understanding of the pro-
blem required a better non perturbative knowledge of quantum field
theory which is now given by the modern theory of second order pha-
se transitioms (4).

The purpose of these lectures is to study the existence and
the properties of mnon-renormalizable interactions at the light of

the knowledge gathered in the study of critical phenomena. We do

FaT-h1




Les Houches 1977

COURSE 4 ;ubtraciion_s will be required than in the two-dimensional theory. It therefore
APPLICATIONS OF THE RENORMALIZATION GROUP appears that, if perturbed in powers of 1/, (¥ ¥)? is renormalizable in three
TO HIGH-ENERGY PHYSICS dimensions.

Further insight into this theory is gained by calculating §(G),
David J. GROSS 6(6)2%0— 1'1—663N. (919)
Department of Physics, Joseph Henry “;’;"'w’m’
gﬁﬂﬁ%ﬁﬁ%ﬁ« Depending on the value of G two qualitatively different theories emerge. For
G2 <G} = 8/N, Bis positive, the o propagator has no space-like singularities,
and the theory is infrared free. For G2 > 62 , B is negative, the effective cou-
pling diverges for finite momenta and the ¢ prOpagator has a tachyon pole.
Spontaneous symmetry breaking then occurs as before, the fermions develop
a mass, and the tachyons disappear. In both cases the ultraviolet behavior of
the theories is controlled by the fixed point of 8, Gg. It is the existence of
such an ultraviolet fixed point in the 1/N expansion that produces the non-
perturbative improvement of perturbation theory.

One can speculate that this phenomena could occur in other “non-renor-
malizable” theories. One merely has to find a method of resumming ordinary
perturbation theory, like the 1/N expansion, that produces an ultraviolet sta-
ble fixed point of the renormalization group. This is in general non-trivial, an¢
I know of no realistic four-dimensional examples. For example, in the case of
(¥ ¥)? one finds that G diverges as one approaches four dimensions.



Change Dimension : D<4

Simplest graviton loop :

o et

- d”p , . -
< @ [ S VR V)

By lowering the dimension, Feynman diagrams can be made
to converge ... Wilson's d =2 + ¢ (double) expansion.

Back to evaluating diagrams !




Gravity in 2.000001 Dimensions

M . 0 . . " :
* Wilson expansion: Formulate in 2+¢ dimensions... \/ - ,

G is dim-less, so theory is now perturbatively renormalizable
Wilson 1973

o Weint_)erg 197_7
arm Gp) = B(G(n) ﬁﬁ:za;wgl,ngirg;y?gggs%
2 20
d((;) = (d — 2) G — § (25 — 'II-S) ::2 — ? (25 — 'I?.-S) 1:3 —|— S ( pure gravity : ns :0)
. . : : A
with non-trivial QFT UV fixed point :
{ Ge = 3 (25 — 1) (d=2) 2(25 — )2 (d=2)"+...
15 ’
—1 al a2
= —0(G,) = (d-2 d—2 e
v F(Ge) = (d=2) 4 g (d =2 +
(two loops, manifestly covariant,

gauge independent ...)

Two phases of Gravity




2.000001 dimensions - contd
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Graviton loops Graviton-ghost loops

e Analytical control of UV fixed point at Gc ;

e Lorentzian = Euclidean to all orders in G ;
e Nontrivial scaling, determined by UV FP :

G
1 4 ((m?2)k2)(d—2)/2

e New Scale, Strong IR divergence : G(k*) =

-

) & ! 4
¢ L= ) A exp (f Sfig!)) CNC A‘G_GC‘_]-/,B(GG)




a a 8 B (B-1)(B-3)
?Lo—%o[l—(;urg—i)(?] R T R S (I
(B—1)°
a =8 B—2)2 " a, B gauge parameters,
e B ue L QG . ) o 4(B — 1)2 answer gauge dependent
l6nG 167G \ e BT
aj adn _2/d
Rescale metric : Suv = ll - (? + g) G] SL»-

‘us | /
L — — ——(b—= \ o o
A [1— 20— a)6] VER +hav/E

1 1 G lizat
I R Y N DU renormalization,
G - G [ ( 2(,12) ] answer gauge independent




Detour : Non-linear Sigma model

« Field theory description of O(N) Heisenberg model :

ﬁd—?
gz

/ dz 8,0%(z) 0% (z) + f d‘*mj“(m}a“(ﬂf})

E. Brezin J. Zinn-Justin 1975
F. Wegner, 1989

Coupling becomes dimensionless ind = 2. For d > 2 theory is not E.Brezinand S. Hikami, 1996
perturbatively renormalizable, yet in the 2+ € expansion one finds:

7z = /[da] I] 6 (0°(x) 0®(x) — 1) exp (—

Big)
dg* 2 2
-J — (d— _
A 5 A Blg") = (d—2)g

N2; 2g' + 0 (9° (@ —2)g")

Phase Transition = non-trivial UV fixed point; new non-perturbative mass scale :

2 3

1 _ € €
vl =t oSt Ty

- 1 1
€6 = ") = cat (7 - ;@

— [30 — 14 + n? + (54 — 18n)¢(3)] + ...

d(n—2)3



... But are the QFT predictions correct ?

Experimental test: O(2) non-linear sigma model describes
the phase transition of superfluid Helium

Space Shuttle experiment (2003)

High precision measurement of specific heat of superfluid Helium He4
(zero momentum energy-energy correlation at UV FP) yields V

a=2-3v =-0.0127(3)

G, (J/mole K)

J.A. Lipa et al, Phys Rev 2003:

a=2-3v =-0.0125(4)

MC, HT, 4-£ exp. to 4 loops, & to 6 loops in d=3: N
107 10®  10° 10* 107

[1-T/T,
FIG. 15. Semiloganthmic plot of the specific heat vs reduced
nperature over the full range measured. Below the transition the
a (closed symbols) were binned with a density of 10 bins per

Second most accurate predictions of QFT, after g-2  &ezihosiimiii:



Running G(k)

In QFT, generally, coupling constants
are not constant. They run.



RG Running Scenarios

B(g)

“Triviality” of lambda phi 4

B(g)

-~

Asymptotic freedom of YM

B

Wilson-Fisher FP in d<4

\

G

Callan-Symanzik. beta function(s):

5= Gli) = B(G()

Ising model, o-model, Gravity (2+¢, lattice)



Running Coupling - QED

It is_possible, of course, to avoid the use of the small k?* approximation. A static charge located

at the origin will induce a modified Coulomb potential to order « given by |tZykson & Zu ber QFT, p . 328

L T
V) =—— 0O
4 ! 4 T !
2y [ LY (= 1Y
oM =1+ — [‘ due ™1+ — = )
dn )y 2u u + -
(7-24) € e
% 1 S
1+ —|ln—5 -2y ——+--- mr <« 1
3n (mr)* 3
0l =
1 * - ame mr > 1
R .
Axt2(mr)32
with y equal to Euler’s constant 73‘; dulnue “=0.5772.... According to the definition of charge
O(oc) = 1. We see again that as r decreases Q(r) increases, even becoming infinite as r tends to zero.
The approximation used in Eq. (7-23) is only valid in the mean. ’Y ,Y
e
e ——— )
~ao
.. _ +
> — 25y)n e e
—e

Figure 7-6 The vacuum polarization contribution to the 2§, , — 2P, hydrogen splitting.

18" 1

Q- Q)= (1+ In +

37 m?2 r?

IR divergence ... but electron Compton wavelength 10*-10 cm.

... What would happen if the electron mass was much smaller ??



Running Coupling — QCD

Vacn(r) = —z - —— o
ocplr) = —5 - 5 " i S
3 11 —3np rlog =~ (00T S %ﬁo“é‘ﬁ‘
NN

The mass of the gluon is zero to all orders ... Strong IR divergences.

But SU(N) Yang Mills cures its own infrared divergences: m* = £ % o A% Asie = 1 Fermi
0| F, FFY*0) ~ —
( | w | ) & 1 27
1 { =m >~ exp (——) A new scale
- Bo g

12

(0] 44 |0)

Non-perturbative condensates are non-analytic in g ... phase change.

What would happen if m was very small ??



Mass without Mass

Is the gluon massless or massive ?

It depends on the scale ... at short distances it certainly

remains effectively massless — and weakly coupled.

Three jet event, Opal detector
Source: Cern Courier




Summary

Key ingredients of the previous QED & QCD RG results:

(a) A log(E) — By dimensional arguments & power counting this can only
happen for theories with dimensionless couplings. Log unlikely for gravity.

(b) Reference scale is smallest mass in problem (IR divergence).

(c) Magnitude of new physical scale can only be fixed by experiment:
There is only so much QFT can predict...



Back to QF T Gravity...

Running of Newton’s G(k) in 2+¢ is of the form:

A
1 ]./21/
G(K?) =~ Gy 11(:0(2 2) + He
&k - —
Ge
vl = (G = (d—2) + 2517: (d=22 + ...

( Plus or minus, depending on which side of the FI” one resides ...)

Key quantities : i) the exponent, ii) the scale § .

What is left of the above QFT scenario in 4 dimensions ?



Running Coupling — Gravity

Proposed form : ST

LI %gwmm
“opgd

(obtained here from G(O) static isotropic solution )

) o CO ‘ 3 3 1 .
G — G(r) = Gy (1 + g T In 7,2 + ) cop = O(1)

HH & R.M.Williams
NPB ‘95, PRD ‘00, ‘06,07

B G dG! 1 A
m = & 1:A5-Aexp(‘/ ﬁ(G’)) 5—2 i~ § ““““““
New scale € has to be fixed by observation — e
everything else is in principle fixed/calculable.




Feynman

Path Integral



Path Integral for Quantum Gravitation

16gl]* = /dd G5 (g(2)] 69, () 6gap(T) DeWitt approach to measure :

introduce super-metric

@ fg@)] = $V/o@) 9" @) @) + 9" (@)g" @) + A g™ ()9 (@)]

/d# [H =0/ TT dgju (o) 2, /H IT dgpw (2

u=v T puzv

'/)?j,
Definition of Path Integral requires a Lattice (Feynman &Hibbs, 1964). £

Zeont = /[dg,_,,,,] e fda:\/ﬁ—l- ﬁfdx\/ﬁR S



Only One Coupling

Pure gravity path integral:

g _ —Igd]
z /[dg“”} ‘ In the absence of matter,

only one dim.less coupling:

Ielg] d/dm\/g - XdZ/d:r\/ER

Rescale metric (edge lengths): G = Goay 2
QL.V — )\g/d G M = )\az/d e

... similar to g of Y.M.

Ielg) = A" [ de /7 — —A—3 A2 [de V7 R



Gravity on a Lattice

Generalaim: 1) Independently re-derive above scenario in d=4
i) Determine phase structure
i) Obtain exponent v
iv) What is the scale  ?

Lattice is, at least in principle, non-perturbative and exact.



Lattice Theory of Gravity

“General Relativity Without Coordinates” (T Regge , J.A. Wheeler)

[ MTW, ch. 42 ]

» Based on a dynamical lattice.

» Incorporates continuous local invariance.

= Puts within the reach of computation
problems which in practical terms are
beyond the power of analytical methods.

Figure 42.1.

» Affords any desired level of accuracy
by a sufficiently fine subdivision of
space-time.




Lattice Gauge Theory Works

231 In [ln (,u.Q/Azﬂ 43%

4
as(1) = Bo I (p2/A2) [1 32 In (12 /A2) 85 (12 /A2)
5 1N2 B0y b
x((ln [ln(;u /A )} - 5) +@_Z)] '

Wilson'’s lattice gauge theory provides
to this day the only convincing
theoretical evidence for confinement
and chiral symmetry breaking in QCD.

1 AVerage '
-

adronic Jets

e*e rates

b
cI
1
1
1

Photo-production
———

5
'
1
1
1
1
1
. . Fragmentation
11 Z width
ep event shapes |,
Polarized DIS |
Deep Inelastic Scattefing (DIS
p icql( )

' 1 decays

Y decay
—_——

Spectroscopy (La:tticga)
1
1

T

0.1 0.12 0.14
ag (M)

Figure 9.1: Summary of the value of ag(My) from various processes. The values
shown indicate the process and the measured value of «y extrapolated to p = Mz.
The error shown is the total error including theoretical uncertainties. The average
quoted in this report which comes from these measurements is also shown. See text
for discussion of errors.

[Particle Data Group LBL, 2010]



Lo 2 2
9i = 3 (ll,i-l-l Tl 41— lz'—l—l,j-l-l)

1
Vg = m\/detgﬁj

sin Qd =

5},{ =27 — Z 90{

d—simplices
meeting on h

d Vd Vd_g
d—1V, ,V, |

Curvature determined by edge lengths

T. Regge 1961
J.A. Wheeler 1964




Lattice Rotations, Riemann tensor

" (snt+1) = RY,(P)¢"(s1) RF, =

P ¢ Dbetween simplices

[ f path F)\dm)\] i)
v

R(C) = R(s1,85)--R(s2,51)

Due to the hinge’s intrinsic orientation, only components of
the vector in the plane perpendicular to the hinge are rotated:

Unn(B) = N epvaran o 10 - 10472,

Elementary polygonal path around a hinge (triangle) in four dimensions.

RA(C) = (86 U) H

15

By (h) = A(S(h-]) Usno () Une () Exact lattice Bianchi identity,
c(h)
H [B{S(h)U(h)]’u 1
(5 f inges v
R(h) = 2 (1) lneeti];g%n n:]dgep




Lattice Weak Field Expansion

Regge-Wheeler th. is the only lattice theory of gravity with correct
degrees of freedom : one m =0, s =2 degree of freedom

— 2k 3 1 (12) Ap(1?)
h

“ "

... call small edge fluctuations “e” :
1
IR = E ZB@ Mij ej
ij

... then Fourier transform, and express result in terms of metric

deformations .

... obtaining in the vacuum gauge precisely the familiar TT form in k-0 limit:

~k*h;" (k) hj;" (k)

N = _L'J/
4 X

R.M.Williams, M. Roceck, 1981



Choice of Lattice Structure

A not so reqgular lattice ...

...and a more regular one:

Timothy Nolan,

Carl Berg Gallery, Los Angeles

Regular geometric objects
can be stacked.




Lattice Path Integral

Lattice path integral follows from edge assignments,

gij =

N

2 2 2 1
(ll,i—H T 1 — lz+1j+1) Vi = d'\/detg]

| | .
Ielg) = NA* [ dr g - mA”/dI\@R I = MYV = 260 Y 0,(12) AR ()
h h

/dgﬂz/ /H (d = I dgw(=) —— /[0”2] = /OOO H dl; 1:[ [Va(s)]” ©(%))

U=v

(Lattice analog of the DeWitt measure)

Z = f[dgﬁf.v} E_Aofdd‘l’ 9+1671rc:fdd‘1’ gk - Zr = /[dlz} e_‘rL['EQJ

Without loss of generality, one can set bare 4, = 1;

Besides the cutoff, the only relevant coupling is k (or G).



Gravitational Wilson Loop

Parallel transport of a vector done via lattice rotation matrix

Re(C) = | P {f T _d./\} “
ﬁ( ) [ P path C A }5

For a large closed circuit obtain gravitational Wilson loop;
compute at strong coupling (G large) ...

W(I) ~ Tr P exp {f T dxy,
-

~  exp(—Ac/E?)

A— o0

.. then compare to semi-classical result (from Stokes’ theorem)

p)e% ~ l i - Ly «
Rﬂ((}') [exp{Q /S(C)R'WAC }} ;

e suggests & related to curvature. )
e argument predicts a positive Aobs =+ 3
cosmological constant.

“Minimal area law”

follows from loop tiling.

A = % j£ dxt ¥

HH & R Williams,
Phys Rev D 76 (2007) ; D 81 (2010)

[Peskin and Schroeder, page 783]
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Edge length/metric distributions

P(V)

L=4 - 6,144 simplices
L=8 - 98,304 simplices
L=16 - 1,572,864 simplices
L=32 - 25,165,824 simplices

120000 — T ——T 200000 T T T T T T T
a = 005
] [
150000
= 100000 -
i
50000 [
0 - —- N .
0 005 61 15 02 025 03 035 04 045 05 0
s 6 4 2 0 2 4 6

v




Phases of L. Quantum Gravity

(Euclidean) Lattice Quantum Gravity in d = 4
exhibits two phases:

G > G, Smooth phase: R=0

(Guv) = €N

G <G Rough phase :
branched polymer, d = 2

(Guv) = 0

Unphysical

[HH & RMW, NPB, PLB 1984 ; _ , _ . .
B. Berg 1985 , Beirl et al 1993, .. ] (Lattice manifestation of conformal instability)



Lattice Continuum Limit

L~ T TN
( > / \ Ffi _ T _}l
. , \ / N 7
N~ [~ e I oy
—> —> —>
S 3 S

The lattice quantum continuum limit is gradually approached by considering sequences
of lattices with increasingly larger correlation lengths & in lattice units. Such a limit requires the
existence of an ultraviolet fixed point, where quantum field correlations extend over many lattice

spacing.

Continuum limit requires the existence of an UV fixed point.




(Lattice) Continuum Limit A — o

o _ 1
dlogA v

(G—G.) + ... integrated to give :

( Standard (Wilson) procedure in cutoff field theory )

G(A) — G."
/ v 0 e
RG invariant correlation UV cutoff A — Bare G must approach
length € is kept fixed (average lattice spacing — 0) UV fixed point at Gc .

The very same relation gives the RG running of G(u) close to the FP.



Determination of Scaling Exponents

< |d R(x) > 1 0
Ak ~ =LIVERE) ~ %z ~ —Ag (k. — k)’ y = 119
< [dx/g > V ok kske d
< ([dx\/gR)> > — < [dx/JgR >* 2
Xz (k) ~ UdrveR) Jdxvs ~ la_]nz ~  —Ag (ke — k)"
< [dx\/g > V ok2 k—ke
Scalin
g . . Fs-ing(G)
assumption: - w
120
SR L L ? ” ko= 00637 -
Ek) = m(k)™" ~ A (ke — k)
k—k. 60 ”1'."
40 h
Find value for v close to 1/3: nf
(ke — k) LY”
k. = 0.0636(11) v = 0.335(9) V= 1%3
[ Phys Rev D 1992, 1993, 2000 ]




Universal Gravitational Exponent v

1/v

10

Lattice in d=2,3,4,00
PRD 93, ‘00, ‘06

jL
Truncated RG Reuter 03,
Litim PRL 04, PLB 07

A&K NPB 1998

d = e (v=0)



Back to the Continuum



Running Newton's Constant G

¢ is a new RG invariant scale of gravity m = ¢! = A F(G)

Running of G determined largely by scale & and exponent v :

1 1/2v
1 + ¢ ( ) + ...

G(K) = Go o

Almost identical to 2 + ¢ expansion result, but with 4 - d exponent v = 1/3
and calculable coefficient co ... “Covariantize” : k2 — —O

1 1/2v
1—}—(1(}(&2']) + ...

G(O) = Go




Three Theories Compared

R,u.u - % Guv R "’@,uu — S@p.y
@“F‘uu +@AL’ — 4u

0" O & +@ ¢ = @@3

1

Suggests  Ajpys & ] I

RG invariants Running couplings

m=1/¢



Vacuum Condensate Picture of QG

= Lattice Quantum Gravity: Curvature condensate  SeeaisoJ.0.Bjorken, PRD 05

R~ (1077eV)* ~ &2 Mohgs = 3

= Quantum Chromodynamics: Gluon and Fermion condensate

as < Fp - FP >~ (250MeV)t ~ ¢
-1
Eocp ~ Mrs
(ag)YP < hip >~ — (230MeV)? ~ €73

= Electroweak Theory: Higgs condensate




Effective Theory



Effective Field Equations with G(o)

Explore manifestly covariant, non-local effective field equations

G.A. Vilkovisky ...

1 G. Venezi
Ruy — 5 Y9uv R+ A Guv — 87 G(D) Tu,p HH Er;f\zlilaillrlligms PRD 06,07
- Deser et al. 2008
Consistency condition (Bianchi) on T}, + T5° G(O) = G, (1 + 5%(0'3))
s _ (SG(D) sG(O 1 1/2v
1 vac vac _
V(L + 1) =0 e = S5 & == ()

Form of d’Alembertian depends on nature of object it acts on,
0 = guyvuvu U Taﬁm’yci... = QMVV# (VV Taﬁm-yd...)

[ 1820 terms for 2-nd rank tensor ]



Static Isotropic Solution

Start from fully covariant effective field equations

R;w — %Q;WR + )\Q;w = 387G (1 + A(D)) Tp,z/
\ Additional source term due to

General StatiC iSOtrODiC metriC vacuum polarization contribution
ds® = — B(r)dt* + A(r)dr® + v (df* + sin® 0 dp?)
o 2M G o(r)
Ar)™ =1 - ——+ — r > 2MG
Br) = 1 2]\;[6‘ L QET)

Search solution for a point source, or vacuum solution forr # 0
T, = diag[B(r)p(r), A(r)p(r), TQP(T), 2 Sin26’p(r)]

1 : i3l
pm(r) = gcyaoj\im'} (mr) 208 V)K%(S_%)(mr)



Static Isotropic Solution - cont

Solution of covariant equation (only for v = 1/3)

/ / 3
B(r) =1 — 2MG | daMGm 2 In (mr) + ...
r 3T
/ ; 3
Ay = 1 - 2ME 4%];me 2 In (mr) + ...
r T

...which can be consistently interpreted as a G(7) :

m=1/&
ag= 33.

H.H. & R. Williams, PLB ‘06; PRD ‘08

o 3 3 !
G =G 1+ — |
G — G(r) ( —|—3er anTQ—I— )
Reminiscent of QED (Uehling) result :
1
Q(r) :1—|—3a7r lnm2r2+ mr < 1



Cosmological Solutions

Need to solve effective field equations :

R,u,-u - %g,uyR + /\g,u.y = 8w G(D)’—Z}w

oG (0O)
. G(O)=Go (1 +
... for standard FRW metric \ ( Go )
ar? 6G(O) 1\ /2
dr? = di* — a* (1) {1 s+ (a6 +811129dg02)} k=01 Go @ (SQD)
... and perfect fluid with p(t) =0
E.g. Compute action of [J7 , then analytically continue in n = —1/2v (1)

Simplest treatment initially assumes power laws: p(t) = po t°

Later include perturbations, e.g. :  dr? = dt? — a® (6;; + hy;) dz’dx?



Running Cosmological Constant ?

Field equations with ) (0)

Ry — 59w R+ Nguw = 87GT,,

Write: X = Xg 4+ 0A(k) with dA(k) ~ ¢y (k)™ °
or: SA(O) ~ (—O+pu%)°

1 oal(-Blg)+p?)
( ( o ) / da o’ e w— 0

IR regulate :

Then :

1o a(-0O(g)+n?)

())\( “Guv = “Juv — €l (“2) 7. Guv

using Vyg,, = 0 , so it cannot run.




Summary

dlnd(a)

(I) Matter density perturbation growth exponenty  fla=ay) = —— =
v = 0.556 — 106.4 ¢; + O(c7) g—0
e : : Correction always negative A
(I1) Gravitational slip function n : n=""t
n(z) = —1.491¢; — 6.418 ¢, 2 + 30.07d ¢, 22 + - -
. 8y 106.4 ¢ — 0
Ratio : 7 20 gy q

S 1.491 ¢



Zeroth Order Field Equations

a’(t) G (t)\ _
3 20 8 G (1 + Go ) p(t) + A
a*(t) a(t) SG(t)\
av) o _ o W 4 W 2N A\
a2(1) 2 o) 87 G (w + Wyae Go ) p(t) +
SG(t AN
G(f) = G(] (1 + G((]) ) = G(] 1—|- Cy (E) +
To zeroth order, vacuum fluid 5G (t) 1 0G(1)
has same equation of state Prac(t) = Go p(t) Poac(t) = 3 Gy p(t)

as radiation.

ﬁfmc(t) — Wyace ﬁfmc(t)

, 1
u)ruarc —_— g




First Order In the Fluctuations

d’Tz = dtg — 052 ((S@j + h@j) dlﬁdij

Comoving frame, g — 0,
focus on trace mode h

Standard GR result : — h(t)

Perturbed FRW metric

[PRD 2010,2011, with R. Toriumi]

Sp(x,t) = dpglt)e ™ Sp(x,1) = dpg(t) '™

Sv(x,t) = Ovg(t)e'd ™ hii(%,t) = hqi;(t) "4

= 8n Gop(t)d(t)

= —24r Gowp(t)6(1)

L1+ w) () = 81 5() = 8p(t)/p(t). () = his(t)



Re-compute Pert. with G(Box)

(Spq (t) =w 5,0(1(?5) Opquac(t) = Wyac 0 Pqvac(t) qg—0

Now Box contributes to the _ H(0) (1) /3 9
Uig) = U O/ (h h
fluctuations as well, to O(h) : (9) T (h) + O(h7)

_ o 1\ /2 1 1 O 1 N\ 1/2v
=G [ ((m(m) “ 2,00 C “’*(m) -
0G(t) 1 0G(1) B _
dpvac(t) = dp(t : h(t 1 cp >~ +7.927
P () GO p()—l_Ql/(h GO #(),()()
(spfuac(t) - ’”«’?m.c(sﬂfuac (f) Wyae = 1§

Need to assume background is slowly varying : h/h > aja



Equation for density contrast

Single ODE for density perturbation, from cov. field equations
with running G(Box) :

) ((Lat) 166w\ 1 . [a) 6G@) | sG]
0+ | (5655 e (0 G 2 )|

)
+ B 47 G (1 + g 52?) — 211/ -2¢p - 5(2;(0”) p(t)
1 (a®(®) 6G(t)  , a(t) 6G(t)  a(t) 0G(t)  0G(1) B
Cw 2cn - (a?(t) Gy 3 a(t) Gy + a(t) Gy * Gy )] o) =0

Classical GR result is much simpler (eg. Weinberg 1973, p. 588) :

5(t) + 2 é('S(t) —A4m Go p(t) 6(t) =0

a



Density Contrast in a(t) cons

Useful variable:

A Q, 1-0

4 -
87 Gy po () )

Standard GR result for density contrast : (eg Peebles 1993)

1 11
dola) = a- o (ga L; ?3 —a’ 9)

L0

Compute small correction due to running G(a) :

0.8

0.0 -

d(a) o< dpla) [1+ ¢ Fla)]

o(a)

0.4




Structure Growth Indices

_ 0dlnd(a)
[la) = dlna
In ¢ B
fla =ap) = dlno(a) = 7 with €2 = 0.25
dlna |,—,,
v = 0.556 — 106.4 ¢; + O(c?) g—0
pd \
~
Classical GR result

Cr < 5x10 4
Correction always negative;

Significant uncertainty in magnitude of ct coefficient
Newtonian ( G(k) ) result two orders of magnitude smaller ...



Measured growth parameter vy

i &7

TESTING GENERAL RELATIVITY

1.0E
0.9
0.8
0.7

0.6

0SE

O.kg-
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0.2§-
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FYTTY PYYTTITYEY FYPTYITET] FIRTITYNT] FYPTOOTOT (AYPIEY

0.0 B Livisini Ly Liiuinn E
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— ——
o Growth index, y:
dinD/dIna = Qy(a)Y
e y=0.55for wCDM

_— e y=0.50+0.08 measured

Alexei Vikhlin et al., Rapetti et al.



v
i

Gravitational “Slip” with G(o)

Now use conformal Newtonian gauge :

ds® = a®(7) {—(1 4+ 20)d7* + (1 - 20)da’dx;} M GRN=9lp—-1=0.

“Old” field equations : K26+ 3§ (@ + Eg‘;) = 47Ga’6T"
a a

K2 (c;j + 5-1;;) — 4nGad*(p+ P)o
a

TR S0 at\ k= N AT o
¢+ a(n» + 2¢) + ( » ag) ¥+ 3 (0 =) = 5 Ga”ol";
(o —1) = 121Ga*(p+ P)o

Next, re-derive with : @ — @(O) [ HH & R. Toriumi 2011 ]



New Fleld Equations with G(Box)

Need to expand G(box) in the relevant perturbations:

B o 1 1/2v 1 1 1) 1 1/2v
G(D)-_Goll T ((m(m) — =0 (h)-(m) +o.

“New” field equations :

k:2¢+3(—L (d)+ :[)) = — 4w Gy a? (l+ﬁ) pd — 4Gy a® E—h p + Ok
a Gﬂ Gﬂ L

- . i 2 k2 -
(f{) + (_é (’t[) + 2 (f)) + 2 —£ — a— f/[) + — ((7‘) — f,l{)} - 47TGU (-‘32 (TU + wyae E) Y )
a a? 3 Gy

5 0G Ch
+ AnGya® an Wyae 2—; h p

+ Ok
5 0G ¢4

K (¢ —1p) = + 871Gy a? G—ﬂ;ap—k O(k?) .



Gravitational Slip Function

oG 1 §f.‘.-idt

Gn 2103

S

[

S

16 0G (¢
nla) = - G(nﬂ) lugl

l

t.’.‘lg

|

SG(1)
Gy

— (

s+3%5 -9

(1}

2 .
sla) 375 V 14+a'd

Ja

1

3

:

L



Answer for GR “Slip” Function

Slip function 1 useful in parametrizing deviations from standard GR:

n(z) = —1.491¢; — 6.418 ¢; z + 30.074 ¢4 224 ... 70

CMDB measurements give values around 0.09-+£0.7

( Classical GR result=0)

ce < 0.3

dy 106.4¢,

41 1491 ¢; Correction is always negative ... [ IHES preprint Aug 2011 ]

... and much smaller than in growth exponent .



Testing of QFT G(Box) Scenario ?

In conclusion, maybe three possible astrophysical
tests of QFT running of G(Box) :

(1) Growth exponent vy with G(Box) .
(2) cN gauge slip function /¢ with 6G(t) .

(3) N-Body simulations with G(r) .

QFT generally predicts that G will run ...



The End



