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Outline of talk

Part 1: Generalized spin representations of ‘maximal com-

pact’ subalgebras of simply laced Kac–Moody algebras

• Berman’s presentation

• Damour et al./Henneaux et al. description of E10 GSR

• GSR’s for arbitrary simply laced diagrams

Part 2: ‘Maximal compact’ subgroups of simply laced Kac–

Moody groups as amalgams of Lie groups

• geometric group theory

• buildings

• integrated Berman-style/Borovoi-style presentation

Part 3: Spin covers

• lifting of presentation

• construction of extended Weyl group



Part 1:

Generalized spin representations
of ‘maximal compact’

subalgebras of simply laced
Kac–Moody algebras

(joint with Hainke)



Simply laced real Kac–Moody algebras

Let g be a simply laced real Kac–Moody algebra, presented by

Gabber–Kac using Serre’s relations:

The Kac–Moody algebra g is the quotient of the free Lie algebra

over R generated by ei, fi, hi, i = 1, . . . , n, subject to the relations

[hi, hj] = 0, [hi, ej] = aijej, [hi, fj] = −aijfj,

[ei, fj] = 0, [ei, fi] = hi,

(adei)
−aij+1(ej) = 0, (adfi)

−aij+1(fj) = 0 for i 6= j

with aii = 2 and aij ∈ {0,−1} for i 6= j.



‘Maximal compact’ subalgebras of Kac–Moody algebras

Let ω ∈ Aut(g) be the Cartan–Chevalley involution:

ω(ei) = −fi, ω(fi) = −ei, ω(hi) = −hi.

The ‘maximal compact’ subalgebra is defined as

k := {X ∈ g | ω(X) = X}.

Theorem 1 (Berman 1989)

The ‘maximal compact’ subalgebra k is isomorphic to the quo-
tient of the free Lie algebra over R generated by X1, . . . , Xn

subject to the relations

[Xi, [Xi, Xj]] = −Xj, if the simple roots αi, αj form an edge,

[Xi, Xj] = 0, otherwise,

via the map Xi 7→ ei − fi.

The Xi are called Berman generators.



Generalized spin representations of k

A representation ρ : k → End(Cs) is called a generalized spin
representation if the images of the Berman generators satisfy

ρ(Xi)
2 = −1

4
ids for i = 1, . . . , n.

Put A := ρ(Xi), B := ρ(Xj).

If αi, αj do not form an edge:

[A,B]
1
= 0 ⇐⇒ AB = BA.

If αi, αj form an edge:

−B
1
= [A, [A,B]] = [A,AB−BA] = A2B−2ABA+BA2 = −1

2
B−2ABA

Left-multiplying with −4A = A−1 (⇐⇒ A2 = −1
4ids) yields:

4AB = 2AB − 2BA ⇐⇒ AB = −BA



How to construct generalized spin representations?

Conversely, suppose that there are matrices Ai ∈ Cs×s satisfying

(i) A2
i = −1

4 · ids,

(ii) AiAj = AjAi, if αi, αj do not form an edge,

(iii) AiAj = −AjAi, if αi, αj form an edge.

Then, by reversing the argument on the previous slide, the as-

signment Xi 7→ Ai gives rise to a representation of k.



A motivating example (Damour et al., Henneaux et al.)

This example extends the spin representation of so(10).

Let

• V = R10 with standard basis vectors vi,

• q : V → R : x 7→ x21 + · · ·+ x210,

• b : V ×V → R : (x, y) 7→ 2(x1y1+· · ·+x10y10) associated bilinear

form,

• T(V ) the tensor algebra of V ,

• C := C(V, q) := T(V )/〈vw + wv − b(v, w)〉 the Clifford algebra.

In C we have v2i = 1 and vivj = −vjvi for i 6= j.

Since C is associative, it becomes a Lie algebra by setting

[A,B] := AB −BA.



Let the diagram of E10 be labelled as

s s s s s s s s s

s

1223344556677889910

123

and define a Lie algebra homomorphism ρ : k(E10) → C using
these labels, i.e., via

X1 7→ 1

2
v1v2, X2 7→ 1

2v1v2v3, X3 7→ 1

2
v2v3,

X4 7→ 1

2
v3v4, X5 7→ 1

2v4v5, X6 7→ 1

2
v5v6,

X7 7→ 1

2
v6v7, X8 7→ 1

2v7v8, X9 7→ 1

2
v8v9,

X10 7→ 1
2v9v10,

where Xi denotes the Berman generator corresponding to the
root αi, enumerated in Bourbaki style.



Observe that each Ai := ρ(Xi) satisfies A2
i = −1

4id.

Note that (v1v2v3)
2 = (v2v3)

2 = −1 depends on v2i = 1; for

parity reasons, this would not be true in the Clifford algebra

C(V,−q), as then (v1v2v3)
2 = −(v2v3)

2 = 1.

Using the criterion established above, one checks that ρ indeed

is a Lie algebra homomorphism, i.e., that the defining relations

of k from Theorem 1 are respected.

One needs to establish

(i) A2
i = −1

4 · ids,
(ii) AiAj = AjAi, if αi, αj do not form an edge,

(iii) AiAj = −AjAi, if αi, αj form an edge.



We have already observed (i).

Assertions (ii) and (iii) are obvious for i, j ∈ {1,3,4,5,6,7,8,9,10}
(spin representation).

Moreover, one computes

(v1v2v3)(v3v4) = −(v3v4)(v1v2v3)

and

(v1v2v3)(vk1vk2) = (vk1vk2)(v1v2v3),

if {k1, k2} is a set of two elements that is either a subset of

{1,2,3} or disjoint from {1,2,3}.



The extension theorem for generalized spin

representations (GSR)

Theorem 2 (Hainke, K.)

Let 1 ≤ r < n, k≤r := 〈X1, . . . , Xr〉,
ρ : k≤r → End(Cs) a GSR.

(i) If Xr+1 centralizes k≤r, then ρ extends to a GSR

ρ′ : k≤r+1 → End(Cs) via ρ′(Xr+1) := 1
2i · ids.

(ii) If Xr+1 does not centralize k≤r, then ρ extends to a GSR

ρ′ : k≤r+1 → End(Cs ⊕ Cs) as follows. Define

s0(Xi) :=

{

Xi, if αi, αr+1 do not form an edge,
−Xi, if αi, αr+1 form an edge,

and let

ρ′|k≤r
:= ρ⊕ ρ ◦ s0 and ρ′(Xr+1) :=

1

2
i · ids ⊗

(

0 1
1 0

)

.



Proof

If Xr+1 centralizes k≤r: ρ′(Xr+1)
2 = −1

4ids and ρ′(Xr+1) com-

mutes with everything. The criterion above applies.

If Xr+1 does not centralize k≤r: ρ′|k≤r is a GSR of k≤r which

extends ρ. (Multiplication with −1 does not change (anti)com-

mutation relation.)

Moreover, ρ′(Xi) commutes with ρ′(Xr+1), if αi, αr+1 not an

edge; and ρ′(Xi) anticommutes with ρ′(Xr+1), if αi, αr+1 an

edge:
(

1 0
0 −1

)(

0 i
i 0

)

=

(

0 i
−i 0

)

= −
(

0 i
i 0

)(

1 0
0 −1

)

Again the criterion above applies.



Quotients

Corollary 3

k admits ‘many’ compact quotients.

Proof: Let ρ be a GSR as constructed in Theorem 2.

Considering C
∼= R2, multiplication by i can be realized via the

skew-symmetric matrix

(

0 −1
1 0

)

.

If the representation of k≤r is given by skew-symmetric matrices,

then step (ii) can be made to involve skew-symmetric matrices

only, as
(

0 i
i 0

)

and

(

0 1
−1 0

)

are C-conjugate (minimum polynomial x2 +1).



Quotients, ii

Corollary 4

Assume the diagram does not admit any isolated nodes.

Then k admits ‘many’ semisimple quotients.

Proof: Compact + perfect =⇒ semisimple.

Example: The GSR by Damour et al./Henneaux et al. leads to

k(E10) ։ so32.



Part 2:

‘Maximal compact’ subgroups of
simply laced Kac–Moody groups

as amalgams of Lie groups

(Classical facts)



‘Maximal compact’ subgroups

Let

• G a simply connected simply laced split Kac–Moody group,

• T a maximal torus,

• ω a Cartan–Chevalley involution fixing T ,

• K := FixG(ω) ‘maximal compact’ subgroup.

Theorem 5 (Iwasawa decomposition; Kac–Peterson 1980ies)

Let B be a Borel subgroup of G containing the torus T . Then

G = KB.



Presentations arising from group actions on simply
connected simplicial complexes

Theorem 6 (Simplicial geometric group theory)

Let
• ∆ simply connected finite-dim. coloured simpl. complex,
• G → Aut(∆) colour-preserving simplicial rigid action, transitive
on maximal simplices,
• c maximal simplex,
• I index set for vertices of c,
• (GJ)∅6=J⊆I family of pointwise stabilizers of non-empty sub-
simplices of c,
• φJ,J ′ : GJ →֒ GJ ′ canonical embedding for J ⊇ J ′.

Then

G ∼=
〈

⋃

∅6=J⊆I

GJ | all relations in the GJ plus
all identifications via the φJ,J ′

〉

.

Terminology: (GJ)∅6=J⊆I together with the connecting mor-
phisms is a diagram of groups. The group G is called a colimit.



Theorem 7 (Non-simplicial version)

Let

• X simply connected topological space,

• G → Homeo(X) action,

• U an open path-connected weak fundamental domain

(i.e., X = G.U),

• Σ = {g ∈ G | U ∩ g.U 6= ∅},
• R = {xy = (xy) | x, y ∈ Σ, U ∩ xU ∩ xyU 6= ∅}.

Then

G ∼= 〈Σ | R〉.

Theorem 7 implies Theorem 6:

Define U as an ǫ-neighbourhood of the maximal simplex c.



Example 8

Let Sym4 act naturally on the barycentric subdivision of a 3-
simplex considered as a 2-dimensional simplicial complex.

Let c be the maximal simplex consisting of the vertex 1, the
barycentre of the edge {1,2}, and the barycentre of the face
{1,2,3}.

Then
G1 = Sym{2,3,4}
G{1,2} = Sym{1,2} × Sym{3,4}
G{1,2,3} = Sym{1,2,3}.
The other stabilizers arise as intersections.

Theorem 6 states that

Sym4
∼= 〈G1 ∪G{1,2} ∪G{1,2,3} | all relations in these groups〉
∼= 〈s1, s2, s3 | s2i = 1, (sisi+1)

3 = 1, s1s3 = s3s1〉
(Think s1 = (12), s2 = (23), s3 = (34).)



Note that the application of Theorem 6 can be iterated if the

links of the simplicial complex are also simply connected:

Example 9

Sym5

6∼= 〈G1 ∪G{1,2} ∪G{1,2,3} ∪G{1,2,3,4} | their relations〉
6∼= 〈G1,{1,2} ∪G1,{1,2,3} ∪ · · · ∪G{1,2,3},{1,2,3,4} | relations〉
∼= 〈Sym{3,4,5} ∪ Sym{2,3} × Sym{4,5} ∪ · · ·

· · · ∪ Sym{1,2,3} | their relations〉.



A simplicial structure on G/B

Let
• G a simply connected simply laced split Kac–Moody group,
• T a maximal torus,
• B a Borel subgroup of G containing the torus T .

Theorem 10 (Tits 1987)

Let n be the rank of of the torus T as an algebraic group, i.e.,
the cardinality of the underlying Dynkin diagram.

Then G admits n maximal subgroups

Pi, 1 ≤ i ≤ n

that contain B, the maximal parabolic subgroups.

The building of G is the simplicial complex with
• the G-conjugates of the Pi as vertices, and
• the G-conjugates of B as maximal simplices.



An amalgamation result

Theorem 11 (Kac–Peterson 1980ies)

Let

• G a simply connected simply laced split Kac–Moody group,

• K a ‘maximal compact’ subgroup,

• Π a set of simple roots,

• Kα
∼= SO(2), α ∈ Π, fundamental rank 1 subgroups of K,

• Kα,β
∼=
{

SO(3), α, β ∈ Π edge,
SO(2)× SO(2), α, β ∈ Π non-edge,

fundamental rank 2 subgroups of K.

Then

K ∼=
〈

⋃

α,β∈Π
Kα,β | all relations in the Kα,β plus

all identifications Kα →֒ Kα,β

〉

.



Proof (using geometric group theory)

Assume rank n of G satisfies n ≥ 3

• building ∆ of G is a
− simply connected (Tits 1974)
− finite-dimensional
− coloured simplicial complex (Pi are not conjugate under G)
• K acts
− colour-preservingly
− simplicially
− rigidly
− transitively on maximal simplices (G = KB, Theorem 5)
• inductive application of Theorem 6 yields

K ∼=
〈

⋃

α,β∈Π
Kα,βTK | all relations in the Kα,βTK plus

all identifications KαTK →֒ Kα,βTK

〉

,

where TK := K ∩ T
• since G is simply connected, TK can be omitted



Geometric proof of Theorem 5

(Iwasawa decomposition)

The common-face relation ∼α of type α ∈ Π in ∆ is given by:

gB ∼α hB ⇐⇒ ∃g′ ∈ gB, h′ ∈ hB : (g′)−1h′ ∈ Gα.

The ∼α-equivalence class of gB is isomorphic to P1(R) with a

natural transitive action of the group gGαg−1 ∼= SL2(R).

By the Iwasawa decomposition

SL2(R)
∼= Gα = Kα · “upper triangular matrices”

the group gKαg−1 also acts transitively on this equivalence class.

Induction on the “distance” from B yields a transitive action of

K on G/B, i.e.,

G = KB.



Part 3:

Spin covers

(joint with Ghatei, Horn, Weiß)



Spin cover of this amalgam

Define

• Lα
∼= Spin(2),

• Lα,β
∼=
{

Spin(3), α, β ∈ Π edge,
(Spin(2)× Spin(2))/〈(−1,−1)〉, α, β ∈ Π non-edge.

Consider the commutative diagram with exact lines:

1 //Z/2 //

∼=
��

Lα //

∃!φα,βα
��
�

�

�

�

�

�

Kα //

inj

��

1

1 //Z/2 //Lα,β //Kα,β //1

We conclude that a given SO(3) amalgam arising from K can

be uniquely lifted to a Spin(3) amalgam.



Spin cover of the ‘maximal compact subgroup’
(Ghatei, Horn, K., Weiß)

Spin(n) is obtained by integrating the spin representation of son.
This can be used to define a double ‘spin’ cover of K as follows.

Define Spin(K) ∼=
〈

⋃

α,β∈ΠLα,β | all relations in the Lα,β plus

all identifications Lα →֒ Lα,β

〉

.

By Theorem 11 there exists an epimorphism Spin(K) → K with
kernel of order 1 or 2. (Group generated by −1 ∈ Lα,β.)

Consider a generalized spin representation k → End(Cs).

Integrate locally to spin representations Lα,β → GL(Cs).

Observe that this leads to a lift of the SO(3) amalgam of K to
a defining Spin(3) amalgam as above.

By definition this extends to a representation Spin(K) → GL(Cs).

−1 ∈ Lα,β acts non-trivially; kernel of Spin(K) → K has order 2.



An extended Weyl group inside Spin(K)

Consider elements (indexed by α ∈ Π)

Rα corresponding to
1√
2
(1− v1v2) inside Lα

∼= Spin(2)

in such a way that inside Lα,β
∼= Spin(3)

Rα corresponds to
1√
2
(1− v1v2),

Rβ corresponds to
1√
2
(1− v2v3).



Theorem 12 (Ghatei)

The subgroup WSpin(K) of Spin(K) generated by (Rα)α∈Π sat-

isfies the relations

• (Rα)4 = −1,

• (RαRβ)
3 = −1, if α, β ∈ Π form an edge,

RαRβ = RβRα, if α, β ∈ Π do not form an edge.

Moreover, the subgroup D of WSpin(K) generated by (R2
α)α∈Π

• is normal in WSpin(K),

• has order 2|Π|+1,

• satisfies WSpin(K)/D = W (Π).



Proof (of first part)

R2
α =

(

1√
2
(1− v1v2)

)2
= 1

2(1− 2v1v2 − 1) = −v1v2;

squaring yields −1.

For adjacent α, β we have

RαRβ =
1

2
(1−v1v2)(1−v2v3) =

1

2
(1−v1v2−v2v3+v1v3), and so

(RαRβ)
2 =

1

4
(1− v1v2 − v2v3 + v1v3)

2

=
1

4
(1− 1− 1− 1− 2v1v2 − 2v2v3 +2v1v3)

= −1

2
(1 + v1v2 + v2v3 − v1v3)

= −RαRβ (using Spin(3) ∼= U1(H))

=⇒ (RαRβ)
3 = −RαRβRαRβ = −1

For non-adjacent α, β, clearly RαRβ = RβRα.



Thank you!


