## Generalized spin representations

Ralf Köhl*

30 May 2013

* né Gramlich
ralf.koehl@math.uni-giessen.de


## Outline of talk

Part 1: Generalized spin representations of 'maximal compact' subalgebras of simply laced Kac-Moody algebras

- Berman's presentation
- Damour et al./Henneaux et al. description of $E_{10}$ GSR
- GSR's for arbitrary simply laced diagrams

Part 2: ‘Maximal compact’ subgroups of simply laced KacMoody groups as amalgams of Lie groups

- geometric group theory
- buildings
- integrated Berman-style/Borovoi-style presentation

Part 3: Spin covers

- lifting of presentation
- construction of extended Weyl group


## Part 1:

## Generalized spin representations of 'maximal compact' subalgebras of simply laced Kac-Moody algebras

(joint with Hainke)

## Simply laced real Kac-Moody algebras

Let $\mathfrak{g}$ be a simply laced real Kac-Moody algebra, presented by Gabber-Kac using Serre's relations:

The Kac-Moody algebra $\mathfrak{g}$ is the quotient of the free Lie algebra over $\mathbb{R}$ generated by $e_{i}, f_{i}, h_{i}, i=1, \ldots, n$, subject to the relations

$$
\begin{gathered}
{\left[h_{i}, h_{j}\right]=0,\left[h_{i}, e_{j}\right]=a_{i j} e_{j},\left[h_{i}, f_{j}\right]=-a_{i j} f_{j},} \\
{\left[e_{i}, f_{j}\right]=0,\left[e_{i}, f_{i}\right]=h_{i},} \\
\left(\operatorname{ade} e_{i}\right)^{-a_{i j}+1}\left(e_{j}\right)=0,\left(\operatorname{ad} f_{i}\right)^{-a_{i j}+1}\left(f_{j}\right)=0 \text { for } i \neq j \\
\text { with } a_{i i}=2 \text { and } a_{i j} \in\{0,-1\} \text { for } i \neq j
\end{gathered}
$$

## ‘Maximal compact’ subalgebras of Kac-Moody algebras

Let $\omega \in \operatorname{Aut}(\mathfrak{g})$ be the Cartan-Chevalley involution:

$$
\omega\left(e_{i}\right)=-f_{i}, \omega\left(f_{i}\right)=-e_{i}, \omega\left(h_{i}\right)=-h_{i}
$$

The 'maximal compact' subalgebra is defined as

$$
\mathfrak{k}:=\{X \in \mathfrak{g} \mid \omega(X)=X\}
$$

## Theorem 1 (Berman 1989)

The 'maximal compact' subalgebra $\mathfrak{k}$ is isomorphic to the quotient of the free Lie algebra over $\mathbb{R}$ generated by $X_{1}, \ldots, X_{n}$ subject to the relations

$$
\begin{aligned}
& {\left[X_{i},\left[X_{i}, X_{j}\right]\right] }=-X_{j}, \\
& \text { if the simple roots } \alpha_{i}, \alpha_{j} \text { form an edge, } \\
& {\left[X_{i}, X_{j}\right] }=0, \quad \text { otherwise },
\end{aligned}
$$

via the $\operatorname{map} X_{i} \mapsto e_{i}-f_{i}$.

The $X_{i}$ are called Berman generators.

## Generalized spin representations of $\mathfrak{k}$

A representation $\rho: \mathfrak{k} \rightarrow \operatorname{End}\left(\mathbb{C}^{s}\right)$ is called a generalized spin representation if the images of the Berman generators satisfy

$$
\rho\left(X_{i}\right)^{2}=-\frac{1}{4} \mathrm{id}_{s} \text { for } i=1, \ldots, n .
$$

Put $A:=\rho\left(X_{i}\right), B:=\rho\left(X_{j}\right)$.
If $\alpha_{i}, \alpha_{j}$ do not form an edge:

$$
[A, B] \stackrel{1}{=} 0 \Longleftrightarrow A B=B A .
$$

If $\alpha_{i}, \alpha_{j}$ form an edge:
$-B \stackrel{1}{=}[A,[A, B]]=[A, A B-B A]=A^{2} B-2 A B A+B A^{2}=-\frac{1}{2} B-2 A B A$
Left-multiplying with $-4 A=A^{-1}\left(\Longleftrightarrow A^{2}=-\frac{1}{4} \mathrm{id}_{s}\right)$ yields:

$$
4 A B=2 A B-2 B A \Longleftrightarrow A B=-B A
$$

## How to construct generalized spin representations?

Conversely, suppose that there are matrices $A_{i} \in \mathbb{C}^{s \times s}$ satisfying
(i) $A_{i}^{2}=-\frac{1}{4} \cdot \mathrm{id}_{s}$,
(ii) $A_{i} A_{j}=A_{j} A_{i}$, if $\alpha_{i}, \alpha_{j}$ do not form an edge,
(iii) $A_{i} A_{j}=-A_{j} A_{i}$, if $\alpha_{i}, \alpha_{j}$ form an edge.

Then, by reversing the argument on the previous slide, the assignment $X_{i} \mapsto A_{i}$ gives rise to a representation of $\mathfrak{k}$.

## A motivating example (Damour et al., Henneaux et al.)

This example extends the spin representation of $\mathfrak{s o ( 1 0 )}$.

Let

- $V=\mathbb{R}^{10}$ with standard basis vectors $v_{i}$,
- $q: V \rightarrow \mathbb{R}: x \mapsto x_{1}^{2}+\cdots+x_{10}^{2}$,
- $b: V \times V \rightarrow \mathbb{R}:(x, y) \mapsto 2\left(x_{1} y_{1}+\cdots+x_{10} y_{10}\right)$ associated bilinear form,
- $T(V)$ the tensor algebra of $V$,
- $C:=C(V, q):=T(V) /\langle v w+w v-b(v, w)\rangle$ the Clifford algebra.

In $C$ we have $v_{i}^{2}=1$ and $v_{i} v_{j}=-v_{j} v_{i}$ for $i \neq j$.
Since $C$ is associative, it becomes a Lie algebra by setting

$$
[A, B]:=A B-B A
$$

Let the diagram of $E_{10}$ be labelled as 123

## $\dot{12} \dot{2} 3 \dot{3} 4 \dot{4} 5 \dot{5} 6 \dot{6} 7 \dot{7} 8 \dot{8} 9 \dot{9} 10$

and define a Lie algebra homomorphism $\rho: \mathfrak{k}\left(E_{10}\right) \rightarrow C$ using these labels, i.e., via

$$
\begin{aligned}
& X_{1} \mapsto \frac{1}{2} v_{1} v_{2}, \quad X_{2} \mapsto \frac{1}{2} v_{1} v_{2} v_{3}, \quad X_{3} \mapsto \frac{1}{2} v_{2} v_{3}, \\
& X_{4} \mapsto \frac{1}{2} v_{3} v_{4}, \quad X_{5} \mapsto \frac{1}{2} v_{4} v_{5}, \quad X_{6} \mapsto \frac{1}{2} v_{5} v_{6}, \\
& X_{7} \mapsto \frac{1}{2} v_{6} v_{7}, \quad X_{8} \mapsto \frac{1}{2} v_{7} v_{8}, \quad X_{9} \mapsto \frac{1}{2} v_{8} v_{9}, \\
& X_{10} \mapsto \frac{1}{2} v_{9} v_{10},
\end{aligned}
$$

where $X_{i}$ denotes the Berman generator corresponding to the root $\alpha_{i}$, enumerated in Bourbaki style.

Observe that each $A_{i}:=\rho\left(X_{i}\right)$ satisfies $A_{i}^{2}=-\frac{1}{4} \mathrm{id}$.
Note that $\left(v_{1} v_{2} v_{3}\right)^{2}=\left(v_{2} v_{3}\right)^{2}=-1$ depends on $v_{i}^{2}=1$; for parity reasons, this would not be true in the Clifford algebra $C(V,-q)$, as then $\left(v_{1} v_{2} v_{3}\right)^{2}=-\left(v_{2} v_{3}\right)^{2}=1$.

Using the criterion established above, one checks that $\rho$ indeed is a Lie algebra homomorphism, i.e., that the defining relations of $\mathfrak{k}$ from Theorem 1 are respected.

One needs to establish
(i) $A_{i}^{2}=-\frac{1}{4} \cdot \mathrm{id}_{s}$,
(ii) $A_{i} A_{j}=A_{j} A_{i}$, if $\alpha_{i}, \alpha_{j}$ do not form an edge,
(iii) $A_{i} A_{j}=-A_{j} A_{i}$, if $\alpha_{i}, \alpha_{j}$ form an edge.

We have already observed (i).

Assertions (ii) and (iii) are obvious for $i, j \in\{1,3,4,5,6,7,8,9,10\}$ (spin representation).

Moreover, one computes

$$
\left(v_{1} v_{2} v_{3}\right)\left(v_{3} v_{4}\right)=-\left(v_{3} v_{4}\right)\left(v_{1} v_{2} v_{3}\right)
$$

and

$$
\left(v_{1} v_{2} v_{3}\right)\left(v_{k_{1}} v_{k_{2}}\right)=\left(v_{k_{1}} v_{k_{2}}\right)\left(v_{1} v_{2} v_{3}\right)
$$

if $\left\{k_{1}, k_{2}\right\}$ is a set of two elements that is either a subset of $\{1,2,3\}$ or disjoint from $\{1,2,3\}$.

The extension theorem for generalized spin representations (GSR)
Theorem 2 (Hainke, K.)
Let $1 \leq r<n, \mathfrak{k}_{\leq r}:=\left\langle X_{1}, \ldots, X_{r}\right\rangle$,
$\rho: \mathfrak{k}_{\leq r} \rightarrow \operatorname{End}\left(\mathbb{C}^{s}\right)$ a GSR.
(i) If $X_{r+1}$ centralizes $\mathfrak{k}_{\leq r}$, then $\rho$ extends to a GSR
$\rho^{\prime}: \mathfrak{k}_{\leq r+1} \rightarrow \operatorname{End}\left(\mathbb{C}^{s}\right)$ via $\rho^{\prime}\left(X_{r+1}\right):=\frac{1}{2} i \cdot \mathrm{id}_{s}$.
(ii) If $X_{r+1}$ does not centralize $\mathfrak{k}_{\leq r}$, then $\rho$ extends to a GSR $\rho^{\prime}: \mathfrak{k}_{\leq r+1} \rightarrow \operatorname{End}\left(\mathbb{C}^{s} \oplus \mathbb{C}^{s}\right)$ as follows. Define

$$
s_{0}\left(X_{i}\right):=\left\{\begin{array}{cl}
X_{i}, & \text { if } \alpha_{i}, \alpha_{r+1} \text { do not form an edge, } \\
-X_{i}, & \text { if } \alpha_{i}, \alpha_{r+1} \text { form an edge, }
\end{array}\right.
$$

and let

$$
\left.\rho^{\prime}\right|_{\mathfrak{x}_{\leq r}}:=\rho \oplus \rho \circ s_{0} \quad \text { and } \quad \rho^{\prime}\left(X_{r+1}\right):=\frac{1}{2} i \cdot \mathrm{id}_{s} \otimes\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

## Proof

If $X_{r+1}$ centralizes $\mathfrak{k}_{\leq r}: \rho^{\prime}\left(X_{r+1}\right)^{2}=-\frac{1}{4} \mathrm{id}_{s}$ and $\rho^{\prime}\left(X_{r+1}\right)$ commutes with everything. The criterion above applies.

If $X_{r+1}$ does not centralize $\mathfrak{k}_{\leq r}:\left.\quad \rho^{\prime}\right|_{\mathfrak{k}_{\leq r}}$ is a GSR of $\mathfrak{k}_{\leq r}$ which extends $\rho$. (Multiplication with -1 does not change (anti)commutation relation.)

Moreover, $\rho^{\prime}\left(X_{i}\right)$ commutes with $\rho^{\prime}\left(X_{r+1}\right)$, if $\alpha_{i}, \alpha_{r+1}$ not an edge; and $\rho^{\prime}\left(X_{i}\right)$ anticommutes with $\rho^{\prime}\left(X_{r+1}\right)$, if $\alpha_{i}, \alpha_{r+1}$ an edge:

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right)=-\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Again the criterion above applies.

## Quotients

## Corollary 3

$\mathfrak{k}$ admits 'many' compact quotients.

Proof: Let $\rho$ be a GSR as constructed in Theorem 2.
Considering $\mathbb{C} \cong \mathbb{R}^{2}$, multiplication by $i$ can be realized via the skew-symmetric matrix $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$.

If the representation of $\mathfrak{k}_{\leq r}$ is given by skew-symmetric matrices, then step (ii) can be made to involve skew-symmetric matrices only, as

$$
\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right) \text { and }\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

are $\mathbb{C}$-conjugate (minimum polynomial $x^{2}+1$ ).

## Quotients, ii

## Corollary 4

Assume the diagram does not admit any isolated nodes.
Then $\mathfrak{k}$ admits 'many' semisimple quotients.

Proof: Compact + perfect $\Longrightarrow$ semisimple.

Example: The GSR by Damour et al./Henneaux et al. leads to

$$
\mathfrak{k}\left(E_{10}\right) \rightarrow \mathfrak{s o}_{32} .
$$

Part 2:
'Maximal compact' subgroups of simply laced Kac-Moody groups as amalgams of Lie groups
(Classical facts)

## ‘Maximal compact’ subgroups

Let

- $G$ a simply connected simply laced split Kac-Moody group,
- $T$ a maximal torus,
- $\omega$ a Cartan-Chevalley involution fixing $T$,
- $K:=\operatorname{Fix}_{G}(\omega)$ 'maximal compact’ subgroup.

Theorem 5 (Iwasawa decomposition; Kac-Peterson 1980ies)
Let $B$ be a Borel subgroup of $G$ containing the torus $T$. Then

$$
G=K B
$$

## Presentations arising from group actions on simply connected simplicial complexes

## Theorem 6 (Simplicial geometric group theory)

Let

- $\Delta$ simply connected finite-dim. coloured simpl. complex,
- $G \rightarrow \operatorname{Aut}(\Delta)$ colour-preserving simplicial rigid action, transitive on maximal simplices,
- c maximal simplex,
- I index set for vertices of $c$,
- $\left(G_{J}\right)_{\emptyset \neq J \subseteq I}$ family of pointwise stabilizers of non-empty subsimplices of $c$,
- $\phi_{J, J^{\prime}}: G_{J} \hookrightarrow G_{J^{\prime}}$ canonical embedding for $J \supseteq J^{\prime}$.

Then

$$
G \cong\left\langle\bigcup_{\emptyset \neq J \subseteq I} G_{J} \left\lvert\, \begin{array}{c}
\text { all relations in the } G_{J} \text { plus } \\
\text { all identifications via the } \phi_{J, J^{\prime}}
\end{array}\right.\right\rangle .
$$

Terminology: $\left(G_{J}\right)_{\emptyset \neq J \subset I}$ together with the connecting morphisms is a diagram of $\bar{g} r o u p s$. The group $G$ is called a colimit.

## Theorem 7 (Non-simplicial version)

Let

- X simply connected topological space,
- $G \rightarrow \operatorname{Homeo}(X)$ action,
- $U$ an open path-connected weak fundamental domain
(i.e., $X=G . U$ ),
- $\Sigma=\{g \in G \mid U \cap g . U \neq \emptyset\}$,
- $R=\{x y=(x y) \mid x, y \in \Sigma, U \cap x U \cap x y U \neq \emptyset\}$.

Then

$$
G \cong\langle\Sigma \mid R\rangle .
$$

Theorem 7 implies Theorem 6:
Define $U$ as an $\epsilon$-neighbourhood of the maximal simplex $c$.

## Example 8

Let $\mathrm{Sym}_{4}$ act naturally on the barycentric subdivision of a 3simplex considered as a 2-dimensional simplicial complex.

Let $c$ be the maximal simplex consisting of the vertex 1 , the barycentre of the edge $\{1,2\}$, and the barycentre of the face $\{1,2,3\}$.

Then
$G_{1}=\operatorname{Sym}\{2,3,4\}$
$G_{\{1,2\}}=\operatorname{Sym}\{1,2\} \times \operatorname{Sym}\{3,4\}$
$G_{\{1,2,3\}}=\operatorname{Sym}\{1,2,3\}$.
The other stabilizers arise as intersections.
Theorem 6 states that
Sym $_{4} \cong\left\langle G_{1} \cup G_{\{1,2\}} \cup G_{\{1,2,3\}}\right|$ all relations in these groups $\rangle$

$$
\cong\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2}=1,\left(s_{i} s_{i+1}\right)^{3}=1, s_{1} s_{3}=s_{3} s_{1}\right\rangle
$$

(Think $s_{1}=(12), s_{2}=(23), s_{3}=(34)$.)

Note that the application of Theorem 6 can be iterated if the links of the simplicial complex are also simply connected:

## Example 9

$$
\begin{aligned}
\operatorname{Sym}_{5} \stackrel{6}{\cong} & \left.\left\langle G_{1} \cup G_{\{1,2\}} \cup G_{\{1,2,3\}} \cup G_{\{1,2,3,4\}}\right| \text { their relations }\right\rangle \\
\stackrel{6}{\cong} & \left.\left\langle G_{1,\{1,2\}} \cup G_{1,\{1,2,3\}} \cup \cdots \cup G_{\{1,2,3\},\{1,2,3,4\}}\right| \text { relations }\right\rangle \\
\cong & \langle\operatorname{Sym}\{3,4,5\} \cup \operatorname{Sym}\{2,3\} \times \operatorname{Sym}\{4,5\} \cup \cdots \\
& \cdots \cup \operatorname{Sym}\{1,2,3\} \mid \text { their relations }\rangle .
\end{aligned}
$$

## A simplicial structure on $G / B$

Let

- G a simply connected simply laced split Kac-Moody group,
- $T$ a maximal torus,
- $B$ a Borel subgroup of $G$ containing the torus $T$.

Theorem 10 (Tits 1987)
Let $n$ be the rank of of the torus $T$ as an algebraic group, i.e., the cardinality of the underlying Dynkin diagram.

Then $G$ admits $n$ maximal subgroups

$$
P_{i}, \quad 1 \leq i \leq n
$$

that contain $B$, the maximal parabolic subgroups.
The building of $G$ is the simplicial complex with

- the $G$-conjugates of the $P_{i}$ as vertices, and
- the $G$-conjugates of $B$ as maximal simplices.


## An amalgamation result

## Theorem 11 (Kac-Peterson 1980ies)

Let

- G a simply connected simply laced split Kac-Moody group,
- K a 'maximal compact' subgroup,
- $\Pi$ a set of simple roots,
- $K_{\alpha} \cong \mathrm{SO}(2), \alpha \in \Pi$, fundamental rank 1 subgroups of $K$,
- $K_{\alpha, \beta} \cong\left\{\begin{array}{cl}\mathrm{SO}(3), & \alpha, \beta \in \Pi \text { edge, } \\ \mathrm{SO}(2) \times \mathrm{SO}(2), & \alpha, \beta \in \Pi \text { non-edge },\end{array}\right.$
fundamental rank 2 subgroups of $K$.

Then

$$
K \cong\left\langle\bigcup_{\alpha, \beta \in \Pi} K_{\alpha, \beta} \left\lvert\, \begin{array}{l}
\text { all relations in the } K_{\alpha, \beta} \text { plus } \\
\text { all identifications } K_{\alpha} \hookrightarrow K_{\alpha, \beta}
\end{array}\right.\right\rangle .
$$

## Proof (using geometric group theory)

Assume rank $n$ of $G$ satisfies $n \geq 3$

- building $\Delta$ of $G$ is a
- simply connected (Tits 1974)
- finite-dimensional
- coloured simplicial complex ( $P_{i}$ are not conjugate under $G$ )
- $K$ acts
- colour-preservingly
- simplicially
- rigidly
- transitively on maximal simplices ( $G=K B$, Theorem 5)
- inductive application of Theorem 6 yields
where $T_{K}:=K \cap T$
- since $G$ is simply connected, $T_{K}$ can be omitted


## Geometric proof of Theorem 5 (Iwasawa decomposition)

The common-face relation $\sim_{\alpha}$ of type $\alpha \in \Pi$ in $\Delta$ is given by:

$$
g B \sim_{\alpha} h B \Longleftrightarrow \exists g^{\prime} \in g B, h^{\prime} \in h B:\left(g^{\prime}\right)^{-1} h^{\prime} \in G_{\alpha}
$$

The $\sim_{\alpha}$-equivalence class of $g B$ is isomorphic to $\mathbb{P}_{1}(\mathbb{R})$ with a natural transitive action of the group $g G_{\alpha} g^{-1} \cong \mathrm{SL}_{2}(\mathbb{R})$.

By the Iwasawa decomposition

$$
\mathrm{SL}_{2}(\mathbb{R}) \cong G_{\alpha}=K_{\alpha} \cdot \text { "upper triangular matrices" }
$$

the group $g K_{\alpha} g^{-1}$ also acts transitively on this equivalence class.
Induction on the "distance" from $B$ yields a transitive action of $K$ on $G / B$, i.e.,

$$
G=K B
$$

## Part 3: <br> Spin covers

(joint with Ghatei, Horn, Weiß)

## Spin cover of this amalgam

Define

- $L_{\alpha} \cong \operatorname{Spin}(2)$,
- $L_{\alpha, \beta} \cong\left\{\begin{array}{cl}\mathrm{Spin}(3), & \alpha, \beta \in \Pi \text { edge }, \\ (\operatorname{Spin}(2) \times \mathrm{Spin}(2)) /\langle(-1,-1)\rangle, & \alpha, \beta \in \Pi \text { non-edge } .\end{array}\right.$

Consider the commutative diagram with exact lines:


We conclude that a given $\mathrm{SO}(3)$ amalgam arising from $K$ can be uniquely lifted to a $\operatorname{Spin}(3)$ amalgam.

## Spin cover of the 'maximal compact subgroup'

 (Ghatei, Horn, K., Weiß)$\operatorname{Spin}(n)$ is obtained by integrating the spin representation of $\mathfrak{s o}_{n}$. This can be used to define a double 'spin' cover of $K$ as follows.

Define $\operatorname{Spin}(K) \cong\left\langle\cup_{\alpha, \beta \in \Pi} L_{\alpha, \beta} \left\lvert\, \begin{array}{l}\text { all relations in the } L_{\alpha, \beta} \text { plus } \\ \text { all identifications } L_{\alpha} \hookrightarrow L_{\alpha, \beta}\end{array}\right.\right\rangle$.
By Theorem 11 there exists an epimorphism $\operatorname{Spin}(K) \rightarrow K$ with kernel of order 1 or 2. (Group generated by $-1 \in L_{\alpha, \beta}$.)

Consider a generalized spin representation $\mathfrak{k} \rightarrow \operatorname{End}\left(\mathbb{C}^{s}\right)$.
Integrate locally to spin representations $L_{\alpha, \beta} \rightarrow G L\left(\mathbb{C}^{s}\right)$.
Observe that this leads to a lift of the SO(3) amalgam of $K$ to a defining $\operatorname{Spin}(3)$ amalgam as above.

By definition this extends to a representation $\operatorname{Spin}(K) \rightarrow G L\left(\mathbb{C}^{s}\right)$.
$-1 \in L_{\alpha, \beta}$ acts non-trivially; kernel of $\operatorname{Spin}(\mathrm{K}) \rightarrow \mathrm{K}$ has order 2.

## An extended Weyl group inside Spin(K)

Consider elements (indexed by $\alpha \in \Pi$ )

$$
R_{\alpha} \text { corresponding to } \frac{1}{\sqrt{2}}\left(1-v_{1} v_{2}\right) \text { inside } L_{\alpha} \cong \operatorname{Spin}(2)
$$

in such a way that inside $L_{\alpha, \beta} \cong \operatorname{Spin}(3)$

$$
\begin{aligned}
& R_{\alpha} \text { corresponds to } \frac{1}{\sqrt{2}}\left(1-v_{1} v_{2}\right), \\
& R_{\beta} \text { corresponds to } \frac{1}{\sqrt{2}}\left(1-v_{2} v_{3}\right) .
\end{aligned}
$$

## Theorem 12 (Ghatei)

The subgroup $W^{\operatorname{Spin}(K)}$ of $\operatorname{Spin}(K)$ generated by $\left(R_{\alpha}\right)_{\alpha \in \Pi}$ satisfies the relations

- $\left(R_{\alpha}\right)^{4}=-1$,
- $\left(R_{\alpha} R_{\beta}\right)^{3}=-1$, if $\alpha, \beta \in \Pi$ form an edge, $R_{\alpha} R_{\beta}=R_{\beta} R_{\alpha}$, if $\alpha, \beta \in \Pi$ do not form an edge.

Moreover, the subgroup $D$ of $W^{\operatorname{Spin}(K)}$ generated by $\left(R_{\alpha}^{2}\right)_{\alpha \in \Pi}$

- is normal in $W^{\operatorname{Spin}(K)}$,
- has order $2^{|n|+1}$,
- satisfies $W^{\mathrm{Spin}(K)} / D=W(\Pi)$.


## Proof (of first part)

$R_{\alpha}^{2}=\left(\frac{1}{\sqrt{2}}\left(1-v_{1} v_{2}\right)\right)^{2}=\frac{1}{2}\left(1-2 v_{1} v_{2}-1\right)=-v_{1} v_{2} ;$ squaring yields -1 .

For adjacent $\alpha, \beta$ we have

$$
\begin{gathered}
R_{\alpha} R_{\beta}=\frac{1}{2}\left(1-v_{1} v_{2}\right)\left(1-v_{2} v_{3}\right)=\frac{1}{2}\left(1-v_{1} v_{2}-v_{2} v_{3}+v_{1} v_{3}\right), \quad \text { and so } \\
\qquad \begin{aligned}
&\left(R_{\alpha} R_{\beta}\right)^{2}=\frac{1}{4}\left(1-v_{1} v_{2}-v_{2} v_{3}+v_{1} v_{3}\right)^{2} \\
&= \frac{1}{4}\left(1-1-1-1-2 v_{1} v_{2}-2 v_{2} v_{3}+2 v_{1} v_{3}\right) \\
&=-\frac{1}{2}\left(1+v_{1} v_{2}+v_{2} v_{3}-v_{1} v_{3}\right) \\
&=-\overline{R_{\alpha} R_{\beta}}\left(\text { using } \operatorname{Spin}(3) \cong U_{1}(\mathbb{H})\right) \\
& \quad\left(R_{\alpha} R_{\beta}\right)^{3}=-R_{\alpha} R_{\beta} \overline{R_{\alpha} R_{\beta}}=-1
\end{aligned}
\end{gathered}
$$

For non-adjacent $\alpha, \beta$, clearly $R_{\alpha} R_{\beta}=R_{\beta} R_{\alpha}$.

## Thank you!

