Gravity = Gauge Theory

Kirill Krasnov
(Nottingham)

Disambiguation: What this talk is NOT about

- Bulk gravity = Boundary gauge theory

Gravity $=(\text { Gauge Theory })^{\wedge} 2$ KLT relations

- Gravity as gauge theory of Poincare group Gravity $=\operatorname{SU}(2)$ gauge theory

Main message:

General Relativity (in 4 dimensions) can be reformulated as an $\mathrm{SU}(2)$ gauge theory (of a certain type)

Why should one be interested in any reformulations?
There are many:

- Tetrad (first order) formulation
- Plebanski (Ashtekar) self-dual formulation

Have not helped. Gravity is still best understood in the original metric formulation. So is the problem of quantum gravity (non-renormalizability)

- Mac Dowell-Mansouri $\operatorname{SO}(2,3)$ gauge theoretic formulation

Some exceptional things happen in the new formulation!

General Relativity

$g_{\mu \nu}$ - spacetime metric

$$
\begin{gathered}
S_{\mathrm{EH}}[g]=-\frac{1}{16 \pi G} \int(R-2 \Lambda) \\
\downarrow \\
R_{\mu \nu} \sim g_{\mu \nu}
\end{gathered}
$$

Beautiful geometric theory that physicists study for already about a century!

Several GR uniqueness
 theorems

Very "rigid" theory! Any modification messes it up

GR is the unique theory of interacting massless spin 2 particles
But GR is also very much unlike all other theories!
the only theory that is not scale invariant (apart from the Higgs potential term) non-polynomial Lagrangian (in terms of the metric); non-renormalizable

Linearized description:

$$
g_{\mu \nu}=\eta_{\mu \nu}+\kappa h_{\mu \nu}
$$

$$
\kappa^{2}=32 \pi G
$$

$$
\mathcal{L}^{(2)}=-\frac{1}{2}\left(\partial_{\mu} h_{\rho \sigma}\right)^{2}+\frac{1}{2}\left(\partial_{\mu} h\right)^{2}+\left(\partial^{\mu} h_{\mu \nu}\right)^{2}+h \partial^{\mu} \partial^{\nu} h_{\mu \nu}
$$

(Euclidean) action unbounded from below! conformal mode problem
"wrong" sign

conformal mode

$$
h=h_{\mu}^{\mu}
$$

Count of propagating DOF:

$$
\operatorname{dim}\left(h_{\mu \nu}\right)=10 \text { (per point) }-4-4 \rightarrow 2 \quad \text { propagati/g DOF }
$$

diffeomorphisms
Spinor representation: $T M=S_{+} \otimes S_{-} \quad \mu \rightarrow A A^{\prime}$

$$
h_{\mu \nu} \rightarrow h_{A A^{\prime} B B^{\prime}} \quad \in S_{+}^{2} \otimes S_{-}^{2} \oplus(\text { trivial }) \quad S_{ \pm} \text {unprimed/ } \text { primed spinors }
$$

after (covariant) gauge-fixing all 10 metric components propagate

Einstein gravity perturbatively: Nasty mess...

Expansion around an arbitrary background $g_{\mu \nu}$
quadratic order (together with
the gauge-fixing term)

$$
L_{\rho, f .}=-\sqrt{-g}\left(h^{\mu \nu}{ }_{; \nu}-\frac{1}{2} h_{\nu}^{\nu ; \mu}\right)\left(h_{\mu ; \rho}^{\prime}-\frac{1}{2} h_{\rho ; \mu}^{\prime}\right)
$$

$$
L_{2}=\sqrt{-g}\left\{-\frac{1}{2} h^{\alpha \beta}{ }_{i \gamma} h_{\alpha \beta}^{; \gamma}+\frac{1}{4} h_{\alpha ; \gamma}^{\alpha} h_{\beta}^{A ; \gamma}+h_{\alpha \beta} h_{\gamma \delta} R^{\alpha \gamma \beta t}-h_{\alpha \beta} h_{\gamma}^{\beta} R^{d \alpha \gamma}\right.
$$

$$
\left.+h_{\alpha}^{\alpha} h_{\beta \gamma} R^{\rho \tau}-\frac{1}{2} h_{\alpha \beta} h^{\alpha \beta} R+\frac{1}{4} h_{a}^{\alpha} h_{\rho}^{\rho} R\right\} .
$$

even in flat space, the corresponding vertex has about 100 terms!

$$
\begin{aligned}
& L_{3}=\sqrt{-g}\left\{-\frac{1}{2} h^{\alpha \beta} h^{\gamma \delta}{ }_{; \alpha} h_{\gamma ; \beta}+2 h^{\alpha \beta} h^{\gamma \delta}{ }_{; \alpha} h_{\rho \gamma ; \delta}-h^{\alpha \beta} h_{\gamma ; \alpha}^{\gamma} h_{\beta ; 6}^{\delta}-\frac{1}{2} h_{\alpha}^{\alpha} h^{\beta \gamma ; \delta^{\delta}} h_{\rho \delta ; \gamma}\right.
\end{aligned}
$$

$$
\begin{aligned}
& +h^{\alpha \beta} h^{\gamma}{ }_{a ; 8} h_{\beta ; \gamma}+R_{\alpha \beta}\left(2 h^{\alpha \gamma} h_{\gamma \delta} h^{\beta 8}-h_{\gamma}{ }_{\gamma} h^{\alpha \delta} h^{\rho}{ }_{6}-\frac{1}{2} h^{\alpha \rho} h^{\gamma \delta} h_{\gamma \delta}\right. \\
& \left.\left.+\frac{1}{4} h^{\alpha \rho} h_{\gamma}{ }_{\gamma} h^{\rho}{ }_{\delta}\right)+R\left(-\frac{1}{3} h^{\alpha \rho} h_{\rho \gamma} h^{\gamma}{ }_{\alpha}+\frac{1}{4} h^{\alpha}{ }_{\alpha} h^{\rho \gamma} h_{\rho \gamma}-\frac{1}{24} h^{\alpha}{ }_{\alpha} h^{\rho}{ }_{\beta} h^{\gamma}{ }_{\gamma}\right)\right\}
\end{aligned}
$$

quartic order

$$
\begin{aligned}
& L_{4}=\sqrt{-g}\left\{(h _ { a } ^ { \alpha } h _ { \beta } ^ { \beta } - 2 h ^ { \alpha \beta } h _ { \alpha \beta }) \left(\frac{1}{16} h^{\gamma ; \sigma} h_{\gamma \delta ; \sigma}-\frac{1}{8} h^{\gamma ; \sigma} h_{\gamma \sigma ; \delta}+\frac{1}{8} h_{\gamma ; \delta}^{\gamma} h^{\delta \sigma}{ }_{; \sigma}\right.\right. \\
& \left.-\frac{1}{16} h_{\gamma ; \delta}^{\gamma} h_{\sigma}^{\sigma ; \delta}\right)+h_{a}^{\alpha} h^{\rho 7}\left(-\frac{1}{2} h_{\beta \gamma ; \delta} h_{; \sigma}^{\delta_{\sigma}}+\frac{1}{2} h_{\beta \gamma ; \delta} h_{\sigma}^{\sigma ; \delta}-\frac{1}{2} h_{\delta ; \beta}^{\delta} h_{\sigma ; \gamma}^{\sigma}\right. \\
& +\frac{1}{4} h_{\delta ; \beta}^{\delta} h_{\sigma ; \gamma}^{\sigma}+h_{\beta ; \sigma}^{\delta} h_{d j \gamma}^{\sigma}-\frac{1}{4} h^{\delta \sigma}{ }_{j \beta} h_{\delta \sigma ; \gamma}-\frac{1}{2} h_{\beta ; \sigma}^{\delta} h_{\delta \gamma}{ }^{i \sigma}-\frac{1}{2} h_{\delta ; \sigma}^{\delta} h_{\rho j \gamma}^{\sigma}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+h_{\alpha ; \sigma}^{\delta} h_{\gamma \delta}^{; \sigma}\right)+h^{\alpha \gamma} h^{\sigma \delta}\left(h_{\alpha \gamma ; \beta} h^{\sigma}{ }_{\delta ; \sigma}-h_{\alpha \gamma ; \sigma} h_{\sigma ; \beta}^{\sigma}+\frac{1}{2} h_{\alpha \beta ; \sigma} h_{\gamma \delta}^{; \sigma}\right. \\
& -\frac{1}{2} h_{\alpha \gamma ; \sigma} h_{\beta \delta}^{; \sigma}+h_{\alpha ; \beta}^{\sigma} h_{\gamma ; \delta}-h_{\alpha ; \beta}^{\sigma} h_{\delta \sigma ; \gamma}+h_{\alpha \beta ; \delta} h_{\sigma ; \gamma}^{\sigma}-2 h_{\alpha ; \beta}^{\sigma} h_{\delta \gamma ; \sigma} \\
& \left.+h_{a \gamma ; \sigma} h_{\beta ; \delta}\right)+R_{\alpha \beta}\left(-2 h^{\alpha \gamma} h_{\gamma \delta} h^{\delta \sigma} h_{\sigma}^{\rho}+h_{\gamma}^{\gamma} h^{\alpha \delta} h_{\delta \sigma} h^{\sigma \beta}+\frac{1}{2} h^{\alpha \gamma} h_{\gamma}{ }^{\rho} h^{\delta \sigma} h_{\delta \sigma}\right. \\
& \left.-\frac{1}{4} h^{\alpha \gamma} h_{\gamma}{ }^{\rho} h_{\delta}^{\delta} h_{\sigma}^{\sigma}+\frac{1}{3} h^{\alpha \rho} h^{\gamma} h_{\delta \sigma} h_{\gamma}-\frac{1}{4} h^{\alpha \rho} h_{\gamma}^{\gamma} h^{\delta \sigma} h_{\delta \sigma}+\frac{1}{24} h^{\alpha \rho} h_{\gamma}^{\gamma} h_{\delta}^{\delta} h_{\sigma}^{\sigma}\right) \\
& +R\left(-\frac{1}{192} h_{\alpha}^{\alpha} h_{\rho}^{\beta} h_{\gamma}^{\gamma} h_{\delta}+\frac{1}{16} h_{\alpha}^{\alpha} h_{\rho}^{\rho} h^{\gamma \delta} h_{\gamma 6}+\frac{1}{4} h^{\alpha \beta} h_{\rho \gamma} h^{\gamma \delta} h_{\delta \alpha}\right. \\
& \left.\left.-\frac{1}{16} h^{\alpha \beta} h_{\alpha \rho} h^{\gamma \phi} h_{\gamma \delta}-\frac{1}{6} h_{\alpha}^{\alpha} h^{\rho \gamma} h_{\gamma \delta} h_{\beta}^{\delta}\right)\right\}
\end{aligned}
$$

Still, they were done...

In 1963 I gave [Walter G. Wesley] a student of mine the problem of computing the cross section for a graviton-graviton scattering in tree approximation, for his Ph.D. thesis. The relevant diagrams are these:

Given the fact that the vertex function in diagram 1 contains over 175 terms and that the vertex functions in the remaining diagrams each contain 11 terms, leading to over 500 terms in all, you can see that this was not a trivial calculation, in the days before computers with algebraic manipulation capacities were available. And yet the final results were ridiculously simple. The cross section for scattering in the center-of-mass frame, of gravitons having opposite helicities, is

$$
d \sigma / d \Omega=4 G^{2} E^{2} \cos ^{12} \frac{1}{2} \theta / \sin ^{4} \frac{1}{2} \theta
$$

From: Bryce DeWitt arXiv:0805.2935
Quantum Gravity, Yesterday and Today
where G is the gravity constant and E is the energy.
We now know that computing Feynman diagrams is not the simplest approach to the problem
Using the spinor helicity methods, the computation becomes doable
Using BCFW on-shell technology, the calculation becomes a homework exercise

Still, having a simpler off-shell description would be important

Linearized gauge-theoretic description (around de Sitter space)

Spinorial description: $\quad \mu \rightarrow A A^{\prime} \quad i \rightarrow(A B)$
$a_{\mu}^{i} \quad \begin{gathered}\text { infinitesimal } \operatorname{sU}(2) \\ \text { connection }\end{gathered}$

$$
\begin{aligned}
& i=1,2,3 \\
& \mu \text { spacetime index } \\
& a_{\mu}^{i} \rightarrow a_{A A^{\prime}}{ }^{B C} \quad \in S_{+} \otimes S_{-} \otimes S_{+}^{2}=S_{+}^{3} \otimes S_{-} \oplus S_{+} \otimes S_{-} \\
& \mathcal{L}^{(2)} \sim\left(\partial_{A^{\prime}}^{(A} a^{B C D) A^{\prime}}\right)^{2} \\
& \text { explicitly non-negative } \\
& \text { (Euclidean signature) functional } \\
& \operatorname{dim}\left(S_{+}^{3} \otimes S_{-}\right)=8(\text { per point })
\end{aligned}
$$

Count of propagating DOF:
$8-3-3 \rightarrow 2$ propagating DOF
after gauge-fixing only 8 connection SU(2) gauge rotations

the only part that is relevant for MHV

where the spinor contraction notations are

$$
\begin{gathered}
(\partial a)^{A B C D}=\partial^{(A}{ }_{M^{\prime}} a^{B) C D M^{\prime}} \\
(\partial a)^{M^{\prime} N^{\prime} A B}=\partial^{C\left(M^{\prime}\right.} a_{C}^{\left.A B N^{\prime}\right)} \\
(a a)^{M^{\prime} N^{\prime} C D}=a^{C D\left(A M^{\prime}\right.} a_{C D}{ }^{B) N^{\prime}}
\end{gathered}
$$

In terms of computational complexity, the above vertex graphical representation of the 3-derivative vertex
 is analogous to that of $\mathrm{YM}^{\wedge} 2$ type by Bern

Comparison with Yang-Mills:

can rewrite the YM Lagrangian as

$$
\mathcal{L}_{\mathrm{YM}}=-\frac{1}{4 g^{2}}\left(F_{\mu \nu}^{+}\right)^{2}
$$

F^{+}- self-dual part of the curvature

Spinorial description: $\quad \mu \rightarrow A A^{\prime}$

$$
A_{A A^{\prime}} \in S_{+} \otimes S_{-} \quad \text { spin । }
$$

quadratic order (not gauge-fixed)

$$
\mathcal{L}_{\mathrm{YM}}^{2} \sim\left(\partial_{A^{\prime}}^{(A} A^{B) A^{\prime}}\right)^{2}
$$

cubic order

$$
\mathcal{L}_{\mathrm{YM}}^{3} \sim\left(\partial_{A^{\prime}}^{(A} A^{B) A^{\prime}}\right) A^{M^{\prime}} A_{M^{\prime} B}
$$

our linearized graviton Lagrangian and the cubic vertex is just the generalization to the case

$$
A_{A B C A^{\prime}} \in S_{+}^{3} \otimes S_{-} \quad \operatorname{spin} 2
$$

The gauge-theoretic formulation

- Simpler than the metric-based GR
convex action functional
vertices are much simpler in this formulation
conformal mode does not propagate even off-shell
- Suggests generalizations that are impossible to imagine in the metric formulation
$G R$ is not the only theory of interacting massless spin 2 particles!

Suggests new (speculative at the moment) ideas as to what may be happening with gravity at very high energies

Self-duality

Riemannian
signature for simplicity

$\Lambda^{2} M \quad$ two-forms on M

wedge product of forms gives a conformal metric

If metric on M is chosen

Hodge dual

$$
*: \Lambda^{2} M \rightarrow \Lambda^{2} M
$$

$\Lambda^{ \pm} M$ eigenspaces of * of eigenvalues $\pm 1(\pm i)$

$$
*^{2}=\left\{\begin{array}{l}
+1 \\
-1
\end{array}\right.
$$

Riemannian
Lorentzian
self (anti-self)-dual 2-forms

Thus, given a metric get

$$
\Lambda^{2} M=\Lambda^{+} M \oplus \Lambda^{-} M
$$

restriction of the wedge-product metric on $\Lambda^{+} M$ is positive-definite

Remark: Hodge dual is conformally-invariant only need a conformal metric on M to get the above split

In the opposite direction the correspondence also holds
Split $\quad \Lambda^{2} M=\Lambda^{+} M \oplus \Lambda^{-} M$
such that the first subspace is \Rightarrow positive-definite

Explicitly:

$$
g_{\mu \nu} \sim \tilde{\epsilon}^{\alpha \beta \gamma \delta} \epsilon^{i j k} B_{\mu \alpha}^{i} B_{\nu \beta}^{j} B_{\gamma \delta}^{k}
$$

conformal metric on M
$B_{\mu \nu}^{i}$ a basis in $\Lambda^{+} M$

The above relation proves an isomorphism of group spaces

$$
\mathrm{SL}(4) / \mathrm{SO}(4) \quad \mathrm{SO}(3,3) / \mathrm{SO}(3) \times \mathrm{SO}(3)
$$

conformal metrics on M

Grassmanian of
3-planes in Λ^{2}

Conformal metrics can be encoded into the knowledge of which forms are self-dual

Curvature and self-duality

$$
\text { Riemann }: \Lambda^{2} M \rightarrow \Lambda^{2} M
$$

Or, in terms of the self-dual split

$$
\text { Riemann }=\left(\begin{array}{c|c}
Q & N \\
\hline N^{T} & P
\end{array}\right)+
$$

Q,P - symmetric 3×3 matrices

Einstein condition
Riemann $=\Lambda$ metric

$$
\left.\Leftrightarrow \quad \begin{array}{l}
N=0 \\
\operatorname{Tr} Q+\operatorname{Tr} P=2 \Lambda
\end{array}\right\} \quad 10 \text { equations }
$$

Bianchi identity

$$
\Leftrightarrow \quad \operatorname{Tr} Q=\operatorname{Tr} P
$$

Differential Bianchi identity

$$
\Leftrightarrow \quad \Lambda=\text { const }
$$

Connection on $\Lambda^{+} M$

Levi-Civita connection on $T^{*} M \Rightarrow$ connection on $\Lambda^{+} M$
(self-dual part of Levi-Civita)
Its curvature F^{+}is the self-dual part of the Riemann $\quad \mathrm{Q}, \mathrm{N}$ parts

Einstein condition:

Curvature of the metric connection on $\Lambda^{+} M$ is self-dual as a two-form

Differential Bianchi identity \Rightarrow

$$
\operatorname{tr} Q=\text { const }
$$

Remarks on $\Lambda^{+} M$ bundle

wedge product metric + volume form on M
\Rightarrow metric (positive-definite) in fibers of $\Lambda^{+} M$
connection in $\Lambda^{+} M$ preserves this metric

$$
\Rightarrow \quad \text { all } \Lambda^{+} M \text { are } \mathrm{SO}(3) \text { bundles }
$$

Which bundle?
$\left(F^{+}\right)^{2}+\left(F^{-}\right)^{2} \quad \int_{M}(\text { Riemann })^{2}=2 \chi(M) \quad$ Euler characteristic of M
$\left(F^{+}\right)^{2}-\left(F^{-}\right)^{2} \quad \int_{M}($ Riemann $)(\text { Riemann })^{*}=3 \tau(M) \quad$ Signature of M
first Pontrjagin

$$
p_{1}=\int_{M}\left(F^{+}\right)^{2}=2 \chi(M)+3 \tau(M) \quad \Rightarrow \quad \begin{array}{r}
\operatorname{Tr} Q^{2}-\operatorname{Tr} N^{2} \\
\text { for Einstein manifolds } \\
2 \chi(M)+3 \tau(M) \geq 0
\end{array}
$$

form
bundle is fixed by the topology of M

Plebanski formulation of GR

Idea: encode metric in the split $\quad \Lambda^{2} M=\Lambda^{+} M \oplus \Lambda^{-} M$
Since all $\Lambda^{+} M$ bundles are isomorphic, fix the principal $\mathrm{SO}(3)$ bundle over M with $p_{1}=2 \chi(M)+3 \tau(M)$
Let $E \rightarrow M$ be the associated bundle

Let $B: E \rightarrow \Lambda^{2} M$

defined modulo SO (3) rotations
such that the pullback of the wedge product metric to E coincides with the $\mathrm{SO}(3)$ invariant metric in E
$B \wedge B \sim \delta$

Declare the image of E in $\Lambda^{2} M$ to be $\Lambda^{+} M \Rightarrow$ conformal metric
Declare the image of the (inverse) metric in E in $\Lambda^{2} M \otimes \Lambda^{2} M$ (composed with the wedge product) to be the volume form

$$
\Rightarrow \text { full metric }
$$

Connections

The metric connection in $\Lambda^{+} M$ is also encoded in B

Lemma: \exists unique (modulo gauge) $\mathrm{SO}(3)$ connection A in E such that $d_{A} B=0$

Lemma: It coincides with the pull-back (under B) of the metric connection in $\Lambda^{+} M$

Thus B can be taken as the basic object

Einstein equations

Theorem: The metric encoded in B is Einstein iff

$$
\exists Q \in \operatorname{End}(E): F(A(B))=Q B
$$

```
curvature of the self-dual part
                                    of the Levi-Civita connection is
    self-dual as a two-form
```

Action principle:

$$
S[B, A, Q]=\int_{M} \operatorname{Tr}\left(B \wedge F(A)-\frac{1}{2} Q B \wedge B\right)
$$

varying wrt Q gives the condition that B is an
$\operatorname{Tr} Q=\Lambda$
trace of Q is fixed and is not varied isometry, other equations also follow

Euler-Lagrange equations

Q variation: $\quad B \wedge B \sim \delta$
A variation: $\quad d_{A} B=0$
B variation: $\quad F(A)=Q B$
To get a better feel for this, consider linearization

$$
\begin{array}{cccl}
B \wedge b \sim \delta & \Rightarrow & b=\tilde{b}+\phi B & \text { where } \\
b \in E \otimes \Lambda^{2} M & & \tilde{b} \in E \otimes \Lambda^{-} M \\
\phi \in C(M)
\end{array}
$$

But B provides an isomorphism $E \sim \Lambda^{+} M \quad \Rightarrow \quad B(\tilde{b}) \in \Lambda^{+} M \otimes \Lambda^{-} M$
This is the known identification

$$
\Lambda^{+} M \otimes \Lambda^{-} M \sim S_{0}^{2} T^{*} M
$$

The second linearized equation $\quad d b+[a, B]=0 \quad \Rightarrow \quad a(b)$

$$
a \in E \otimes \Lambda^{1} M \quad \text { linearized connection }
$$

To disentangle the content, consider tracefree perturbations only $b=\tilde{b}$
Introduce a new exterior derivative

$$
d_{-}: E \otimes \Lambda^{1} M \rightarrow E \otimes \Lambda^{-} M
$$

Lemma: $\quad a(\tilde{b})=d_{-}^{*} \tilde{b}$
The last equation linearized

$$
d a(b)=q B+Q b
$$

Let us take its $\Lambda^{-} M$ part (for tracefree perturbations)

$$
d_{-} d_{-}^{*} \tilde{b}=Q \tilde{b}
$$

This is the tracefree part of the (linearized) Einstein condition! (on an arbitrary background!)

Towards the "pure connection" formulation

 Idea:Take \mathbf{A} in $E \rightarrow M$ as the main variableConsider Einstein metrics such that $F\left(A^{+}\right)$spans a definite 3-dimensional subspace in $\Lambda^{2} M \quad \Rightarrow$ conformal metric

Fine, Panov
Definition: An SO(3) connection is called definite if $F(A) \wedge F(A)$ is a definite matrix

For a definite A , declare the subspace spanned by $\mathrm{F}(\mathrm{A})$ to be $\Lambda^{+} M$ \Rightarrow conformal metric
To get the full metric and Einstein equations consider $F(A) \wedge F(A) \in \Lambda^{4} M \otimes \operatorname{End}(E)$

$$
\begin{aligned}
& \text { In Plebanski this is } \\
& Q^{2} \operatorname{Tr}(B \wedge B)
\end{aligned}
$$

Define the volume form via

$$
\Lambda^{2}(\mathrm{vol}):=(\operatorname{Tr} \sqrt{F \wedge F})^{2}
$$

Theorem: Let A be a definite connection in the principal $\mathrm{SO}(3)$ bundle over M with $p_{1}=2 \chi(M)+3 \tau(M)$
Let F be its curvature 2-form. Define
$\Lambda B:=\operatorname{Tr}(\sqrt{F \wedge F})(F \wedge F)^{-1 / 2} F$
(so that $B: E \rightarrow \Lambda^{2} M$ is an isometry).
Then the metric defined by F (or B) is Einstein if

$$
d_{A} B=0
$$

Einstein metrics with
$s \neq 0$ and definite

$$
\frac{s}{12}+W_{+}
$$

$\mathrm{SO}(3)$ connections (on a specific bundle over M) satisfying

$$
d_{A} B=0
$$

Examples not covered:
alternatively, metrics for which $F\left(A^{+}\right)$spans $\Lambda^{+} M$

Variational Principle

partial results on zero scalar curvature in early 90 's

$$
S_{\mathrm{GR}}[A]=\frac{1}{16 \pi G \Lambda} \int_{M}(\operatorname{Tr}(\sqrt{F \wedge F}))^{2}
$$

Euler-Lagrange equations $d_{A} B=0$ bundle to get GR
thus precisely Einstein metrics

Remark: Recalling the metric as defined by F
action is just
the volume

$$
S_{\mathrm{GR}}[A]=\Lambda M_{p}^{2} \operatorname{Vol}(M)
$$

The new functional from Plebanski

can solve the B equation $\quad B=Q^{-1} F$

$$
S[A, Q]=\int Q^{-1} F \wedge F+\mu(\operatorname{Tr}(Q)-\Lambda)
$$

now minimize wrt Q , keeping the trace fixed

$$
\begin{array}{ll}
\Rightarrow & \mu Q^{2}=F \wedge F \\
\Rightarrow & \Lambda \sqrt{\mu}=\operatorname{Tr} \sqrt{F \wedge F} \\
\Rightarrow & S[A]=\frac{1}{\Lambda} \int(\operatorname{Tr} \sqrt{F \wedge F})^{2}
\end{array}
$$

precisely the same procedure as one that leads to the so-called Eddington's formulation of GR (also Schrodinger)

$$
S[\Gamma]=\frac{1}{\Lambda} \int d^{4} x \sqrt{\operatorname{det}\left(R_{\mu \nu}\right)}
$$

as in our formulation, it is just the volume

Half-flat metrics

The gauge-theoretic reformulation of GR gives a simple characterization of half-flat metrics $\left.Q\right|_{\mathrm{tf}}=0,\left.P\right|_{\mathrm{tf}} \neq 0$

Theorem: A connection whose curvature viewed as a

Fine 'IO map $F: E \rightarrow \Lambda^{2} M$ is an isometry $F \wedge F \sim \delta$ gives a half-flat metric (instanton) of non-zero scalar curvature

Proof: Define $B=F$
Satisfies $d_{A} B=0$ as well as $B \wedge B \sim \delta$
Thus gives an Einstein metric with $Q \sim \delta$
\Rightarrow Weyl curvature is purely anti-self-dual

To get a better feel for the new functional, let us consider linearization (around an ASD connection)

Lemma:

$$
\begin{aligned}
\tilde{b} & =d_{-} a \\
\phi & =\operatorname{Tr} B^{-1}\left(d_{+} a\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { where } \\
& B^{-1}\left(d_{+} a\right) \in E \otimes E
\end{aligned}
$$

the space of connections mod gauge transforms is only 9 functions per point
variation of the conformal factor is not independent!

$$
\text { only } 9 \text { functions per point }
$$

Lemma: $\quad \delta^{2} S_{\mathrm{GR}}=\int_{M}\left(\left.B^{-1}\left(d_{+} a\right)\right|_{\text {sym,tracefree }}\right)^{2}$
At a critical point corresponding to ASD Einstein metric the functional is non-negative

Description of GR without the conformal mode problem!

On-shell equivalent description of gravitons

space of metrics

space of conformal metrics = SU(2) connections/gauge
(Euclidean) EH functional is not convex (conformal mode problem)

The new action (its Euclidean version) is a convex functional

Restriction of the EH action to a smaller space gives a convex functional

The conformal mode has been "integrated out" and is now absent even off-shell

How to do calculations: Scattering Amplitudes

Gauge-fixing:
gauge-fixing condition invariant under shifts $\quad \partial^{\mu}\left(P^{(3 / 2,1 / 2)} a_{\mu}^{i}\right)=0$
in spinor terms $\quad(\partial a)^{B C} \equiv \partial_{A^{\prime}}^{A} a_{A}^{B C A^{\prime}}=0 \quad$ where $\quad a_{A^{\prime}}^{A B C} \in S_{+}^{3} \otimes S_{-}$
gauge-fixed Lagrangian - functional on $\mathcal{C}^{\infty}\left(S_{+}^{3} \otimes S_{-}\right)$

$$
\mathcal{L}^{(2)}+\mathcal{L}_{g f}^{(2)}=\left(\partial_{A^{\prime}}^{(A} a^{B C D) A^{\prime}}\right)^{2}+\frac{3}{4}\left((\partial a)^{A B}\right)^{2}=-\frac{1}{2} a_{A B C}^{A^{\prime}} \partial^{2} a^{A B C}{ }_{A^{\prime}}
$$

Thus, the propagator

$$
\Delta(k)_{E F M^{M^{\prime} A B C}}^{D^{\prime}}=\frac{\epsilon_{E}^{(A} \epsilon_{F}{ }^{B} \epsilon_{M}{ }^{C)} \epsilon_{D^{\prime}} M^{\prime}}{k^{2}}
$$

$$
\begin{aligned}
A B C & \equiv \\
D^{\prime} & \underset{M^{\prime}}{E F M} \underset{k^{2}}{ } \quad \begin{array}{c}
\text { only the }(3 / 2, \mathrm{I} / 2) \\
\text { component propagates }
\end{array}
\end{aligned}
$$

Spinor helicity states

$$
\varepsilon^{+}(k)^{A B C}{ }_{D^{\prime}}=\frac{1}{M} \frac{k^{A} k^{B} k^{C} p_{D^{\prime}}}{[k p]}, \quad \varepsilon^{-}(k)^{A B C}{ }_{D^{\prime}}=M \frac{q^{A} q^{B} q^{C} k_{D^{\prime}}}{(k q)^{3}}
$$

here, as usual p^{A}, q^{A} are arbitrary spinors not aligned with k^{A}
and $\quad[k p]:=k_{A^{\prime}} p^{A^{\prime}}, \quad(k p):=k^{A} p_{A} \quad$ are spinor products

To take the $M \rightarrow 0$ limit
need to make the (positive helicity) external momenta slightly massive

$$
k^{A A^{\prime}}=k^{A} k^{A^{\prime}}+\frac{M^{2} q^{A} q^{A^{\prime}}}{(k q)[k q]} \quad \text { so that } \quad k^{A A^{\prime}} k_{A A^{\prime}}=-2 M^{2}
$$

Usual spinor helicity calculations! Same amplitudes (e.g. graviton-graviton, MHV) the only headache is taking the $M \rightarrow 0$ limit

Relation to the metric description

$$
\begin{gathered}
h_{A B A^{\prime} B^{\prime}} \sim \frac{1}{M}(\partial a)_{A B A^{\prime} B^{\prime}} \quad a^{A B C A^{\prime}} \sim \frac{1}{M} \partial_{B^{\prime}}^{(A} h^{B C) A^{\prime} B^{\prime}} \\
\text { both are true on } k^{2}=2 M^{2}
\end{gathered}
$$

then our helicity states are just images of the usual metric states

3 -vertex in the metric language

Bern's 3-vertex for GR

$$
\mathcal{L}^{(3)} \sim \frac{1}{M_{p}}\left(\partial_{A^{\prime}}^{(A} \partial_{B^{\prime}}^{B} h^{C D) A^{\prime} B^{\prime}}\right) h^{M^{\prime} N^{\prime}}{ }_{A B} h_{M^{\prime} N^{\prime} C D}
$$

our calculations are exactly the same as ones done with the usual metric helicity states and the above vertex

Summary so far:

- Using $S_{+}^{3} \otimes S_{-}$instead of $S_{+}^{2} \otimes S_{-}^{2}$
to describe gravitons
- "Restriction" of the EH action to a smaller space of conformal metrics gives a convex functional
- Much simpler linearized action, much simpler interaction vertices!
e.g. off-shell 4-vertex contains
only 7 terms, as compared to a page in the metric-based case
- Formulation in which the off-shell 3-vertex is (basically) (YM vertex) ${ }^{\wedge} 2$

Generalization: Diffeomorphism invariant gauge theories

$$
\mathfrak{g} \text { - Lie algebra of G }
$$

$$
\begin{aligned}
f: & X \rightarrow \mathbb{R}(\mathbb{C}) \quad \begin{array}{l}
\text { defining } \\
\text { function }
\end{array} \\
& X \in \mathfrak{g} \otimes_{S} \mathfrak{g}
\end{aligned}
$$

2) $\quad f\left(g X g^{T}\right)=f(X), \forall g \in G$

Then $f(F \wedge F)$ is a well-defined 4-form (gauge-invariant)

Can define a gauge and diffeomorphism invariant action

$$
F=d A+(1 / 2)[A, A]
$$

$$
S[A]=\mathrm{i} \int_{M} f(F \wedge F)
$$

no dimensionful
coupling constants!

Lorentzian signature functional

Field equations: $\quad d_{A} B=0$
where $B=\frac{\partial f}{\partial X} F$ and $X=F \wedge F$
Second-order (non-linear) PDE's
compare Yang-Mills equations: $d_{A} B=0$ where $B={ }^{*} F$

Dynamically non-trivial theory with $2 \mathrm{n}-4$ propagating DOF
Gauge symmetries:
apart from the single point $f_{\text {top }}=\operatorname{Tr}(F \wedge F)$

$$
\begin{aligned}
\delta_{\phi} A & =d_{A} \phi & \text { gauge rotations } \\
\delta_{\xi} A & =\iota_{\xi} F & \text { diffeomorphisms }
\end{aligned}
$$

The simplest nontrivial theory:
$\mathrm{G}=\mathrm{SU}(2)$ - gravity
(interacting massless spin 2 particles)

Define the metric by:

$$
\operatorname{Span}\{F(A)\}=\Lambda^{+} M \quad(\operatorname{vol}) \sim f(F \wedge F)
$$

The functional is just the volume:

$$
S[A] \sim \operatorname{Vol}(M)
$$

The linearization (around de Sitter) is the same for any $f()$

For any choice of $f()$ - a theory of interacting massless spin 2 particles

Deformations of GR

All other choices of $f()$ lead to different (from GR) interacting
can be shown to correspond to the
EH Lagrangian with an infinite set of
counterterms added theories of massless spin 2 particles

```
    seemingly impossible due to the GR uniqueness, but specific
(sometimes innocuous) assumptions that go into each version of
    the uniqueness theorems are explicitly violated here
```

Not a dynamical theory of $g_{\mu \nu}$
(in its second-order formulation)
A generic theory is not parity invariant!

Modified gravity theories with 2 propagating DOF - a very interesting object of study

Parity violation is quantified in scattering amplitudes
In GR only parity-preserving processes:

amplitude $\quad \mathcal{A} \sim \frac{1}{M_{p}^{2}} \frac{s^{3}}{t u} \sim\left(\frac{E}{M_{p}}\right)^{2}$

In a general theory from our family parity-violating processes become allowed:

$$
\mathcal{A} \sim \frac{s^{4}+t^{4}+u^{4}}{M_{p}^{8}} \sim\left(\frac{E}{M_{p}}\right)^{8}
$$

$$
\mathcal{A} \sim \frac{s t u}{M_{p}^{6}} \sim\left(\frac{E}{M_{p}}\right)^{6}
$$

A general theory likes negative helicity gravitons!
Can speculate that at high energies these processes will dominate and all gravitons will get converted into negative helicity ones (strongly coupled by the parity-preserving processes)

Quantum Theory Hopes

Remark: no dimensionful coupling constants in any of these gravitational theories

Non-renormalizable in the usual sense

Hope: the class of theories - all possible $f()$ - is large enough to be closed under renormalization

$$
\frac{\partial f(F \wedge F)}{\partial \log \mu}=\beta_{f}(F \wedge F)
$$

l.e. physics at higher energies continues to be described by theories from the same family

The speculative RG flow

strongly coupled negative helicity gravitons at high energies
\Rightarrow no propagating DOF ? \Rightarrow topological theory ?
$f_{\mathrm{top}}(F \wedge F)=\operatorname{Tr}(F \wedge F)$

necessarily a fixed point

 of the RG flowcorresponds to a topological theory (no propagating DOF)

flow from very steep
in IR towards very
flat in UV potential

Summary:

- Dynamically non-trivial diffeomorphism invariant gauge theories
- The simplest non-trivial such theory $\mathrm{G}=\mathrm{SU}(2)$ - gravity
- GR can be described in this language (on-shell equivalent only) \Rightarrow possibly different quantum theory
- Computationally efficient alternative to the usual description (no propagating conformal mode even off-shell)
- Different from GR (parity-violating) theories of interacting massless spin 2 particles
- If this class of theories is closed under renormalization

> understanding of the gravitational RG flow description of the Planck scale physics

Open problems

- Chiral, thus complex description. Unitarity?
- Coupling to matter?

Enlarging the gauge group - rather general types of matter coupled to gravity can be obtained. Fermions?

- Closedness under renormalization?

Are these just some effective field theory models, or they are UV complete as Yang-Mills?

