Gravity from the viewpoint of local fields

Dirk Kreimer, IHES

February 2010

Acknowledgments and Literature

- Thanks to people involved:

Christoph Bergbauer, Spencer Bloch, David Broadhurst, Francis Brown, Alain Connes, Dzimitri Doryn, Hélène Esnault, Kurusch Ebrahimi-Fard, Loic Foissy, Herbert Gangl, Dominique Manchon, Oliver Schnetz, Walter van Suijlekom, Matt Szczesny, Andrea Velenich, Karen Yeats

Acknowledgments and Literature

- Thanks to people involved:

Christoph Bergbauer, Spencer Bloch, David Broadhurst, Francis Brown, Alain Connes, Dzimitri Doryn, Hélène Esnault, Kurusch Ebrahimi-Fard, Loic Foissy, Herbert Gangl, Dominique Manchon, Oliver Schnetz, Walter van Suijlekom, Matt Szczesny, Andrea Velenich, Karen Yeats

- Literature:
D. Kreimer, Algebra for quantum fields, arXiv:0906.1851 [hep-th], Clay Math. Inst. Proc. and references there.

Overview of talk

- Feynman graphs and their algebraic properties
- Hopf algebras
- Lie algebras
- sub-Hopf algebras
- Dynkin operators $S \star Y$

Overview of talk

- Feynman graphs and their algebraic properties
- Hopf algebras
- Lie algebras
- sub-Hopf algebras
- Dynkin operators $S \star Y$
- The structure of a Green function
- Kinematics as cohomology
- Leading-log expansions - the RGE from $S \star Y$
- Reductions to γ_{1}
- ODEs for β-functions

Overview of talk

- Feynman graphs and their algebraic properties
- Hopf algebras
- Lie algebras
- sub-Hopf algebras
- Dynkin operators $S \star Y$
- The structure of a Green function
- Kinematics as cohomology
- Leading-log expansions - the RGE from $S \star Y$
- Reductions to γ_{1}
- ODEs for β-functions
- Nonperturbative aspects of QED and QCD
- QED
- QCD

Overview of talk

- Feynman graphs and their algebraic properties
- Hopf algebras
- Lie algebras
- sub-Hopf algebras
- Dynkin operators $S \star Y$
- The structure of a Green function
- Kinematics as cohomology
- Leading-log expansions - the RGE from $S \star Y$
- Reductions to γ_{1}
- ODEs for β-functions
- Nonperturbative aspects of QED and QCD
- QED
- QCD
- Hodge structures and Feynman graphs
- renormalization as a limiting mixed Hodge structure
- Core Hopf algebras, gravity, BCFW

Hopf algebra of graphs $H=\mathbb{Q} 1 \oplus \bigoplus_{j=1}^{\infty} H^{j}$

- The coproduct

$$
\begin{equation*}
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\overbrace{\sum_{\gamma=\cup_{i} \gamma_{i}, \omega_{4}\left(\gamma_{i}\right) \geq 0}}^{\Delta^{\prime}(\Gamma)} \gamma \otimes \Gamma / \gamma \tag{1}
\end{equation*}
$$

Hopf algebra of graphs $H=\mathbb{Q} 1 \oplus \bigoplus_{j=1}^{\infty} H^{j}$

- The coproduct

$$
\begin{equation*}
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\overbrace{\sum_{\gamma=\cup_{i} \gamma_{i}, \omega_{4}\left(\gamma_{i}\right) \geq 0}}^{\Delta^{\prime}(\Gamma)} \gamma \otimes \Gamma / \gamma \tag{1}
\end{equation*}
$$

- The antipode

$$
\begin{equation*}
S(\Gamma)=-\Gamma-\sum S(\gamma) \Gamma / \gamma=-m(S \otimes \mathrm{P}) \Delta \tag{2}
\end{equation*}
$$

Hopf algebra of graphs $H=\mathbb{Q} 1 \oplus \bigoplus_{j=1}^{\infty} H^{j}$

- The coproduct

$$
\begin{equation*}
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\overbrace{\sum_{\gamma=\cup_{i} \gamma_{i}, \omega_{4}\left(\gamma_{i}\right) \geq 0} \gamma \otimes \Gamma / \gamma}^{\Delta^{\prime}(\Gamma)} \tag{1}
\end{equation*}
$$

- The antipode

$$
\begin{equation*}
S(\Gamma)=-\Gamma-\sum S(\gamma) \Gamma / \gamma=-m(S \otimes \mathrm{P}) \Delta \tag{2}
\end{equation*}
$$

- The character group

$$
\begin{equation*}
G_{V}^{H} \ni \Phi \Leftrightarrow \Phi: H \rightarrow V, \Phi\left(h_{1} \cup h_{2}\right)=\Phi\left(h_{1}\right) \Phi\left(h_{2}\right) \tag{3}
\end{equation*}
$$

Hopf algebra of graphs $H=\mathbb{Q} 1 \oplus \bigoplus_{j=1}^{\infty} H^{j}$

- The coproduct

$$
\begin{equation*}
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\overbrace{\sum_{\gamma=\cup_{i} \gamma_{i}, \omega_{4}\left(\gamma_{i}\right) \geq 0} \gamma \otimes \Gamma / \gamma}^{\Delta^{\prime}(\Gamma)} \tag{1}
\end{equation*}
$$

- The antipode

$$
\begin{equation*}
S(\Gamma)=-\Gamma-\sum S(\gamma) \Gamma / \gamma=-m(S \otimes \mathrm{P}) \Delta \tag{2}
\end{equation*}
$$

- The character group

$$
\begin{equation*}
G_{V}^{H} \ni \Phi \Leftrightarrow \Phi: H \rightarrow V, \Phi\left(h_{1} \cup h_{2}\right)=\Phi\left(h_{1}\right) \Phi\left(h_{2}\right) \tag{3}
\end{equation*}
$$

- The counterterm

$$
\begin{align*}
S_{R}^{\Phi}(\Gamma) & =-R\left(\Phi(h)-\sum S_{R}^{\Phi}(\gamma) \Phi(\Gamma / \gamma)\right) \\
& =-R \Phi\left(m\left(S_{R}^{\Phi} \otimes \Phi P\right) \Delta(\Gamma)\right) \tag{4}
\end{align*}
$$

Hopf algebra of graphs $H=\mathbb{Q} 1 \oplus \bigoplus_{j=1}^{\infty} H^{j}$

- The coproduct

$$
\begin{equation*}
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\overbrace{\sum_{\gamma=\cup_{i} \gamma_{i}, \omega_{4}\left(\gamma_{i}\right) \geq 0} \gamma \otimes \Gamma / \gamma}^{\Delta^{\prime}(\Gamma)} \tag{1}
\end{equation*}
$$

- The antipode

$$
\begin{equation*}
S(\Gamma)=-\Gamma-\sum S(\gamma) \Gamma / \gamma=-m(S \otimes \mathrm{P}) \Delta \tag{2}
\end{equation*}
$$

- The character group

$$
\begin{equation*}
G_{V}^{H} \ni \Phi \Leftrightarrow \Phi: H \rightarrow V, \Phi\left(h_{1} \cup h_{2}\right)=\Phi\left(h_{1}\right) \Phi\left(h_{2}\right) \tag{3}
\end{equation*}
$$

- The counterterm

$$
\begin{align*}
S_{R}^{\Phi}(\Gamma) & =-R\left(\Phi(h)-\sum S_{R}^{\Phi}(\gamma) \Phi(\Gamma / \gamma)\right) \\
& =-R \Phi\left(m\left(S_{R}^{\Phi} \otimes \Phi P\right) \Delta(\Gamma)\right) \tag{4}
\end{align*}
$$

- The renormalized Feynman rules

$$
\begin{equation*}
\Phi_{R}=m\left(S_{R}^{\Phi} \otimes \Phi\right) \Delta \tag{5}
\end{equation*}
$$

An Example

- The co-product

$$
\begin{aligned}
& +2 \otimes \otimes+\infty \text {. }
\end{aligned}
$$

An Example

- The co-product

$$
\begin{aligned}
& +2 \otimes \otimes+\infty \text {. }
\end{aligned}
$$

- The counterterm

$$
\begin{aligned}
& +R[\Phi(3+2+\infty)] \Phi(\Phi)\}
\end{aligned}
$$

An Example

- The co-product

$$
\begin{aligned}
& +2 \otimes \otimes+\infty \text {. }
\end{aligned}
$$

- The counterterm

$$
\begin{aligned}
& +R[\Phi(3+2+\infty)] \Phi(\square)\}
\end{aligned}
$$

- The renormalized result

$$
\begin{aligned}
& +R[\Phi(3+2+)] \Phi(\square)\}
\end{aligned}
$$

Lie algebra of graphs

- The Milnor Moore Theorem

$$
H=U^{\star}(L)
$$

Lie algebra of graphs

- The Milnor Moore Theorem
$H=U^{\star}(L)$
- The pairing

$$
\begin{equation*}
\left\langle Z_{\Gamma}, \delta_{\Gamma^{\prime}}\right\rangle=\delta_{\Gamma, \Gamma^{\prime}}^{\text {Kronecker }} \tag{6}
\end{equation*}
$$

Lie algebra of graphs

- The Milnor Moore Theorem

$$
H=U^{\star}(L)
$$

- The pairing

$$
\begin{equation*}
\left\langle Z_{\Gamma}, \delta_{\Gamma^{\prime}}\right\rangle=\delta_{\Gamma, \Gamma^{\prime}}^{\text {Kronecker }} \tag{6}
\end{equation*}
$$

- the Lie algebra

$$
\begin{align*}
{\left[Z_{\Gamma}, Z_{\Gamma^{\prime}}\right]=} & Z_{\Gamma^{\prime} \star \Gamma-\Gamma \star \Gamma^{\prime}} \tag{7}\\
\star \star & = \\
\star & =2 \frac{a^{3 n n_{3}}}{}
\end{align*}
$$

Lie algebra of graphs

- The Milnor Moore Theorem

$$
H=U^{\star}(L)
$$

- The pairing

$$
\begin{equation*}
\left\langle Z_{\Gamma}, \delta_{\Gamma^{\prime}}\right\rangle=\delta_{\Gamma, \Gamma^{\prime}}^{\text {Kronecker }} \tag{6}
\end{equation*}
$$

- the Lie algebra

$$
\begin{align*}
{\left[Z_{\Gamma}, Z_{\Gamma^{\prime}}\right] } & =Z_{\Gamma^{\prime} \star \Gamma-\Gamma \star \Gamma^{\prime}} \tag{7}\\
\star \star & = \\
\star \star & =2
\end{align*}
$$

- Leads to an identification of β-functions and anomalous dimenions, and lifts the Birkhoff decomposition $\Phi_{R}=S_{R}^{\Phi} \star \Phi$ to diffeomorphisms of physical parameters.

sub-Hopf algebras

- summing order by order

$$
\begin{equation*}
c_{k}^{r}=\sum_{|\Gamma|=k, \operatorname{res}(\Gamma)=r} \frac{1}{|\operatorname{Aut}(\Gamma)|} \Gamma \tag{8}
\end{equation*}
$$

then

$$
\begin{equation*}
\Delta\left(c_{k}^{r}\right)=\sum_{j} \operatorname{Pol}_{j}\left(c_{m}^{s}\right) \otimes c_{k-j}^{r} \tag{9}
\end{equation*}
$$

sub-Hopf algebras

- summing order by order

$$
\begin{equation*}
c_{k}^{r}=\sum_{|\Gamma|=k, \operatorname{res}(\Gamma)=r} \frac{1}{|\operatorname{Aut}(\Gamma)|} \Gamma, \tag{8}
\end{equation*}
$$

then

$$
\begin{equation*}
\Delta\left(c_{k}^{r}\right)=\sum_{j} \operatorname{Pol}_{j}\left(c_{m}^{s}\right) \otimes c_{k-j}^{r} \tag{9}
\end{equation*}
$$

- Hochschild closedness

$$
\begin{array}{r}
X^{r}=1 \pm \sum_{j} c_{j}^{r} \alpha^{j}=1 \pm \sum_{j} \alpha^{j} B_{+}^{r ; j}\left(X^{r} Q^{j}(\alpha)\right), \tag{10}\\
Q^{j}=\frac{X^{v}}{\sqrt{\prod_{\text {edges eat } \mathrm{v}} X^{e}}} . \text { Evaluates to invariant charge. }
\end{array}
$$

sub-Hopf algebras

- summing order by order

$$
\begin{equation*}
c_{k}^{r}=\sum_{|\Gamma|=k, \operatorname{res}(\Gamma)=r} \frac{1}{|\operatorname{Aut}(\Gamma)|} \Gamma, \tag{8}
\end{equation*}
$$

then

$$
\begin{equation*}
\Delta\left(c_{k}^{r}\right)=\sum_{j} \operatorname{Pol}_{j}\left(c_{m}^{s}\right) \otimes c_{k-j}^{r} \tag{9}
\end{equation*}
$$

- Hochschild closedness

$$
\begin{equation*}
X^{r}=1 \pm \sum_{j} c_{j}^{r} \alpha^{j}=1 \pm \sum_{j} \alpha^{j} B_{+}^{r ; j}\left(X^{r} Q^{j}(\alpha)\right) \tag{10}
\end{equation*}
$$

$Q^{j}=\frac{X^{\vee}}{\sqrt{\prod_{\text {edges eat v }} X^{e}}}$. Evaluates to invariant charge.

- $b B_{+}^{r ; j}=0$.

$$
\begin{equation*}
\Delta B_{+}^{r ; j}(X)=B_{+}^{r ; j}(X) \otimes 1+\left(i d \otimes B_{+}^{r ; j}\right) \Delta(X) \tag{11}
\end{equation*}
$$

Implies locality of counterterms upon application of Feynman rules.

Symmetry

- Ward and Slavnov-Taylor ids

$$
\begin{equation*}
i_{k}:=c_{k}^{\bar{\psi} \psi}+c_{k}^{\bar{\psi} A \psi} \tag{12}
\end{equation*}
$$

span Hopf (co-)ideal I:

$$
\begin{gathered}
\Delta(I) \subseteq H \otimes I+I \otimes H \\
\Delta\left(i_{2}\right)=i_{2} \otimes 1+1 \otimes i_{2}+\left(c_{1}^{\frac{1}{4} F^{2}}+c_{1}^{\bar{\psi} A \psi}+i_{1}\right) \otimes i_{1}+i_{1} \otimes c_{1}^{\bar{\psi} A \psi}
\end{gathered}
$$

Symmetry

- Ward and Slavnov-Taylor ids

$$
\begin{equation*}
i_{k}:=c_{k}^{\bar{\psi} \psi}+c_{k}^{\bar{\psi} A \psi} \tag{12}
\end{equation*}
$$

span Hopf (co-)ideal I:

$$
\begin{gathered}
\Delta(I) \subseteq H \otimes I+I \otimes H \\
\Delta\left(i_{2}\right)=i_{2} \otimes 1+1 \otimes i_{2}+\left(c_{1}^{\frac{1}{4} F^{2}}+c_{1}^{\bar{\psi} A \psi}+i_{1}\right) \otimes i_{1}+i_{1} \otimes c_{1}^{\bar{\psi} A \psi}
\end{gathered}
$$

- Feynman rules vanish on $I \Leftrightarrow$ Feynman rules respect quantized symmetry: $\phi^{R}: H / I \rightarrow V$.

Symmetry

- Ward and Slavnov-Taylor ids

$$
\begin{equation*}
i_{k}:=c_{k}^{\bar{\psi} \psi}+c_{k}^{\bar{\psi} A \psi} \tag{12}
\end{equation*}
$$

span Hopf (co-)ideal I:

$$
\begin{gathered}
\Delta(I) \subseteq H \otimes I+I \otimes H \\
\Delta\left(i_{2}\right)=i_{2} \otimes 1+1 \otimes i_{2}+\left(c_{1}^{\frac{1}{4} F^{2}}+c_{1}^{\bar{\psi} A \psi}+i_{1}\right) \otimes i_{1}+i_{1} \otimes c_{1}^{\bar{\psi} A \psi}
\end{gathered}
$$

- Feynman rules vanish on $I \Leftrightarrow$ Feynman rules respect quantized symmetry:
$\Phi^{R}: H / I \rightarrow V$.
- Ideals for Slavnov-Taylor ids generated by equality of renormalized charges, also for the master equation in Batalin-Vilkovisky (see Walter van Suijlekom's work)

Dynkin operators

- $S \star Y$
$Y(\Gamma)=|\Gamma| \Gamma$ the grading operator

$$
\begin{equation*}
S \star Y(\Gamma)=m(S \otimes Y) \Delta(\Gamma) \tag{14}
\end{equation*}
$$

Vanishes on products.

Dynkin operators

- $S \star Y$
$Y(\Gamma)=|\Gamma| \Gamma$ the grading operator

$$
\begin{equation*}
S \star Y(\Gamma)=m(S \otimes Y) \Delta(\Gamma) \tag{14}
\end{equation*}
$$

Vanishes on products.

- The leading log expansion

$$
\begin{align*}
& \Phi^{R}(\Gamma)=\sum_{j}^{\operatorname{corad}(\Gamma)} c_{j}(\Gamma) \ln ^{j} s \tag{15}\\
\Rightarrow & c_{j}=\frac{1}{j!} \underbrace{\sigma \otimes \cdots \otimes \sigma}_{j \text { times }} \Delta^{j-1}, j \geq 1 \tag{16}
\end{align*}
$$

where $\sigma=\Phi^{R} \circ S \star Y \leftrightarrow \gamma_{k} \equiv \gamma_{k}\left(\gamma_{1}\right)$.

Kinematics and Cohomology

- Exact co-cycles

$$
\begin{equation*}
\left[B_{+}^{r, j}\right]=B_{+}^{r ; j}+b \phi^{r ; j} \tag{17}
\end{equation*}
$$

with $\phi^{r ; j}: H \rightarrow \mathbb{C}$

Kinematics and Cohomology

- Exact co-cycles

$$
\begin{equation*}
\left[B_{+}^{r, j}\right]=B_{+}^{r ; j}+b \phi^{r ; j} \tag{17}
\end{equation*}
$$

with $\phi^{r ; j}: H \rightarrow \mathbb{C}$

- Variation of momenta

$$
\begin{equation*}
G^{R}(\{g\}, \ln s,\{\Theta\})=1 \pm \Phi_{\ln s,\{\Theta\}}^{R}\left(X^{r}(\{g\})\right) \tag{18}
\end{equation*}
$$

with $X^{r}=1 \pm \sum_{j} g^{j} B_{+}^{r ; j}\left(X^{r} Q^{j}(g)\right), b B_{+}^{r ; j}=0$. Also,

$$
\begin{equation*}
G^{r}=\left[\sum_{j=1}^{\infty} \gamma_{j}(\{g\},\{\Theta\}) \ln ^{j} s\right]+\overbrace{G_{0}^{r}}^{\text {abelian factor }} \tag{19}
\end{equation*}
$$

Then, for MOM and similar schemes (not MS!): $\{\Theta\} \rightarrow\left\{\Theta^{\prime}\right\} \Leftrightarrow B_{+}^{r, j} \rightarrow B_{+}^{r, j}+b \phi^{r, j}$.

Leading log expansions and the RGE

- The invariant charge Q^{v}

For each vertex v, a charge Q^{v} :

$$
\begin{equation*}
Q^{v}(g)=\frac{X^{v}(g)}{\prod_{e} \sqrt{X^{e}}} \tag{20}
\end{equation*}
$$

e adjacent to v.

Leading log expansions and the RGE

- The invariant charge Q^{v}

For each vertex v, a charge Q^{v} :

$$
\begin{equation*}
Q^{v}(g)=\frac{X^{v}(g)}{\prod_{e} \sqrt{X^{e}}} \tag{20}
\end{equation*}
$$

e adjacent to v.

$$
\begin{equation*}
\left(\partial_{L}+\beta(g) \partial_{g}-\sum_{e \text { adj r }} \gamma_{1}^{e}\right) G^{r}(g, L)=0 \tag{21}
\end{equation*}
$$

rewrites in terms of the Dynkin operator $\left(\gamma_{1}^{r}(g)=S \star Y\left(X^{r}(g)\right)\right):$

$$
\begin{equation*}
\gamma_{k}^{r}(g)=\frac{1}{k}\left(\gamma_{1}^{r}(g)-\sum_{j \in R} s_{j} \gamma_{1}^{j} g \partial_{g}\right) \gamma_{k-1}^{r}(g) \tag{22}
\end{equation*}
$$

Ordinary differential equations vs DSE

- RGE+DSE the iterated integral structure

$$
\begin{equation*}
\Phi^{R}\left(B_{+}^{r ; j}(X)\right)=\int \Phi^{R}(X) d \mu_{r ; j} \tag{23}
\end{equation*}
$$

allows to combine $X^{r}=1 \pm \sum_{j} B_{+}\left(X^{r} Q^{j}\right)$ with RGE to

$$
\begin{equation*}
\gamma_{1}^{r}=P(g)-\left[\gamma_{1}^{r}(g)\right]^{2}+\sum_{j \in R} s_{j} \gamma_{1}^{j} g \partial_{g} \gamma_{1}^{r}(g) \tag{24}
\end{equation*}
$$

Ordinary differential equations vs DSE

- RGE+DSE
the iterated integral structure

$$
\begin{equation*}
\Phi^{R}\left(B_{+}^{r ; j}(X)\right)=\int \Phi^{R}(X) d \mu_{r ; j} \tag{23}
\end{equation*}
$$

allows to combine $X^{r}=1 \pm \sum_{j} B_{+}\left(X^{r} Q^{j}\right)$ with RGE to

$$
\begin{equation*}
\gamma_{1}^{r}=P(g)-\left[\gamma_{1}^{r}(g)\right]^{2}+\sum_{j \in R} s_{j} \gamma_{1}^{j} g \partial_{g} \gamma_{1}^{r}(g) \tag{24}
\end{equation*}
$$

- massless gauge theories $\beta(g)=g \gamma_{1}(g) / 2$ for γ_{1} anomalous dim of gauge propagator
existence assumed

$$
\begin{equation*}
\gamma_{1}(g)=\overbrace{P(g)}-\gamma_{1}(g)\left(1-g \partial_{g}\right) \gamma_{1}(g) \tag{25}
\end{equation*}
$$

(Ward Id QED, background field gauge (Abbott) QCD)

QED

- sub Hopf algebra for vacuum polarization suffices

QED

- sub Hopf algebra for vacuum polarization suffices
- $\gamma_{1}(x)=P(x)-\gamma_{1}(x)^{2}+\gamma_{1}(x) x \partial_{x} \gamma_{1}(x)$ with $P(x)>0$

QED

- sub Hopf algebra for vacuum polarization suffices
- $\gamma_{1}(x)=P(x)-\gamma_{1}(x)^{2}+\gamma_{1}(x) x \partial_{x} \gamma_{1}(x)$ with $P(x)>0$ $P(x)$ twice differentiable
$\gamma_{1}\left(x_{0}\right)=\gamma_{0}>0$ different solutions distinguished by $e^{-\frac{1}{x}}$ behaviour

$$
\begin{aligned}
& \frac{d \gamma_{1}}{d x}=\gamma_{1}-\gamma_{1}^{2}-P, \\
& \frac{d x}{d L}=x \gamma_{1} \\
& L=\int_{x_{0}}^{x(L)} \frac{d z}{z \gamma_{1}(z)}
\end{aligned}
$$

- separatrix exists and might have no Landau pole: $D(P)=\int_{x_{0}}^{\infty} \frac{P(z) d z}{z^{3}}<\infty, \int_{x_{0}}^{\infty} \frac{2 d z}{z \sqrt{1+4 P(z)-1}}<\infty$

QCD

- sub Hopf algebra for gluon polarization suffices in background field gauge

QCD

- sub Hopf algebra for gluon polarization suffices in background field gauge
- $\gamma_{1}(g)=P(g)-\gamma_{1}(g)^{2}+\gamma_{1}(g) g \partial_{g} \gamma_{1}(g)$ with $P(g)<0$
- sub Hopf algebra for gluon polarization suffices in background field gauge
- $\gamma_{1}(g)=P(g)-\gamma_{1}(g)^{2}+\gamma_{1}(g) g \partial_{g} \gamma_{1}(g)$ with $P(g)<0$
$P(g)$ twice differentiable
and concave near 0
unique solution which
flows into $(0,0)$ at large
Q^{2}
$L=\int_{g_{0}}^{g(L)} \frac{d z}{z \gamma_{1}(z)} \rightarrow$
$L_{\Lambda}=-\int_{g\left(L_{\Lambda}\right)}^{\infty} \frac{d z}{z \gamma_{1}(z)}$,
$L_{\Lambda}=\ln Q^{2} / \Lambda_{Q C D}$
$f_{\text {disp }}\left(Q^{2}\right)=\int_{0}^{\infty} \frac{\Im(f(\sigma)) d \sigma}{\sigma+Q^{2}-i \eta}$
and ODE
- separatrix exists and gives asymptotic free solution, with finite mass gap for inverse propagator iff $\gamma_{1}(x)<-1$ for some $x>0$. $|D(P)|<\infty \rightarrow \gamma_{1}(x) \sim s x, x \rightarrow \infty$. That allows for dispersive methods as introduced by Shirkov et.al. in field theory.

Limiting mixed Hodge structures

- Hopf algebra from flags

$$
\begin{equation*}
f:=\gamma_{1} \subset \gamma_{2} \subset \ldots \subset \Gamma, \Delta^{\prime}\left(\gamma_{i+1} / \gamma_{i}\right)=0 \tag{26}
\end{equation*}
$$

The set of all such flags $F_{\Gamma} \ni f$ determines Hopf algebra structure, $\left|F_{\Gamma}\right|$ is the length of the flag.

Limiting mixed Hodge structures

- Hopf algebra from flags

$$
\begin{equation*}
f:=\gamma_{1} \subset \gamma_{2} \subset \ldots \subset \Gamma, \Delta^{\prime}\left(\gamma_{i+1} / \gamma_{i}\right)=0 \tag{26}
\end{equation*}
$$

The set of all such flags $F_{\Gamma} \ni f$ determines Hopf algebra structure, $\left|F_{\Gamma}\right|$ is the length of the flag.

- It also determines a column vector $v=v\left(F_{\Gamma}\right)$ and a nilpotent $\operatorname{matrix}(N)=\left(N\left(\left|F_{\Gamma}\right|\right)\right),(N)^{k+1}=0, k=\operatorname{corad}(\Gamma)$ such that

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left(e^{-\ln t(N)}\right) \Phi_{R}\left(v\left(F_{\Gamma}\right)\right)=\left(c_{1}^{\ulcorner }(\Theta) \ln s, c_{2}^{\Gamma}(\Theta), c_{k}^{\Gamma}(\Theta) \ln ^{k} s\right)^{T} \tag{27}
\end{equation*}
$$

where k is determined from the co-radical filtration and t is a regulator say for the lower boundary in the parametric representation.

$P(x)$ and Witt algebras

- A graded commutative Hopf algebra H can be regarded as the dual of the universal enveloping algebra $U(L)$ of a Lie algebra L. We need

$$
\begin{equation*}
\left\langle z_{m}^{r} \otimes z_{n}^{s}-z_{n}^{s} \otimes z_{m}^{r}, \Delta c_{j}^{t}\right\rangle=\left\langle\left[z_{n}^{s}, z_{m}^{r}\right], \Delta c_{j}^{t}\right\rangle, \tag{28}
\end{equation*}
$$

$\forall j>0, t \in \mathcal{R}$.

$P(x)$ and Witt algebras

- A graded commutative Hopf algebra H can be regarded as the dual of the universal enveloping algebra $U(L)$ of a Lie algebra L. We need

$$
\begin{equation*}
\left\langle z_{m}^{r} \otimes z_{n}^{s}-z_{n}^{s} \otimes z_{m}^{r}, \Delta c_{j}^{t}\right\rangle=\left\langle\left[z_{n}^{s}, z_{m}^{r}\right], \Delta c_{j}^{t}\right\rangle, \tag{28}
\end{equation*}
$$

$\forall j>0, t \in \mathcal{R}$.

$$
\begin{equation*}
\left[z_{k}^{s}, z_{l}^{t}\right]=-Q(s) k z_{k+1}^{s}+Q(t) \mid z_{k+1}^{t} \tag{29}
\end{equation*}
$$

In QED one finds $Q(\bar{\psi} A \psi))=Q(\bar{\psi} \psi)=2, Q\left(\frac{1}{4} F^{2}\right)=1$.

$P(x)$ and Witt algebras

- A graded commutative Hopf algebra H can be regarded as the dual of the universal enveloping algebra $U(L)$ of a Lie algebra L. We need

$$
\begin{equation*}
\left\langle z_{m}^{r} \otimes z_{n}^{s}-z_{n}^{s} \otimes z_{m}^{r}, \Delta c_{j}^{t}\right\rangle=\left\langle\left[z_{n}^{s}, z_{m}^{r}\right], \Delta c_{j}^{t}\right\rangle, \tag{28}
\end{equation*}
$$

$\forall j>0, t \in \mathcal{R}$.

$$
\begin{equation*}
\left[z_{k}^{s}, z_{l}^{t}\right]=-Q(s) k z_{k+1}^{s}+Q(t) \mid z_{k+1}^{t} \tag{29}
\end{equation*}
$$

In QED one finds $Q(\bar{\psi} A \psi))=Q(\bar{\psi} \psi)=2, Q\left(\frac{1}{4} F^{2}\right)=1$.

- We identify this Lie algeb as a subalgebra of the generalized Witt algebra W. For integers $Q(t)$ as above, set

$$
\begin{equation*}
z_{m}^{s}:=\left[\prod_{t \in \mathcal{R}} x_{t}^{Q(t}\right]^{m} x_{s} \partial_{x_{s}} . \tag{30}
\end{equation*}
$$

This puts $L_{\text {grad }} \subset W^{+}$. We can now augment the algebra W^{+}by an R-matrix: $\left[Y, z_{1}^{q}\right]=z_{1}^{q}, \rightarrow r:=Y \otimes z_{1}^{q}-z_{1}^{q} \otimes Y$.

$P(x)$ and Witt algebras

- A graded commutative Hopf algebra H can be regarded as the dual of the universal enveloping algebra $U(L)$ of a Lie algebra L. We need

$$
\begin{equation*}
\left\langle z_{m}^{r} \otimes z_{n}^{s}-z_{n}^{s} \otimes z_{m}^{r}, \Delta c_{j}^{t}\right\rangle=\left\langle\left[z_{n}^{s}, z_{m}^{r}\right], \Delta c_{j}^{t}\right\rangle, \tag{28}
\end{equation*}
$$

$\forall j>0, t \in \mathcal{R}$.

$$
\begin{equation*}
\left[z_{k}^{s}, z_{l}^{t}\right]=-Q(s) k z_{k+1}^{s}+Q(t) \mid z_{k+1}^{t} \tag{29}
\end{equation*}
$$

In QED one finds $Q(\bar{\psi} A \psi))=Q(\bar{\psi} \psi)=2, Q\left(\frac{1}{4} F^{2}\right)=1$.

- We identify this Lie algeb as a subalgebra of the generalized Witt algebra W. For integers $Q(t)$ as above, set

$$
\begin{equation*}
z_{m}^{s}:=\left[\prod_{t \in \mathcal{R}} x_{t}^{Q(t}\right]^{m} x_{s} \partial_{x_{s}} . \tag{30}
\end{equation*}
$$

This puts $L_{\text {grad }} \subset W^{+}$. We can now augment the algebra W^{+}by an R-matrix: $\left[Y, z_{1}^{q}\right]=z_{1}^{q}, \rightarrow r:=Y \otimes z_{1}^{q}-z_{1}^{q} \otimes Y$.

- $P(x)$ comes from $S \star Y$ on flags, and from dualizing Lie brackets in $L_{\text {grad }}$. Bounds from counting in $U\left(L_{\text {grad }}\right)$ and constructive estimates a possibility.

Periods and functions

- Wanted: $\rho:$ Graphs \rightarrow Periods

$$
\begin{equation*}
(\rho \otimes \rho) \Delta_{\text {Graphs }}=\Delta_{\text {periods }} \rho . \tag{31}
\end{equation*}
$$

What is ρ ? Which $\Delta_{\text {Graphs }}$? Is $\Delta_{M Z V}$ enough??? (waiting for Steph Belcher...)

Periods and functions

- Wanted: $\rho:$ Graphs \rightarrow Periods

$$
\begin{equation*}
(\rho \otimes \rho) \Delta_{\text {Graphs }}=\Delta_{\text {periods }} \rho . \tag{31}
\end{equation*}
$$

What is ρ ? Which $\Delta_{\text {Graphs }}$? Is $\Delta_{M Z V}$ enough??? (waiting for Steph Belcher...)

- What is the role of shuffle/stuffle algebras on graphs?

They are there for flags.
Is there a free Lie algebra structure on graphs?

Periods and functions

- Wanted: $\rho:$ Graphs \rightarrow Periods

$$
\begin{equation*}
(\rho \otimes \rho) \Delta_{\text {Graphs }}=\Delta_{\text {periods }} \rho . \tag{31}
\end{equation*}
$$

What is ρ ? Which $\Delta_{\text {Graphs }}$? Is $\Delta_{M Z V}$ enough??? (waiting for Steph Belcher...)

- What is the role of shuffle/stuffle algebras on graphs?

They are there for flags.
Is there a free Lie algebra structure on graphs?

- What is the number-theoretic meaning of all the graph Hopf algebras?
Not all of this is hopeless. See Francis Brown, Oliver Schnetz,...
In general, we need a better algebro-geometric understanding. See identification of zig-zag graphs by Dzmitri Doryn. But still no understanding of rational coefficients.

core Hopf algebra structures: unitarity, gravity, BCFW

- The core Hopf algebra

$$
\begin{equation*}
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\sum_{\gamma=\cup_{i} \gamma_{i}} \gamma \otimes \Gamma / \gamma \tag{32}
\end{equation*}
$$

Only primitive graphs are one-loop graphs. Appears as the endpoint in tower

$$
\begin{equation*}
H_{0} \subset H_{2} \subset H_{4} \subset H_{6} \subset \cdots \subset H_{\infty}=H_{\text {core }} \tag{33}
\end{equation*}
$$

core Hopf algebra structures: unitarity, gravity, BCFW

- The core Hopf algebra

$$
\begin{equation*}
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\sum_{\gamma=\cup_{i} \gamma_{i}} \gamma \otimes \Gamma / \gamma \tag{32}
\end{equation*}
$$

Only primitive graphs are one-loop graphs. Appears as the endpoint in tower

$$
\begin{equation*}
H_{0} \subset H_{2} \subset H_{4} \subset H_{6} \subset \cdots \subset H_{\infty}=H_{\text {core }} \tag{33}
\end{equation*}
$$

- Gravity

$$
\begin{equation*}
H_{\text {ren }}=H_{\text {core }} \tag{34}
\end{equation*}
$$

All skeletons are one-loop.

core Hopf algebra structures: unitarity, gravity, BCFW

- The core Hopf algebra

$$
\begin{equation*}
\Delta(\Gamma)=\Gamma \otimes 1+1 \otimes \Gamma+\sum_{\gamma=\cup_{i} \gamma_{i}} \gamma \otimes \Gamma / \gamma \tag{32}
\end{equation*}
$$

Only primitive graphs are one-loop graphs. Appears as the endpoint in tower

$$
\begin{equation*}
H_{0} \subset H_{2} \subset H_{4} \subset H_{6} \subset \cdots \subset H_{\infty}=H_{\text {core }} \tag{33}
\end{equation*}
$$

- Gravity

$$
\begin{equation*}
H_{\text {ren }}=H_{\text {core }} \tag{34}
\end{equation*}
$$

All skeletons are one-loop.

- Britto-Cachazo-Feng-Witten recursion holds \rightarrow Maximal Co-ideals of $H_{\text {core }}$ respected by Feynman rules. Gravity possibly renormalizable iff full cut-reconstrucbility holds (∞-ly many Ward ids suggested).

Integral kernels in gravity

$$
\begin{equation*}
\Delta^{\prime}(\Gamma)=0 \Leftrightarrow|\Gamma|=1 \tag{35}
\end{equation*}
$$

Holds after taking derivatives for projective integral kernels

Integral kernels in gravity

$$
\begin{equation*}
\Delta^{\prime}(\Gamma)=0 \Leftrightarrow|\Gamma|=1 \tag{35}
\end{equation*}
$$

Holds after taking derivatives for projective integral kernels

- Situation is dual between renormalizable theory and gravity: one one-cocycle per loop number for the gauge boson determines DSE in massless gauge theories one one-cocycle per n-point one-loop graphs determines DSE in gravity
loop-leg duality

Integral kernels in gravity

$$
\begin{equation*}
\Delta^{\prime}(\Gamma)=0 \Leftrightarrow|\Gamma|=1 \tag{35}
\end{equation*}
$$

Holds after taking derivatives for projective integral kernels

- Situation is dual between renormalizable theory and gravity: one one-cocycle per loop number for the gauge boson determines DSE in massless gauge theories one one-cocycle per n-point one-loop graphs determines DSE in gravity
loop-leg duality

$$
\begin{equation*}
\frac{X^{n+1}}{X^{n}}=\frac{X^{n}}{X^{n-1}} \tag{36}
\end{equation*}
$$

core Hopf ideal $=$ renormalization ideal

Integral kernels in gravity

$$
\begin{equation*}
\Delta^{\prime}(\Gamma)=0 \Leftrightarrow|\Gamma|=1 \tag{35}
\end{equation*}
$$

Holds after taking derivatives for projective integral kernels

- Situation is dual between renormalizable theory and gravity: one one-cocycle per loop number for the gauge boson determines DSE in massless gauge theories one one-cocycle per n-point one-loop graphs determines DSE in gravity
loop-leg duality

$$
\begin{equation*}
\frac{X^{n+1}}{X^{n}}=\frac{X^{n}}{X^{n-1}} \tag{36}
\end{equation*}
$$

core Hopf ideal $=$ renormalization ideal

- same powercounting holds for field diffeomorphisms of free theory
same ideal I :

$$
\begin{equation*}
\Phi(I)=0 \tag{37}
\end{equation*}
$$

delivers the equivalence theorem

Conclusions

- Hopf algebras are the natural habitat of renormalization

Conclusions

- Hopf algebras are the natural habitat of renormalization
- Locality reflected in Hochschild cohomology

Conclusions

- Hopf algebras are the natural habitat of renormalization
- Locality reflected in Hochschild cohomology
- perturbative structures suggest non-perturbative approaches

Conclusions

- Hopf algebras are the natural habitat of renormalization
- Locality reflected in Hochschild cohomology
- perturbative structures suggest non-perturbative approaches
- reflected nicely in the periods and special functions known by practitioners

Conclusions

- Hopf algebras are the natural habitat of renormalization
- Locality reflected in Hochschild cohomology
- perturbative structures suggest non-perturbative approaches
- reflected nicely in the periods and special functions known by practitioners
- Unitarity, internal symmetry, gravity, multi-leg-recursions vs co-ideals...

Conclusions

- Hopf algebras are the natural habitat of renormalization
- Locality reflected in Hochschild cohomology
- perturbative structures suggest non-perturbative approaches
- reflected nicely in the periods and special functions known by practitioners
- Unitarity, internal symmetry, gravity, multi-leg-recursions vs co-ideals...
- Don't loose trust in local point-particle quantum fields!

