BORCHERDS-KAC-MOODY LIE U_{s} PERALGEBRAS AND $S U_{\mathbf{r}}$ PERGRAVITY

JAKOB PALMKVIST - IHES

Based on 1110.4892, and work in progress ...

Maximal supergravity in D dimensions contains generally p-form potentials $(p=1,2, \ldots, D)$

$$
A_{\mu_{1} \cdots \mu_{p}}=A_{\left[\mu_{1} \cdots \mu_{p}\right]}
$$

Maximal supergravity in D dimensions contains generally p-form potentials $(p=1,2, \ldots, D)$

$$
A_{\mu_{1} \cdots \mu_{p}}{ }^{\left(\mathbf{r}_{p}\right)}=A_{\left[\mu_{1} \cdots \mu_{p}\right]}\left(\mathbf{r}_{p}\right)
$$

which for $3 \leq D \leq 7$ transform in representations \mathbf{r}_{p} of a global symmetry group G, with a simple finitedimensional Lie algebra $\mathfrak{g}=E_{11-D}$.

Maximal supergravity in D dimensions contains generally p-form potentials $(p=1,2, \ldots, D)$

$$
A_{\mu_{1} \cdots \mu_{p}}{ }^{\left(\mathbf{r}_{p}\right)}=A_{\left[\mu_{1} \cdots \mu_{p}\right]}\left(\mathbf{r}_{p}\right)
$$

which for $3 \leq D \leq 7$ transform in representations \mathbf{r}_{p} of a global symmetry group G, with a simple finitedimensional Lie algebra $\mathfrak{g}=E_{11-D}$.
$D=7$

$$
\mathfrak{g}=\mathfrak{s l l}(5, \mathbb{R})
$$

Maximal supergravity in D dimensions contains generally p-form potentials $(p=1,2, \ldots, D)$

$$
A_{\mu_{1} \cdots \mu_{p}}{ }^{\left(\mathbf{r}_{p}\right)}=A_{\left[\mu_{1} \cdots \mu_{p}\right]}\left(\mathbf{r}_{p}\right)
$$

which for $3 \leq D \leq 7$ transform in representations \mathbf{r}_{p} of a global symmetry group G, with a simple finitedimensional Lie algebra $\mathfrak{g}=E_{11-D}$.
$D=6$

$$
\mathfrak{g}=\mathfrak{s o}(5,5)
$$

Maximal supergravity in D dimensions contains generally p-form potentials $(p=1,2, \ldots, D)$

$$
A_{\mu_{1} \cdots \mu_{p}}{ }^{\left(\mathbf{r}_{p}\right)}=A_{\left[\mu_{1} \cdots \mu_{p}\right]}\left(\mathbf{r}_{p}\right)
$$

which for $3 \leq D \leq 7$ transform in representations \mathbf{r}_{p} of a global symmetry group G, with a simple finitedimensional Lie algebra $\mathfrak{g}=E_{11-D}$.
$D=5$

$$
\mathfrak{g}=E_{6}
$$

Maximal supergravity in D dimensions contains generally p-form potentials $(p=1,2, \ldots, D)$

$$
A_{\mu_{1} \cdots \mu_{p}}{ }^{\left(\mathbf{r}_{p}\right)}=A_{\left[\mu_{1} \cdots \mu_{p}\right]}\left(\mathbf{r}_{p}\right)
$$

which for $3 \leq D \leq 7$ transform in representations \mathbf{r}_{p} of a global symmetry group G, with a simple finitedimensional Lie algebra $\mathfrak{g}=E_{11-D}$.
$D=4$
$\mathfrak{g}=E_{7}$

Maximal supergravity in D dimensions contains generally p-form potentials $(p=1,2, \ldots, D)$

$$
A_{\mu_{1} \cdots \mu_{p}}{ }^{\left(\mathbf{r}_{p}\right)}=A_{\left[\mu_{1} \cdots \mu_{p}\right]}\left(\mathbf{r}_{p}\right)
$$

which for $3 \leq D \leq 7$ transform in representations \mathbf{r}_{p} of a global symmetry group G, with a simple finitedimensional Lie algebra $\mathfrak{g}=E_{11-D}$.
$D=3$

$$
\mathfrak{g}=E_{8}
$$

D	7
g	$\mathfrak{s l}(5, \mathbb{R})$
\mathbf{r}_{1}	$\overline{\mathbf{1 0}}$
\mathbf{r}_{2}	$\mathbf{5}$
\mathbf{r}_{3}	$\overline{\mathbf{5}}$
\mathbf{r}_{4}	$\mathbf{1 0}$

$$
\begin{aligned}
A_{\mu}{ }^{\mathcal{M}} & =A_{\mu}{ }^{[a b]} \\
A_{\mu \nu} \mathcal{M N} & =A_{\mu \nu}^{[a b c d]} \\
A_{\mu \nu \rho} \mathcal{M N P} & =A_{\mu \nu \rho}{ }^{a} \\
A_{\mu \nu \rho \sigma} \mathcal{M N P \mathcal { N }} & =A_{\mu \nu \rho \sigma}{ }^{[a b c]}
\end{aligned}
$$

D	7	6	
g	$\mathfrak{s l}(5, \mathbb{R})$	$\mathfrak{s o}(5,5)$	
\mathbf{r}_{1}	$\overline{10}$	$16{ }_{c}$	$A_{\mu}{ }^{\mathcal{M}}=A_{\mu}{ }^{\alpha}$
\mathbf{r}_{2}	5	10	$A_{\mu \nu}{ }^{\mathcal{M} \mathcal{N}}=A_{\mu \nu}{ }^{a}$
\mathbf{r}_{3}	$\overline{5}$	$16{ }_{s}$	$A_{\mu \nu \rho}{ }^{\mathcal{M N \mathcal { N }}}=A_{\mu \nu \rho}{ }^{\dot{\alpha}}$
\mathbf{r}_{4}	10		

D	7	6	5
g	$\mathfrak{s l}(5, \mathbb{R})$	$\mathfrak{s o}(5,5)$	E_{6}
\mathbf{r}_{1}	$\overline{\mathbf{1 0}}$	$\mathbf{1 6}$	
\mathbf{r}_{2}	$\mathbf{5}$	$\mathbf{1 0}$	$\overline{\mathbf{2 7}}$
\mathbf{r}_{3}	$\overline{\mathbf{5}}$	$\mathbf{1 6}$	$\mathbf{2 7}$
\mathbf{r}_{4}	$\mathbf{1 0}$		

D	7	6	5	4
g	$\mathfrak{s l}(5, \mathbb{R})$	$\mathfrak{s o}(5,5)$	E_{6}	E_{7}
\mathbf{r}_{1}	$\overline{\mathbf{1 0}}$	$\mathbf{1 6}$		$\overline{\mathbf{2 7}}$
\mathbf{r}_{2}	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{5 6}$	
\mathbf{r}_{3}	$\overline{\mathbf{5}}$	$\mathbf{1 6} s$		
\mathbf{r}_{4}	$\mathbf{1 0}$			

D	7	6	5	4
g	$\mathfrak{s l}(5, \mathbb{R})$	$\mathfrak{s o}(5,5)$	E_{6}	E_{7}
\mathbf{r}_{1}	$\overline{\mathbf{1 0}}$	$\mathbf{1 6}$	$\overline{\mathbf{2 7}}$	$\mathbf{5 6}$
\mathbf{r}_{2}	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{2 7}$	
\mathbf{r}_{3}	$\mathbf{5}$			
\mathbf{r}_{4}	$\mathbf{1 0}$			

Hodge duality: $\quad p$-forms $\longleftrightarrow(D-2-p)$-forms

$$
\mathbf{r}_{p}=\overline{\mathbf{r}}_{D-2-p}
$$

D	7	6	5	4	3
g	$\mathfrak{s l}(5, \mathbb{R})$	$\mathfrak{s o}(5,5)$	E_{6}	E_{7}	E_{8}
\mathbf{r}_{1}	$\overline{\mathbf{1 0}}$	$\mathbf{1 6}$	$\overline{\mathbf{2 7}}$	$\mathbf{5 6}$	$\mathbf{2 4 8}$
\mathbf{r}_{2}	$\mathbf{5}$ $\overline{\mathbf{5}}$	$\mathbf{1 0}$	$\mathbf{2 7}$	$\mathbf{1 3 3}$	
\mathbf{r}_{3}	$\mathbf{1 6}$	$\mathbf{7 8}$			
\mathbf{r}_{4}	$\mathbf{1 0}$	$\mathbf{4 5}$			
\mathbf{r}_{5}	$\mathbf{2 4}$				

Hodge duality: $\quad p$-forms $\longleftrightarrow(D-2-p)$-forms

$$
\mathbf{r}_{p}=\overline{\mathbf{r}}_{D-2-p}
$$

Two ways of deriving these representations, and predicting which ($D-1$)- and D-forms we can add

Two ways of deriving these representations, and predicting which ($D-1$)- and D-forms we can add
\rightarrow Gauged supergravity (embedding tensor) [de Wit, Nicolai, Samtleben]

Two ways of deriving these representations, and predicting which ($D-1$)- and D-forms we can add
\rightarrow Gauged supergravity (embedding tensor) [de Wit, Nicolai, Samtleben]
\rightarrow Borcherds-Kac-Moody (BKM) superalgebras [Henry-Labordère, Julia, Paulot, Henneaux, Levie]

Two ways of deriving these representations, and predicting which ($D-1$)- and D-forms we can add
\rightarrow Gauged supergravity (embedding tensor) [de Wit, Nicolai, Samtleben]
\rightarrow Borcherds-Kac-Moody (BKM) superalgebras [Henry-Labordère, Julia, Paulot, Henneaux, Levie]

In this talk I will relate them to each other.

Gauged supergravity

\rightarrow Gauge field: the vector field $A_{\mu}(\mathcal{M}$ transforming in a representation \mathbf{r}_{1} of G
\rightarrow Gauge group: a subgroup G_{0} of $\mathrm{G}\left(\operatorname{dim} \mathrm{G}_{0} \leq \operatorname{dim} \mathbf{r}_{1}\right)$
\rightarrow Covariant derivative: $D_{\mu}=\partial_{\mu}-g A_{\mu}{ }^{\mathcal{M}} X_{\mathcal{M}}$
\rightarrow Generators of $\mathrm{G}_{0}: \quad X_{\mathcal{M}}=\Theta_{\mathcal{M}}{ }^{\alpha} t_{\alpha}$
\rightarrow Generators of G:
\rightarrow Embedding tensor:

[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

The embedding tensor $\Theta \mathcal{M}^{\alpha}$ transforms in a subrepresentation of $\mathbf{r}_{1} \times \mathbf{a d j}$.

[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

The embedding tensor $\Theta \mathcal{M}^{\alpha}$ transforms in a subrepresentation of $\overline{\mathbf{r}}_{1} \times \mathbf{a d j}$.

Supersymmetry constraint: not all of the irreducible subrepresentations are allowed!
[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

The embedding tensor $\Theta \mathcal{M}^{\alpha}$ transforms in a subrepresentation of $\overline{\mathbf{r}}_{1} \times \mathbf{a d j}$.

Supersymmetry constraint: not all of the irreducible subrepresentations are allowed!

Closure constraint: $\left[X_{\mathcal{M}}, X_{\mathcal{N}}\right]=-\left(X_{\mathcal{M}}\right)_{\mathcal{N}}{ }^{\mathcal{P}} X_{\mathcal{P}}$

The embedding tensor $\Theta \mathcal{M}^{\alpha}$ transforms in a subrepresentation of $\overline{\mathbf{r}}_{1} \times \mathbf{a d j}$.

Supersymmetry constraint: not all of the irreducible subrepresentations are allowed!

Closure constraint: $\left[X_{\mathcal{M}}, X_{\mathcal{N}}\right]=-\left(X_{\mathcal{M}}\right)_{\mathcal{N}}{ }^{\mathcal{P}} X_{\mathcal{P}}$

But in general $\left(X_{\mathcal{M}}\right)_{\mathcal{N}}{ }^{\mathcal{P}} \neq-\left(X_{\mathcal{N}}\right)_{\mathcal{M}}{ }^{\mathcal{P}}$
[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

Problem: The field strength of $A_{\mu}{ }^{\mathcal{M}}$

$$
F_{\mu \nu}{ }^{\mathcal{P}}=2 \partial_{[\mu} A_{\nu]}{ }^{\mathcal{P}}+g\left(X_{\mathcal{M}}\right)_{\mathcal{N}^{\mathcal{P}}} A_{[\mu}{ }^{\mathcal{M}} A_{\nu]}{ }^{\mathcal{N}}
$$

is not covariant under gauge transformations:
[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

Problem: The field strength of $A_{\mu}{ }^{\mathcal{M}}$

$$
F_{\mu \nu}{ }^{\mathcal{P}}=2 \partial_{[\mu} A_{\nu]}{ }^{\mathcal{P}}+g\left(X_{\mathcal{M}}\right)_{\mathcal{N}^{\mathcal{P}}} A_{[\mu}{ }^{\mathcal{M}} A_{\nu]}{ }^{\mathcal{N}}
$$

is not covariant under gauge transformations:

$$
\delta A_{\mu}{ }^{\mathcal{M}}=D_{\mu} \Lambda^{\mathcal{M}}=\partial_{\mu} \Lambda^{\mathcal{M}}+g A_{\mu}{ }^{\mathcal{P}}\left(X_{\mathcal{P}}\right)_{\mathcal{Q}^{\mathcal{M}}} \Lambda^{\mathcal{Q}} \Rightarrow
$$

[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

Problem: The field strength of $A_{\mu}{ }^{\mathcal{M}}$

$$
F_{\mu \nu}{ }^{\mathcal{P}}=2 \partial_{[\mu} A_{\nu]}{ }^{\mathcal{P}}+g\left(X_{\mathcal{M}}\right)_{\mathcal{N}^{\mathcal{P}}} A_{[\mu}{ }^{\mathcal{M}} A_{\nu]}{ }^{\mathcal{N}}
$$

is not covariant under gauge transformations:

$$
\begin{aligned}
\delta A_{\mu}{ }^{\mathcal{M}} & =D_{\mu} \Lambda^{\mathcal{M}}=\partial_{\mu} \Lambda^{\mathcal{M}}+g A_{\mu}{ }^{\mathcal{P}}\left(X_{\mathcal{P}}\right)_{\mathcal{Q}}{ }^{\mathcal{M}} \Lambda^{\mathcal{Q}} \Rightarrow \\
\delta F_{\mu \nu}{ }^{\mathcal{M}} & =g \Lambda^{\mathcal{P}}\left(X_{\mathcal{N}}\right)_{\mathcal{P}}{ }^{\mathcal{M}} F_{\mu \nu}{ }^{\mathcal{N}}-2 g\left(X_{(\mathcal{P})}\right)_{\mathcal{Q})}{ }^{\mathcal{M}} A_{[\mu}{ }^{\mathcal{P}} \delta A_{\nu]}{ }^{\mathcal{Q}} \\
& \neq-g \Lambda^{\mathcal{P}}\left(X_{\mathcal{P}}\right)_{\mathcal{N}}{ }^{\mathcal{M}} F_{\mu \nu}{ }^{\mathcal{N}}
\end{aligned}
$$

[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

Recipe to regain covariance:

[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

Recipe to regain covariance:
\rightarrow Add a term to $\delta A_{\mu}{ }^{\mathcal{M}}$ involving a new parameter $\Lambda_{\mu} \mathcal{M N}$

$$
\delta A_{\mu}{ }^{\mathcal{M}} \rightarrow \delta A_{\mu}{ }^{\mathcal{M}}+2 g\left(X_{(\mathcal{M}}\right)_{\mathcal{N})}{ }^{\mathcal{P}} \Lambda_{\mu}{ }^{\mathcal{M} \mathcal{N}}
$$

[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

Recipe to regain covariance:
\rightarrow Add a term to $\delta A_{\mu}{ }^{\mathcal{M}}$ involving a new parameter $\Lambda{ }_{\mu} \mathcal{M} \mathcal{N}$

$$
\delta A_{\mu}{ }^{\mathcal{M}} \rightarrow \delta A_{\mu}{ }^{\mathcal{M}}+2 g\left(X_{(\mathcal{M})}\right)_{\mathcal{N})}{ }^{\mathcal{P}} \Lambda_{\mu}{ }^{\mathcal{M} \mathcal{N}}
$$

\rightarrow Add a term to $F_{\mu \nu}{ }^{\mathcal{P}}$ involving a new tensor field $A_{\mu \nu} \mathcal{M} \mathcal{N}$

$$
F_{\mu \nu}{ }^{\mathcal{P}} \rightarrow F_{\mu \nu}{ }^{\mathcal{P}}-2 g\left(X_{(\mathcal{M})}\right)_{\mathcal{N})}{ }^{\mathcal{P}} A_{\mu \nu}{ }^{\mathcal{M} \mathcal{N}}
$$

[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

Recipe to regain covariance:
\rightarrow Add a term to $\delta A_{\mu}{ }^{\mathcal{M}}$ involving a new parameter $\Lambda{ }_{\mu} \mathcal{M} \mathcal{N}$

$$
\delta A_{\mu}{ }^{\mathcal{M}} \rightarrow \delta A_{\mu}{ }^{\mathcal{M}}+2 g\left(X_{(\mathcal{M})}\right)_{\mathcal{N})}{ }^{\mathcal{P}} \Lambda_{\mu}{ }^{\mathcal{M} \mathcal{N}}
$$

\rightarrow Add a term to $F_{\mu \nu}{ }^{\mathcal{P}}$ involving a new tensor field $A_{\mu \nu} \mathcal{M N}$

$$
F_{\mu \nu}{ }^{\mathcal{P}} \rightarrow F_{\mu \nu}{ }^{\mathcal{P}}-2 g\left(X_{(\mathcal{M}}\right)_{\mathcal{N})}{ }^{\mathcal{P}} A_{\mu \nu}{ }^{\mathcal{M} \mathcal{N}}
$$

\rightarrow Define the gauge transformations of $A_{\mu \nu}{ }^{\mathcal{M}}$ appropriately
[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

This solves the problem with the field strength of $A_{\mu}{ }^{\mathcal{M}}$, but leads to the same problem for the field strength of $A_{\mu \nu}{ }^{\mathcal{M} \mathcal{N}}$.
[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

This solves the problem with the field strength of $A_{\mu}{ }^{\mathcal{M}}$, but leads to the same problem for the field strength of $A_{\mu \nu}{ }^{\mathcal{M} \mathcal{N}}$.

However, we can apply the same solution again: introduce a new parameter $\Lambda{ }_{\mu \nu} \mathcal{M N P}$ and a new field $A_{\mu \nu \rho} \mathcal{M N \mathcal { N }}$.

This solves the problem with the field strength of $A_{\mu}{ }^{\mathcal{M}}$, but leads to the same problem for the field strength of $A_{\mu \nu} \mathcal{M N}^{\mathcal{N}}$.

However, we can apply the same solution again: introduce a new parameter $\Lambda{ }_{\mu \nu} \mathcal{M N P}$ and a new field $A_{\mu \nu \rho} \mathcal{M N P}$.

Continuing in this way, we obtain a tensor hierarchy of parameters, p-form fields and field strengths.

$$
\begin{aligned}
& \Lambda^{\mathcal{M}}, \Lambda_{\mu}{ }^{\mathcal{M} \mathcal{N}}, \Lambda_{\mu \nu}^{\mathcal{M N P}}, \ldots \\
& A_{\mu}{ }^{\mathcal{M}}, A_{\mu \nu}^{\mathcal{M N}}, A_{\mu \nu \rho}{ }^{\mathcal{M N P}}, \ldots \\
& F_{\mu \nu}{ }^{\mathcal{M}}, F_{\mu \nu \rho}{ }^{\mathcal{M} \mathcal{N}}, F_{\mu \nu \rho \sigma}{ }^{\mathcal{M} \mathcal{N P}}, \ldots
\end{aligned}
$$

[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

The term that we add to $\delta A_{\mu_{1} \cdots \mu_{p}} \mathcal{M}_{1} \cdots \mathcal{M}_{p}$ has the form

$$
g Y^{\mathcal{M}_{1} \mathcal{M}_{2} \cdots \mathcal{M}_{p}}{ }_{\mathcal{N}_{1} \mathcal{N}_{2} \cdots \mathcal{N}_{p+1}} \Lambda_{\mu_{1} \cdots \mu_{p}} \mathcal{N}_{1} \mathcal{N}_{2} \cdots \mathcal{N}_{p+1}
$$

[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

The term that we add to $\delta A_{\mu_{1} \cdots \mu_{p}} \mathcal{M}_{1} \cdots \mathcal{M}_{p}$ has the form

$$
g Y^{\mathcal{M}_{1} \mathcal{M}_{2} \cdots \mathcal{M}_{p} \mathcal{N}_{1} \mathcal{N}_{2} \cdots \mathcal{N}_{p+1}} \Lambda_{\mu_{1} \cdots \mu_{p}} \mathcal{N}_{1} \mathcal{N}_{2} \cdots \mathcal{N}_{p+1}
$$

The intertwiners are defined recursively

$$
\begin{aligned}
Y^{\mathcal{M}_{1} \mathcal{M}_{2} \cdots \mathcal{M}_{p}}{ }_{\mathcal{N}_{1} \mathcal{N}_{2} \cdots \mathcal{N}_{p+1}}= & -\delta_{\mathcal{N}_{1}}{ }^{\left\langle\mathcal{M}_{1}\right.} Y^{\left.\mathcal{M}_{2} \cdots \mathcal{M}_{p}\right\rangle}{ }_{\mathcal{N}_{2} \cdots \mathcal{N}_{p+1}} \\
& -\left(X_{\mathcal{N}_{1}}\right)_{\mathcal{N}_{2} \cdots \mathcal{N}_{p+1}}\left\langle\mathcal{M}_{1} \mathcal{M}_{2} \cdots \mathcal{M}_{p}\right\rangle \\
Y^{\mathcal{P}}{ }_{\mathcal{M N}}= & -\left(X_{\mathcal{M}}\right)_{\mathcal{N}^{\mathcal{P}}}-\left(X_{\mathcal{N}}\right)_{\mathcal{M}^{\mathcal{P}}}{ }^{\mathcal{P}}
\end{aligned}
$$

[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

The term that we add to $\delta A_{\mu_{1} \cdots \mu_{p}} \mathcal{M}_{1} \cdots \mathcal{M}_{p}$ has the form

$$
g Y^{\mathcal{M}_{1} \mathcal{M}_{2} \cdots \mathcal{M}_{p}} \mathcal{N}_{1} \mathcal{N}_{2} \cdots \mathcal{N}_{p+1} \Lambda_{\mu_{1} \cdots \mu_{p}} \mathcal{N}_{1} \mathcal{N}_{2} \cdots \mathcal{N}_{p+1}
$$

The intertwines are defined recursively
indices
projected on \mathbf{r}_{p}
$Y^{\mathcal{M}_{1} \mathcal{M}_{2} \cdots \mathcal{M}_{p}}{ }_{\mathcal{N}_{1} \mathcal{N}_{2} \cdots \mathcal{N}_{p+1}}=-\delta_{\mathcal{N}_{1}}{ }^{\left\langle\mathcal{M}_{1}\right.} Y^{\left.\mathcal{M}_{2} \cdots \mathcal{M}_{p}\right\rangle} \mathcal{N}_{2} \cdots \mathcal{N}_{p+1}$ $\left.-\left(X_{\mathcal{N}_{1}}\right)_{\mathcal{N}_{2} \cdots \mathcal{N}_{p+1}}\left\langle\mathcal{M}_{1} \mathcal{M}_{2} \cdots \mathcal{M}_{p}\right\rangle\right\rangle$

$$
Y^{\mathcal{P} \mathcal{N}}=-\left(X_{\mathcal{M}}\right)_{\mathcal{N}}{ }^{\mathcal{P}}-\left(X_{\mathcal{N}}\right)_{\mathcal{M}}{ }^{\mathcal{P}}
$$

[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

The term that we add to $\delta A_{\mu_{1} \cdots \mu_{p}} \mathcal{M}_{1} \cdots \mathcal{M}_{p}$ has the form

$$
g Y^{\mathcal{M}_{1} \mathcal{M}_{2} \cdots \mathcal{M}_{p}}{ }_{\mathcal{N}_{1} \mathcal{N}_{2} \cdots \mathcal{N}_{p+1}} \Lambda_{\mu_{1} \cdots \mu_{p}} \mathcal{N}_{1} \mathcal{N}_{2} \cdots \mathcal{N}_{p+1}
$$

The intertwines are defined recursively
indices projected on \mathbf{r}_{p}

$$
\left.-\left(X_{\mathcal{N}_{1}}\right)_{\mathcal{N}_{2} \cdots \mathcal{N}_{p+1}}\left\langle\mathcal{M}_{1} \mathcal{M}_{2} \cdots \mathcal{M}_{p}\right\rangle\right\rangle
$$

$$
Y^{\mathcal{P}}{ }_{\mathcal{M N}}=-\left(X_{\mathcal{M}}\right)_{\mathcal{N}}{ }^{\mathcal{P}}-\left(X_{\mathcal{N}}\right)_{\mathcal{M}}{ }^{\mathcal{P}}
$$

The lower indices of $Y^{\mathcal{M}_{1} \cdots \mathcal{M}_{p}} \mathcal{N}_{1} \cdots \mathcal{N}_{p+1}$ define \mathbf{r}_{p+1}.
[de Wit, Nicolai, Samtleben, ... 0801.1294, ...]

D	7	6	5	4	3
g	$\mathfrak{s l}(5, \mathbb{R})$	$\mathfrak{s o}(5,5)$	E_{6}	E_{7}	E_{8}
\mathbf{r}_{1}	$\overline{\mathbf{1 0}}$	$\mathbf{1 6}$		$\overline{\mathbf{2 7}}$	$\mathbf{5 6}$
\mathbf{r}_{2}	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{2 7}$	$\mathbf{1 3 3}$	$\mathbf{2 4 8}$
\mathbf{r}_{3}	$\overline{\mathbf{5}}$	$\mathbf{1 6}$	$\mathbf{3 8 7 5}$		
\mathbf{r}_{4}	$\mathbf{1 0}$	$\mathbf{4 5}$	$\mathbf{7 8}$	$\mathbf{9 1 2}$	$\mathbf{3 8 7 5}+\mathbf{1 4 7 2 5 0}$
\mathbf{r}_{5}	$\mathbf{2 4}$	$\mathbf{1 4 4}_{s}$	$\mathbf{2 7}+\mathbf{1 7 2 8}$	$\mathbf{1 3 3}+\mathbf{8 6 4 5}$	
\mathbf{r}_{6}	$\overline{\mathbf{1 5}}+\mathbf{4 0}$	$\mathbf{1 0}+\mathbf{1 2 6}_{s}+\mathbf{3 2 0}$			
\mathbf{r}_{7}	$\mathbf{5 + \overline { \mathbf { 4 5 } } + \mathbf { 7 0 }}$				

D	7	6	5	4	3
g	$\mathfrak{s l}(5, \mathbb{R})$	$\mathfrak{s o}(5,5)$	E_{6}	E_{7}	E_{8}
\mathbf{r}_{1}	$\overline{\mathbf{1 0}}$	$\mathbf{1 6}$	$\overline{27}$	$\mathbf{5 6}$	$\mathbf{2 4 8}$
\mathbf{r}_{2}	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{2 7}$	$\mathbf{1 3 3}$	$\mathbf{3 8 7 5}$
\mathbf{r}_{3}	$\overline{\mathbf{5}}$	$\mathbf{1 6}_{s}$	$\mathbf{7 8}$	$\mathbf{9 1 2}$	$\mathbf{3 8 7 5}+\mathbf{1 4 7 2 5 0}$
\mathbf{r}_{4}	$\mathbf{1 0}$	$\mathbf{4 5}$	$\overline{\mathbf{3 5 1}}$	$\mathbf{1 3 3}+\mathbf{8 6 4 5}$	
\mathbf{r}_{5}	$\mathbf{2 4}$	$\mathbf{1 4 4}$	$\mathbf{2 7}+\mathbf{1 7 2 8}$		
\mathbf{r}_{6}	$\overline{\mathbf{1 5}}+\mathbf{4 0}$	$\mathbf{1 0}+\mathbf{1 2 6}_{s}+\mathbf{3 2 0}$			
\mathbf{r}_{7}	$\mathbf{5 + \overline { \mathbf { 4 5 } } + \mathbf { 7 0 }}$				

($D-2$)-forms \longleftrightarrow adjoint representation

D	7	6	5	4	3
g	$\mathfrak{s l}(5, \mathbb{R})$	$\mathfrak{s o}(5,5)$	E_{6}	E_{7}	E_{8}
r_{1}	$\overline{10}$	$16{ }_{c}$	$\overline{27}$	56	248
\mathbf{r}_{2}	5	10	27	133	3875
r_{3}	$\overline{5}$	16.	78	912	$3875+147250$
\mathbf{r}_{4}	10	45	$\overline{351}$	$133+8645$	
r_{5}	24	$144{ }_{s}$	$27+1728$		
r_{6}	$\overline{15}+40$	$10+126{ }_{s}+320$			
r_{7}	$5+\overline{45}+70$				

($D-2$)-forms
($D-1$)-forms \longleftrightarrow supersymmetry constraint

D	7	6	5	4	3
g	$\mathfrak{s l}(5, \mathbb{R})$	$\mathfrak{s o}(5,5)$	E_{6}	E_{7}	E_{8}
r_{1}	$\overline{10}$	$16{ }_{c}$	$\overline{27}$	56	248
\mathbf{r}_{2}	5	10	27	133	3875
r_{3}	$\overline{5}$	16.	78	912	$3875+147250$
\mathbf{r}_{4}	10	45	$\overline{351}$	$133+8645$	
r_{5}	24	$144{ }_{s}$	$27+1728$		
r_{6}	$\overline{15}+40$	$10+126_{s}+320$			
\mathbf{r}_{7}	$5+\overline{45}+70$				

($D-2$)-forms
($D-1$)-forms
D-forms
closure constraint

Another way to obtain (almost) the same representations:

Another way to obtain (almost) the same representations:
Extend the Lie algebra E_{n} to a BKM superalgebra U_{n+1}

[Henry-Labordère, Julia, Paulot: hep-th/0203070, 0303178] [Henneaux, Julia, Levie: 1007.5241]

Another way to obtain (almost) the same representations:
Extend the Lie algebra E_{n} to a BKM superalgebra U_{n+1}

[Henry-Labordère, Julia, Paulot: hep-th/0203070, 0303178] [Henneaux, Julia, Levie: 1007.5241]

The Cartan matrix of the BKM superalgebra U_{n+1} :

Each row and column corresponds to two generators e_{I} and f_{I}, which are odd elements for the first row and column $(I=0)$, and even elements for the others $(I=i)$.

The BKM superalgebra U_{n+1} is the Lie superalgebra generated by
e_{I}, f_{I} and $h_{I}=\llbracket e_{I}, f_{I} \rrbracket$ modulo \longleftarrow the Chevalley-Serre relations

$$
\begin{aligned}
h_{0} & =\left\{e_{0}, f_{0}\right\} \\
h_{i} & =\left[e_{i}, f_{i}\right]
\end{aligned}
$$

$\llbracket h_{I}, e_{J} \rrbracket=A_{I J} e_{J}$
$\llbracket h_{I}, f_{J} \rrbracket=-A_{I J} f_{J}$
$\llbracket e_{I}, f_{J} \rrbracket=\delta_{I J} h_{J}$

$$
\left\{e_{0}, e_{0}\right\}=\left\{f_{0}, f_{0}\right\}=0
$$

$$
\left(\operatorname{ad} e_{I}\right)^{1-A_{I J}}\left(e_{J}\right)=0
$$

$$
\left(\operatorname{ad} f_{I}\right)^{1-A_{I J}}\left(f_{J}\right)=0
$$

[Ray 1994][Kac 1977]

The BKM superalgebra U_{n+1} is the Lie superalgebra generated by e_{I}, f_{I} and $h_{I}=\llbracket e_{I}, f_{I} \rrbracket$ modulo \longleftarrow the Chevalley-Serre relations

$$
\begin{aligned}
h_{0} & =\left\{e_{0}, f_{0}\right\} \\
h_{i} & =\left[e_{i}, f_{i}\right]
\end{aligned}
$$

$\llbracket h_{I}, e_{J} \rrbracket=A_{I J} e_{J}$
$\left\{e_{0}, e_{0}\right\}=\left\{f_{0}, f_{0}\right\}=0$
$\llbracket h_{I}, f_{J} \rrbracket=-A_{I J} f_{J}$
$\left(\operatorname{ad} e_{I}\right)^{1-A_{I J}}\left(e_{J}\right)=0$
$\llbracket e_{I}, f_{J} \rrbracket=\delta_{I J} h_{J}$
$\left(\operatorname{ad} f_{I}\right)^{1-A_{I J}}\left(f_{J}\right)=0$
\mathbb{Z}_{2}-grading: $\quad U=U_{(0)} \oplus U_{(1)} \quad e_{0}, f_{0} \in U_{(1)}$
$\llbracket U_{(M)}, U_{(N)} \rrbracket \subset U_{(M+N)} \bmod \mathbb{Z}_{2} \quad e_{i}, f_{i} \in U_{(0)}$
[Ray 1994][Kac 1977]

The odd generators e_{0} and f_{0} give rise to a \mathbb{Z}-grading of U

$$
\begin{gathered}
\llbracket U_{p}, U_{q} \rrbracket \subseteq U_{p+q} \\
U=\cdots+U_{-2}+U_{-1}+(\mathfrak{g}+\mathbb{R})+U_{1}+U_{2}+\cdots \\
f_{0} \quad e_{i} f_{i} h_{I} \quad e_{0}
\end{gathered}
$$

The odd generators e_{0} and f_{0} give rise to a \mathbb{Z}-grading of U

$$
\begin{gathered}
\llbracket U_{p}, U_{q} \rrbracket \subseteq U_{p+q} \\
U=\cdots+U_{-2}+U_{-1}+(\mathfrak{g}+\mathbb{R})+U_{1}+U_{2}+\cdots \\
f_{0} \quad e_{i} f_{i} h_{I} \quad e_{0}
\end{gathered}
$$

and a level decomposition of the adjoint of U

$$
\operatorname{adj} U=\cdots+\overline{\mathbf{s}}_{2}+\overline{\mathbf{s}}_{1}+(\operatorname{adj} \mathfrak{g}+\mathbf{1})+\mathbf{s}_{1}+\mathbf{s}_{2}+\cdots
$$

It turns out that the representations \mathbf{s}_{p} coming from the level decomposition coincide with \mathbf{r}_{p} coming from the tensor hierarchy of gauged supergravity (except for an additional part of \mathbf{s}_{2} and \mathbf{s}_{3} for $D=3$)

It turns out that the representations \mathbf{s}_{p} coming from the level decomposition coincide with \mathbf{r}_{p} coming from the tensor hierarchy of gauged supergravity (except for an additional part of \mathbf{s}_{2} and \mathbf{s}_{3} for $D=3$)

How can we understand this?

For any $k \geq 0$, define \tilde{U}_{-k} recursively as the vector space of all linear maps $\tilde{U}_{1} \rightarrow \tilde{U}_{-k+1}$, let $\tilde{U}_{+}=\tilde{U}_{1}+\tilde{U}_{2}+\cdots$ be the free Lie superalgebra generated by $\tilde{U}_{1}=U_{1}$, and extend the Lie superbracket on \tilde{U}_{+}suitably to the whole of
$\tilde{U}=\tilde{U}_{-}+\tilde{U}_{0}+\tilde{U}_{+}=\cdots+\tilde{U}_{-1}+\tilde{U}_{0}+\tilde{U}_{1}+\cdots$
[Kantor 1970, Palmkvist 0905.2468]

For any $k \geq 0$, define \tilde{U}_{-k} recursively as the vector space of all linear maps $\tilde{U}_{1} \rightarrow \tilde{U}_{-k+1}$, let $\tilde{U}_{+}=\tilde{U}_{1}+\tilde{U}_{2}+\cdots$ be the free Lie superalgebra generated by $\tilde{U}_{1}=U_{1}$, and extend the Lie superbracket on \tilde{U}_{+}suitably to the whole of
$\tilde{U}=\tilde{U}_{-}+\tilde{U}_{0}+\tilde{U}_{+}=\cdots+\tilde{U}_{-1}+\tilde{U}_{0}+\tilde{U}_{1}+\cdots$
From \tilde{U} we can construct a graded Lie superalgebra U by specifying a subspace $U_{-1} \subset \tilde{U}_{-1}$ (Not necessarily the same U and U_{-1} as above!)
[Kantor 1970, Palmkvist 0905.2468]

$$
\tilde{U}=\tilde{U}_{-}+\tilde{U}_{0}\left(=\operatorname{End} U_{1}\right)+\tilde{U}_{+}
$$

$$
\tilde{U}=\tilde{U}_{-}+\tilde{U}_{0}\left(=\operatorname{End} U_{1}\right)+\tilde{U}_{+}
$$

First, take the subalgebra of \tilde{U} generated by U_{1} and a subspace $U_{-1} \subset \tilde{U}_{-1}$.

$$
\tilde{U}=\tilde{U}_{-}+\tilde{U}_{0}\left(=\operatorname{End} U_{1}\right)+\tilde{U}_{+}
$$

$$
\begin{aligned}
& \downarrow \left\lvert\, \begin{array}{l}
\text { First, take the subalgebra } \\
\text { of } \tilde{U} \text { generated by } U_{1} \text { and } \\
\text { a subspace } U_{-1} \subset \tilde{U}_{-1} .
\end{array}\right. \\
& U_{-}+U_{0}\left(=\left\{U_{-1}, U_{1}\right\}\right)+\tilde{U}_{+}
\end{aligned}
$$

$$
\tilde{U}=\tilde{U}_{-}+\tilde{U}_{0}\left(=\operatorname{End} U_{1}\right)+\tilde{U}_{+}
$$

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\text { First, take the subalgebra } \\
\text { of } \tilde{U} \text { generated by } U_{1} \text { and } \\
\text { a subspace } U_{-1} \subset \tilde{U}_{-1} .
\end{array}\right. \\
& U_{-}+U_{0}\left(=\left\{U_{-1}, U_{1}\right\}\right)+\tilde{U}_{+}
\end{aligned}
$$

Second, factor out the maximal graded ideal contained in $\tilde{U}_{2}+\tilde{U}_{3}+\cdots$

$$
\tilde{U}=\tilde{U}_{-}+\tilde{U}_{0}\left(=\operatorname{End} U_{1}\right)+\tilde{U}_{+}
$$

$$
\begin{aligned}
& \left\lvert\, \begin{array}{l}
\text { First, take the subalgebra } \\
\text { of } \tilde{U} \text { generated by } U_{1} \text { and } \\
\text { a subspace } U_{-1} \subset \tilde{U}_{-1} .
\end{array}\right. \\
& U_{-}+U_{0}\left(=\left\{U_{-1}, U_{1}\right\}\right)+\tilde{U}_{+}
\end{aligned}
$$

Second, factor out the maximal graded ideal contained in $\tilde{U}_{2}+\tilde{U}_{3}+\cdots$

$$
U_{-}+U_{0}\left(=\left\{U_{-1}, U_{1}\right\}\right)+U_{+}
$$

$$
\tilde{U}=\tilde{U}_{-}+\tilde{U}_{0}\left(=\operatorname{End} U_{1}\right)+\tilde{U}_{+}
$$

$$
\begin{aligned}
& \downarrow \left\lvert\, \begin{array}{l}
\text { First, take the subalgebra } \\
\text { of } \tilde{U} \text { generated by } U_{1} \text { and } \\
\text { a subspace } U_{-1} \subset \tilde{U}_{-1} .
\end{array}\right. \\
& U_{-}+U_{0}\left(=\left\{U_{-1}, U_{1}\right\}\right)+\tilde{U}_{+}
\end{aligned}
$$

Second, factor out the maximal graded ideal contained in $\tilde{U}_{2}+\tilde{U}_{3}+\cdots$

$$
U_{-}+U_{0}\left(=\left\{U_{-1}, U_{1}\right\}\right)+U_{+}=U
$$

If U_{-1} is spanned by all operators $\mathcal{F}^{\mathcal{N}}: U_{1} \rightarrow \operatorname{End} U_{1}$ given by $\mathcal{F}^{\mathcal{N}}\left(E_{\mathcal{M}}\right)=\operatorname{ad}\left\{E_{\mathcal{M}}, F^{\mathcal{N}}\right\}$, then we get back the original BKM superalgebra, which we now call U_{s}.

If U_{-1} is spanned by all operators $\mathcal{F}^{\mathcal{N}}: U_{1} \rightarrow \operatorname{End} U_{1}$ given by $\mathcal{F}^{\mathcal{N}}\left(E_{\mathcal{M}}\right)=\operatorname{ad}\left\{E_{\mathcal{M}}, F^{\mathcal{N}}\right\}$, then we get back the original BKM superalgebra, which we now call $U_{\mathbf{s}}$.

If U_{-1} is spanned by all operators $Y: U_{1} \rightarrow \operatorname{End} U_{1}$ given by $Y\left(E_{\mathcal{M}}\right)=-\operatorname{ad} X_{\mathcal{M}}=-\operatorname{ad} \Theta_{\mathcal{M}}{ }^{\alpha} t_{\alpha}$, then we get a different Lie superalgebra, which we call $U_{\mathbf{r}}$.

The components $Y^{\mathcal{N}_{1} \cdots \mathcal{N}_{p-1}} \mathcal{M}_{1} \cdots \mathcal{M}_{p}$ defining the tensor hierarchy representations now reappear in the relation

$$
\llbracket Y, E_{\mathcal{M}_{1} \cdots \mathcal{M}_{p}} \rrbracket=Y^{\mathcal{N}_{1} \cdots \mathcal{N}_{p-1}} \mathcal{M}_{1} \cdots \mathcal{M}_{p} E_{\mathcal{N}_{1} \cdots \mathcal{N}_{p-1}}
$$

where $E_{\mathcal{M}_{1} \cdots \mathcal{M}_{p}} \equiv \llbracket E_{\mathcal{M}_{1}}, \llbracket E_{\mathcal{M}_{2}}, \ldots, \llbracket E_{\mathcal{M}_{p-1}}, E_{\mathcal{M}_{p}} \rrbracket \cdots \rrbracket \rrbracket$

It follows that \mathbf{r}_{p} is the E_{n} representation on $\left(U_{\mathbf{r}}\right)_{p}$.

The supersymmetry constraint on the embedding tensor $\Theta_{\mathcal{M}}{ }^{\alpha}$ can now be written $\left(U_{\mathbf{r}}\right)_{2} \subseteq\left(U_{\mathbf{s}}\right)_{2}$ or $\left(U_{\mathbf{r}}\right)_{+} \subseteq\left(U_{\mathbf{s}}\right)_{+}$, which implies that $\mathbf{r}_{p} \subseteq \mathbf{s}_{p}$ for all p.

The supersymmetry constraint on the embedding tensor $\Theta_{\mathcal{M}}{ }^{\alpha}$ can now be written $\left(U_{\mathbf{r}}\right)_{2} \subseteq\left(U_{\mathbf{s}}\right)_{2}$ or $\left(U_{\mathbf{r}}\right)_{+} \subseteq\left(U_{\mathbf{s}}\right)_{+}$, which implies that $\mathbf{r}_{p} \subseteq \mathbf{s}_{p}$ for all p.

In fact, $\mathbf{r}_{p}=\mathbf{s}_{p}$ at least up to $p=D$, for $D \neq 3$.

The supersymmetry constraint on the embedding tensor $\Theta_{\mathcal{M}}{ }^{\alpha}$ can now be written $\left(U_{\mathbf{r}}\right)_{2} \subseteq\left(U_{\mathbf{s}}\right)_{2}$ or $\left(U_{\mathbf{r}}\right)_{+} \subseteq\left(U_{\mathbf{s}}\right)_{+}$, which implies that $\mathbf{r}_{p} \subseteq \mathbf{s}_{p}$ for all p.

In fact, $\mathbf{r}_{p}=\mathbf{s}_{p}$ at least up to $p=D$, for $D \neq 3$.
The closure constraint can be written $\{Y, Y\}=0$.

The representations \mathbf{s}_{p}, up to $p=D$ (or $p=D-1$), also appear in a corresponding level decomposition of the indefinite Kac-Moody algebra E_{11} (or E_{10}).
[Bergshoeff, Nutma, De Baetselier: 0705.1304] [Riccioni, West: 0705.0752] [Henneaux, Julia, Levie: 1007.5241] [Palmkvist: 1110.4892, 1203.5107]

The representations \mathbf{s}_{p}, up to $p=D$ (or $p=D-1$), also appear in a corresponding level decomposition of the indefinite Kac-Moody algebra E_{11} (or E_{10}).
[Bergshoeff, Nutma, De Baetselier: 0705.1304] [Riccioni, West: 0705.0752] [Henneaux, Julia, Levie: 1007.5241] [Palmkvist: 1110.4892, 1203.5107]

In the same way as

$$
E_{11} \supset E_{10} \supset \cdots \supset E_{n+1} \supset E_{n} \supset \cdots
$$

it can be shown that

$$
U_{11} \supset U_{10} \supset \cdots \supset U_{n+1} \supset U_{n} \supset \cdots
$$

[Work in progress with A. Kleinschmidt]

Maybe U_{11} or U_{10} can play a role in supergravity or M-theory similar to the ones proposed for E_{11} and E_{10}
[West, Riccioni, ...] [Damour, Henneaux, Nicolai, Kleinschmidt, ...]

Maybe U_{11} or U_{10} can play a role in supergravity or M-theory similar to the ones proposed for E_{11} and E_{10}
[West, Riccioni, ...] [Damour, Henneaux, Nicolai, Kleinschmidt, ...]

To be continued ...

