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Preamble 1

Loop Quantum Gravity (LQG) is a theory, still in construction, which
aims at quantizing General Relativity (coupled to matter) while
preserving the symmetries of General Relativity, which consist in
diffeomorphisms of space time (Background independent quantization).
The goal of LQG is to properly define a quantization of the Hamiltonian
formulation of GR using canonical quantization of constrained system.

States in this theory are described by spin networks which encodes
the geometry of space.

The transition amplitudes for states in LQG are given by certain type
of generalized Feynman integrals which are described in terms of
Spin Foam models.
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Preamble 2

I have been invited in IHES to give a fair overview of LQG and Spin
Foam models and I have tried to give a precise introduction to this field
which posess many interesting aspects but which still contains gaps that
have to be stated clearly and hopefully positively understood.
I will only present here the main technical constructions in this field
leaving aside two central subjects:

the conceptual problems of space-time and quantum mechanics
which are essential for a clear understanding of Quantum Gravity

the physics of Quantum Gravity : black holes, initial singularity,
eventual imprints on high energy physics.
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Preamble 3

Here are good references that can be used to have precise ideas on
Quantum gravity, on LQG and Spin Foam models:

S.Carlip: A progress report on Quantum Gravity gr-qc/ 0108040
C.Rovelli: Quantum Gravity Cambridge UK
T.Thiemann: Modern Canonical Quantum General Relativity UK
A.Perez: Spin Foam models for Quantum Gravity gr-qc/0301113

It is impossible to give credit in these slides to all the contributors of this
field, they can be found in the review articles above.
LQG and Spin Foam models being scientific theories, unable for the
present time to give clear predictions which could be tested with present
state of technology, have to be thoroughly analyzed with a critical mind
driven only by scientific issues:

H.Nicolai, K.Peeters and M.Zamaklar ”LQG: an outside view”
S.Alexandrov and Ph.Roche ”Critical overview of Loops and Foams” (to
appear).
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1st order formalism

(M, g) 3+1 Lorentzian manifold, G gravitational constant,

SEH [g ] =
1

G

∫

M

d4x
√−gR[g ].

eI orthonormal moving frame, e I dual basis of one forms,
g = ηIJe

I ⊗ eJ , ηIJ = diag(−,+,+,+).
∇µeI = ωJ

µI eJ

SEH [g ] =
1

2G

∫

M

d4xǫIJKLe
I ∧ eJ ∧ FKL[ω].

First order formalism of gravity (Palatini formulation)
e I , I = 0, 1, 2, 3 one forms, ω so(3, 1) connection,

SPalatini [e, ω] =
1

G

∫

M

d4xǫIJKLe
I ∧ eJ ∧ FKL[ω],

Variations w.r.t ω gives torsion of ω is zero.
Variations w.r.t e gives Einstein Equations Gµν = Rµν − 1

2gµνR = 0,
with g = ηIJe

I ⊗ eJ .
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Immirzi parameter and time gauge

Enhancement of this action, the Holst action:

SHolst [e, ω] =
1

G

∫

M

d4xǫIJKL(e
I ∧ eJ ∧ FKL[ω] +

1

γ
e I ∧ eJ ∧ ⋆FKL[ω])

γ free parameter called Immirzi parameter. The second term does not
modify the equation of motion.
One performs an ADM decomposition M = R × M, and imposes the
time gauge (e0 = Ndt) which amounts to choose a coordinate system
where the cotetrad expresses as:

e0 = Ndt, ea = E a
i N idt + E a

i dx i

ds2 = −N2dt2 + qij(dx i + N idt)(dx j + N jdt)

M
Mt

Mt+dtR

x

x ′

ds Ndt

N idt
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Ashtekar Barbero connection and first class constraints

Densitized triad: Ẽ i
a =

√
qE i

a

Ashtekar-Barbero su(2) connection on Mt : Aa
i = Γa

i (E ) − γK a
i with

Γa
i (E ) Levi Civita connexion of (Mt , q) expressed in the basis E a and

K a
i = ω0a

i . One finally obtains that Ai
a, Ẽ

i
a are canonical variables i.e:

{Aa
i (x),Ab

j (y)} = {Ẽ i
a(x), Ẽ j

b(y)} = 0, {Aa
i (x), Ẽ j

b(y)} = γδ
j
i δ

a
bδ(x , y).

Canonical analysis gives 3 sets of first class constraints:

Ga = ∂i Ẽ
i
a − ǫab

cAb
i Ẽ

i
c ≈ 0, (Gauss constraint)

Hi = Ẽ k
aF

a
ik [A] ≈ 0, (Diffeomorphism constraint)

H = Ẽ i
aẼ

j
b

(

ǫab
cF

c
ij [A] − (1 + γ2)K a

[iK
b
j]

)

≈ 0.(Hamiltonian constraint)

Classical observables are functions of the canonical variables which
Poisson commute with the above constraints. They are complicated
(discussion:problem of time) Originally Ashtekar connection was defined
for γ = ±i (discussion:problem of reality conditions)
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LQG program

Ultimate goal of LQG is to quantize this constrained system using
appropriate generalization of Dirac program i.e:

Construct unitary representation of a quantized algebra Âi
a(x), ˆ̃

E i
a(x)

satisfying commutations relations of canonical variables acting on a
Hilbert space H of certain functions of the connection A.

Extract in H the subspace of physical states which means that

Hphys = {ψ ∈ H, Ĝaψ = Ĥiψ = Ĥψ = 0}.

A precise definition of the quantization of the constraints Ĝa, Ĥi , Ĥ

has to be given.

Endow Hphys with a structure of Hilbert space on which quantum
observables will act unitarily

Find inside Hphys appropriate vectors which describes in the classical
limit general relativity.

What is the present status of this program?
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Kinematical Hilbert space

One proceeds in stages by imposing constraints one after the other (I am
cheating here: Dirac algebra of constraint gives {G ,G} = G , {G ,Hi} =
{G ,H} = 0, {Hi ,Hj} = Hk , {Hi ,H} = H, {H,H} = (∗)Hi ).
One first defines the Hilbert space H of functions of the connection A

which are cylindrical i.e which depends only the holonomies of the
connection along finitely many curves e1, ..., en immersed in M.

In this space one can define the subspace invariant under Gauss
constraint, the so called Kinematical Hilbert space Hkin which basis is
given by spin networks embedded in M and hermitian form 〈, 〉 defined on
cylindrical functions by integrating with the Haar measure and turning
the basis of spin networks in an orthonormal basis. Such a state ΨΓ is
labelled by a colored graph Γ embedded in M. The embedded graph is
just a finite number of points {v} connected by a finite number of
smooth embedded curves {e} in M, whereas the coloring associates
irreducible representations of SU(2) (half-integer spins je) to the edges e

and SU(2) invariant intertwiners I v to the vertices v . The corresponding
state ΨΓ is constructed by contracting holonomies of A along edges in
representations je with invariant intertwiners I v at vertices.
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spin network
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Geometric operators:Area

It is possible to give regularization of the measure of area and volume
(Rovelli and Smolin) and to find the action of these geometric operators
on Hkin.
Let a surface Σ ⊂ M,

AΣ =

∫

Σ

d2σ

√

ninjg ij , g ij = δabẼ i
aẼ

j
b

where ni is the normal to the surface.

ÂΣΨΓ = aΣ,ΓΨΓ, aΣ,Γ = γℓ2
p

∑

e∩Σ 6=∅

√

je(je + 1),
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Properties of the area spectrum

The expression in the square root is nothing else but the Casimir operator
of SU(2). Thus the LQG spectrum of the area operator is discrete and
has a minimal non zero eigenvalue. Nice discrete structure (Spin
networks are often said to be the ”atomes of space”) but there are
puzzling questions:

The spectrum is proportional to a parameter which has no classical
meaning and corresponds to a choice of canonical coordinates.

This spectrum is sensitive to regularization (there are other
regularization which gives the equally spaced spectrum je + 1

2

instead of
√

je(je + 1))

The spectrum is discrete because Ashtekar-Barbero is a su(2)
connection (because of the choice of time gauge)

In 2+1 dimension quantum gravity is a topological theory and in this
case the spectrum of length of space like curves is continuous

The area operator is not an observable in the sense of Dirac: it does
not commute with Hi (one can imagine how to treat this problem
using matter), it does not commute with H.

Discussion. More on this question with CLQG.
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Volume operator

The volume of region R ⊂ M is given by the following integral

VR =

∫

R

d3x
√

h =

∫

R

d3x

∣

∣

∣

∣

1

3!
εijkε

abc Ẽ i
aẼ

j
bẼ

k
c

∣

∣

∣

∣

1/2

.

it admits the following quantization

V̂RΨΓ = γ3/2ℓ3
p

∑

v∈R∩Γ

∣

∣

∣

∣

∣

∣

iCreg

8

∑

I ,J,K

ǫv (eI , eJ , eK )εabcX
a
v ,eI

X b
v ,eJ

X c
v ,eK

∣

∣

∣

∣

∣

∣

1/2

ΨΓ,

ǫv (eI , eJ , eK ) ∈ {−1, 1, 0} is the sign of the orientation of the three
tangent vectors at v of the curves eI , eJ , eK .
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e1

e2

e3

e4

v

Rn

The computation of the spectrum of the volume operator in the version
of Ashtekar-Lewandowski is complicated, spin networks are no more
eigenvectors and numerical simulations on space of spinnetworks of
valence 5 and 6 indicate that there is no non zero lower bound.

Ph. Roche Overview of Loop Quantum Gravity and Spin Foams



Diffeomorphism constraints

In LQG one implements the constraint of diffeomorphism as follows: One
defines Hdiff as being the subspace of linear forms on Hkin by
”averaging” with the group of diffeomorphisms of M , and defining

〈Ψ[Γ]| :=
∑

φ(Γ),φ∈Diff (M)

〈Ψφ(Γ)|

and endow Hdiff with a structure of Hilbert space

〈Ψ[Γ]|Ψ[Γ′]〉 := 〈Ψ[Γ]|ΨΓ′〉.

It remains to implement the Hamiltonian constraint. There are two
approaches to this problem (called the problem of dynamics in LQG):
Quantum Spin Dynamics and Spin Foam models.
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Hamiltonian constraint: QSD 1

Quantum Spin Dynamics of Thiemann
A proper regularization of H[N] =

∫

M
d3xN[x ]H(x) is proposed which

action on spin networks is finite.
It uses as central tool the fact that one can recover the extrinsic
curvature K a

i from Poisson brackets with the volume function VM , more
precisely we have

HE = Ẽ i
aẼ

j
bǫ

ab
cF

c
ij [A] = ǫijkδabF

a
ij {Ab

k ,VM},
where VM is the volume of space. The central identities are

K a
i = {Aa

i ,K} and K = {VM ,

∫

M

HE (x)d3x}.

After having quantized VM using the the volume operator of
Ashtekar-Lewandowski V̂M one can define Ĥ[N] by replacing every where
Poisson Bracket by commutators.
The Dirac algebra of constraints can be shown to be satisfied in a weak
sense.
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Hamiltonian constraint: QSD 2

However drawbacks:

No construction of physical scalar product on states annihilated by
Ĥ[N] (”physical states”)

No good control of semiclassical physical states (problem: how to
recover gravity in this scheme)

No control of the eventual higher corrections in ~

No result on the spectra of Dirac observables.

These difficulties are hoped to be cured using the ”master constraint”
program of T.Thiemann.
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Covariant Loop Quantum Gravity 1

The choice of time gauge implies that the Ashtekar-Barbero connection is
a su(2) connection which implies that the spectrum of the area operator
is discrete with a non zero lower bound and depends on a new constant
γ. Are the results of LQG sensible to this choice of gauge?
Covariant Loop Quantum Gravity, developped by S.Alexandrov, aims at
quantizing GR in first order formalism without making this choice and
introduces new field χa :

e0 = Ndt + χaE
a
i dx i , ea = E a

i N idt + E a
i dx i .

P̃ i
IJ =

{

Ẽ i
a I = 0, J = a

Ẽ i
aχb − Ẽ i

bχa I = a, J = b

These covariant generalization of Ẽ i
a satisfy second class constraints

φij = εIJKLP̃ i
IJ P̃

j
KL ≈ 0.
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Covariant Loop Quantum Gravity 2

The P̃ i
IJ would be conjugated to ωIJ

i if not the second class constraints
which have to be implemented by the use of Dirac Bracket. As a result,
in order to find the ”almost ” canonical conjugate variable to P̃ i

IJ (out of
which one construct geometric operators) one has to add to ωIJ

i

constraints and one finally obtains a two parameters family of so(3, 1)
connection (a,b)Ω.

There is a notion of spin network associated to these connection
(projected spin networks) where edges are labelled by principal
unitary representations (k, ρ) of so(3, 1) as well as su(2) spins j .

An edge e of this projected spin network intersecting Σ gives a unit
of area given by:

ℓ2
p((a

2 + (1 − b)2)CSU(2) − (1 − b)2C
(1)
SO(3,1) + a(1 − b)C

(2)
SO(3,1))

1/2

with C
(1)
SO(3,1) = k2 − ρ2 − 1,C

(2)
SO(3,1) = 2kρ,CSU(2) = j(j + 1).

Ph. Roche Overview of Loop Quantum Gravity and Spin Foams



There are two interesting choices

a = −γ, b = 0 in this case the connection (−γ,0)Ωi is the Lorentz
extension of the Ashtekar-Barbero connection (χ = 0) and satisfies
{Ω,Ω} = 0. This is however not a space time connection (problem
with evolution of H), the spectrum is discrete and constains γ.

a = b = 0 in this case the connection (0,0)Ωi is a space-time
connection but it is now non commutative {(0,0)Ωi ,

(0,0)Ωj}D 6= 0
and quite complicated. The spectrum is continuous, does not
contains γ, the connection behaves well under space time
diffeomorphism but there is a real difficulty to give a sense to this
theory if there is not even a kinematical representation up to now.
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Hamiltonian constraint: Spin foams

Spin Foam methods.
Formal use of ”group averaging” method applied to the operator Ĥ[N]
and which amounts to define a projector operator P : Hkin → Hphys by

P =

∫

[DN] exp(i Ĥ[N])” = ”
∏

x

δ(H(x))

the physical scalar product

〈ΨΓ,ΨΓ′〉phys = 〈ΨΓ|P|ΨΓ′〉kin
can be expanded in powers of N as a spin foam model as follows:

j

j

j

k

k

k

l

l

l

p

oq

q

p
o m

n s

j
k

l

m

n
s
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Spin Foams

Spin foam models gives transition amplitudes for spin network states, i.e

〈ΨΓ,ΨΓ′〉phys :=
∑

C ,∂C=Γ∪Γ′

w(C )
∑

J,Iv

∏

f

Af

∏

e

Ae

∏

v

Av ,

the sum goes over all 2-complexes C fitting the given graph of the spin
networks at the boundaries and over all colorings (J, Iv ) of each C fitting
the coloring of the spin networks, possibly with some additional
restrictions on allowed representations and intertwiners. The weight
w(C ) is usually some symmetry coefficient and Af , Ae , Av are face,
edge and vertex amplitudes.
Numerous problems to be solved:

find spin foam models describing gravity in 3+1 dimensions, i.e find
the explicit form of Af , Ae , Av .

find appropriate scheme to give meaning to these infinite sums (and
integrals !) which moreover should corresponds to some physical
interpretation.
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Strategy

Strategy for building spin foam models of gravity:

find field theories which have an exact description in term of spin
foam models (usually topological field theory)

impose constraints on these field theories in order to obtain gravity

implement these constraints in the spin foam models in order to
obtain a spin foam description of gravity.

consistency check: analyze the vertex amplitude in different regimes
(for example a semiclassical one) and compare it to the would be
properties of the amplitude of quantum gravity.
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BF theory

In 2 + 1 dimensions the action of gravity in first order formalism has the
form

S =

∫

ǫIJKe I ∧ F JK [ω]

this is a topological theory which (in the Riemannian case) has an exact
description as a spin foam model known as Ponzanno-Regge, Av is given
by 6j symbols of SU(2) group (In this case there is no need for summing
over all triangulation, still IR divergent but can be regularized by adding
cosmological constant and corresponding spin foam model is Turaev-Viro
with 6j symbols of Uq(su(2)) q root of unit).
The 3+1 dimensional analog of this is the BF theory given by the action

SBF =

∫

BIJ ∧ F [ω]IJ

with ω so(3, 1) connection and B a 2-form with values in so(3, 1)
equivalent to B IJ 2-forms. The equation of motion are just F [ω] = 0 and
DωB = 0, (Topological theory). If one constraint B IJ to be of the form
B IJ = ⋆(e I ∧ eJ) one recover the action of gravity.
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Spin foam formulation of BF theory

BF theory has an exact formulation in term of spin foam model, one can
discretize exactly this theory and one finally obtain that in the case of
su(2) the summation is over spins J taking half integer values and the
summation is over a basis of interwiner Ij , the vertex amplitude being
given by:

t t

t t

t

¯
¯

¯
¯

¯
¯̄L

L
L

L
L

LL

Ij1

Ij2

Ij3

Ij4

Ij5

j12

j23 j34

j45

j51

j24

j25 j14

j13 j53
= A

BF ,SU(2)
v ({jab}; {Ija})
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Simplicity Constraints

How to implement the condition B IJ = ⋆(e I ∧ eJ) on the BF spin foam
model?
This was originally done using the so called simplicity constraints, which
can be reformulated as

ǫµνρσB IJ
µνBKL

ρσ =
V
4!

ǫIJKL .

because simplicity constraint imply B IJ = ± ⋆ (e I ∧ eJ) (gravitational
sector) or B IJ = ±(e I ∧ eJ) (topological sector, which was originally
discarded but caused much problem later).
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Plebanski theory

A field theory implementing this constraint is Plebanski theory

SPl [ω,B, ϕ] = SBF [ω,B] +
1

4

∫

M

d4x ϕµνρσB IJ
µνBKL

ρσ ǫIJKL .

satisfying the tracelessness condition ǫµνρσϕµνρσ = 0.
The simplicity constraints integrated on a triangle f gives the following
relation on B IJ

f =
∫

∆f
B IJ

ǫIJKLB
IJ
f BKL

f ′ = 0,±Vv

depending on the position of f , f ′.
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Barrett-Crane model

Barrett-Crane model (1998) imposes the simplicity constraint at the level
of the BF model for the group so(3, 1). The set of representations of
so(3, 1) are the irreducible unitary ones which enter in Plancherel formula
i.e these are the principal unitary representations Π(k,ρ) with k

half-integer and ρ real parameter.
The constraint coming from simplicity constraint is imposed as:

ǫIJKLΠ(k,ρ)(T
IJ)Π(k,ρ)(T

KL) = 0

which select the spherical ones k = 0. One can show that the simplicity
constraint amounts to select a specific interwiner, the BC intertwiner IBC .

ABC
v (ρi , i = 1, ..., 10) = ABF ,SO(3,1)

v ((0, ρi ); IBC , ..., IBC ).

This model has different problems:

No correct asymptotics when ρi are large (one should recover
exp( i

~
SRegge)

the problem of ultralocality: no propagation from one simplex to the
other
not capable of reproducing the graviton propagator
the labels on the faces are continuous ρi where as the labels on the
spin networks are half integers spins.
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New spin foam models

If one want to pursue in the direction of spin foam models one needs
other Spin Foam models which solves these difficulties.
The new models of Engle-Livine-Pereira-Rovelli (2008) and
Freidel-Krasnov (2008) are attempt to correct BC model by removing the
degenerate sector and by imposing new relations implying the simplicity
constraint, namely one imposes that there exist for each tetrahedron t a
non zero vector xt such that ∗B IJ

f (xt)J = 0, xt now becomes an
additional variable.
There is a huge activity on these new spin foam models ranging from
their construction to the analysis of the behaviour of the vertex
amplitude (which is defined as a 15j of so(3,1)).
However there are puzzling questions on these models about the handling
of the second class constraints which may have been overlooked.
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Summing over coloring and on complexes

A very pressing and not very much studied question in spin foam models
is the control of the sum over the coloring of 2-complexes and of the sum
over the 2 complexes.
The integration over coloring on a fixed complex has been studied in
numerous work. (Discussion)
The question of the behaviour of the sum over the 2 complexes can be
investigated using the notion of group field theory and are under active
study. There is at present no conclusive answers to this question.
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Conclusion 1

Is LQG a viable theory of Quantum Gravity?
The advocates of LQG are defending enthusiastically their theories which
adresses very good questions, poorly adressed in String theory such as:
background independence, the problem of observables in Quantum
Gravity, the problem of time in Quantum gravity, the quantization of
geometric operators.
One of the interest of LQG for describing the world is that this approach
is minimalistic in the sense that it does not incorporate supersymmetry,
higher dimensional spaces and inclusion of other fields.
In 2+1 dimension quantum gravity can be well studied with the
structures which appear in LQG: spin networks, representations of
holonomy agebras and which triggered my interest in this field.
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Conclusion 2

There are three major questions which are not solved (but are definitely
adressed in LQG):

The problem of construction of Dirac Observables and the
computation of their spectra.

The problem of dynamics: how to implement the Hamiltonian
constraint and to have a good understanding of physical states
which approximate a classical solution of GR.

A precise scheme to make computations (even perturbatively in
some parameter) which would allow to make prediction when LQG is
coupled to matter.

The future of LQG (and SpinFoam models) as a viable theory of
quantum gravity depends on the ability of providing answers to these
major problems.
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