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motivation  :  2D supergravity

classically integrable field theory

affine symmetry group E9   —  solution generating (transitive)

infinite-dimensional symmetries :     E9              E10              E11

SO(9) supergravity : first example of such a 2d deformation :  IIA on S8

                                                                   matrix model holography

symmetries

affine symmetry also organizes the deformations of the theory 

infinite-dim. HW representations of non-propagating fields

deformations

supersymmetry
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Domain wall / QFT correspondence
[H.J. Boonstra, K. Skenderis, P. Townsend, 1999]  

holography for Dp-branes  :    AdSp+2 x S8-p

warped

motivation  :  SO(9) supergravity

[Hull, 1984]  

[de Wit, Nicolai, 1982]  

[Pernici, Pilch, van Nieuwenhuizen, 1984]  

[Salam, Sezgin, 1984]  

[Samtleben, Weidner, 2005]  

??

gaugings of maximal supergravity

D6 IIA AdS8 x S2 d=8, SO(3)

D5 IIB AdS7 x S3 d=7, SO(4)

D4 IIA AdS6 x S4 d=6, SO(5)

D3 IIB AdS5 x S5 d=5, SO(6)

D2 IIA AdS4 x S6 d=4, SO(7)

D1 IIB AdS3 x S7 d=3, SO(8)

D0 IIA AdS2 x S8 d=2, SO(9)

[Günaydin, Romans, Warner, 1985]  

dual to SYMp+1  theory



Henning Samtleben                                                                                      ENS Lyon

motivation

D=4 supergravity : symmetries and deformations

D=2 supergravity : symmetries and deformations

example : SO(9) supergravity   

conclusions

plan

Affine symmetries in supergravity
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D=4 supergravity 

symmetries and deformations
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D=4 supergravity: some generic features

L = R + Gij(�) ⇥µ�i ⇥µ�j + I�⇥(�) F�
µ⇥ Fµ⇥⇥ +R�⇥(�) F�

µ⇥
�Fµ⇥⇥ + · · ·

bosonic sector of maximal (N=8) D=4 supergravity
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D=4 supergravity: symmetries

L = R + Gij(�) ⇥µ�i ⇥µ�j + I�⇥(�) F�
µ⇥ Fµ⇥⇥ +R�⇥(�) F�

µ⇥
�Fµ⇥⇥ + · · ·

scalar sector:  G/H coset space sigma model

V � E7 V ⇥ V · H H � SU(8)

E7

�
SU(8)

E7 action V �⇥ GV HG,V

  shift symmetries

  ‘hidden’ symmetries

G = exp{�mNm}

G = exp{�mN†
m}

: ⇥m � ⇥m + �m

non-linear!  (on     ) 
(linear on    )V

�i

triangular gauge

as (2.5) can be employed to describe couplings between bosonic and fermionic fields,

transforming under G and K, respectively. To make this more explicit, it is useful to

express (2.5) in indices as

�VM
N = �� (t�)M

K VK
N � VM

K kK
N , (2.9)

with G-generators (t�)M
K and the underlined indices K, N referring to their transfor-

mation behavior under the subgroup K. The matrix VM
N allows to construct couplings

of e.g. a bosonic field strength FM
µ⇤ transforming in the associated fundamental repre-

sentation of G to the fermionic fields according to (schematically)

FM VM
N (⌅̄ ⌅)N , etc. , (2.10)

where (⌅̄ ⌅)N denotes the projection of the fermionic bilinear onto some K-subrepresen-

tation in the corresponding tensor product of K-representations.

It is often convenient to fix the local K symmetry by adopting a particular form

of the matrix V , i.e. choosing a particular set of coset representatives. In this case,

any global G-transformation in (2.5) needs to be accompanied by a compensating K-

transformation

� V = �V � V k� , (2.11)

where k� depends on � (and on V) in order to restore the particular gauge choice, i.e. to

preserve the chosen set of coset representatives. This defines a non-linear representation

of G on the (dim G� dim K) coordinates of the coset space, i.e. on the physical scalar

fields. Likewise, it provides a non-linear realization of the group G on the fermion

fields via the compensating transformation k�. Two prominent gauge fixings are the

following:

• unitary gauge: in which the matrix V is taken of the form

V = exp {⇤a Ya} , (2.12)

where the non-compact generators Ya span the space p. In this gauge, the ⇤a

transform in a linear representation of K ⇥ G, thus global K-invariance of the

Lagrangian remains manifest. The current Pµ = P a
µ Y a takes the form P a

µ =

⇧µ⇤a + . . ., where dots refer to higher order contributions. This shows that the

kinetic term (2.4) is manifestly ghost-free with Gab(⇤) ⇤ �ab + . . .. It is here that

the importance of K being the maximal compact subgroup of G shows up.

• triangular gauge: in which the matrix V is taken of the form

V = exp {⇤m Nm} exp
�
⇤⇥ h⇥

⇥
, (2.13)

where ⇥ = 1, . . . , rank G, labels a set of Cartan generators h⇥ of g and the Nm

form a set of nilpotent generators such that the algebra spanned by {h⇥, Nm}

8

nilpotent Cartan

grading
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D=4 supergravity: self-duality

L = R + Gij(�) ⇥µ�i ⇥µ�j + I�⇥(�) F�
µ⇥ Fµ⇥⇥ +R�⇥(�) F�

µ⇥
�Fµ⇥⇥ + · · ·

self-duality  (D=4: electric-magnetic duality for vectors)

field strength: dual:Fµν
Λ

= 2 ∂[µAν]
Λ

Gµν Λ = −εµνρσ

∂L

∂Fρσ
Λ

∂[µFνρ]
Λ

= 0

∂[µGνρ] Λ = 0

Bianchi:

eom:
dual vectors: Gµ⇥ � = 2�[µA⇥] �

(

FΛ

GΛ

)

−→

(

UΛ
Σ ZΛΣ

WΛΣ VΛ
Σ

) (

FΣ

GΣ

)

symplectic rotation

non-local   (on      ) ! 
(local on                 )(A�

µ , Aµ �)

A�
µ

choice of an electric frame,  analogous pattern for (n—1)-forms in D=2n

E7 is realized (on-shell) on the combined set of 28 electric +28 magnetic vectors 
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D=4 supergravity: gauging

L = R + Gij(�) ⇥µ�i ⇥µ�j + I�⇥(�) F�
µ⇥ Fµ⇥⇥ +R�⇥(�) F�

µ⇥
�Fµ⇥⇥ + · · ·

gauging  (embedding tensor)

Dµ = ∂µ − Aµ
M

ΘM
α
tα = ∂µ − Aµ

Λ
ΘΛ

α
tα − Aµ ΛΘ

Λ α
tα

electric gauging (“standard”)

magnetic gauging (“non-standard”)

consistency encoded in a set of algebraic constraints on the embedding tensor

     linear:    (susy / consistent tensor hierarchy) 

quadratic:    (generalized Jacobi / locality)

�(M
� t�,N

P ⇥K)P = 0

fαβ
γ ΘM

α ΘN
β + (tα)N

P ΘM
αΘP

γ = 0

�⇥ ⇥MN �M
� �N

⇥ = 0

56 x 133  =  56 + 912 + 6480  

ΘM
α

self-duality  (D=4: electric-magnetic duality for vectors)
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L = R + Gij(�) ⇥µ�i ⇥µ�j + I�⇥(�) F�
µ⇥ Fµ⇥⇥ +R�⇥(�) F�

µ⇥
�Fµ⇥⇥ + · · ·

gauging

Dµ = ∂µ − Aµ
M

ΘM
α
tα = ∂µ − Aµ

Λ
ΘΛ

α
tα − Aµ ΛΘ

Λ α
tα

electric gauging (“standard”)

magnetic gauging (“non-standard”)

self-duality  (D=4: electric-magnetic duality for vectors)

off-shell formulation

Ltop = − 1
8
ΘΛα

Bα ∧

(

2 ∂AΛ + XMNΛ A
M
∧ A

N
− 1

4
ΘΛ

β
Bβ

)

+ · · ·

upon introduction of additional two-forms (dual to scalars) 
and BF couplings

gauging of on-shell symmetries

D=4 supergravity: gauging

[de Wit, HS, Trigiante ]  
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D=2 supergravity 

affine symmetries
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Lagrangian

      coset space sigma model coupled to dilaton gravity

L = � 1
4

⇤
�g �

�
�R + tr[PµPµ]

⇥
+ Lferm(⇤I ,⇤I

2 ,⇥Ȧ)

D=2 supergravity ungauged

duality

V�1@µV = Qµ + Pµ

�� = 0

dilaton scalars

field equations

@µJµ
M = 0 Jµ ⌘ ⇢VPµV�1 conserved E8  Noether current

has a remarkable structure :
(infinite tower of) dual scalar potentials         

classical integrability, affine Lie-Poisson symmetry E9

⇤µ⇥̃ = �µ⇥ ⇤⇥⇥ dual  dilaton

dual  scalars@µYM ⌘ "µ⌫ J⌫
M

dual (D–2) forms

off-shell symmetry (target space isometries): E8      
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duality      

J
H
E
P
0
8
(
2
0
0
7
)
0
7
6

view of higher-dimensional supergravity theories, equations (2.15) constitute nothing but

a particular case of the general on-shell duality between p forms and D − p − 2 forms

(D = 2, p = 0). In two dimensions however, these equations are just the starting point for

an infinite hierarchy of dual potentials of which the next members Y2, Y3 are defined by

∂±Y2 =

(
±ρρ̃ +

1

2
ρ2

)
VP±V−1 +

1

2
[Y1, ∂±Y1] ,

∂±Y3 =

(
∓

1

2
ρ3 ∓ ρρ̃2 − ρ2ρ̃

)
VP±V−1 + [Y1, ∂±Y2] −

1

6
[Y1, [Y1, ∂±Y1]]] . (2.16)

Again, integrability of these equations is guaranteed by the field equations ∂µIµ = 0 and

the defining equation (2.15) of the lower dual potentials. A convenient way to encode

the definition of all dual potentials (and the action of the affine symmetry) is the linear

system [7, 8] which we will describe in the next subsection. In order make the symmetry

structure more transparent we will restrict the discussion in the present subsection to the

lowest few dual potentials and to the action of the lowest few affine symmetry generators

Tα,m.

We identify the zero-modes Tα,0 with the generators tα of the off-shell symmetry g.

These zero-mode symmetries do not mix the original scalars and the dual potentials of

different levels, i.e. V transforms according to (2.4) and all the Ym (m > 0) transform in

the adjoint representation of g. The fields ρ, ρ̃, and σ are left invariant by Tα,0.

The dual potentials ρ̃, Ym are defined by (2.14)–(2.16) only up to constant shifts

ρ̃ #→ ρ̃ + λ, Ym #→ Ym + Λm. The generators in G corresponding to these shift symmetries

are L1 and Tα,m (m > 0), i.e.

δ(1) ρ̃ = 1 , δα,m Y β
n =

{
δβ
α for m = n

0 for m > n
, (2.17)

where δ(1) and δα,m denote the action of L1 and Tα,m, respectively, and Ym = Y α
mtα . Since

the definition of the dual potentials also involves ρ̃ and lower dual potentials, it follows

that L1 and Tα,m also act nontrivially on the higher dual potentials Yn (m < n), e.g.

δ(1) Y2 = −Y1 , δ(1) Y3 = −2Y2 ,

Λα δα,1 Y2 =
1

2
[Λ, Y1] , etc. (2.18)

None of the shift symmetries L1 and Tα,m (m > 0) act on the physical fields V, ρ or σ. So

far we have thus not introduced any new physical symmetry. The crucial point about the

symmetry structure of the model is the existence of another infinite family of symmetry

generators Tα,m (m < 0). Their action on the physical fields is expressed in terms of the

dual potentials and thus nonlinear and nonlocal in terms of the original fields. For the

lowest generators, this action is given by

Λαδα,−1 V = [Λ, Y1]V − ρ̃ V[V−1ΛV]p ,

Λαδα,−2 V =

{
[Λ, Y2] +

1

2
[[Λ, Y1], Y1] − ρ̃[Λ, Y1]

}
V +

(
1

2
ρ2 + ρ̃2

)
V[V−1ΛV]p .

(2.19)

– 7 –

(248)

�1 ⇤̃ = ⇥ (248)(1) ����,1 Y1 = �
����,1 V = 0

close into (half of) the affine algebra !

extends to an infinite tower:
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– 7 –

dual  scalars

‘hidden’ symmetries

etc...

(248)

⇤µ⇥̃ = �µ⇥ ⇤⇥⇥ dual  dilaton

dual  scalars@µYM ⌘ "µ⌫ J⌫
M

dual (D–2) forms

D=2 supergravity ungauged

shift symmetries

‘hidden’ symmetries

classical integrability, affine Lie-Poisson symmetry E9
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linear system

the equations of motion can be encoded as integrability conditions 
of a linear system                                              

for a group-valued function          and the spectral parameter

expansion in w gives rise to the infinite series of dual scalars

V̂�1⇥±V̂ = Q± +
1⇥ �

1± �
P±

V̂(�)

� =
1
⇥

�
w + ⇥̃�

⇤
(w + ⇥̃)2 � ⇥2

⇥

V̂ = . . . eY3w�3
eY2w�2

eY1w�1
V

⌅±Y1 = ±�VP±V�1

⌅±Y2 = �(±��̃ + 1
2�2)VP±V�1 + 1

2 [Y1, ⌅±Y1]
⌅±Y3 = . . .

[Belinskii, Zakharov / Maison / Julia / Nicolai, Warner]

D=2 supergravity ungauged

(light-cone-coord.      )x±
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affine symmetry group  E9

action parametrized by a meromorphic function 

Note that one could have used the scalar product ([L−1, Tm
M ], T n

N) to define the central

extension of the algebra above. We want V̂(w) to be in Breitenlohner-Maison gauge,

thus it has no poles at w = ∞ and has a expansion of the form

V̂ = . . . e−Y2w−2

e−Y1w−1 V , (9)

For an algebra element Λ = ΛM(w)tM +λL−1 +κk the symmetry action on the scalars,

including the compensating transformation that restores the BM gauge, is given by

δρ = 0

δρ̃ = λ

δγ(w) = λ ∂wγ(w)

δσ = κ − tr
〈

Λ(w) ∂wV̂(w)V̂−1(w)
〉

w

V̂−1δV̂(w) = λ V̂−1∂wV̂(w) + Λ̃(w) −
〈

1

v − w

(

Λ̃h(v) +
γ(v) (1 − γ2(w))

γ(w) (1 − γ2(v))
Λ̃k(v)

)〉

v

,

(10)

where Λ̃ = V̂−1ΛV̂ and the subscripts h and k denote projection to the compact and

noncompact subalgebra of g = h⊕ k, respectively. From the above transformation rule

of V̂ we find that V transforms as1

V−1 δV =
〈 2γ(w)

ρ (1 − γ(w)2)
Λ̃k(w)

〉

w
, (11)

1The following relation is useful in the computation:

〈〈f(w, v)

v − w

〉

v

〉

w
−

〈〈f(w, v)

v − w

〉

w

〉

v
= 〈f(w, w)〉w .

The formula is true if there are neighbourhoods of w = ∞ and v = ∞ such that the only poles of

f(w, v) within that neigbourhoods are at w = ∞ and v = ∞.
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�(w)

V̂�1�(w)V̂ = �̃h + �̃k

⇥f(w)⇤w �
�

dw

2�i
f(w)

—  off-shell

shift 
symmetries

hidden
symmetries}
}

{t�m, L1, k}

m > 0

m < 0

D=2 supergravity ungauged

coset action  E9 / K(E9)

extends to the set of dual scalars

L1 ⇢̃ = 1

k � = 1

Virasoro

central extension [Julia ]  

deformations : gauge part of this nonlinear, nonlocal, on-shell symmetry
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D=2 supergravity 

deformations [HS, Martin Weidner ]  
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gauging D=2 supergravity

L = ⇤µ� Dµ⇥ � 1
2� tr(PµPµ) + Ltop

Dµ = �µ �AMµ �MA tA = �µ �A�
µ t� �Bµ L1 � Cµ k

Ltop =

2 The gauged Langrangian

We introduce gauge fields Aµ = AM
µ (w)tM + BµL−1 + Cµk. The covariant derivatives

take the form2

Dµρ̃ = ∂µρ̃ − Bµ

Pµ = Pµ −
〈 2γ(w)

ρ (1 − γ(w)2)
Ãµ(w)k

〉

w
,

Dµσ = ∂µσ − Cµ + tr
〈

Aµ(w) ∂wV̂(w)V̂−1(w)
〉

w

V̂−1DµV̂(w) = V̂−1∂µV̂(w) − BµV̂−1∂wV̂(w) − Ãµ(w)

+

〈

1

v − w

(

[Ãµ(v)]h +
γ(v) (1 − γ2(w))

γ(w) (1 − γ2(v))
[Ãµ(v)]k

)〉

v

, (15)

where Ãµ = V̂−1AµV̂. The Lagrangian takes the form

L = ∂µρ Dµσ − 1
2 ρ tr(PµPµ)

+ εµνtr
〈

Aµ(w) (∂νV̂ − V̂Qν) V̂−1 −
1 + γ2

1 − γ2
Aµ(w)V̂PνV̂−1

〉

w

+ εµν
(

Cµ − tr
〈

Aµ(w) ∂wV̂(w)V̂−1(w)
〉

w

)

∂ν ρ̃

− 1
2ε

µνCµBν + 1
2 εµνtr

〈〈 1

v − w
[Ãµ(w)]h[Ãν(v)]h

+
(γ(v) − γ(w))2 + (1 − γ(v)γ(w))2

(v − w)(1 − γ(v))2(1 − γ(w))2
[Ãµ(w)]k[Ãν(v)]k

〉

v

〉

w
(16)

If the following quadratic constraint is satisfied

tr
〈

Aµ(w)Aν(w)
〉

w
+ BµCν + CµBν = (Aµ,Aν) = 0 , (17)

2Since one is used to deal with linear representations, one might wonder whether there are sub-

tleties with the covariant derivative for non-linear representation, but the whole formalism remains

unchanged. Say we have some object X that transforms under some lie algebra, denoting the infinites-

imal transformations as δMX , satisfying the algebra

[δM , δN ] = − fMN
P δP . (12)

Gauging this action we have δΛX = ΛM (x)δMX . The covariant derivative is then defined as Dµ =

∂µ − AM
µ δM . One then finds that in order to have ΛM (x) δM Dµ X = ΛM (x)Dµ δMX we need

(δΛAµ − DµΛM )δMX = 0 ⇒ δΛAµ = DµΛM ≡ ∂µΛM − fNP
MAN

µ ΛP . (13)

One then finds

[Dµ, Dν ]X = −FM
µνδMX = −(2∂[µAM

ν] − fNP
MAN

µ AP
ν )δMX . (14)

However, we will modify δΛAµ and thus also the last equation.
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[Ãµ(w)]k[Ãν(v)]k
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3

⇥L = ⇥C± (⌅±⇤⇤ ⌅±⇤̃) + tr
�
⇥A± (⌅±V̂V̂�1 � V̂(Q± +

1⇤ �

1± �
P±)V̂�1)

⇥

w

the Lagrangian carries dual scalars and vector fields (topological) 
such that variation w.r.t. the vector fields yields the linear system!

and part of the former on-shell symmetry is gauged!

and a “topological” term

simplest case : gauging of target-space isometries E8  
                      (theories of D=3 origin...)

L
top

= ✏µ⌫Fµ⌫
M ⇥MN Y N + . . .

[Hull, Spence ]  
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gauging D=2 supergravity

group theory     (for consistent deformations)

��0 = 1 + 248q + 4124q2 + 34752q3 + 213126q4 + 1057504q5 + 4530744q6 + ...

McKay-Thompson series of class 3C for the monster

▸ vector fields (nonpropagating in D=2)
   restore by embedding known examples:  basic representation of E9

Dµ = ⇥µ �AMµ �MA tA = AMµ �N �AB tAM
N tB

�adj ⇤ �1 = �1 ⇥ · · ·▸ embedding tensor  linear constraint:
  transforms in the dual representation

➜  infinite-dimensional parameter space of deformations!

{t�m, L1, k} —  off-shell

shift 
symmetries

hidden
symmetries}
}

m > 0

m < 0

affine global symmetry 
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gauging D=2 supergravity

quadratic constraint

fAB
C �MA�NB + tAN

P �MA�PC = 0

��0 ��0 = �vir
(1,1) �2�0 + �vir

(2,1) ��7

��0 ��0 = (1+q2+q3+q4+2q5+ . . . ) �2�0 + (1+q+q2+ . . . ) ��7

1 � 1

2

E9E9

E9

coset CFT:  
Ising model

�AB tAM
P tBN

Q �P�Q = (LG
1 � LH

1 ) �� = LG/H
1 �� ⇥ 0

quasiprimary states in the tensor product

▸  every ϴ satisfying this constraint defines a consistent deformation

��lives in the tensor product 

structure of multiplicities organized by 

quadratic constraint translates into
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gauging D=2 supergravity

▹  flux of 3d Kaluza-Klein vector field 

     ▹  Scherk-Schwarz reductions from 3d

            ▹  torus reduction of 3d gaugings

                             ▹   ...?

                                                          ▹   ...??

                                                                         ▹   ...???

embedding tensor — basic representation

quadratic constraint ...

1 + 248 + 3875

✓M

248

1

1 + 2 · 248 + 3875 + 30380

2 · 1 + 3 · 248 + 2 · 3875 + 30380 + 27000 + 147250
       ●        
       ●
       ● 

Dµ ⌘ @µ � gAµ
M⇥MA TA ⇥MA = (TB)MN ⌘AB ✓N

branching under E8 identifies gaugings of 3d origin
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1 + 248 + 3875

✓M

248

1

1 + 2 · 248 + 3875 + 30380

2 · 1 + 3 · 248 + 2 · 3875 + 30380 + 27000 + 147250
       ●        
       ●
       ● 

hidden 
symmetries

shift 
symmetries

       ● ● ●  248   248   248   248   248   248   248   ● ● ●  

off-shell

1  

248

4124

34752

213126

1057504

      ●        
       ●
       ● 

vector fields

4124

1 + 248 + 3875
simple examples :

d=3 theories

embedding tensor — basic representation

Dµ ⌘ @µ � gAµ
M⇥MA TA ⇥MA = (TB)MN ⌘AB ✓N

gauging D=2 supergravity
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vector fields

✓M

248

1

1 + 2 · 248 + 3875 + 30380

2 · 1 + 3 · 248 + 2 · 3875 + 30380 + 27000 + 147250
       ●        
       ●
       ● 

hidden 
symmetries

shift 
symmetries

       ● ● ●  248   248   248   248   248   248   248   ● ● ●  

off-shell

1  

248

4124

34752

213126

1057504

      ●        
       ●
       ● 

4124

1 + 248 + 3875

1248

34752

213126

       ●        

       ●
       ● 

the full structure: 
inf-dim HW reps

embedding tensor — basic representation

Dµ ⌘ @µ � gAµ
M⇥MA TA ⇥MA = (TB)MN ⌘AB ✓N

gauging D=2 supergravity
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✓M

248

1

1 + 2 · 248 + 3875 + 30380

2 · 1 + 3 · 248 + 2 · 3875 + 30380 + 27000 + 147250
       ●        
       ●
       ● 

1 + 248 + 3875

new example:
the SO(9) theory 

1

vector fields

hidden 
symmetries

shift 
symmetries

       ● ● ●  248   248   248   248   248   248   248   ● ● ●  

off-shell

1  

248

4124

34752

213126

1057504

      ●        
       ●
       ● 

4124

213126

Dµ ⌘ @µ � gAµ
M⇥MA TA ⇥MA = (TB)MN ⌘AB ✓N

embedding tensor — basic representation

gauging D=2 supergravity
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19982007 :  gauging d=2 supergravity
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v
e
c
t
o
r
 fie

ld
s

hidden 

symmetries

shift 

symmetries

       ● ● ●  248   248   248   248   248   248   248   ● ● ●  

off-shell

1  

248

4124

34752

213126

1057504

      ●        

       ●
       ● 

4
1
2
4

2
1
3
1
2
6

   the SO(9) theory is a genuine d=2 theory
SO(9) ⇢ E9SO(9) ⇢ E8/

   the full gauge group is infinite-dimensional  (shift symmetries)

   the theory in the “E8 frame” looks rather miserable

JHEP08(2007)076

figure 2. Similar to the discussion in the previous section, the lowest components 90, 36′
1/3,

1262/3 correspond to nontrivial fluxes associated with the vector fields in the reduction from

eleven dimensions. As manifest in the figure, these gaugings involve only shift symmetries

in the sl(9) grading.

We will be interested by the gaugings induced by the 45′
4/3. With a little effort one may

show that an embedding tensor in this representation automatically satisfies the quadratic

constraint (3.13). Namely, working out the couplings induced by this 45′
4/3 in figure 2, it

follows from the sl(9) representation structure that the lowest symmetry generators which

are involved in the gauging are sitting in the 800, the 842/3, and the 801. In particular,

the latter couple only to the 45−4/3 of the vector fields.13 The form of the quadratic

constraint (3.13) then shows that its only nontrivial contribution can sit in the component

where M and N take values in the 36′
1/3 and the 45′

4/3, respectively, i.e. live in the sl(9)

tensor product 36′ ⊗ 45′ = 630′ ⊕ 990′. Since there is no overlap with the representations

actually present in the square of this embedding tensor (45′ ⊗sym 45′ = 495′ ⊕ 540′), the

quadratic constraint is automatically satisfied. We have thus shown that an embedding

tensor in the 45′
4/3 defines a consistent gauging in two dimensions. This representation can

be parametrized by a symmetric 9 × 9 matrix Y . By fixing part of the SL(9) symmetry

this matrix can be brought into the form

Y = diag( 1, . . . ,︸ ︷︷ ︸
p

−1, . . . ,︸ ︷︷ ︸
q

0, . . .︸ ︷︷ ︸
r

) , (5.12)

with p + q + r = 9. Such an embedding tensor gauges a subalgebra cso(p, q, r) of the

zero-mode algebra sl(9) in (5.10). The corresponding gauge fields come from the 36−1/3.

For r = q = 0 this is the SO(9) gauging corresponding to the IIA S8 compactification

mentioned above. In addition there is the infinite tower of shift-symmetries accompanying

this gauging, starting from the full 84+2/3, a 44 inside the 80+1, etc.

It is instructive to visualize this SO(9) gauging within the e8 grading of figure 1. In that

table, the SO(9) singlet component of Θ which defines the gauging is a linear combination

of the two SO(8) singlets appearing in the branching of the 38752 and the 1472504 under

SO(8). In the e8 grading this gauging thus involves a number of hidden and zero-mode

symmetries. More precisely, the gauge group appearing in the Lagrangian (4.2) is of the

non-semisimple form

G = SO(8) !

(
(R28

+ × R
8
+)0 × (R8

+)−1

)
, (5.13)

with the (R28
+ × R8

+)0, and (R8
+)−1 corresponding to zero-mode symmetries and hidden

symmetries from level −1, respectively. From this perspective it is thus not at all obvious

that an SO(9) gauge group is realized. Instead, the “off-shell gauge group” involves the

maximal Abelian (36-dimensional) subalgebra of the zero-mode e8.

13This can be seen as follows. According to (3.2) and (3.14) the vector fields couple to generators as

AM
µ (TB,M

N ηAB ΘN ) TA. Since ηAB is invariant under L1, indices in the range A ∈ 801 couple to B ∈ 800,

i.e. in this case TB is just the SL(9). Since (5.11) is a decomposition into irreducible SL(9) components and

the indices ’N ’ are in the range N ∈ 45
′
4/3 (as this is the only non-vanishing Θ-component) the range of

indices ’M’ is restricted to M ∈ 45−4/3.
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in particular but

in particular the gauge group is

aaaaaa

9>>>>>>=>>>>>>;

aa

�

off-shell hidden (on-shell)

   still the Yukawa couplings and the scalar potential are missing

gauging D=2 supergravity



1998

Henning Samtleben                                                                                      ENS Lyon

example :  SO(9) supergravity [H.S., Thomas Ortiz]  

   go to a “T-dual frame” in which SO(9) is among the off-shell symmetries

   the proper embedding of the gauge group :

SO(9) ⇢ E8/

but SO(9) ⇢ SL(9) ⇢ \SL(9) ⇢ E9
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SO(9) supergravity

affine E8 with L0 grading

off-shell

shift

shift

shift

hidden

hidden

248+3

248+2

248+1

2480

248-1

248-2

SO(9) ⇢ E8/

but SO(9) ⇢ SL(9) ⇢ \SL(9) ⇢ E9
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affine E8 with L0 grading

80+3

80+2

80+1

800

80-1

80-2

84+10/3

84+7/3

84+4/3

84+1/3

84-2/3

84-5/3

84’+8/3

84’+5/3

84’+2/3

84’-1/3

84’-4/3

84’-7/3

{off-shell symmetry
SL(9) n T84

   “T-dual frame” :    change some of the target space coordinates for their duals

E8/SO(16)coset sigma model
�
SL(9) n T84

�
/SO(9)coset sigma model

with WZ term

:  decomposition under SL(9)

SO(9) supergravity
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�
SL(9) n T84

�
/SO(9)coset sigma model with WZ term

   “T-dual frame” :  

L0 = � 1
4
⇢R +

1
4
⇢ Pµ abP ab

µ +
1
12

⇢1/3 MilMjmMkn @µ�ijk@µ�lmn

+
1

648
"µ⌫"klmnpqrst �klm @µ�npq @⌫�rst

in fact this is the d=11 theory reduced on a torus T9  ...

84 ⋀ 84 ⋀ 84          1

P ab
µ = (V�1@µV)(ab)

�abc

target space :

SL(9)/SO(9) coset currents

84 extra scalars M = VVTwith kinetic matrix

and WZ term

SO(9) supergravity
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�
SL(9) n T84

�
/SO(9)coset sigma model with WZ term

   “T-dual frame” :  

L0 = � 1
4
⇢R +

1
4
⇢ Pµ abP ab

µ +
1
12

⇢1/3 MilMjmMkn @µ�ijk@µ�lmn

+
1

648
"µ⌫"klmnpqrst �klm @µ�npq @⌫�rst

�⇢e�1"µ⌫ ̄I
2Dµ 

I
⌫ �

i

2
 ̄I

⌫�
⌫ I

µ @
µ⇢� i

2
⇢ �̄aI�µDµ�

aI

�1
2
⇢ �̄aI�⌫�µ J

⌫ �b
IJP ab

µ � i

2
⇢ �̄aI�3�µ J

2 �b
IJP ab

µ�1
4
⇢2/3 �̄aI�3�⌫�µ J

⌫ �bc
IJ '

abc
µ � i

12
⇢2/3 �̄aI�µ J

2 �bc
IJ '

abc
µ

+
i

54
⇢2/3  ̄I

2�
3�µ J

2 �abc
IJ 'abc

µ +
1
24
⇢2/3  ̄I

2

⇣
�µ�⌫ � 1

3
�⌫�µ

⌘
 J

⌫ �abc
IJ 'abc

µ

+
i

2
⇢2/3 �̄aI�3�µ�bJ�c

IJ 'abc
µ � i

24
⇢2/3 �̄aI�3�µ�aJ�bcd

IJ 'bcd
µ

fermionic part :

off-shell symmetry SL(9) n T84 gauging� SO(9)

SO(9) supergravity



where L0,cov is obtained by straightforward covariantization of (2.9) according to

�µVk
a ⇤ DµVk

a ⇥ �µVk
a � gAlm

µ ⌅mk Vl
a ,

Q[ab]
µ + P (ab)

µ ⇤ Q[ab]
µ + P(ab)

µ ⇥ V�1akDµVk
b ,

�µ⌃
klm ⇤ Dµ⌃

klm ⇥ �µ⌃
klm � 3g Ap[k

µ ⌅pq ⌃
lm]q ,

↵abc
µ ⇤ ⇧↵abc

µ ⇥ Vklm
[abc]Dµ⌃

klm ,

Dµ�
I
⌅ ⇤ Dµ�

I
⌅ ⇥ �µ�

I
⌅ +

1

4
 µ

�⇥��⇥ �
I
⌅ +

1

4
Qab

µ �ab
IJ �

J
⌅ ,

Dµ⌥
aI ⇤ Dµ⌥

aI ⇥ �µ⌥
aI +

1

4
 µ

�⇥��⇥ ⌥
aI +Qab

µ ⌥bI +
1

4
Qbc

µ �bc
IJ ⌥

aJ .(4.3)

Furthermore,

Fµ⌅
kl ⇥ 2�µA⌅

kl + 2g ⌅pq Aµ
p[kA⌅

l]q , (4.4)

defines the non-abelian field strength of the vectors Aµ
kl = Aµ

[kl], coupling in (4.2) to an

auxiliary field Yk
l. In anticipation of the resulting structure we denote this auxiliary

field by the same letter as the dual scalar potential defined in (2.14) above for the

ungauged theory. The general ansatz for the Yukawa-type couplings LYuk in (4.2) is

the collection of the most general bilinear fermion couplings

e�1LYuk = �1

2
e�1⇧ ⌦µ⌅

�
�̄I

⌅�
J
µBIJ + �̄I

⌅�
3�J

µB̃IJ � 2i�̄I
2�⌅�

J
µAIJ

⇥
+ i⇧ �̄I

2�
µ�J

µÃIJ

+ i⇧ ⌥̄aI�µ�J
µCa

IJ � i⇧ ⌥̄aI�3�µ�J
µC̃a

IJ + ⇧ �̄I
2�

J
2 DIJ + ⇧ �̄I

2�
3�J

2 D̃IJ

+ ⇧ ⌥̄aI�J
2 Ea

IJ + ⇧ ⌥̄aI�3�J
2 Ẽa

IJ + ⇧ ⌥̄aI⌥bJF ab
IJ + ⇧ ⌥̄aI�3⌥bJ F̃ ab

IJ , (4.5)

with tensors A, B, C, D, E, F depending on the scalar and auxiliary fields to be deter-

mined in the following. Their appearance in (4.5) implies certain symmetry properties

such as

B(IJ) = D̃(IJ) = 0 = B̃[IJ ] = D[IJ ] , F ij
IJ = F ji

JI , F̃ ij
IJ = �F̃ ji

JI , (4.6)

and

�i
IJCi

IK = �i
IJC̃i

IK = 0 = �i
IJF ij

IK = �i
IJ F̃ ij

IK . (4.7)

As is standard in gauged supergravity, couplings of the type (4.5) induce a modification

of the fermionic supersymmetry transformation rules (2.11) by introduction of the so-

called fermion shifts according to

⇥⇤�
I
µ = Dµ⇤

I � 1

24
⇧�1/3�abc

IJ

⇤
1

3
�µ�

⌅ + �⌅�µ

⌅
�3⇤J ⇧↵abc

⌅ + i
�
AIJ + ÃIJ�

3
⇥
�µ⇤

J ,

⇥⇤�
I
2 = � i

2
⇧�1 (�µ⇧) �

3�µ⇤I +
�
BIJ + B̃IJ �

3
⇥
⇤J ,

⇥⇤⌥
aI =

i

2
�b

IJ �
µ⇤JPab

µ �
i

6
⇧�1/3

�
⇥ad�bc

IJ �
1

6
�abcd

IJ

⇥
�3�µ⇤J ⇧↵bcd

µ +
�
Ca

IJ + C̃a
IJ�

3
⇥
⇤J ,

(4.8)
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�
SL(9) n T84

�
/SO(9)coset sigma model with WZ term

   “T-dual frame” :  

+
1

648
"µ⌫"klmnpqrst �klm Dµ�npq D⌫�rst

L = � 1
4
⇢R +

1
4
⇢ Pµ abP ab

µ +
1
12

⇢1/3 MilMjmMkn Dµ�ijkDµ�lmn

gauged

calculation and reads

AIJ =
7

9
�IJ b� 5

9
�a

IJ ba +
1

9
�abcd

IJ babcd ,

ÃIJ =
2

9
�ab

IJ bab � 4

9
�abc

IJ babc ,

BIJ = �ab
IJ bab + �abc

IJ babc ,

B̃IJ = �IJ b + �a
IJ ba + �abcd

IJ babcd ,

Ca
IJ =

8

9
�IJ ba � 1

9
�ab

IJ bb +
20

9
�bcd

IJ babcd � 4

9
�abcde

IJ bbcde + cab �b
IJ ,

C̃a
IJ = �14

9
�b

IJ bab +
2

9
�abc

IJ bbc +
2

3
�bc

IJ babc � 1

9
�abcd

IJ bbcd + ca,bc �bc
IJ ,

DIJ =
14

81
�IJ b� 70

81
�a

IJ ba +
8

81
�abcd

IJ babcd ,

D̃IJ =
22

81
�ab

IJ bab � 20

81
�abc

IJ babc ,

Ea
IJ =

26

9
�b

IJ bab � 1

9
�bc

IJ babc � 1

9
ca,bc �bc

IJ ,

Ẽa
IJ =

19

9
�IJ ba +

28

9
�bcd

IJ babcd � 5

9
cab �b

IJ ,

F ab
IJ = � 1

18
�ab�IJ b +

1

2
�ab �c

IJ bc � 1

2
�ab �cdef

IJ bcdef � 12 �cd
IJ babcd � 2 cab �IJ ,

F̃ ab
IJ =

1

2
�ab �cd

IJ bcd � 1

2
�ab �cde

IJ bcde � 2 �IJ bab � 2 �c
IJ babc � 2 cc,ab �c

IJ , (4.16)

expressed in terms of the SO(9)K irreducible tensors

b =
1

4
⇤�2/9 T ,

ba = �⇤�14/9 V�1km
bc ⇥ml ⌃

abcYk
l +

1

144
⇤�14/9 ⇧bcdefghijT kl⌃kef⌃lgh⌃aij⌃bcd ,

bab = �1

2
⇤�11/9 V�1[km]

ab ⇥mlYk
l +

1

144
⇤�11/9 ⇧abcdefghiT jk⌃jcd⌃kef⌃ghi ,

babc =
1

4
⇤�5/9 T d[a⌃bc]d ,

babcd = �1

8
⇤�8/9 T ef⌃e[ab⌃cd]f ,

cab = �1

2
⇤�2/9

⇤
T ab � 1

9
�abT

⌅
,

ca,bc =
1

3
⇤�5/9

�
T da⌃bcd + T d[b⌃c]da

⇥
, (4.17)

where we have defined

T ab ⇥ V�1(kl)
ab ⇥kl , T ⇥ T aa , ⌃abc ⇥ V[klm]

abc⌅klm . (4.18)

It may seem remarkable, that the highly overdetermined system (B.1)–(B.3) for the

Yukawa tensors admits a non-trivial solution (4.16), (4.17). In fact, this is a confirma-

tion that the algebraic framework which determines the gauge couplings based on the

underlying a⇥ne symmetry [22] is indeed compatible with supersymmetry.
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It may seem remarkable, that the highly overdetermined system (B.1)–(B.3) for the

Yukawa tensors admits a non-trivial solution (4.16), (4.17). In fact, this is a confirma-

tion that the algebraic framework which determines the gauge couplings based on the

underlying a⇥ne symmetry [22] is indeed compatible with supersymmetry.
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fermion couplings and Yukawa terms

SO(9) supergravity
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�
SL(9) n T84

�
/SO(9)coset sigma model with WZ term

   “T-dual frame” :  

+
1

648
"µ⌫"klmnpqrst �klm Dµ�npq D⌫�rst

L = � 1
4
⇢R +

1
4
⇢ Pµ abP ab

µ +
1
12

⇢1/3 MilMjmMkn Dµ�ijkDµ�lmn

gauged

vector fields couple via

LF = "µ⌫ Fµ⌫
mn Ymn with auxiliary (dual scalar) fields Ymn

scalar potential

the dilaton powers precisely support the correct DW solution (near horizon of AdS2 x S8)

�⇢�13/9 T acT bc YadYbd + O(�3)

Y ⌘ VTY V

T ⌘
�
VTV

��1

' ⌘ � · V

V
pot

=
1
8

⇢5/9

⇣
(trT )2 � 2 tr(T 2) + 18 ⇢�2/3 T d[a'bc]dT ea'bce � 16 ⇢�2/3 T d[b'c]adT eb'cae

⌘

eighth order polynomial in �

which also enter Yukawa couplings and scalar potential

SO(9) supergravity



L
2

= � 1
4
⇢R + Fµ⌫

mnFµ⌫ klRmn,kl(⇢,V, �) + . . . + Ṽ
pot

(⇢,V, �)

gauged sigma model coupled to d=2 SYM

Ymn
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�
SL(9) n T84

�
/SO(9)coset sigma model with WZ term

different presentations

+
1

648
"µ⌫"klmnpqrst �klm Dµ�npq D⌫�rst

L = � 1
4
⇢R +

1
4
⇢ Pµ abP ab

µ +
1
12

⇢1/3 MilMjmMkn Dµ�ijkDµ�lmn

gauged

+ "µ⌫ Fµ⌫
mn Ymn + V

pot

(⇢,V, �,Y)

integrate out the auxiliary scalars

upon using their field equations

leads to

Fµ⌫
mn

=

@L
@Ymn

+ fermions

the U(1)4 truncation can be shown to arise as consistent truncation from IIA

SO(9) supergravity



    holography :  d=1 supersymmetric matrix quantum mechanics ...!

    first supersymmetric example of a d=2 gauging, general structure of susy (?)

    general structure of gauge groups, gradings of E9 

outlook

    descend further in dimension : gauging E10 structures
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    maximally supersymmetric d=2 supergravity with gauge group SO(9) 
    last missing gauged supergravity around Dp near-horizon geometries

affine symmetries in supergravity
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