Affine symmetries in supergravity

work with Hermann Nicolai，Martin Weidner，Thomas Ortiz

IHES 05／2013

Henning Samtleben
三ミ三

motivation : 2D supergravity

symmetries

- classically integrable field theory
- affine symmetry group E9 - solution generating (transitive)
- infinite-dimensional symmetries: $\mathrm{E}_{9} \longrightarrow \mathrm{E}_{10} \longrightarrow \mathrm{E}_{11}$

deformations

- affine symmetry also organizes the deformations of the theory
- infinite-dim. HW representations of non-propagating fields

supersymmetry

- SO(9) supergravity : first example of such a 2 d deformation : IIA on S^{8} matrix model holography

motivation : SO(9) supergravity

Domain wall / QFT correspondence

[H.J. Boonstra, K. Skenderis, P. Townsend, 1999]

holography for Dp-branes : AdS $_{p+2} \times S^{8-p}$ dual to SYM $_{\mathrm{p}+1}$ theory

D6	IIA	$\mathrm{AdS}_{8} \times \mathrm{S}^{2}$	$\mathrm{d}=8, \mathrm{SO}(3)$	[Salam, Sezgin, 1984]
D5	IIB	$\mathrm{AdS}_{7} \times \mathrm{S}^{3}$	$d=7, S O(4)$	[Samtleben, Weidner, 2005]
D4	IIA	$\mathrm{AdS}_{6} \times \mathrm{S}^{4}$	$d=6, S O(5)$	[Pernici, Pilch, van Nieuwenhuizen, 1984]
D3	IIB	$\mathrm{AdS}_{5} \times \mathrm{S}^{5}$	$d=5, S O(6)$	[Günaydin, Romans, Warner, 1985]
D2	IIA	$\mathrm{AdS}_{4} \times \mathrm{S}^{6}$	d=4, SO(7)	[Hull, 1984]
D1	IIB	$\mathrm{AdS}_{3} \times \mathrm{S}^{7}$	$d=3, S O(8)$	[de Wit, Nicolai, 1982]
D0	IIA	$\mathrm{AdS}_{2} \times \mathrm{S}^{8}$	$d=2, S O(9)$??

Affine symmetries in supergravity

- motivation
- $\mathrm{D}=4$ supergravity : symmetries and deformations
- D=2 supergravity : symmetries and deformations
- example: $\mathrm{SO}(9)$ supergravity
- conclusions

$D=4$ supergravity

symmetries and deformations

$D=4$ supergravity: some generic features

$$
\mathcal{L}=R+G_{i j}(\phi) \partial_{\mu} \phi^{i} \partial^{\mu} \phi^{j}+\mathcal{I}_{\Lambda \Sigma}(\phi) F_{\mu \nu}^{\Lambda} F^{\mu \nu \Sigma}+\mathcal{R}_{\Lambda \Sigma}(\phi) F_{\mu \nu}^{\Lambda *} F^{\mu \nu \Sigma}+\cdots
$$

bosonic sector of maximal $(N=8) D=4$ supergravity

$D=4$ supergravity: symmetries

$$
\mathcal{L}=R \not G_{i j}(\phi) \partial_{\mu} \phi^{i} \partial^{\mu} \phi^{j}-\mathcal{I}_{\Lambda \Sigma}(\phi) F_{\mu \nu}^{\Lambda} F^{\mu \nu \Sigma}+\mathcal{R}_{\Lambda \Sigma}(\phi) F_{\mu \nu}^{\Lambda *} F^{\mu \nu \Sigma}+\cdots
$$

scalar sector: G/H coset space sigma model $\quad \mathrm{E}_{7} / \mathrm{SU}(8)$

$$
\mathcal{V} \in \mathrm{E}_{7} \quad \mathcal{V} \approx \mathcal{V} \cdot H \quad H \in \mathrm{SU}(8)
$$

triangular gauge

$$
\mathcal{V}=\exp \left\{\phi^{m} N_{m}\right\} \exp \left\{\phi^{\lambda} h_{\lambda}\right\}
$$

E_{7} action $\quad \mathcal{V} \longrightarrow G \mathcal{V} H_{G, \mathcal{V}}$

- shift symmetries

$$
G=\exp \left\{\lambda^{m} N_{m}\right\}: \quad \phi^{m} \rightarrow \phi^{m}+\lambda^{m}
$$

- 'hidden' symmetries

$$
G=\exp \left\{\lambda^{m} N_{m}^{\dagger}\right\} \quad \begin{aligned}
& \text { non-linear! (on } \phi^{i} \text {) } \\
& \text { (linear on } \mathcal{V})
\end{aligned}
$$

$D=4$ supergravity: self-duality

$$
\mathcal{L}=R+G_{i j}(\phi) \partial_{\mu} \phi^{i} \partial^{\mu} \phi^{j}+\mathcal{I}_{\Lambda \Sigma}(\phi) F_{\mu \nu}^{\Lambda} F^{\mu \nu \Sigma}+\mathcal{R}_{\Lambda \Sigma}(\phi) F_{\mu \nu}^{\Lambda{ }^{*} F^{\mu \nu \Sigma}+. .}
$$

self-duality ($D=4$: electric-magnetic duality for vectors)
field strength: $\mathcal{F}_{\mu \nu}{ }^{\Lambda}=2 \partial_{[\mu} A_{\nu]}{ }^{\Lambda} \quad$ dual: $\mathcal{G}_{\mu \nu \Lambda}=-\varepsilon_{\mu \nu \rho \sigma} \frac{\partial \mathcal{L}}{\partial \mathcal{F}_{\rho \sigma}{ }^{\Lambda}}$
Bianchi: $\quad \partial_{[\mu} \mathcal{F}_{\nu \rho]}{ }^{\Lambda}=0$
dual vectors: $\mathcal{G}_{\mu \nu \Lambda}=2 \partial_{[\mu} A_{\nu] \Lambda}$
eom: $\quad \partial_{[\mu} \mathcal{G}_{\nu \rho] \Lambda}=0$
symplectic rotation

$$
\left.\binom{\mathcal{F}^{\Lambda}}{\mathcal{G}_{\Lambda}} \longrightarrow\left(\begin{array}{ll}
U^{\Lambda} \Sigma & Z^{\Lambda \Sigma} \\
W_{\Lambda \Sigma} & V_{\Lambda}^{\Sigma}
\end{array}\right)\binom{\mathcal{F}^{\Sigma}}{\mathcal{G}_{\Sigma}} \quad \text { non-local } \quad \text { (on } A_{\mu}^{\Lambda}\right)!~\left(\text { local on }\left(A_{\mu}^{\Lambda}, A_{\mu \Lambda}\right)\right. \text {) }
$$

choice of an electric frame, analogous pattern for ($n-1$)-forms in $D=2 n$
E_{7} is realized (on-shell) on the combined set of 28 electric +28 magnetic vectors

$D=4$ supergravity: gauging

$$
\mathcal{L}=R+G_{i j}(\phi) \partial_{\mu} \phi^{i} \partial^{\mu} \phi^{j}+\mathcal{I}_{\Lambda \Sigma}(\phi) F_{\mu \nu}^{\Lambda} F^{\mu \nu \Sigma}+\mathcal{R}_{\Lambda \Sigma}(\phi) F_{\mu \nu}^{\Lambda *} F^{\mu \nu \Sigma}+\cdots
$$

self-duality ($D=4$: electric-magnetic duality for vectors)

$$
\begin{gathered}
D_{\mu}=\partial_{\mu}-A_{\mu}{ }^{M} \Theta_{M}^{\alpha} t_{\alpha}=\partial_{\mu}-A_{\mu}{ }^{\Lambda} \Theta_{\Lambda}{ }^{\alpha} t_{\alpha}-A_{\mu} \Theta^{\Lambda \alpha} t_{\alpha} \\
\text { magnetic gauging ("non-standard") }
\end{gathered}
$$

consistency encoded in a set of algebraic constraints on the embedding tensor $\Theta_{M}{ }^{\alpha}$
linear: (susy / consistent tensor hierarchy)

$$
\begin{aligned}
& \Theta_{(M}{ }^{\alpha} t_{\alpha, N}{ }^{P} \Omega_{K) P}=0 \\
& 56 \times 133=\underline{56}+\underline{912}+6480
\end{aligned}
$$

quadratic: (generalized Jacobi / locality)

$$
\begin{aligned}
f_{\alpha \beta}{ }^{\gamma} \Theta_{M}{ }^{\alpha} \Theta_{N}{ }^{\beta}+\left(t_{\alpha}\right)_{N}{ }^{P} \Theta_{M}^{\alpha} \Theta_{P}^{\gamma} & =0 \\
\Longleftrightarrow \quad \Omega^{M N} \Theta_{M}^{\alpha} \Theta_{N}{ }^{\beta} & =0
\end{aligned}
$$

$D=4$ supergravity: gauging

$$
\mathcal{L}=R+G_{i j}(\phi) \partial_{\mu} \phi^{i} \partial^{\mu} \phi^{j}+\mathcal{I}_{\Lambda \Sigma}(\phi) F_{\mu \nu}^{\Lambda} F^{\mu \nu \Sigma}+\mathcal{R}_{\Lambda \Sigma}(\phi) F_{\mu \nu}^{\Lambda *} F^{\mu \nu \Sigma}+\cdots
$$

self-duality ($D=4$: electric-magnetic duality for vectors)
gauging

$$
\begin{gathered}
D_{\mu}=\partial_{\mu}-A_{\mu}{ }^{M} \Theta_{M}{ }^{\alpha} t_{\alpha}=\partial_{\mu}-A_{\mu}{ }^{\Lambda} \Theta_{\Lambda}{ }^{\alpha} t_{\alpha}-A_{\mu \Lambda} \Theta^{\Lambda \alpha} t_{\alpha} \\
\text { magnetic gauging ("non-standard") }
\end{gathered}
$$

off-shell formulation

$$
\mathcal{L}_{\text {top }}=-\frac{1}{8} \Theta^{\Lambda \alpha} B_{\alpha} \wedge\left(2 \partial A_{\Lambda}+X_{M N \Lambda} A^{M} \wedge A^{N}-\frac{1}{4} \Theta_{\Lambda}{ }^{\beta} B_{\beta}\right)+\cdots
$$

upon introduction of additional two-forms (dual to scalars) and BF couplings
gauging of on-shell symmetries

D=2 supergravity

affine symmetries

$D=2$ supergravity ungauged

Lagrangian

$\mathcal{L}=-\frac{1}{4} \sqrt{-g} \rho\left(-R+\operatorname{tr}\left[P^{\mu} P_{\mu}\right]\right)+\mathcal{L}_{\text {ferm }}\left(\psi^{I}, \psi_{2}^{I}, \chi^{\dot{A}}\right)$
coset space sigma model coupled to dilaton gravity

$$
\mathcal{V}^{-1} \partial_{\mu} \mathcal{V}=Q_{\mu}+P_{\mu}
$$

off-shell symmetry (target space isometries): E_{8}
field equations
dilaton
$\square \rho=0$
scalars
$\partial_{\mu} J_{M}^{\mu}=0 \quad J_{\mu} \equiv \rho \mathcal{V} P_{\mu} \mathcal{V}^{-1} \quad$ conserved E 8 Noether current
has a remarkable structure :
(infinite tower of) dual scalar potentials
$\longrightarrow \quad$ classical integrability, affine Lie-Poisson symmetry E9

duality

$$
\begin{aligned}
\partial_{\mu} \tilde{\rho} & =\epsilon_{\mu \nu} \partial^{\nu} \rho & & \text { dual dilaton } \\
\partial_{\mu} Y_{M} & \equiv \varepsilon_{\mu \nu} J_{M}^{\nu} & & \text { dual scalars }
\end{aligned} \quad \text { dual (D-2) forms }
$$

$D=2$ supergravity ungauged

duality

$$
\begin{aligned}
\partial_{\mu} \tilde{\rho} & =\epsilon_{\mu \nu} \partial^{\nu} \rho & & \text { dual dilaton } \\
\partial_{\mu} Y_{M} & \equiv \varepsilon_{\mu \nu} J_{M}^{\nu} & & \text { dual scalars }
\end{aligned}
$$

dual (D-2) forms
classical integrability, affine Lie-Poisson symmetry E9
shift symmetries

$$
\begin{array}{ll}
\delta_{1} \tilde{\rho}=\lambda \quad \text { (1) } \quad & \Lambda^{\alpha} \delta_{\alpha, 1} Y_{1}=\Lambda \tag{248}\\
& \Lambda^{\alpha} \delta_{\alpha, 1} \mathcal{V}=0
\end{array}
$$

'hidden' symmetries

$$
\begin{equation*}
\Lambda^{\alpha} \delta_{\alpha,-1} \mathcal{V}=\left[\Lambda, Y_{1}\right] \mathcal{V}-\tilde{\rho} \mathcal{V}\left[\mathcal{V}^{-1} \Lambda \mathcal{V}\right]_{\mathfrak{p}} \tag{248}
\end{equation*}
$$

extends to an infinite tower:

$$
\begin{align*}
& \begin{array}{l}
\text { dual scalars } \quad \partial_{ \pm} Y_{2}=\left(\pm \rho \tilde{\rho}+\frac{1}{2} \rho^{2}\right) \mathcal{V} P_{ \pm} \mathcal{V}^{-1}+\frac{1}{2}\left[Y_{1}, \partial_{ \pm} Y_{1}\right] \\
\left.\qquad \partial_{ \pm} Y_{3}=\left(\mp \frac{1}{2} \rho^{3} \mp \rho \tilde{\rho}^{2}-\rho^{2} \tilde{\rho}\right) \mathcal{V} P_{ \pm} \mathcal{V}^{-1}+\left[Y_{1}, \partial_{ \pm} Y_{2}\right]-\frac{1}{6}\left[Y_{1},\left[Y_{1}, \partial_{ \pm} Y_{1}\right]\right]\right] \\
\text { ‘hidden' symmetries } \quad \Lambda^{\alpha} \delta_{\alpha,-2} \mathcal{V}=\left\{\left[\Lambda, Y_{2}\right]+\frac{1}{2}\left[\left[\Lambda, Y_{1}\right], Y_{1}\right]-\tilde{\rho}\left[\Lambda, Y_{1}\right]\right\} \mathcal{V}+\left(\frac{1}{2} \rho^{2}+\tilde{\rho}^{2}\right) \mathcal{V}\left[\mathcal{V}^{-1} \Lambda \mathcal{V}\right]_{\mathfrak{p}}
\end{array}
\end{align*}
$$ etc...

close into (half of) the affine algebra !

$D=2$ supergravity ungauged

linear system

the equations of motion can be encoded as integrability conditions of a linear system

$$
\hat{\mathcal{V}}^{-1} \partial_{ \pm} \hat{\mathcal{V}}=Q_{ \pm}+\frac{1 \mp \gamma}{1 \pm \gamma} P_{ \pm} \quad \quad \quad \text { (light-cone-coord. } x^{ \pm} \text {) }
$$

for a group-valued function $\hat{\mathcal{V}}(\gamma)$ and the spectral parameter

$$
\gamma=\frac{1}{\rho}\left(w+\tilde{\rho}-\sqrt{(w+\tilde{\rho})^{2}-\rho^{2}}\right)
$$

expansion in w gives rise to the infinite series of dual scalars

$$
\begin{aligned}
& \hat{\mathcal{V}}=\ldots e^{Y_{3} w^{-3}} e^{Y_{2} w^{-2}} e^{Y_{1} w^{-1}} \mathcal{V} \\
& \partial_{ \pm} Y_{1}= \pm \rho \mathcal{V} P_{ \pm} \mathcal{V}^{-1} \\
& \partial_{ \pm} Y_{2}=-\left(\pm \rho \tilde{\rho}+\frac{1}{2} \rho^{2}\right) \mathcal{V} P_{ \pm} \mathcal{V}^{-1}+\frac{1}{2}\left[Y_{1}, \partial_{ \pm} Y_{1}\right] \\
& \partial_{ \pm} Y_{3}=\cdots
\end{aligned}
$$

$D=2$ supergravity ungauged

affine symmetry group E_{9}

action parametrized by a meromorphic function $\Lambda(w)$

$$
\begin{array}{rlrl}
\delta \sigma & =\kappa-\operatorname{tr}\left\langle\Lambda(w) \partial_{w} \hat{\mathcal{V}}(w) \hat{\mathcal{V}}^{-1}(w)\right\rangle_{w} & \hat{\mathcal{V}}^{-1} \Lambda(w) \hat{\mathcal{V}} & =\tilde{\Lambda}_{\mathfrak{h}}+\tilde{\Lambda}_{\mathfrak{k}} \\
\mathcal{V}^{-1} \delta \mathcal{V} & =\left\langle\frac{2 \gamma(w)}{\rho\left(1-\gamma(w)^{2}\right)} \tilde{\Lambda}_{\mathfrak{k}}(w)\right\rangle_{w} & \langle f(w)\rangle_{w} \equiv \oint \frac{d w}{2 \pi i} f(w)
\end{array}
$$

extends to the set of dual scalars

$$
\begin{aligned}
\delta \tilde{\rho} & =\lambda \\
\hat{\mathcal{V}}^{-1} \delta \hat{\mathcal{V}}(w) & =\lambda \hat{\mathcal{V}}^{-1} \partial_{w} \hat{\mathcal{V}}(w)+\tilde{\Lambda}(w)-\left\langle\frac{1}{v-w}\left(\tilde{\Lambda}_{\mathfrak{h}}(v)+\frac{\gamma(v)\left(1-\gamma^{2}(w)\right)}{\gamma(w)\left(1-\gamma^{2}(v)\right)} \tilde{\Lambda}_{\mathfrak{k}}(v)\right)\right\rangle_{v}
\end{aligned}
$$

coset action $\mathrm{E}_{9} / \mathrm{K}\left(\mathrm{E}_{9}\right)$

Virasoro $L_{1} \tilde{\rho}=1 \quad\left\{t_{m}^{\alpha}, L_{1}, k\right\}$
central extension $k \sigma=1 \quad[J u l i a]$

\longrightarrow deformations: gauge part of this nonlinear, nonlocal, on-shell symmetry

D=2 supergravity

deformations
 [HS, Martin Weidner]

gauging $D=2$ supergravity

gauged Lagrangian

$$
\mathcal{L}=\partial^{\mu} \rho D_{\mu} \sigma-\frac{1}{2} \rho \operatorname{tr}\left(\mathcal{P}_{\mu} \mathcal{P}^{\mu}\right)+\mathcal{L}_{\mathrm{top}}
$$

gauged sigma-model, with covariantized derivatives (embedding tensor)

$$
D_{\mu}=\partial_{\mu}-A_{\mu}^{\mathcal{M}} \Theta_{\mathcal{M}}{ }^{\mathcal{A}} t_{\mathcal{A}}=\partial_{\mu}-A_{\mu}^{\alpha} t_{\alpha}-B_{\mu} L_{1}-C_{\mu} k
$$

and a "topological" term

$$
\begin{aligned}
\mathcal{L}_{\text {top }}= & +\epsilon^{\mu \nu} \operatorname{tr}\left\langle A_{\mu}(w)\left(\partial_{\nu} \hat{\mathcal{V}}-\hat{\mathcal{V}} Q_{\nu}\right) \hat{\mathcal{V}}^{-1}-\frac{1+\gamma^{2}}{1-\gamma^{2}} A_{\mu}(w) \hat{\mathcal{V}} P_{\nu} \hat{\mathcal{V}}^{-1}\right\rangle_{w}+\epsilon^{\mu \nu}\left(C_{\mu}-\operatorname{tr}\left\langle A_{\mu}(w) \partial_{w} \hat{\mathcal{V}}(w) \hat{\mathcal{V}}^{-1}(w)\right\rangle_{w}\right) \partial_{\nu} \tilde{\rho} \\
& -\frac{1}{2} \epsilon^{\mu \nu} C_{\mu} B_{\nu}+\frac{1}{2} \epsilon^{\mu \nu \nu} \operatorname{tr}\left\langle\left\langle\frac{1}{v-w}\left[\tilde{A}_{\mu}(w]_{\emptyset}\left[\tilde{A}_{\nu}(v)\right]_{\mathfrak{h}}+\frac{(\gamma(v)-\gamma(w))^{2}+(1-\gamma(v) \gamma(w))^{2}}{(v-w)(1-\gamma(v))^{2}(1-\gamma(w))^{2}}\left[\tilde{A}_{\mu}(w)\right]_{\mathrm{e}}\left[\tilde{A}_{\nu}(v)_{\boldsymbol{\ell}}\right\rangle\right\rangle_{v}\right\rangle_{w}\right.
\end{aligned}
$$

the Lagrangian carries dual scalars and vector fields (topological) such that variation w.r.t. the vector fields yields the linear system!

$$
\delta \mathcal{L}=\delta C^{ \pm}\left(\partial_{ \pm} \rho \mp \partial_{ \pm} \tilde{\rho}\right)+\operatorname{tr}\left\langle\delta A^{ \pm}\left(\partial_{ \pm} \hat{\mathcal{V}} \hat{\mathcal{V}}^{-1}-\hat{\mathcal{V}}\left(Q_{ \pm}+\frac{1 \mp \gamma}{1 \pm \gamma} P_{ \pm}\right) \hat{\mathcal{V}}^{-1}\right)\right\rangle_{w}
$$

and part of the former on-shell symmetry is gauged!
simplest case : gauging of target-space isometries E_{8} (theories of $\mathrm{D}=3$ origin...)
$\mathcal{L}_{\text {top }}=\epsilon^{\mu \nu} F_{\mu \nu}{ }^{M} \Theta_{M N} Y^{N}+\ldots$
[Hull, Spence]

gauging $D=2$ supergravity

group theory (for consistent deformations)

affine global symmetry	$\left\{t_{m}^{\alpha}, L_{1}, k\right\}$	$m<0$	
			\}symmetries - off-shell
		$m>0$	$\} \begin{aligned} & \text { shift } \\ & \text { symmetries }\end{aligned}$

- vector fields (nonpropagating in $\mathrm{D}=2$)
restore by embedding known examples: basic representation of E_{9}

$$
\chi_{\omega 0}=1+248 q+4124 q^{2}+34752 q^{3}+213126 q^{4}+1057504 q^{5}+4530744 q^{6}+\ldots
$$

McKay-Thompson series of class 3C for the monster

- embedding tensor linear constraint: transforms in the dual representation

$$
\Lambda_{\mathrm{adj}} \otimes \Lambda_{1}=\Lambda_{1} \oplus \cdots
$$

$D_{\mu}=\partial_{\mu}-A_{\mu}^{\mathcal{M}} \Theta_{\mathcal{M}}{ }^{\mathcal{A}} t_{\mathcal{A}}=A_{\mu}^{\mathcal{M}} \Theta_{\mathcal{N}} \eta^{\mathcal{A B}} t_{\mathcal{A} \mathcal{M}}{ }^{\mathcal{N}} t_{\mathcal{B}}$
\rightarrow infinite-dimensional parameter space of deformations!

gauging $D=2$ supergravity

quadratic constraint

$$
f_{\mathcal{A B}}{ }^{\mathcal{C}} \Theta_{\mathcal{M}}{ }^{\mathcal{A}} \Theta_{\mathcal{N}}{ }^{\mathcal{B}}+t_{\mathcal{A N}}{ }^{\mathcal{P}} \Theta_{\mathcal{M}}{ }^{\mathcal{A}} \Theta_{\mathcal{P}}{ }^{\mathcal{C}}=0
$$

lives in the tensor product $\Theta \Theta$

$$
\chi_{\omega 0} \chi_{\omega 0}=\left(1+q^{2}+q^{3}+q^{4}+2 q^{5}+\ldots\right) \chi_{2 \omega 0}+\left(1+q+q^{2}+\ldots\right) \chi_{\omega 7}
$$

structure of multiplicities organized by

$$
\frac{\mathbf{E}_{91} \oplus \mathbf{E}_{91}}{\mathbf{E}_{\mathbf{9}_{2}}} \quad \begin{aligned}
& \text { coset CFT: } \\
& \text { Ising model }
\end{aligned} \quad \chi_{\omega 0} \chi_{\omega 0}=\chi_{(1,1)}^{\mathrm{vir}_{1)} \chi_{2 \omega 0}+\chi_{(2,1)}^{\mathrm{vir}} \chi_{\omega 7}}
$$

quadratic constraint translates into

$$
\eta^{\mathcal{A B}} t_{\mathcal{A} \mathcal{M}}{ }^{\mathcal{P}} t_{\mathcal{B} \mathcal{N}}{ }^{\mathcal{Q}} \Theta_{\mathcal{P}} \Theta_{\mathcal{Q}}=\left(L_{1}^{G}-L_{1}^{H}\right) \Theta \Theta=L_{1}^{G / H} \Theta \Theta \equiv 0
$$ quasiprimary states in the tensor product

- every $\boldsymbol{\theta}$ satisfying this constraint defines a consistent deformation

gauging $D=2$ supergravity

embedding tensor - basic representation
branching under E8 identifies gaugings of 3d origin

```
\[
D_{\mu} \equiv \partial_{\mu}-g A_{\mu}{ }^{\mathcal{M}} \Theta_{\mathcal{M}}{ }^{\mathcal{A}} T_{\mathcal{A}} \quad \Theta_{\mathcal{M}}{ }^{\mathcal{A}}=\left(T_{\mathcal{B}}\right)_{\mathcal{M}}{ }^{\mathcal{N}} \eta^{\mathcal{A B}} \theta_{\mathcal{N}}
\]
\[
\theta_{\mathcal{M}}
\]
1
248
\(1+248+3875\)
\(1+2 \cdot 248+3875+30380\)
\(2 \cdot 1+3 \cdot 248+2 \cdot 3875+30380+27000+147250\)
:
- flux of 3d Kaluza-Klein vector field
- Scherk-Schwarz reductions from 3d
\(\triangleright\) torus reduction of 3d gaugings
- ...?
quadratic constraint ...
```


gauging $D=2$ supergravity

embedding tensor - basic representation

$$
D_{\mu} \equiv \partial_{\mu}-g A_{\mu}{ }^{\mathcal{M}} \Theta_{\mathcal{M}}{ }^{\mathcal{A}} T_{\mathcal{A}} \quad \Theta_{\mathcal{M}}{ }^{\mathcal{A}}=\left(T_{\mathcal{B}}\right)_{\mathcal{M}}{ }^{\mathcal{N}} \eta^{\mathcal{A B}} \theta_{\mathcal{N}}
$$

gauging $D=2$ supergravity
embedding tensor - basic representation

$$
D_{\mu} \equiv \partial_{\mu}-g A_{\mu}{ }^{\mathcal{M}} \Theta_{\mathcal{M}}{ }^{\mathcal{A}} T_{\mathcal{A}} \quad \Theta_{\mathcal{M}}{ }^{\mathcal{A}}=\left(T_{\mathcal{B}}\right)_{\mathcal{M}}{ }^{\mathcal{N}} \eta^{\mathcal{A B}} \theta_{\mathcal{N}}
$$

gauging $D=2$ supergravity

embedding tensor - basic representation

$$
D_{\mu} \equiv \partial_{\mu}-g A_{\mu}{ }^{\mathcal{M}} \Theta_{\mathcal{M}}{ }^{\mathcal{A}} T_{\mathcal{A}} \quad \Theta_{\mathcal{M}}{ }^{\mathcal{A}}=\left(T_{\mathcal{B}}\right)_{\mathcal{M}}{ }^{\mathcal{N}} \eta^{\mathcal{A B}} \theta_{\mathcal{N}}
$$

gauging $D=2$ supergravity

O the $\mathrm{SO}(9)$ theory is a genuine $\mathrm{d}=2$ theory in particular $S O(9) \not \subset E_{8}$ but $S O(9) \subset E_{9}$

O the full gauge group is infinite-dimensional (shift symmetries)

O the theory in the "E E_{8} frame" looks rather miserable

O still the Yukawa couplings and the scalar potential are missing

example : SO(9) supergravity

O go to a "T-dual frame" in which $\mathrm{SO}(9)$ is among the off-shell symmetries
O the proper embedding of the gauge group :

$$
\begin{array}{ll}
& S O(9) \not \subset E_{8} \\
\text { but } \quad & S O(9) \subset S L(9) \subset \widehat{S L(9)} \subset E_{9}
\end{array}
$$

SO(9) supergravity

affine E_{8} with L_{0} grading

SO(9) supergravity

affine E_{8} with $\widehat{\mathrm{L}_{0}}$ grading $:$ decomposition under $\widehat{\mathrm{SL}}(9)$

"T-dual frame" : change some of the target space coordinates for their duals coset sigma model $E_{8} / S O(16) \longrightarrow$ coset sigma model $\left(S L(9) \ltimes \mathbb{T}^{84}\right) / S O(9)$ with WZ term

SO(9) supergravity

"T-dual frame" :

coset sigma model $\left(S L(9) \ltimes \mathbb{T}^{84}\right) / S O(9)$ with WZ term

$$
\begin{aligned}
\mathcal{L}_{0}= & -\frac{1}{4} \rho R+\frac{1}{4} \rho P^{\mu a b} P_{\mu}^{a b}+\frac{1}{12} \rho^{1 / 3} M_{i l} M_{j m} M_{k n} \partial^{\mu} \phi^{i j k} \partial_{\mu} \phi^{l m n} \\
& +\frac{1}{648} \varepsilon^{\mu \nu} \varepsilon_{k l m n p q r s t} \phi^{k l m} \partial_{\mu} \phi^{n p q} \partial_{\nu} \phi^{r s t}
\end{aligned}
$$

target space :

$$
\begin{array}{ll}
\text { SL(9)/SO(9) coset currents } & P_{\mu}^{a b}=\left(\mathcal{V}^{-1} \partial_{\mu} \mathcal{V}\right)^{(a b)} \\
84 \text { extra scalars } & \phi^{a b c} \\
& \text { with kinetic matrix } M=\mathcal{V} \mathcal{V}^{T} \\
& \\
& \text { and WZ term } 84 \wedge 84 \wedge 84 \longrightarrow 1
\end{array}
$$

in fact this is the $d=11$ theory reduced on a torus $\mathrm{T}^{9} \ldots$

SO(9) supergravity

"T-dual frame" :
coset sigma model $\left(S L(9) \ltimes \mathbb{T}^{84}\right) / S O(9)$ with WZ term

$$
\begin{aligned}
\mathcal{L}_{0}= & -\frac{1}{4} \rho R+\frac{1}{4} \rho P^{\mu a b} P_{\mu}^{a b}+\frac{1}{12} \rho^{1 / 3} M_{i l} M_{j m} M_{k n} \partial^{\mu} \phi^{i j k} \partial_{\mu} \phi^{l m n} \\
& +\frac{1}{648} \varepsilon^{\mu \nu} \varepsilon_{k l m n p q r s t} \phi^{k l m} \partial_{\mu} \phi^{n p q} \partial_{\nu} \phi^{r s t}
\end{aligned}
$$

fermionic part :

$$
\begin{aligned}
& -\rho e^{-1} \varepsilon^{\mu \nu} \bar{\psi}_{2}^{I} D_{\mu} \psi_{\nu}^{I}-\frac{i}{2} \bar{\psi}_{\nu}^{I} \gamma^{\nu} \psi_{\mu}^{I} \partial^{\mu} \rho-\frac{i}{2} \rho \bar{\chi}^{a I} \gamma^{\mu} D_{\mu} \chi^{a I}+\frac{i}{2} \rho^{2 / 3} \bar{\chi}^{a I} \gamma^{3} \gamma^{\mu} \chi^{b J} \Gamma_{I J}^{c} \varphi_{\mu}^{a b c}-\frac{i}{24} \rho^{2 / 3} \bar{\chi}^{a I} \gamma^{3} \gamma^{\mu} \chi^{a J} \Gamma_{I J}^{b c d} \varphi_{\mu}^{b c d} \\
& -\frac{1}{4} \rho^{2 / 3} \bar{\chi}^{a I} \gamma^{3} \gamma^{\nu} \gamma^{\mu} \psi_{\nu}^{J} \Gamma_{I J}^{b c} \varphi_{\mu}^{a b c}-\frac{i}{12} \rho^{2 / 3} \bar{\chi}^{a I} \gamma^{\mu} \psi_{2}^{J} \Gamma_{I J}^{b c} \varphi_{\mu}^{a b c}-\frac{1}{2} \rho \bar{\chi}^{a I} \gamma^{\nu} \gamma^{\mu} \psi_{\nu}^{J} \Gamma_{I J}^{b} P_{\mu}^{a b}-\frac{1}{2} \rho_{2} \bar{\chi}^{a I} \gamma^{3} \gamma^{\mu} \psi_{2}^{J} \Gamma_{I J}^{b} P_{\mu}^{a b} \\
& +\frac{i}{54} \rho^{2 / 3} \bar{\psi}_{2}^{I} \gamma^{3} \gamma^{\mu} \psi_{2}^{J} \Gamma_{I J}^{a b c} \varphi_{\mu}^{a b c}+\frac{1}{24} \rho^{2 / 3} \bar{\psi}_{2}^{I}\left(\gamma^{\mu} \gamma^{\nu}-\frac{1}{3} \gamma^{\nu} \gamma^{\mu}\right) \psi_{\nu}^{J} \Gamma_{I J}^{a b c} \varphi_{\mu}^{a b c}
\end{aligned}
$$

off-shell symmetry $S L(9) \ltimes \mathbb{T}^{84} \quad \supset S O(9)$ gauging

SO(9) supergravity

"T-dual frame" :

gauged coset sigma model $\left(S L(9) \ltimes \mathbb{T}^{84}\right) / S O(9)$ with WZ term

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{4} \rho R+\frac{1}{4} \rho P^{\mu a b} P_{\mu}^{a b}+\frac{1}{12} \rho^{1 / 3} M_{i l} M_{j m} M_{k n} D^{\mu} \phi^{i j k} D_{\mu} \phi^{l m n} \\
& +\frac{1}{648} \varepsilon^{\mu \nu} \varepsilon_{k l m n p q r s t} \phi^{k l m} D_{\mu} \phi^{n p q} D_{\nu} \phi^{r s t}
\end{aligned}
$$

fermion couplings and Yukawa terms

$$
\begin{aligned}
{ }^{{ }^{\mathcal{L}} \mathcal{L}_{\text {Yuk }}=} & -\frac{1}{2} e^{-1} \rho \varepsilon^{\mu \nu}\left(\bar{\psi}_{\nu}^{I} \psi_{\mu}^{J} B_{I J}+\bar{\psi}_{\nu}^{I} \gamma^{3} \psi_{\mu}^{J} \tilde{B}_{I J}-2 i \bar{\psi}_{2}^{I} \gamma_{\nu} \psi_{\mu}^{J} A_{I J}\right)+i \rho \bar{\psi}_{2}^{I} \gamma^{\mu} \psi_{\mu}^{J} \tilde{A}_{I J} \\
& +i \rho \bar{\chi}^{a I} \gamma^{\mu} \psi_{\mu}^{J} C_{I J}^{a}-i \rho \bar{\chi}^{a I} \gamma^{3} \gamma^{\mu} \psi_{\mu}^{J} \tilde{C}_{I J}^{a}+\rho \bar{\psi}_{2}^{I} \psi_{2}^{J} D_{I J}+\rho \bar{\psi}_{2}^{I} \gamma^{3} \psi_{2}^{J} \tilde{D}_{I J} \\
& +\rho \bar{\chi}^{a I} \psi_{2}^{J} E_{I J}^{a}+\rho \bar{\chi}^{a I} \gamma^{3} \psi_{2}^{J} \tilde{E}_{I J}^{a}+\rho \bar{\chi}^{a I} \chi^{b J} F_{I J}^{a b}+\rho \bar{\chi}^{a I} \gamma^{3} \chi^{b J} \tilde{F}_{I J}^{a b}
\end{aligned}
$$

$$
\begin{aligned}
& A_{I J}=\frac{7}{9} \delta_{I J} b-\frac{5}{9} \Gamma_{I J}^{a} b^{a}+\frac{1}{9} \Gamma_{I J}^{a b c d} b^{a b c d}, \\
& \tilde{A}_{I J}=\frac{2}{9} \Gamma_{I J}^{a b} b^{a b}-\frac{4}{9} \Gamma_{I J}^{a b c} b^{a b c}, \\
& B_{I J}=\Gamma_{I J}^{a b} b^{a b}+\Gamma_{I J}^{a b c} b^{a b c}, \\
& \tilde{B}_{I J}=\delta_{I J} b+\Gamma_{I J}^{a} b^{a}+\Gamma_{I J}^{a b c d} b^{a b c d}, \\
& C_{I J}^{a}=\frac{8}{9} \delta_{I J} b^{a}-\frac{1}{9} \Gamma_{I J}^{a b} b^{b}+\frac{20}{9} \Gamma_{I J}^{b c d} b^{a b c d}-\frac{4}{9} \Gamma_{I J}^{a b c d e} b^{b c d e}+c^{a b} \Gamma_{I J}^{b}, \\
& b=\frac{1}{4} \rho^{-2 / 9} T, \\
& b^{a}=-\rho^{-14 / 9} \mathcal{V}^{-1 k m}{ }_{b c} \theta_{m l} \varphi^{a b c} Y_{k}^{l}+\frac{1}{144} \rho^{-14 / 9} \varepsilon^{b c d e f g h i j} T^{k l} \varphi^{k e f} \varphi^{l g h} \varphi^{a i j} \varphi^{b c d} \\
& b^{a b}=-\frac{1}{2} \rho^{-11 / 9} \mathcal{V}^{-1[k m]}{ }_{a b} \theta_{m l} Y_{k}^{l}+\frac{1}{144} \rho^{-11 / 9} \varepsilon^{a b c d e f g h i} T^{j k} \varphi^{j c d} \varphi^{k e f} \varphi^{g h i} \\
& b^{a b c}=\frac{1}{4} \rho^{-5 / 9} T^{d[a} \varphi^{b c] d}, \\
& b^{a b c d}=-\frac{1}{8} \rho^{-8 / 9} T^{e f} \varphi^{e[a b} \varphi^{c d] f} \text {, } \\
& \tilde{C}_{I J}^{a}=-\frac{14}{9} \Gamma_{I J}^{b} b^{a b}+\frac{2}{9} \Gamma_{I J}^{a b c} b^{b c}+\frac{2}{3} \Gamma_{I J}^{b c} b^{a b c}-\frac{1}{9} \Gamma_{I J}^{a b c d} b^{b c d}+c^{a, b c} \Gamma_{I J}^{b c}, \\
& c^{a b}=-\frac{1}{2} \rho^{-2 / 9}\left(T^{a b}-\frac{1}{9} \delta^{a b} T\right), \\
& c^{a, b c}=\frac{1}{3} \rho^{-5 / 9}\left(T^{d a} \varphi^{b c d}+T^{d[b} \varphi^{c d d}\right),
\end{aligned}
$$

SO(9) supergravity

"T-dual frame" :

gauged coset sigma model $\left(S L(9) \ltimes \mathbb{T}^{84}\right) / S O(9)$ with WZ term

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{4} \rho R+\frac{1}{4} \rho P^{\mu a b} P_{\mu}^{a b}+\frac{1}{12} \rho^{1 / 3} M_{i l} M_{j m} M_{k n} D^{\mu} \phi^{i j k} D_{\mu} \phi^{l m n} \\
& +\frac{1}{648} \varepsilon^{\mu \nu} \varepsilon_{k l m n p q r s t} \phi^{k l m} D_{\mu} \phi^{n p q} D_{\nu} \phi^{r s t}
\end{aligned}
$$

vector fields couple via
$\mathcal{L}_{F}=\varepsilon^{\mu \nu} F_{\mu \nu}^{m n} \mathcal{Y}_{m n} \quad$ with auxiliary (dual scalar) fields $\mathcal{Y}_{m n}$
which also enter Yukawa couplings and scalar potential
scalar potential

$$
\begin{array}{rlr}
V_{\mathrm{pot}}= & \frac{1}{8} \rho^{5 / 9}\left((\operatorname{tr} T)^{2}-2 \operatorname{tr}\left(T^{2}\right)+18 \rho^{-2 / 3} T^{d[a} \varphi^{b c] d} T^{e a} \varphi^{b c e}-\right. & \left.16 \rho^{-2 / 3} T^{d[b} \varphi^{c] a d} T^{e b} \varphi^{c a e}\right) \\
& -\rho^{-13 / 9} T^{a c} T^{b c} Y_{a d} Y_{b d}+\mathcal{O}\left(\phi^{3}\right) & T \equiv\left(\mathcal{V}^{\mathrm{T}} \mathcal{V}\right)^{-1} \\
& \text { eighth order polynomial in } \phi & \varphi \equiv \phi \cdot \mathcal{V} \\
& & Y \equiv \mathcal{V}^{\mathrm{T}} \mathcal{Y} \mathcal{V}
\end{array}
$$

the dilaton powers precisely support the correct DW solution (near horizon of $\mathrm{AdS}_{2} \times \mathrm{S}^{8}$)

SO(9) supergravity

different presentations

gauged coset sigma model $\left(S L(9) \ltimes \mathbb{T}^{84}\right) / S O(9)$ with WZ term

$$
\begin{aligned}
\mathcal{L}= & -\frac{1}{4} \rho R+\frac{1}{4} \rho P^{\mu a b} P_{\mu}^{a b}+\frac{1}{12} \rho^{1 / 3} M_{i l} M_{j m} M_{k n} D^{\mu} \phi^{i j k} D_{\mu} \phi^{l m n} \\
& +\frac{1}{648} \varepsilon^{\mu \nu} \varepsilon_{k l m n p q r s t} \phi^{k l m} D_{\mu} \phi^{n p q} D_{\nu} \phi^{r s t}+\varepsilon^{\mu \nu} F_{\mu \nu}^{m n} \mathcal{Y}_{m n}+V_{\mathrm{pot}}(\rho, \mathcal{V}, \phi, \mathcal{Y})
\end{aligned}
$$

integrate out the auxiliary scalars $\mathcal{Y}_{m n}$
upon using their field equations $\quad F_{\mu \nu}{ }^{m n}=\frac{\partial \mathcal{L}}{\partial \mathcal{Y}_{m n}}+$ fermions
leads to

$$
\mathcal{L}_{2}=-\frac{1}{4} \rho R+F_{\mu \nu}^{m n} F^{\mu \nu k l} \mathcal{R}_{m n, k l}(\rho, \mathcal{V}, \phi)+\ldots+\tilde{V}_{\mathrm{pot}}(\rho, \mathcal{V}, \phi)
$$

gauged sigma model coupled to $d=2$ SYM
the $\mathrm{U}(1)^{4}$ truncation can be shown to arise as consistent truncation from IIA

concluding

affine symmetries in supergravity

O general structure of deformations of the two-dimensional theory
O truly affine structures at work (basic representation of the embedding tensor)
O maximally supersymmetric $\mathrm{d}=2$ supergravity with gauge group $\mathrm{SO}(9)$
O last missing gauged supergravity around Dp near-horizon geometries

warped				[Salam, Sezgin, 1984]
D6	IIA	$\mathrm{AdS}_{8} \times \mathrm{S}^{\mathbf{2}}$	d=8, SO(3)	
D5	IIB	$\mathrm{AdS}_{7} \times \mathrm{S}^{3}$	$\mathrm{d}=7, \mathrm{SO}(4)$	[Samtleben, Weidner, 2005]
D4	IIA	$\mathrm{AdS}_{6} \times \mathrm{S}^{4}$	$\mathrm{d}=6, \mathrm{SO}(5)$	[Pernici, Pilch, van Nieuwenhuizen, 1984]
D3	IIB	$\mathrm{AdS}_{5} \times \mathrm{S}^{5}$	$d=5, \mathrm{SO}(6)$	[Günaydin, Romans, Warner, 1985]
D2	IIA	$\mathrm{AdS}_{4} \times \mathrm{S}^{6}$	d=4, SO(7)	[Hull, 1984]
F1/D1	IIA/B	$\mathrm{AdS}_{3} \times \mathrm{S}^{7}$	$\mathrm{d}=3, \mathrm{SO}(8)$	[de Wit, Nicolai, 1982]
DO	IIA	$\mathrm{AdS}_{2} \times \mathrm{S}^{8}$	$\mathrm{d}=2, \mathrm{SO}(9)$	

outlook

O holography: d=1 supersymmetric matrix quantum mechanics ...!
O first supersymmetric example of a d=2 gauging, general structure of susy (?)
O general structure of gauge groups, gradings of E_{9}
O descend further in dimension : gauging E_{10} structures

