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® Goal: Quantum Gravity

® QFT from the renormalization group perspective
® Functional renormalization group equations

® Results: pre-industrial computations

® Perspectives:  industrial revolution

® Summary and Outlook
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Classical General Relativity

Based on Einsteins equations

space-time curvature matter content
® Newton’s constant: Gn = 6.67 X 10—111{?%
® cosmological constant: A= 10739572

conceptual and phenomenological puzzles:
® gravity classical «— standard model as Quantum Field Theory?
® structure of space-time at short distances?

® tiny value of cosmological constant?

Theoretical guidance: Quantum Theory for Gravity
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perturbative quantization of the Einstein-Hilbert action:

® (G has negative mass-dimension:
O infinite number of counterterms

© General Relativity is perturbatively non-renormalizable

conclusions:

a) General Relativity is effective field theory:
® compute corrections in E2/M32, < 1 (independent of UV-completion)

® breaks down at E? ~ M3

b) UV-completion requires new physics:
® supersymmetry, extra dimensions, non-commutative geometry, ...

® possibly: extension of QFT-framework

c) Gravity makes sense as Quantum Field Theory:

® UV-completion requires going beyond perturbation theory




Quantum Field Theory

Wilsonian Renormalization Group Perspective
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Renormalization from the Wilsonian perspective

® theory < specify
a) field content (e.g. graviton)

b) symmetries (e.g. coordinate transformations)

® action = specific combination of interaction monomials
©  build from field content

© compatible with symmetries

® theory space:
© gpace containing all actions

©  *“coordinatized” by coupling constants {g; }

® renormalization group flow:
© describes change of action under integrating out quantum fluctuations

© for coupling constants = g-functions

physics at different scales captured by family of effective descriptions



Theory space underlying the Functional Renormalization Gr oup

I,=r

~ bare action : .
effective action



Fixed points of the RG flow

Central ingredient in Wilsons picture of renormalization

Definition:

® fixed point {g}} <= p-functions vanish ( 8y, ({g:})| = 0)
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Fixed points of the RG flow

Central ingredient in Wilsons picture of renormalization

Definition:

¢ fixed point {g}} <= B-functions vanish (84, ({g:})]

!
9i=9; — 0)

Properties:

® well-defined continuum limit

© trajectory captured by FP in UV has no unphysical UV divergences
® 2 classes of RG trajectories:

O relevant — attracted to FP in UV

© irrelevant = repelled from FP in UV

® predictivity:

. ) UV critical
© number of relevant directions

surface

— free parameters (determine experimentally)
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Renormalization: asymptotic freedom and asymptotic safet y

Renormalization via UV fixed points —- two classes of renormalizable QFTs

® (Gaussian Fixed Point (GFP)
O perturbatively renormalizable field theories
© fundamental theory: free

© asymptotic freedom (example: QCD)

® non-Gaussian Fixed Point (NGFP)
© non-perturbatively renormalizable field theories
© fundamental theory: interacting

© asymptotic safety

Wilsonian picture: generalization of perturbative renormalization

asymptotic safety as predictive as asymptotic freedom




Examples: Asymptotically Safe Theories
Theories with non-Gaussian UV fixed point

® O(N)-sigma model (d = 2 + ¢)

[Brézin, Zinn-Justin '76]

© critical exponents of Heisenberg ferromagnets

® Gross-Neveu model (d =2 + ¢)
[Gawedzki, Kupiainen '85]

® Grosse-Wulkenhaar model (non-commutative ¢*-theory)

[Grosse, Wulkenhaar '05; Disertori, Gurau, Magnen, Rivasseau '07]

® Gravity in 2 + ¢ dimensions

[Christensen, Duff; Gastmans, Kallosh, Truffin '78]
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Renormalizing gravity

Wilsonian formulation:

® UV fixed points allow two classes of renormalizable Quantum Field Theories

® (Gaussian Fixed Point
© perturbatively renormalizable field theories

© fundamental theory: free

© asymptotic freedom

® non-Gaussian Fixed Point:
© non-perturbatively renormalizable field theories
o fundamental theory: interacting GraV|ty

© asymptotic safety

Weinberg's asymptotic safety conjecture (1979):

gravity in d = 4 has non-Gaussian UV fixed point




Flows on Theory Space

Functional Renormalization Group Equations
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RG flows beyond perturbation theory
Functional Renormalization Group Equations:

® (Callan-Symanzik Equation
® \Wegner-Houghton Equation
® Polchinski Equation

® Wetterich Equation

applicability:
® scalar field theory, QCD, ..., Quantum Gravity

® condensed matter systems

For the purpose of studying gravity:

® flow equation for effective average action I';,
[C. Wetterich, Phys. Lett. B301 (1993) 90]

® adapted to gravity

[M. Reuter, Phys. Rev. D 57 (1998) 971, hep-th/9605030]
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Effective action I'in scalar field theory

® start: generic action S; [x]
S:[x] = /ddx {3(8ux)? + $m*x* + interactions }
® generating functional for connected Green functions

W[J] zln/D)ceXp{—S,;[x] +/ddeX}

® effective action I'[¢] gives 1PI correlation functions

I'[¢)] :/dda:qu—W[J]

© classical (expectation value) field




Effective average action I'y in scalar field theory

® start: generic action S; [x]
S;:[x] = /dda: {3(0ux)® + $m*x* + interactions }
® introduce scale-dependent mass term A, S[x] in W[J]

Wi [J] zlnfpxexp{—sl%[x] —AkS[XH/dda:JX}

d A~
AeShd = § [ 8 R ) IR

© discriminate between low/high-momentum modes

uUv
k2 p2 < k2
Ri(p?) =
® high momentum modes: integrated out -

¢ low momentum modes: suppressed by mass term



Effective average action I'y for scalars

® scale-dependent generating functional for connected Green functions
Wi[J] = ln/DxeXp {—S]%[X] — A S|x] + /ddac Jx}

® Effective average action = modified Legendre-transform of Wy [.J]

Tild] = / 4% 6 — WilJ] — ApS[9)



Effective average action I'y for scalars

® scale-dependent generating functional for connected Green functions
Wil = 1n [ Dxess {—s,;m - ausd + [ ate Jx}

® Effective average action = modified Legendre-transform of Wy [.J]

Tild] = / 4% 6 — WilJ] — ApS[9)

® k-dependence governed by Functional RG Equation (FRGE)
KOWTkIG] = $Tr [ (8Tk + Ry) ™" kR

© upon specifying R, = “vector field” on theory space




Effective average action Iy for gravity

® start: generic diffeomorphism invariant action for metric S&*"[g,..]

® complication: diffeomorphisms
— fix via background field method (g, = guv + huv)

© adds gauge fixing term Sgt|h; g]
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Effective average action Iy for gravity

® start: generic diffeomorphism invariant action for metric S&*"[g,..]

® complication: diffeomorphisms
— fix via background field method (9. = guv + huv)
© adds gauge fixing term Sgt|h; g]
© adds ghost action Sen[h, &, &; g]

auxiliary background transformations = diff. invariance of I'r,_y[g = g]

® flow equation: analogous to scalar case

_ 1
kOpI'k[h, &, &5 9] = %STr [(F,(f) — Rk) k@kRk]

O F,(f) = Hessian with respect to fluctuation fields

O “extra” g-dependence necessary for formulating exact equation

goal: study RG flow described by this equation
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Non-perturbative approximation: derivative expansion of L'y
® caveat: FRGE cannot be solved exactly

<> gravity: need non-perturbative approximation scheme

® expand I in derivatives and truncate series:

N

Tp[®] =) (k) O[@]

1=1
O — substitute into FRGE

© — projection of flow gives g-functions for running couplings

kOpui(k) = Bi(ui; k)

® testing the reliability:

© within a given truncation:

® cutoff-scheme dependence of physical quantities (= vary R;)

© stability of results wrt extended truncation



Pre-industrial computations

probing theory space by hand



Gravitational theory space: FKWC-basis for  T';"™*[¢]

Einstein-Hilbert truncation
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The Einstein-Hilbert truncation: setup

Einstein-Hilbert truncation: two running couplings: G(k), A(k)
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The Einstein-Hilbert truncation: setup

Einstein-Hilbert truncation: two running couplings: G(k), A(k)

1

Tp=———
¥ 167G (k)

/ d*z\/g [~ R + 2A(K)] + Sgt + San
® project flow onto G-A—plane

explicit s-functions for dimensionless couplings gi := k*G(k), A\ := A(k)k—?

® Particular choice of R, (optimized cutoff)

kOkgr = (N + 2)gk ,

kOpAk = — (2 —1nN) Ap — 35 [51—%>\k _4_%1—§>\an}

® anomalous dimension of Newton’s constant:

9gB1

W= T 5

_ 1 1 1 _ 1 1 1
B1 = 37 [5 =% 0 @=2n)? 7} , Ba = — 17 [5 T—ox 10 (1—2>\)2]



Einstein-Hilbert truncation: Fixed Point structure
p-functions for g;, := k2G(k), M\ := A(k)k—2
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Einstein-Hilbert truncation: Fixed Point structure
p-functions for g;, := k2G(k), M\ := A(k)k—2

kOkgr = (NN + 2)gk ,

kO, = — (2—nn) A — 52 [51_%A,€ _4_%1—§A,€77N]

microscopic theory < fixed points of the g-functions

59(9*7>\*):Oa Bk(g*aA*):O

® (Gaussian Fixed Point:
© atg* =0,\* =0 <= free theory

© saddle point in the g-\-plane

® non-Gaussian Fixed Point (%, = —2):
o atg* > 0,\* >0 <= "“interacting” theory

© UV attractive in g, \i

Asymptotic safety: non-Gaussian Fixed Point is UV completion for gravity




Einstein-Hilbert-truncation: the phase diagram




Gravitational theory space: FKWC-basis for  T';"™*[¢]

/—8\ Einstein-Hilbert truncation
R ..
polynomial f(R)-truncation
R?
R? + C2-truncation
R6
R5
R4
R3 CL P Cho "AC MY ROR + 7 more
//R2 Ol O ) Ry A
uvpo nv
R
1




Exploring the gravitational theory space

Some key results . ..

® all computations confirm existence of NGFP

= strong evidence for asymptotic safety

® predictivity

= UV-criticial surface is finite dimensional (possibly 3 relevant parameters)



Exploring the gravitational theory space

Some key results . ..
® all computations confirm existence of NGFP
= strong evidence for asymptotic safety
® predictivity

= UV-criticial surface is finite dimensional (possibly 3 relevant parameters)

... and open questions:

® existence of NGFP in extended truncations?
(convergence of position, critical exponents, .. .)

® dimension of its UV-critical surface?
(= number of parameters to be determined experimentally)

® universality class of the fundamental theory?



Industrial Revolution

The Universal RG Machine



Perimeter Institute, Nov. '09:

What if one could track the flow of 20, 100, ... couplings???
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All previous constructions rely on special background g:

® Interaction monomials become indistinguishable

example: curvature?-terms on background sphere
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Insufficient to probe theory space in full generality




Obstructions

All previous constructions rely on special background g:

® Interaction monomials become indistinguishable

example: curvature?-terms on background sphere

[dtevitu e =4 [aleyshe, [ doviRuasie? =4 [ doyR?

Insufficient to probe theory space in full generality

Working with general background g:

® Tr contains very complicated operator structures

= not computable by “standard” methods
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The universal RG machine: blueprint

goal: systematic derivative expansion of

_ 1
k@kl“k[h,é’,f;g] = %STI’ |:<F§CQ) + Rk) kakRk:|

4-step implementation:

1. expand I'y[h; g] to second order in fluctuations

2. reduce operator structure of F,gz) to “standard” form

3. perturbative inversion of [I'*) + Ry

4. evaluation of operator traces via off-diagonal heat-kernel

virtues:
® |ifts technical requirement of having “simple” backgrounds g
® each step can be handled by a computer algebra software

® no numerical integrations
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Step 1: expand T';[h; ¢] to second order

Notation:
® &: multiplet of background fields (e.9. {guv,Au,h})
® h: multiplet of fluctuations around ¢ (e.9. {huv,hu,h})

1“53): results from Taylor expansion:

Ty, 3] = .. /ddx\/_h [F<2)[ ]] hi+ ...
Q[F(Q)_ij-
N [<1§]] IS operator-valued matrix in field space
Example: free massive scalar field & in curved space-time g, :

Crlh,g] = %/ddﬂc\/ﬁh [—-D? +mi] h

o Ff) [g]: Laplace-type differential operator

(g = D% + m}



Step 2: simplify operator structure of F,f)

generically, F,(f) has non-Laplacian part:
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Examples:
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M — R'LLVDMDV

D+#£0< F,(f) is non-minimal differential operator:

® obstructs evaluation of traces via “standard” heat-kernel formulae
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Step 2: simplify operator structure of F,f)

generically, F,(f) has non-Laplacian part:

2)7 %I .
[Flg )} - K(A) 6 1, + D(Dy.) + M(R, D,.)
kin. terms uncontracted derivatives  background curvature

* D+#0« I'? isnon-minimal differential operator

general solution: Transverse decomposition of fluctuation fields
[York, '75; Reuter, Lauscher '02]

® vector: hy =hl +Duh , DFh =0
T _ vypT v —
DERT, =0,  g"hT, =0,  g"hu, =h

Implemented via non-local projection operators:

My, = -D,A™'DY, Mz, - hl, = Dyh

Removes D-part from [I'{>)]is
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ij
Step 3: Perturbative inversion of [F,(f) - Rk}

choose R, to regulate kinetic terms:

K(A) — P(A), following A— P,=A+ Ry

[Fl(f) i Rk} * operator-valued matrix in field space:

P11 + M,y M

), » 1Y _
M., Pyly + Mo

® jnversion: via formula for block matrices

Perturbative expansion of inverse matrix elements in M:

—1 1 1 1
(2 R] - My —
[ ki & 11 Pl Pl 1P1 l

® Two classes of traces: pure Laplacian and Laplacian + vertex insertions

® truncation <= expansion terminates at finite order:
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Uses: standard heat-kernel expansion of Laplace-operators
® Laplace transform W (A) — W (s)
Tr; [W(A)] = / ds W (s) Tr; [e_SA}
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Step 4a: evaluate operator traces without insertions M
Uses: standard heat-kernel expansion of Laplace-operators
® Laplace transform W (A) — W (s)
Tr; [W(A)] = / ds W (s) Tr; [e_SA}
0

1
(47s)?

Tr; [e_SA} = /d4a:\/§ [tri ag + str; as + s2tr; ag + - - } :

® (Coefficients for unconstrained fields: well known in math-literature

R,...

O

troag =1, tropas =

® (Coefficients for transverse fields:

© construct via projection operators

TriT [e_SA} =Try [e_SAHT]

=Tr; [e_SA] + Trg [DMA_lD”e_SA]



Step 4a: evaluate operator traces without insertions M

Heat-kernel expansion for constrained fields on spherical topology

B 1
Tr; [e SA] = (dms)? /d4x\/§ [cl +coR+ 3R+ caR,, R*" + C5RMVQBR’“/O‘B}
0 1 2 1T 2T
c1 1 4 10 3 5}
1 2 5 1 5
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€3 72 18 36 24 216
) 1 1 1 _ 39 a7
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€5 180 180 9 60 18




Step 4a: evaluate operator traces without insertions M

Heat-kernel expansion for constrained fields on spherical topology

B 1
Tr; [e SA} = (dms)? /d4x\/§ [cl +coR+ 3R+ caR,, R*" + C5RMVQBR””O‘B}
0 1 2 1T 2T
c1 1 4 10 3 5}
1 2 5 1 5
c2 5 3 3 1 ~%
1 1 5 5 _ 137
€3 72 18 36 24 216
. 1 1 1 39 _ a7
4 180 45 18 40 108
1 _ 11 _ 4 11 S
€5 180 180 9 60 18

Straightforward to evaluate operator traces without vertices M




Step 4b: Evaluate the operator traces including insertions M

1. use commutators to bring trace argument into standard form:
® contracted cov. derivatives: = collected into a single function W (A)

® remainder: — matrix-valued insertion @

~

2. Laplace transform W (A) — W (s)

Tr[W(A)O] = /OOO ds W (s) (z|e 2 O |z)



Step 4b: Evaluate the operator traces including insertions M

1. use commutators to bring trace argument into standard form:
® contracted cov. derivatives: = collected into a single function W (A)

® remainder: — matrix-valued insertion @

~

2. Laplace transform W (A) — W (s)

Tr[W(A)O] = /OOO ds W (s) (z|e 2 O |z)

3. evaluate trace using off-diagonal Heat-kernel (act © on H)

(x| O e 2 z) = (2| O |2’V |e 52 |z) = /d4:c\/§tr7; [C’)H(s,a:,a:’)}x:w,

1 o(z,5')
H(s,z,z') = (z'|e”|z) = (475)2 e 2 Z s" Ao (, ")
n=0

® As,(xz,2’): heat-coefficients at non-coincident point

® 20(x,x'): geodesic distance between z, =’



Step 4b: Evaluate the operator traces including insertions M

3. evaluate trace using off-diagonal Heat-kernel (act © on H)

(x| Oe™ 5B |) = (x| O |2’ )z |e ™2 |z) = /d%@m [0H(s,2,2)] _,

o0

1 o(z,a’)

H(s,z,z') := (z'|e 52 |z) = (dma)? e~ 2s TLZ:OSTLAQTL(QT,CE/)
properties of H (s, z,z") in the coincidence limit:
® Agp(zx,x) — standard heat-kernel coefficients
® derivatives of Ay, — additional powers of curvatures
® og(z,2z)=0, 0,, =0 — vanish in coincidence limit

ST (BN =gi ) — non-vanishing



Step 4b: Evaluate the operator traces including insertions M

3. evaluate trace using off-diagonal Heat-kernel (act © on H)

(x| Oe™ 5B |) = (x| O |2’ )z |e ™2 |z) = /d%@m [0H(s,2,2)] _,

o0

1 o(z,a’)

H(s,z,z') := (z'|e 52 |z) = (dma)? e~ 2s nZ:Os”Agn(a:,a:')
properties of H (s, z,z") in the coincidence limit:
® Agp(zx,x) — standard heat-kernel coefficients
® derivatives of Ay, — additional powers of curvatures
® og(z,2z)=0, 0,, =0 — vanish in coincidence limit
ST (BN =gi ) — non-vanishing

example: O = R*¥ D, D,

1
3272

Tr [W(A)O] = — /OOO dssigv“v(s) /d4a:\/§R+O(R2)
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The algorithm on the computer

mathematical input

® off-diagonal heat-kernel coefficients for unconstrained fields

— heat-kernel coefficients for transverse fields

manipulation of traces including vertices

® commutation rules for covariant derivatives
® canonicalize trace-arguments including M

® apply off-diagonal heat-kernel

bookkeeping

® add all terms occurring in the expansion

Implementation: in progress
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Summary: The Universal RG Machine
Algorithmic expansion of FRGE:

® allows: systematic exploration of RG flows on theory space
® applicable to gauge theory, gravity, . ..

® realization on a computer algebra system

springboard for unveiling many physics features

encoded by RG flow

first applications to gravity:

® EH-truncation: background-independence of g-functions

® ghost-wavefunction renormalization

Confirms NGFP in full agreement with asymptotic safety
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