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  Plan of the talk:
 Entanglement entropy
       a) Replica trick
       b) Useful mathematical tools

 Entanglement entropy of black holes: 
     a)  UV divergences
       b)  Logarithmic terms in the entropy
       c)  Renormalization
       d)  Non-minimal coupling

 Some other developments
 a)  Holographic interpretation

       b)  Entanglement entropy in IR and UV  modified theories
       c)  Logarithmic terms in generic 4d CFT
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A B

Entanglement entropy

Σ

| ( , )A Bψ >
( , ) | |A Bρ ψ ψ= > <

Bombelli et el (86), Srednicki (93),
Frolov-Novikov (93)

( , )A BTr A Bρ ρ=
lnA A A AS Tr ρ ρ= −



 4

Properties
  

A BS S=

AS depends on local geometry:

i) intrinsic or extrinsic geometry of  Σ
ii) geometry of space-time near   Σ

(modulo Gauss-Codazzi)

if | ( , )A Bψ > is pure state
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Properties
  AS is non-zero due to short-distance 

correlations between A and B

Σ
A

B

ε
AS depends on UV  regulator ε



 6

Properties
  0T ≠if

in the large size limit  EE approaches thermal entropy:

2 :d = 3
cS LTπ=

2 :d > 1( )dS LT −∝
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Replica method: wave function
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Replica method:  a reduced 
density matrix

Path integral on
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Replica Method: trace of 
density matrix

Σ
Path Integral on

Susskind (93), Callan-Wilczek (94)

S ent=−Tr  ln =−[n∂n−1 lnTr n]n=1

Tr n= =21−n
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Uniqueness of analytic 
continuation n=1,2,. . , ℜ1

Regularized trace  of renormalized  density matrix                        is bounded= 
Tr 

∣Tr 
∣1 if ℜ1

Suppose we know Tr
n=Z 0n for =n , n=1,2,3,. .

The we can represent Z =Tr
 in the form

Z =Z 0sin  g 

where             is analytic and g  ∣g =xiy∣e−∣y∣

By Carlson's theorem g ≡0
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Heat kernel and 
the Sommerfeld formula

∂sDK s , x , x ' =0
K s=0, x , x ' = x , x ' 

2-periodic function from a        -periodic  is constructed by using  2

K s , , ' =K s ,− '  i
4∫

cot w
2

K s ,− 'w dw

Sommerfeld (1897)

In presence of Abelian symmetry 
    
it is still a solution to heat equation  

w
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Useful mathematical tools (A):  
Riemann curvature and conical 
singularity

( ) ( )

( ) 2 (1 )[( )( ) ( )( )]
reg sing

sing

R R R

R n n n n n n n n

µ ν µ ν µ ν
α β α β α β

µ ν µ ν µ ν
α β α β β απ α δ Σ

= +

= − −

1 2
1 2( )n n n n n nµ µ µ

α α α= +

1n
2n

1n

Σ
Fursaev, SS (94)
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A consequence: 
the Euler number for a manifold 
with cone singularity

M =
1

322∫M / 
R2−4R

2 R
2 ∑

i
1−ii

Fursaev, SS (94)

 A special case is when             possesses a continuous Abelian isometry so
 that             are the fixed point sets of this isometry and             .
 

(Rediscovered by Atiyah, LeBrun (2012)) 

M 

i i=

M =∑
i
i    Then we arrive at a reduction  formula

 Example: singular surface of                         is               so that             S
d d3 S d−2 S d =S d−2
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Useful mathematical tools (B):  
Heat kernel method

Coefficients in the expansion  decompose on 
the bulk (regular) and the surface (singular) parts:
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Heat kernel method: regular 
terms in the expansion

Scalar field operator:

    and do not contribute to the entropyThese terms are proportional to 
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Heat kernel method: surface 
terms in the expansion

Fursaev (94)
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Important remark:

These mathematical tools work only if there is
abelian isometry in subspace orthogonal to
entangling surface      .
This is not so for a surface (sphere, cylinder..) 
in flat Minkowski spacetime!

However: they work perfectly for Killing horizons!
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Entanglement entropy 
of black holes

( , )ψ ϕ ϕ+ −

( )ϕ − ( )ϕ +

Wave function of black hole is functional of modes

and modes outside

α −

inside black hole horizon

Partition function

is given by functional integral

over fold cover of Euclidean black hole instanton

(manifold with conical singularity at horizon)

Barvinsky, Frolov and Zelnikov (94)

,



  

−Σ +Σ



  

−Σ +Σ



  

−Σ +Σ

E
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Entanglement entropy of 
4d black hole

S.S. (94)

      Scalar field operator: 
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Kerr-Newman black hole 
(m,a,q)

Mann, SS (96)

Horizon area

Entropy of  a minimal scalar field, =0
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Interesting  limits:
 Schwarzschild black hole (q=a=0)

 Extreme charged black hole (a=0, q=m)

 Extreme Kerr black hole (q=0, a=m)
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 Renormalization
Bare gravitational action

Black hole entropy

Renormalization of  entropy:

The statement is valid for any field (fermionic and bosonic)
except gauge fields (s=2 and s=1)

Susskind and Uglum (94), Jacobson (94), Fursaev and SS (94)

Renormalization of action:
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Puzzle of non-minimal 
coupling

Renormalization of Newton constant

Entanglement entropy on Ricci flat metrics 
does not depend on 

Non-minimal field operator
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Gauge fields: s=1 and s=2

1
4Gren

= 1
4G

 1

4
d−2

2 d−2

Ds d 

6
−cs d 

1
d−2

Spin s=1: D1d =d−2, c1d =1

Spin s=2: D2d =
d d−3

2
, c2d =

d 2−d4
2

Entanglement Entropy: S=
Ds d 

6 d−24
d−2

2

A
d−2
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Most intriguing question:
can entanglement entropy account for 
entire BH entropy?

 A  natural identification: UV cut-off at Planck scale 

 Do coefficients precisely agree?

 Entanglement entropy and induced gravity,
    problem of non-minimal coupling 
   

Jacobson(94), Frolov et al. (96), 
Hawking, Maldacena, Strominger (2000)

then
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SOME OTHER  DEVELOPMENTS
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The AdS/CFT correspondence
Holographic picture: physics in the bulk has equivalent 
description on the boundary

A concrete realization: duality between string theory on 
anti-de Sitter (AdS) space-time and CFT living on the 
boundary of AdS

Boundary dimension d=4: boundary CFT is N=4  
    SU(N) super-Yang-Mills
Is there a holographic interpretation of entanglement   
entropy?

 

’t Hooft (93), Susskind (94)

Maldacena (97), Witten (98),
Polyakov, Gubser, Klebanov (98)
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t

xρ γ

is minimal surface 
that bounds  

γ

Holographic Entanglement Entropy

( )
4 N

AreaS
G

γ=

N

F

Ryu-Takayanagi (06)

A

B

B Σ
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t

xρ γ

UV/IR duality

ε

ε
N

F

Ryu-Takayanagi (06)

A

B

B

2

2

1ln( ),
6
2

( ) ,

2

d

cS

d
N AreaS

d

ε

ε −

=

=
Σ

>

:



 33

  UV and IR modified theories

More general Lorentz invariant field operator

Examples:

(i) 4d brane in spacetime with compact fifth dimension

(ii) DGP model

(iii) Non-commutative field theory

(iv)  UV modified theory
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Entropy in UV(IR) modified 
theories

Heat kernel on space with conical singularity

Entanglement entropy

where

Nesterov, SS (2010)
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Entropy in UV modified 
theories

(i) No matter how fast function 

entanglement entropy is always UV divergent

(ii) The area law and the statement on renormalization of 
     entropy   are valid for any

(iii) Example:

Nesterov, SS (2010)

grows for large
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Entropy in non-Lorentz 
invariant theories

D=−∂t
2F − ∇2

- there is no rotational symmetry in (r,t) plane

- only                  periodicity is allowed

- it is enough to compute entropy

2n

S= A
124d−2/2∫2

∞ ds
s
Pd−2s

  is the same as in Lorentz invariant casePn s
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Entropy in non-Lorentz 
invariant  theories

        F − ∇ 2=m21−n− ∇2n

Heat operator

xx , tn t , s2n s

exp −s D is invariant under rescaling

and xx , mn /1−nm

Structure of entanglement entropy is fixed by this invariance

S~m
n−1



d−2
n A

Polynomial field operators:
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Logarithmic term in entropy of 
generic 4d CFT

Effective action

A and B type conformal anomaly

Duff (77)
Christensen, Duff (78)
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Logarithmic term in entropy of 
generic 4d CFT

Entanglement entropy of arbitrary surface

Surface anomaly 
(combination of conformal symmetry and holographic interpretation) 

SS (2008)

where  is extrinsic curvature of (vanishes for black hole horizon)
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EE in flat 4d space-time

2
( , ) 2

( ) 1[ ( )]ln ( , )( )
4 8 2

i i
A B

N AS AR B trK K K s A B gπ ε
π ε Σ

Σ

⋅ Σ= + + − +∫

2

( , ) 2

2 ( ) ln
4 8

cylinder
A B

La LS B
a a

π π ε
π ε

= +

2
2

( , ) 2 lnsphere
A B

N aS A
a
επ

ε
⋅= +

L
a

a

SS(08)
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Logarithmic term in entropy of 
generic 4d CFT: flat spacetime

                           Round sphere  in Minkowski spacetime:
      

- generalization to higher dimensions: Cassini-Huerta (2010), Dowker (2010),
                                                             Myers et al (2010)

- The logarithmic term is the same as for extreme black hole SS(2010)

  since near-horizon region                        and Minkowski spacetime 
   
  are conformally related   
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Logarithmic term in entropy of 
generic 4d CFT: black holes

Extreme charged black hole

The Schwarzschild black hole

For a generic 4d  CFT

Extreme Kerr black hole 
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Why log corrections are 
interesting?
 they are important at the final stage of    

evaporation

  consistency with microscopic calculation
    for extreme black holes Banerjee, Gupta, Sen (2010)
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  Some open questions
 - entanglement entropy in string theory

 - non-minimal coupling (gauge fields)

 - dynamical entangling surface (a brane?)

 - ...
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More work  has to be done..
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