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Massive Gravity

-

A deformation of GR that allows to explain the observed
universe acceleration = m ~ 1/(cosm. horizon size).

Has problems: does not reduce to GR in the weak field
when m — 0 (VdVZ discontinuity), has a ghost, no
unigueness.

Remedies seem to exist for some of these problems
(Vainstein mechanism). Very recently a class of models
has been proposed that seem to be free of the ghost.

We wish to study black holes and cosmologies in these

models.
J
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|. Massive gravity in D=4
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Bimetric theory

-

4D manifold with two metrics
gu(z)  and  fu(x) =napd X (2)0,X" (x)
and the action

1

> TG

1
(5 R+ m2£im> vV —g dz + S(mat)
where L, Is a scalar function of H% = g%’ f,5 — 5g

Line = S((HS)? = HH) + O((HY)?)

Theory is not unique, but has a unigue weak field limit.

o |
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EOM for g,,, X

G = mQTW + 87TGTL(£1at)

with
8£int
T,uu — QW _ g,uuﬁinta
varying with respect to X4 gives
VAT, = 0.

The matter equations imply
VAT — .

In the unitary gauge, X“ = z* and f,,, = ,,, In the weak
Uield limit g, = 0, + hy ONE recovers the
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Pauli-Fierz equations

- N

1 1 mat
SOt} = o m (s — ) + 82GTE™

which imply 4 constraints
oth,, —0,h = 0.
Taking the trace gives the fifth constraint
3m2h = 160 GTMmat)

= there remain 5 degrees of freeedom of massive graviton.

For generic g, there are 5 degrees + 1 extra state with
Lnegative norm — Boulevard-Deser ghosit. J
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VdVZ discontinuity
5

Choosing the two metrics as

ds® = ’Uat2 — A gr? — 124072
df* = dt*? —=U?(r)dr* — U*(r)d¥?  (U* = r?eH)

gives in the linear approximation at large r

C C(1 C(1 22
yo Gy M)y OOt mr + mir?)
r 27 2mAr
= for r large but rm < 1 one has
C C C
vV=——, A=— = V+A=——F#0
r 2r 2r

L: GR Is not recovered for m — 0, no correct Newton’s law. J
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Vainstein solution

-

fNon-linear corrections to the VdVvZ

Ty A Ty A
= ——=11 A = =< (1
g r ( ta mard * )’ 27“( T mard * )

are ~ 107 at the edge of solar system if m ~ (10%°cm)~!.
They become small only for (assuming that C' ~ r)

1/5

r>>ry = (rg/m4) ~ 100 Kps

= the VdVZ problem arises only for r > ry. For r < ry

r r U r
v=—=>4 .. A=+, Z=1+4a/2L+...
(8 (8 (8 (8

L:> GR is recovered at the non-linear level. J
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ll. Checking Vainstein scenario

Damour, Kogan, Papazoglou’ 02
Babuchev, Deffayet, Ziour '09
M.S.V.

|
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The (AGS) model
B -

m2

Line =~ ((H4)* = HAHY,)  with 1Y, = g f, — 8

Static, spherically symmetric case (U? = r?e#)
ds® = evdt* — e dr? —r2dQ?%,  df? = dt? — Udr? — U?d0O?

=  Hjp :diag(l—e_”,l—6_)‘U'2,1—e“,1—6“)

gravitons: T/ =6 (%((1 — HJ))(H! — ; HY) + Z(HJ)2>

v

~ matter: SrGT™ W — diag(p, —P, — P, —P) N
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Field equations

N\ 1 1
A
€ (7_7“_2) -+ T—szQTg—l—p
/
A\ 1% 1 1
7\/ V' 0 r 2 r L4 1"
(Tr) — §(TO_TT)+ (Tﬁ T) <ZV,LLT1/:07:u
/
vV mat
Pl = S(P+p) e v, T — g
with p = p,O(r, — r) — star of radius r, and density p,.

. / dy, B
L yk(r)_{ﬁa)\auauap} — E_Fk(raym) J
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Boundary conditions

-

Origin » = 0: curvature is bounded =

-

v=1+0?), A\=00?), p=p+0@F?), P=DP+0(r?

Star surface r = r,. v, A\, u, P are continues, P = 0 for r > r,.
Infinity r = oo: VdVZ+ghost (x = mr)

C VO
v = ——e T4 A e My
T 2
C 2
)\ — %(1+$>6_x+A%€_Mx—|—7
1 2 . 2
u = C +w;|—x e+ Ae”MT 4 with | M = ——¢%/?
2T \/6

Here vy, o, Py, C, A are 5 integration constants. J
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Solutionm = 0.01,r, = 0.1, p, = 30

002 I I I I I 012 I I I I I
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Solutionm = 0.01, r,

-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
-0.8
-0.9

(14+mr)v(r)

-25

1.01

0.99
0.98
0.97
0.96
0.95
0.94
0.93

0.92
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Mass function

0.005
0.004 | M(r)
0.003
0.002
0.001
° 4 3 -12 -1 0 1
logyo(mr)
2 2
(grr) 1 =1— QM(T), M = 7a—{mQTg + p} = 7O—T8

2

,
In GR T > 0 = M(r) always grows till M (co) = Mapw.
(00

In massive gravity M(co) = 0 = T must be non-positive
Land unbounded from below — negatlve energies.
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l1l. Ghost free theories

de Rham, Gabadadze, Tolley '10
Hassan, Rosen 11



The RGT bimetric model
L -

m2

Lint = 7(K? — KKl with | KE =08 — /gl fr

174 174

IS claimed to be ghost-free and unigue up to 2-parameter
deformations /de Rham, Gabadadze, Tolley "10/.

#® Cosmologies /Chamseddine, M.S.V./

# Black holes /Nieuwenhuizen/,/Koyama, Niz, Tasinato/.
No asymptotically flat black holes.

» [f the metric f,z Is promoted to be dynamical, the theory
rests ghost-free /Hassan, Rosen '11/

o |
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The ghost-free bigravity
B -

1
ot = g [ (31 ) y—
- Ry —fd*z + Sy
167 tan’n G / . at)
1 2 v C3 15 v

CY 5
+ 0 Envpoe " KEKEKPKY

where m, n, c3, c4 are parameters and

L Kl =0l —~+,, Yo, = " fou J
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Varying the constraint

- N

Y67 + 7607 = 09" fou + 9" 0 fou
Let us introduce two tetrads €%, and w7 such that

AB A B
g =mn 6516% ) Juv = NABW, Wy
and
ei‘leM — e%wAM (o)
Then

_ A
v, = \/guﬁfm/ = efflwv

so that one can directly vary with respect to ¢’; and w;j‘
Imposing the condition (e) by a Lagrange multiplier.

o |

Hairy black holesand self-accelerating cosmologiesin the bigravity theory —p. 20



Field equations

Of = mcoy Y +82GT™™0 | GE ki TY.
with T = +° —§° L. TP — _ o P
pY \ )\ ~1nt \/_—f \
C3
= (00 =38 =908 = 5 e EEL K
C4
- 7 EAWJEO‘BWSWZKgK,’;Kg .

# Reduces to the bimetric RGT theory for n — 0 if f,,
becomes flat.

® 9= w=T/=T'=0= G, =0= theory contains

L vacuum GR J
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Conservation conditions

-

Diff.-invariance of the S,,,;) and Bianchi identities imply

(9) @)

Similarly, the Bianchi identities imply that

(f)
Vp Ty =

but these are not independent, since under a
diffeomorphism generated by ¢#(x) one has

(9) (f)
0 = 0Sint = _/g,u Vo T,f \/_gd4x_/€'u Vo 7;?\/ _fd437-

o ’ |
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Spherical symmetry

N N

ost general case

1
e = Qdt, elzﬁdr, e’ = RdV, eS:Rsinﬁdgp

W = adt+edr, w'=—cQNdt+bdr, w*=UdY, w’®=Usin Vdyp
where a,b,¢,Q), N, U, R functions of ¢,». One has

A_B A B
g,LLV — T}ABGILL ey ) f,uu — UABWM wy ) eﬁwB,u — e%wA,LL

Two different cases:
® c = for # 0 = metrics are not simultaneously diagonal
® ¢ = fyr = 0 = metrics are simultaneously diagonal

o |
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V. Black holes and
self-accelerating cosmologies

M.S.V. JHEP 1201 (2012) 035
M.S.V. arXiv:1202.6682 |
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Non-diagonal f,,,

- N

2 _ A2 z_d_7“2_ 2 102
ds® = Q*dt* — <5 — R0

df* = (a*—c*Q*N?*) dt*+2c(a + bQN) dtdr—(b*—c?) dr*—U?dQ?
If g, is either staticor FRW = GV =T =0« |U = CR

1
C = (263—|—C4—1Z|Z\/1—63—|—C4—|—C§>

C3 + C4

0 ) H T 0
=T, =1 =const. = VvV, T, ~ T =T, where

A B

.

(9) - & ~7 P
L%M TH ~ (30 — C — 3 +2) (C*Q — CQNb — aC + *N?Q + abN)
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Equations

- N

(9) .
If vV, T, = 0 = cosmological term + matter

(A)  GH = mPcos®n ! + SWGT(mat)”V
(B) GH = mZsin®n \o*

1-C
02

f, = 0 in the static case, while for cosmologies

A=(C—=1)(c3C —C—c3+3), A=

(c3C' — c3 + 2).

Here 72!

St GT™ ™ — diag(p(t), —P(t), —P(t), —P(t))

Equations (A) decouple from (B), but there are constraints
Lbetween g and f,,,. Let us first solve (A). J
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Solutions for g,

Cosmological term A = Am?cos’n > 0 =
Black holes: Schwarzschild-dS,

N2 =122 2 dQ—detQ—d—TQ—QdQQ
— - 37“, S = N2 T

Cosmologies: FRW with matter+ A,

dr?
1 — Kr?

ds® = dt* — a(t) ( + r2d£22> . K =0,+1

) a’

a ; (A+p)=—-K| = self-acceleration

o |
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Solution for f,,

-

fog9 = U? = C?gyy is already fixed, but foo, for, frr are still
arbitrary functions of t,r. Let U = U(t,r) and T'(¢,r) be the
new radial/time coordinates =

df? = fppdT? + 2 fppdTdU + fyydU? — U%dO?

This has to fulfill Einstein equations (5) with negative
cosmological term A = A m?2sin? 5 < 0. Solution is the AdS:

2 A
de:AdTQ—d%—UQdQQ, A:1—§U2

Here U = C'r for black holes, U = C'a(t)r for cosmologies.
fuv 1S flat when n — 0 = the bimetric RGT limit

. . . (9)
LThere remains to determine 7'(¢,r) and impose %M T} = 0. J
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(9)
Imposing %H Th = 0 for black holes

B -
df? = (0Y)* — (0H)? — U?d0? = (W")? — (wh)? = U?dO?  with

d
90 = \/ZdT, ol = \/—%, W = adt+cdr, w'=—cN?dt+bdr.

One has to have

W =V1+a20° +abt, W =+v1+a20" +ab,
Q N2+ A

T=Ct—

“f C/\/1+cv2 NZA

(9) . N? — A
V.TH=0if B=0 = a=

since U=Cr= dr

= solution is complete

2N\/Z J
LEssentially the same as that of Isham and Storey’ 78
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) .
Imposing %H Th = 0 for cosmologies

f . (g) . T
One has U = Ca(t)r. Imposing v, T}, ~ AB =0via B =0

gives a very complicated non-linear PDE. It is unclear if the
solution exists.

Alternatively, one can require that A = c3C — C —c3+ 2 =0,
but this constraints the values of c3, c4:

C—2 C?—-3C+3 . 1-C
CSZma Cq4 = — (0_1)2 9 )\:C_la )\:Ta
Cra
= T(t,r)=— dr
(t7) /A\/l—Kr2

= solution is complete, but only for special c3, ¢4
LFor n — 0 becomes solution of the RGT model. J
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V. More exotic cosmologies

M.S.V. JHEP 1201 (2012) 035
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Diagonal metrics

- N

d2
ds? :cﬁ—aﬂw( d +ﬁﬂﬂ>, K =0,+1

1 — Kr?

dr?
) 2 ) ) 2 2 12
df* = « (t)dt — 0 (t)a (t)<1—Kr2+T dQ).

Independent equations are
(a) G = m2cos2 nTy + p, Go = m?sin®*n Ty,
(b) 7ﬂ+3 Ub ") =0, p+3(p+Py_o

Setting |« = a(ca)/a|and p = ppa=373/7 (if P = ~p) solves
LEqs.(b) and gives | G) = 0°Gy |. Egs.(a) reduce to o
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Equations

- N

a2

(i) 32 -+ U(a) = —K with U = —?ptOt

(%) Ptot = m*cos” nTg +p = m2sin? 7 02760

79 = (1—0)((c3+ ca)o® + (3 — Bez — 2¢4)0 + 4ez + ¢4 — 6)

o—1
Ty = 3 (c40? — (3¢5 + 2¢4)0 + ¢4 + 3¢5 — 3)

Eq.(%) Is a 4-th order algebraic equation for ¢ = o(p). Since
p=pla) = o(p(a)) = o(a) = U= Ula).

1 several roots of (x) = several solution branches.

o |
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Physical and exotic solutions

- 1 1 1
0 0.2 0.4 0.6 0.8 1 0 0.5 1 15 2
a a

® physical: total energy pior = m*cos? nTY + p ~ p as
a— 0.

® exotic: m?cos?nTY ~ —p, piot ~ p>/3 can be negative =
solutions can be non-singular.

L.o m?sin’n 7Y does not vanish for  — 0 = no RGT limit. J
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VI. Hairy black holes in the bigravity
theory

L M.S.V. arXiV:1202.6682J
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Static, diagonal metrics

- N

d2_22d7“222 2_22U/2 2 142

Q,N,Y U, a are 5 functions of r, they fulfill 5 equations

G) = micos®n Ty,

G" = m“cos*n T,
Go = m’sin®n Ty,
G' = m’sin®n T
/
2
T ST T+ T - T =0

o |
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2NN’

Equations

N2 —1

2N?Q’ N? -1

Y

N
5 + mZcos® nn (al—U/—I—OQ) +p =0,
r

_|_

—|—m2008277 (m % + 042> — P =0,

r2

(Y2 — 14+ m*sin®na3}NU' + 2UNYY' +m?sin® Yoy = 0,

{a(Y? = 1)+ m*sin’nas}U' +20Y?%d' =0,

agU’ + ara’ =0,

where a7 ... a7 are

o

|
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a1

a2

a3
8 %1

a5

a6

a7

+ o+ 1+

2((34 + 2¢c3 — 1)U B (C4 + C3)U2
r r2
2(3 —cs —3e3)U  (ca + 2c3 — 1)U?
+ 2
T T
caU? — 2(c3 + ca)rU + (ca + 2¢3 — 1)r?,

(3 —ca —3¢3)r? — (ca + c3)U? + (4¢3 + 2¢4 — 2)rU,

[(a — Q)ea — Qe3lU? +[2(2Q — a)ez + (Q — a)ea — QIrU,
[(2a — 3Q)c3 + (a — Q)ca + 3Q — a]r?,

Q'N[(3c3 +cs —3)r% + (2(1 — c4 — 2¢3))Ur + (ca + c3)U?],
2Q(Y — N)[(83 —c4 — 3c3)r + (ca + 2¢c3 — 1)U],

2a(N —Y)[(1 — c4 — 2¢3)r + (¢4 + c3)U],

Y[(3 —ca —3c3)r? +2(ca + 2¢3 — 1)Ur — (cq + ¢c3)U?].

3—3c3 —cq +

Y

4deg +c4 — 6 +

Y

|
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Background black holes

- N

= (? 1s? = N2 — I _ 2407
f,uu— Juv |, S = _NQ_T ;
oM Ar?
N2:1—7—%, A = m2(C — 1)(azC? + a1C + ay),

where C'Is a root of
(C' = 1)(b3C° + b2C? + b1C + bg) = 0,
and ay, bs depend on ¢z, cq,n. Ifn=1,c3 =0.1, ¢4 = 0.3,

(C1.Cy, O3, Cy} = {1: —0.6458:2.6333 : —8.55661,
A(Cy)

m2

L:> Schwarzschild, SdS, SAdS J
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U, a backgrounds

2M
N? = 14+ m?cos*n((1 —2c3 — ¢ )U* — —
-
41,
+ (363—|—C4—3)UT—|—(2—§63—§C4)T ),
Q _ am2008277 "odr . Y:mzsinzn T@fj
N 2 ). zN3 20 ), N

F = (64 — 3+ 303)562 + 2(1 — 2¢c3 — C4)U$ -+ (63 + C4)U2

U, a, M, r1, ro constants.
g, approaches AdS as r — oo in the leading order.

frr = 0= f,, is degenerate. If U — const as r — oc then
Lthe proper volume is finite — spontaneous compactification. J
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Reduction of the equations

-

The 5 field equations contain a closed subsystem

N = DN(r,N,Y,U,m,n,cs3,c4),
Y/ — DY(Ta N7 Y7 U7 ey 1, €3, 64)7
U/ — DU(T7 N7Y7 U7m777763764)

When a solution is known, one obtains () via integrating
Q' /Q = F(r,N,Y,U,m,n, c3,cy)

and « from algebraic relation
a/Q = A(r,N,Y,U,m,n,cs,cq)

L: Independent variables are N, Y, U.

|
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Event horizon atr = ry,

B -
NQ:Zan(r ry)", Zb r—rp)", U:urh—l—ch(r—rh)"

n>1 n>1 n>1

an, by, ¢, depend on one free parameter « (and ¢ = £1).

® Horizon is common for both metrics

# Set of all black holes is one-dimensional and labeled by
u = U(ry)/ry = ratio of the even horizon radius
measured by f,,, to that measured by g, .

#® Using the scaling symmetry r — A\r, N - N, Y =Y,
U—U/\, m—m/Aonecanset|r, =1|

o |
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Horizon temperatures

- N

goo = Q2 = (]2{7“—7“h+z cn(r—rp)"},  foo = a® = CI2 Zdn(r_rh)

n>2 n>1

¢ — timelike Killing. Surface gravities (T = x/2m)

1 (9) (9) 1
Ky = —59"0us Vi & vagﬁ—gnghQQN’?—ZqQa
1 ) W Y 2 1 4 dib
2 _ T orua 5_ _ 2 W1U1

! -
Deffa et, Jackobson 11
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Strategy
- -

# Solutions are obtained by integrating from the horizon
for a given value of v« = U(r;,) towards large r.

#® For u = (). they are the background black holes.

® For u = C} + ou they describe hairy deformations of the
background black holes.

For uw = 1 + Jdu they describe hairy deformations of the
Schwarzschild black hole.

o |
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Deforming Schwarzschild

- - N

T T ~
T 12 F

u = 1.00001
u = 1.0001
u=1.001

08 -
0.6 |

u=1.01

04

U/

02

02 F

04 F

1 L 1 1 1 06 1 1 1
0 2 4 6 8 10 12 0 2 4 6 8 10 12

In(r/rp) In(r/rp)

# Close to Schwarzschild for r < ryax(u) but approaches
U, a for r — co.Deformations stay small close to horizon
but are always large at infinity.

® U'=1ifu=1butifu>1thenU’ — 0 forr -

L.o Point-vice (non-uniform) convergence to Schwarzschild J
as u — 1.
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If It was asymptotically flat

Asin? 1
N = 1-— Slnn+Bcos2nmr+ e """,
r r
.2
Y = 1_Asm n—Bsin2n1+mT6_mr
r r
m?r? + mr + 1
U = r+B 5 e "
mer

A, B two constants — Newton+VdVZ.

If « 1s fixed, not enough free parameters to fulfill tree

matching conditions = one cannot vary « continuously =

there can be no continuous asymptotically flat hairy

deformations of Schwarzschild.

no ghost mode — less derivatives than in the AGS model
Llsolated disjoint solutions are not yet excluded. J
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Deforming Schwarzschild-AdS
=

u = Cr+ou (k= 2,3), deformations stay close to the horizon

-

101 F T T T T T T 7] T T T T
afag 3 u=263
099 - /// T 26 r J,“?;.,;;\:u,}:;—;;;QE‘_—';—;—&"”’ e
0.98 | s 24k \
i D [ u=2.8
07| 2210
", 2 i \\\ 6}"\ — .
096 | . Vo u=2.9
18+ ,‘"\ 3
095 . o u =
. Y/YO 16 F \\//’
0.94 L— 1 1 1 1 1 1 1 1 1
0 1 2 3 5 6 7 0 1 2 4 5

In(rry) In(r/ry)

Ny, Qo, Yy, ag correspond to the background AdS. At large r
there are 3 free parameters — enough for matching,

LN/No = Asin®n/r’ 4+ O(SU), Y/Yy= Asin®n/r’ + O((SU),J
U/Uy = BieM + Bye™", R(A) <0, RO2)<O0.
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Deforming Schwarzschild-dS

-

u = Cy~+ ou with du < 0 (left) and du > 0 (right).

-

2 T T T T T

T 1, |
15 1 T9/30 17 /30,
0 ,/'/
o | -

Lp ;‘ . 05 |

05 -
ID(Q/N) ______ 0

O b e
LB [ U'/QO I ’ éﬂf l

1 n(Q) ‘ n Tij30. T9/30 -
o 02 04 06 08 1 0 02 04 06 08 1 12 14 16 18

In(r/ry) In(r/ry)

Deformations become singular at a finite distance from the
horizon — solutions are compact ‘bags of gold’.

o |
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Generic solutions — arbitrary u

- N

3F

2o u=12
2_
15 F
1

05 M u = 101 i
0 N

05 F

U/

u=-—0.6

0 IZI. 2 3 4 :5 6
In(r/ry)

a1k

1 1 1
7 8 9 10

U’ tends either to zero or to the two AdS values. Solutions
approach either AdS or U, a or they are ‘bags of gold’ — no
new types of behaviour V c3, c4, n > 0.

The only asymptotically flat is pure Schwarzschild.
LThe only asymptotically dS is pure dS. J
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Special solutions forn = 0

o N

G, = 0= f, is Ricci-flat, but it cannot be flat, since it has
to have a horizon = it is fixed and Schwarzschild

dU?
Y2(U)

U202 with  Y(U)=4/1— —

df* = Y*(U)dt? =

There rests to determine U(r) and

dr?
N2(r)

gudrtds” = Q*(r)dt* — — rdQ)?

u 1S the free horizon parameter. « = 1 = Schwarzschild
9w = fuw. FOr u = C1 = new special Schwarzschilds

\
/
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Deforming special Schwarzschild

- N

101 T T T T T T T 101 T T
1F 4

1F
0.99 1

0.99
0.98 1

0.98 f /

0.97 f; / :
097 |- 006 1 |
0.96 ' 0.95 ' '
0 1 0 1 2 3 4 5 6 7 8

In(r/ry)

Tachyonic oscillations around flat metric at infinity

N=146N, Q=1+6Q/r, U=ux+0U

L SN ~ 6Q ~ SU = exp{ivV2m(r + %11’1(7“))} J
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VII. Lumps of pure gravity

M.S.V. arXiv:1202.6682
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Regular center
N

o horizon. At small » one has

3 1
N = 1+ (m2008277(1 —put §u2)> r2 +O(r?),

— 1
Y = 1+m281n277u 2+ O(rh), U = ur + O(r°)

where v = U’(0) is a free parameter = the set of all
solutions Is one parametric, as in the black hole case.

One Iintegrates the equations starting at » = 0 towards large
r. Solutions has a regular core, while for large r they show
the same behaviour as the black holes — asymptotically
either AdS, or U, a, or singular at finite r.

o |
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Globally regular solutions — lumps

-

Asymptotically AdS (left) and asymptotically U, a (right)
QN N/Naps ]
1 -~ oL n 9
Y/N N
: N QN
I a/N u=—1 |
- T (o — a uw=—01
1 Ul e oS U 777777777
0 0.5 1 15 12n(1 —IfST) 3 35 4 0 1 2 fn<1 n TAS 5 6

The same asymptotic behaviour = lumps can be viewed
remnants of hairy black holes in the limit r;, — 0.

o |
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VIII. Asymptotically flat stars and
Vainstein mechanism

M.S.V. arXiV:1202.6682J
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Field equations

- N

One adds 7T"™Wr — diag(p, —P,—P,—P), p(r) = p.(r—ry)
One has

d2_22d7”222 2_22U’2 2 132

and 6 equations for 6 functions ofr: ), N,Y. U, a, P

GY) = mPcos’nTy +p, G- =m?cos’nT" — P,

Go = m’sin®nTy, Gy = m’sin®nT;,
! 2
1 T+ T - T = 0,
B ; N
P = =(p+P)

Hairy black holesand self-accelerating cosmologiesin the bigravity theory — p. 56

Q



A

t small r

Regular center

3 1
N:1+(m2cos277(1—§u—l—§u2)—
22 U—1 9 4
Y =1+ msin“n 5 + O(r"),
U

U = ur + O(r°)

a = ag + O(r?),

P =Ry +0(r),

Q = Qo+ O(r?)

where u, ag, Py, Qo are free parameters.

LOne should have P(r) = 0 for r > r,.

Px

6

) 21 0(rh),

-

|
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Asymptotically flat infinity

Asin?n mr + 1

N =1 + Bcos®n e """,
r r
-2
Y = 1_Asm n—Bsin2n1+mT6_mr
r r
m*r® +mr+1 _
U — T_|_B m2r2 € ’
Asin®n 2B cos?
QO = 1- Slrn 77_|_ C:S ne—mr’
G- 1 Asin’n B 2B sin® 7 -

(A T

A, B are 2 integration constants = there are altogether
4+ 2= 6= enough for matching. o
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Solutions — Vainstein mechanism

- . N

1.02

T
a/Y
0.008 L 1 tfzzzftfzi:fIﬁfﬁﬂfﬂif‘ﬁ:ﬁ‘f;ﬁ_ﬁﬁ - ——=
o8 Q/N e
0.006 S/
0.96 /
-~ N\ ; K /l U/T.
0.004 |y 0.94 L
. ;
,//
/
0.92 /
0.002 /
0.9 | /
0 [ __kf/
| | | | | | | 0.88 | | |
0 0.5 1 15 2 25 3 3.5 0 0.5 1 15 2
In(1+7) In(1+7)

g =N*=1-2M,/r, f"=Y?/U?=1-2M;/r

2 2
r U .
(M,)" = Bl (m?cos* n Ty + p), (M) =U' - m?sin®n Ty .

LO — My, My — Asin®n.  Ifm — 0then M, ~ const = Vainsteth
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L.’

Summary

-

We have studied black holes and cosmologies in the
ghost-free bimetric massive gravity theory.

For non-simultaneously diagonal metrics there are
‘'standard’ Schwarzschild-dS black holes and self
accelerating cosmologies.

There are more exotic cosmological solutions for which
the graviton contribution to the energy can be large and
negative. They can be non-singular at ¢t = 0.

The theory admits also static hairy black holes of
several types (AdS, Ua, compact). They are not
asymptotically flat (apart from pure Schwarzschild) and
reduce to lumps of pure gravity when r;, — 0.

There are also static asymptotically flat solutions with J
matter (stars) exhibiting the Vainstein mechanism.
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Plan

Massive gravity in D=4

Checking Vainstein scenario

Ghost-free theories

Black holes and self-accelerating cosmologies
More exotic cosmologies

Hairy black holes

Lumps of pure gravity

Asymptotically flat stars and Vainstein mechanism

|
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