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Theories with massive gravitons

-

Deformations of GR that explain the observed universe
acceleration, m ~ 1/(cosm. horizon size).

Problems: do not reduce to GR in the weak field when
m — 0 (VdVZ discontinuity), have a ghost, no
uniqueness.

Remedies exist for the VdVZ problem — Vainstein
mechanism. Very recently a class of ghost-free models
has been discovered.

We wish to study cosmologies in these models.
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|. Massive gravity in D=4
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Non-linear Pauli-Fierz

D manifold with two metrics
9 () and for () = nap0, X (2)0, X P ()

ind the action
1 1 9 4
S:? §R-|—m Lint \/—gdZC+S[m]

vhere L;,: IS a scalar function of H% = g% fop — 03

1 (8% « «
Line = ((H L)° — HGHS) + O((HG))
‘heory is not unique, but has a unique weak field limit.

Jnitary gauge, f., = nu, X* = k. J
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EOM

G = m2TW -+ /QQTL[LI;I]

vith
a»C'int
T,LW — 2W _ g,ul/ﬁint-
3lanchi identities =
VT, = 0.

0-4=6=2+4 propagating DOF.

n the unitary gauge, f,., = 1., and for weak fields,
'Iu]/ — nuy + h,UJV’ EOM redUCe tO

|
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Pauli-Fierz equations

-

1 1 .
AOh +...} = 3 m2(hy — b)) + 52T he

applying 0 = 4 constraints 0"h,, — d,h =0

tracing = fifth constraint  3m?h = 2x27™
> 10-5=5 DOF = 2s+1 polarizations of massive graviton.

-Or generic g,,, No scalar constraint = 6-th propagating
tate, has negative norm: Boulware-Deser ghost /'72.

VdvVZ: m — 0, Dh/%) +...= QRQTL[LI,?], Op0) — 27m]

/ainstein: 1% is strongly coupled for » < ry = (r,/m*)!/? J

Ghost-free bigravity theories and their cosmological solutions —p. 7



ll. Ghost free theories
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The dRGT massive gravity
-

V=V g o = 5 = 9" e
4 are eigenvalues of +/,,. The action is

1
R U | v/=gdx
S = e ( +m L[)
vith
{ = by+by ZAA+b2 Z M\ p4-bs Z AMABACHDINA Ao
A<B A<B<C

‘here Is scalar constraint. If only b1 # 0 (b1 = —1) then

GMV T m2 (VILLI/ o 51“/7) =0 J
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Constraints

% AB A B Kk, A
g = €A€B, f,ul/—nABw V'uz/_eAwy

;,Lw = G,LW T m2(7W — g/u/Y) =0 = Vpv] = 0 = /3/2 — g_lf

£ =&l =—R—3m’y =0.

4: 0 = CH=VYEL = m? (V4" — Vi)
2

1: 0 = C=V,((v1)7,c" + % £ =

m2
= m? (VJ {(v 0V, = Vi) ) — d v)

2 2

Zumino 70/ J
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The ghost-free bigravity

-

1 1
= 5o R\/*—gd4x+2—2/7z\/—fd4x—m— U/ —gdr
g iy

+  Swlg, g-matter| + Sy |f, f-matter],

Kg = KCOST), Kf= Ksinm, w“V:\/ngW

U= Zbkuk = bo + b1 EAA + b2 Z AaAB + b3 Z AAABAC + ba AoA1A2A3
A<B A<B<C

1
g I AAHE D beli/=g < Y by Upn/—f
k k

-lat space is the solution and m is the FP mass if only

o0=4c3+c4—6,b1 =3 —3c3 —cq, bg =2¢c3+ c4 — 1, J

3 = —(03 -+ (34), by = c4. /Hassan,Rosen 2011/

Ghost-free bigravity theories and their cosmological solutions

—-p. 11



Field equations

-

GY = mPcos® nTY + T[m;\p, GY = m’sin®n T + T
T — P _§PU 7-/):_\/_97p7
A A A \/jf A
T)[\) = {b1 Uy + boUy + bsUs + by U3},

— {bg Uy + b3 U1 + bs UQ}(VQ)“V
+ {bsUo + balhy }(v)H, — baldy (v,

® Massive gravity for n — 0 if f,, becomes flat.
® g, = f,uz/ = Nuv — Guv = Nuv T 59um f,Lu/ = Nuv T+ 5f,LLI/5

hgﬁags) = COS 110G + SN0 f 0, h&o,/) = €08 10 [,y — sin Mo gWJ
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lll. Proportional backgrounds
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f/w = ng/w = 7, =Cdl,
B

GE 4+ Ag(C) =T™P Gl 4 Ap(C)60 = T™7.

A(C) = 008277(b0—|—3b10—|—3b202—|—b303),

. 9
Af(C) = =5 (b1 +30:C +303C% +b,C?) .

= GV O = A= A, C2, T = 7™, )02 (fine tuning)
\r — Ay/C* = 0 = 4 solutions for C,A.
3=1,c4=03,n=1 = A,={10.126; 0; —0.509; —4.505}.

J=1= A, =0= GR. A, > 0 — self acceleration.
NO massive gravity limit. J

Ghost-free bigravity theories and their cosmological solutions —p. 14



IV. FLRW cosmologies with
non-bidiagonal metrics

(de Sitter sector)
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Spherical symmetry

-

ds, = —Q%dt’+ N%dr® + R*dQ’
ds?e = —(aQdt + cNdr)? + (cQdt — bNdr)* + u*R*dQ?

),N,R,a,b,c,udependont,r,

/ a cN/Q 0 O\
“¢Q/N b 0 0

V= /G for, =

0 0 u 0
\ 0 0 0 u
cN
T9 = ——[(c3 4+ c4)u® + 2(1 — 23 — c4)u+ 3¢z + ¢4 — 3.

Q B
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No radial flux

-

((e3 4+ ca)u® +2(1 —2c3 —cq)u+3cg+c4 —3] =0

1
—_— U = (263—|—C4—1:|:\/1—63—|—C4—|—C§>
C3 + ¢4

= T)=1" =const. =

)
70 TF ~ T —TF = (c3u —u — 3+ 2)((u—a)(u—b) +¢*) =0

\ssuming the latter is true,

=

T T T
T = const x of;, T!" = const x ¢}

|
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Equations

-

(A) G+ Agott = T
(B) G AL =T™
(C) (c3u —u—c3+2)[(u—a)(u—b)+ ] =0
Ay = m?cos®n(1 —u)(csu —u —c3 +3) >0,
— 1
Ay = m?sin? nuuz (csu—c3+2) <0

T, = diag[—p(t), P(t), P(t), P(t)], T =

Chamseddine, M.S.V, ’11/, /d’Amico et al. ’11/, /Kobayashi et al. *12/,
Gratia, Hu, Wyman 12/, /M.S.V. *12/ J
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(A)+ (B)

ds> = —dt* +a*(t) o + r2dQ?
9 1 — kr? ’
dU?
ds% = —A(U)dT? 2407 .
vhere
2 A
a2 (Atp)=—k AU)=1-=Ly?

3

{ow to relate T, U to ¢, ? One had

ds} = —(aQdt + cNdr)? + (cQdt — bNdr)® + u*R*dQ* .

|
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dU
0 — \/ZdT, ol = —, A a (adt + cdr), wl = a (bdr — cdt),

VA

] = uR = ura(t), while 8°, 0 are boost-related to w’, w!

W' =0seca+ 0 tana, w! =0'seca+0tana  (»)

-quating coefficients in front of dt, dr in (x) gives a, b, c,a in
erms of U, A. Inserting to (v — a)(u — b) + ¢* = 0 gives

|
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Consistency

a\/1—kr2(UT' —TU") — u’a +ua\/A+AA =0 (1)

ly =a(AT+U)+VI—kr2(U £ AT, A =124 U2,
] = ura. Exact solutions of (}) are found in the massive
ravity limit, when n = Ay =0, A =1,

dt u?
k=0: T(t,r) = C/——F(E—FCT)

/t V(C? + ku?)(82 + k) dt + Cay/1 — kr?

=41: T(t,r)

> T'(t,r),U(t,r) are found, consistency is fulfilled. J
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Properties of the solutions

-

® g-metric is FLRW with open, closed or flat sections.
Matter-dominated at early times, A-dominated at late
time = self-acceleration. Without matter — de Sitter or
static Schwarzschild-de Sitter /Isham,Story 78/

o f-metric is AdS. When n — 0, Ay ~ sin®n — 0 = f,, IS
flat, massive gravity is recovered.

® |n the massive gravity limit this gives the complete
FLRW solution. In the literature is called
‘iInhomogeneous’, since the fluctuations are expected to
be non-FLRW, although this effect should be
suppressed by smallness of m.

|
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V. FLRW cosmologies with
diagonal metrics

(Vainstein sector)

M.S.V. ’11
M. von Strauss et al. '11
M. Cristosomi et al. '11
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Diagonal metrics

-

d 2
ds?] = —dt* + * (1 Tk 5 T r2dQ2) : k=0,=x1
— kr
ds? = —A%dt? + 2V dr* 2102
Fo ¢ 1 — kr? tr '

-quations (here A,(£), A¢(¢) are polynomials in & = V=)

)2 Ag(&) +pg b _9g W2 MA@+ pr ko

——e

3 15 0 AT T3 4 ()

\nd the conservation condition

(7)) = A () | (b1 + 2bo + bs€?) =0 N
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Generic solutions

-

() = A() ][ =0 = We=04 =
he difference of 2 ODE’s (e) gives algebraic relation
Ag(€) + pg() = EX(Af(&) +ps(R,6)) = €=E(Q). (§)
njecting £(2) back to (e) gives the Friedmann equation
a’+U(a) = —k

vhere a = 2¢'t and U = —(a2/3) (A, + py).
‘here are several roots of () = several types of U(a).
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Physical and exotic cosmologies

_ I I I I I I
0 0.2 0.4 0.6 0.8 1 0 0.5 1 15 2
a a

® physical: p > m?T} for small a, p < m*T} for large a

e exotic: p < m*T}) for any a.
® f,. 1s not flat for » — 0 = no massive gravity limit

|
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Special solutions

= "W~ s constant and satisfies b; + 2b2¢ + b3¢% = 0,
= 268 fulfills

a® — (a°/3)(Ag(€) + pg) = —Fk

> cosmology with constant A,(¢), also

(Ay + pg)a® — 3k
(Af+ pyp)a® — 3k/&?

-or k = —1 (open universe) admits the massive gravity limit
,Ar,pr — 0, fuw — nu = the only ‘truly homogeneous ana
Sotropic’ massive gravity cosmology, although unstable at
ion-linear level. /Mikohyama et al./

A = — foo =

|
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VI. Anisotropic cosmologies with
diagonal metrics

Kei-ichi Maeda, M.S.V. arXiv:1302.6198J
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Bianchi class A types
-

52 = —a(t)2dt? + hy(t) w* @ Wb,  ds? = —A%(£)dt? + Hp(H) w® @ W’
g /
leq,ep) = CC e, CFp = nCdedab, n — diag[n(l), n<2), n(g)]
I 1 Vig | VI | VIII | IX
nM o] 1] 1 1 1 1
n@ 1|10 0] =11 1 1 1
n® 10 0] 0 0 | =11 1

F hay, Hap @re diagonal = GV = GY = 0 = no radial fluxes.

2 2

hay = diaglaf, ay, aj

Ghost-free bigravity theories and their cosmological solutions — p.
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3-curvature and /

-

[0417 052, 043] — €Q X |:€B—|—+\/§67 664—_\/56—7 6—26+i|
[*’417 A27 AB] — €W X |:€B++\/§B’ €B+_\/§B— 7 6_2B+i|

(3) 2n<1>n(3) 1

R = 5 — e~ 1! {n“)oz% — n<2)oz% + n<3)04§}
&2
Ug = b()€3Q + b3€3w

_|_

by eV 129 (6—2(B+—5+) 1+ 2B+ 68+ cosh[v/3(B_ — 5—)])

b2V (62(B+—B+) + 2~ B+=B+) cosh[v/3(B_ — 5_)]) .

_|_

3
R:ag— Aa, Upiby— b, UV—g=al,+ AU |
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a(vv

o
oy

12 OB+

.0
B, ——
t o8B,

Equations

2 5 2 )
3SW ~— -
+<e A) +6

ou SW(B) 3w
— +3AUs | =24’V R +3A€e”Y (pr — Pr) |

(3)
2 sin? neBWZ/lf — "R + 2€6Wpf] :

- 2 SW(B)
2sin“nU — Ae”’VR | .

.0 . 0 .0 .0
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fuw = C*g,, = equal anisotropies

-

isg — _dt? 4 62Q (625++\/§5— d:lj% 4 625+—\/§5— d:lj% 4 6_4ﬁ+d£€§)

= Blanchi |, equations

C 9 1 :
(639 Q) = ai +o? + 3 (Ag + pg) %t 3 By = oy

vhere A, = cos’ n (bo + 3b1 C' 4 3by C? + by 03) =3H",

tan’ N
C

bo + 3b1 C + 3by C* + b3 C?) = (b1 4 3b2C' + 3b3C? + baC?)

Q=Ht+0(e "), |Be =Bs|=pr(c0) +0(e ). »
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Dynamical system formulation

y.N:FN<OfaA7yM)7

vith
yo = e y1 = e+, y2=6\/§5‘,
Yys = ewa Yq = 68+7 Ys = 6\/§B_7
30 30 30
e . e . e .
v = —, yr=—04, ys=—pF_,
@ @ @8
- GBWW _GBWB _GBWB
Yyg = A , Y10 — A +, Y11 — Vi

lus three constraints

Ci(yn) =0, Ca(yn) =0, Cs(yn)=0. J
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Constraints

11 11

. oC : oC

(31: E a—lFNNCQZ E 8—2FNNCS ~ ()
N—o VYN N—o VYN

f C3 = 0 = C1,Co propagate. Does C3 propagate itself ?

11

: oC

C3 = E 5,—3 Fy = aXa(ym) + AXa(ym) =0
N—o VYN

= condition of propagation of all constraints

Xa
A——X—A()é

> It IS enough to impose the constraints only at ¢t = .

|
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Strategy

\t the Iinitial moment ¢ = 0 the universe is an anisotropic
leformation of a finite size FLRW. One chooses ©2(0) =0 =
he initial universe size €' ~ 1 in 1/m units. The initial
nisotropies 5., By, By, B+ ~ 1072, The f-sector is empty,
+ = 0. The g-sector contains radiation + dust,

pg = 0.20 X e ¥ 4 0.25 x ¢3¢

"he dimensionful energy m*M? p, ~ 1071(eV)*, assuming
hat m ~ 10733V,

-or all Bianchi types, the solutions rapidly approach a state
vith a constant expansion rate and constant and non-zero
\nisotropies = late time attractor.

Ghost-free bigravity theories and their cosmological solutions
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Expansion rate and anisotropies

-

0.02

VIII Bianchi IX

0.01

-0.01 |

Il Il Il _0-02 Il Il Il Il Il Il
0 05 1 15 2 0 05 1 15 2 25 3 35
Ht Hit

-or Bianchi | one can scale away the constant values of

i+ = B4, but not for other Bianchi types = universe

jlenerically approaches an anisotropic state, although it
xpands with a constant rate. J
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f-metric and shears

0.06

0.04 |

0.02 -

1 1 O 1 1 1 1 e ——
0 0.5 1 15 0 05 1 15 2 25 3
Ht Hit

3oth A and ¢"V~*! approach the same value = f,, = C%g,,.

light: X = \/6_% + 8% /<), the relative contribution of shears

0 the total energy. If only one or two Hubble times have
lapsed since the acceleration started, then X is not small. J
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Late time anisotropies

2.5
Ht

"he rescaled shears ¢3/25, and %25, oscillate with
onstant amplitudes. Linearizing around f,,, = C?%g,,.,

By ~ By ~ e 312 cos(Hwt) with w = w(C, by, n, H)

'he shear energy

53 +53 ~ e 38 o

1/a° |falls off as the

nergy of a non-relativistic (dark ?) matter. In GR ~ 1/a’. J
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Near singularity behaviour

1 -
05+
: Bianchi IX
0 L
i Si A
Bianchi | a
05+
5 3 25 2 15 1 05 0 2 15 1 05 0
Ht Ht

Vhen continued to the past, the solutions show a

ingularity where both ¢ and ¢V vanish. For Bianchi IX
inisotropies start fluctuating near singularity.

|
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Empty Bainchi IX

empty Bianchi IX

05 small anisotropy

largejanisotropy

-3 -25 -2 -15 -1 -0.5 0

f pg = ps = 0 and anisotropies vanish = de Sitter with a
ounce in the past,

2He' = cosh(t — tp).

-or small anisotropies it is still a bounce, while for larger
\nisotropies a singularity appears.
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Empty Bainchi IX — chaos

10

0,

-10 +

20 +

-30 +

40 b

.50 L

-60

-70 +

-80

empty Bianchi IX

-50

-40 -30 -20 -10
Q

0

Near singularity — a sequence of Kasner-like periods with

o o< tPe with p1—|—p2—|—p3=p%—|—p%—|—p§:1.

Aatter cannot change this, as p grows slower than shears,

1/a% « shear energy = 2 + 32 — 1/a®

Ghost-free bigravity theories and their cosmological solutions
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 types of FLRW self-accelerating cosmologies in bigravity:

a
J
C]

Conclusions

-

fur = C?g,u, require source fine-tuning, p; = p,/C?
bidiagonal, approach [a] at late times when p¢ = p, — 0
non-bidiagonal, admit the limit of flat f-metric

\nisotropic cosmologies approach anisotropic versions of
a]. In GR shear energy ~ 1/a%, while in bigravity it is
- 1/a?, which could perhaps mimic dark matter. The
3ianchi IX bigravity cosmology is chaotic near singularity.

IS unclear if there exist non-bidiagonal anisotropic
0osmologies.

|
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