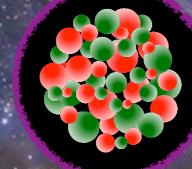
Resolving the Structure of Black Holes



IHES September 19, 2013

Recent work with:

Iosif Bena, Gary Gibbons

Based on Collaborations with:

N. Bobev, G. Dall'Agata, J. de Boer, S. Giusto, Ben Niehoff, M. Shigemori, A. Puhm, C. Ruef, O. Vasilakis, C.-W. Wang

<u>Outline</u>

- Motivation: Solitons and Microstate Geometries
- Smarr Formula: "No Solitons without Horizons"
- Topological stabilization: "No Solitons without Topology"
- Microstates and fluctuations of microstate geometries
- New scales in microstate geometries/black holes
- Conclusions

Solitons versus Particles

Electromagnetism:

- Divergent self-energy of point particles ...
- Self-consistency/Completeness: Motion of particles should follow from action of electromagnetism ...
- * Replace point sources by smooth "lumps" of classical fields
 - ⇒ Mie, Born-Infeld: Non-linear electrodynamics

Yang-Mills

Non-abelian monopoles and Instantons

General Relativity

Non-linearities \Rightarrow new classes of solitons?

Four dimensional GR, electromagnetism + asymptotically flat:

"No Solitons without horizons"

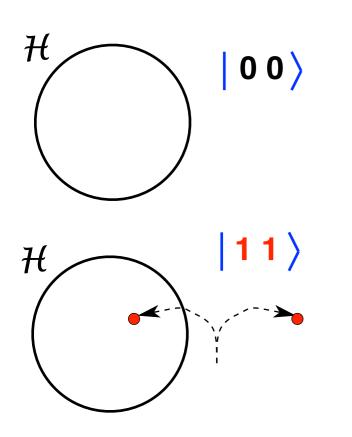
Nearest thing: Extreme, supersymmetric multi-black-hole solutions

Hawking Radiation versus Unitary Evolution of Black Holes

Black hole uniqueness ⇒ Universality of Hawking Radiation Independent of details and states of matter that made the black hole

Complete evaporation of the black hole \Rightarrow

Loss of information about the states of matter that made the black hole



Entangled State of Hawking Radiation

 $\frac{1}{\sqrt{2}} \left(\left| \begin{array}{c} 0 \\ 0 \end{array} \right\rangle + \left| \begin{array}{c} 1 \\ 1 \end{array} \right\rangle \right)$

Evaporation of the black hole: Sum over internal states \Rightarrow Pure state \rightarrow Density matrix

Entanglement of N Hawking quanta with internal black hole state $= N \ln 2$

Complete evaporation + Entanglement \Rightarrow Hawking radiation cannot be described by a simple wave function

Tension of Black hole uniqueness and Unitarity of Quantum Mechanics

Fix with small corrections to GR?

Entangled State of Hawking Radiation

 $\frac{1}{\sqrt{2}} \left(\left| 0 0 \right\rangle + \left| 1 1 \right\rangle \right) + \varepsilon \left(\left| 0 0 \right\rangle - \left| 1 1 \right\rangle \right) + \left(\varepsilon_1 \left| 0 1 \right\rangle + \varepsilon_2 \left| 1 0 \right\rangle \right)$

Restore the pure state over vast time period for evaporation?

Mathur (2009): Corrections cannot be small for information recovery

 \Rightarrow There must be O(1) to the Hawking states at the horizon.

New physics at the horizon scale?

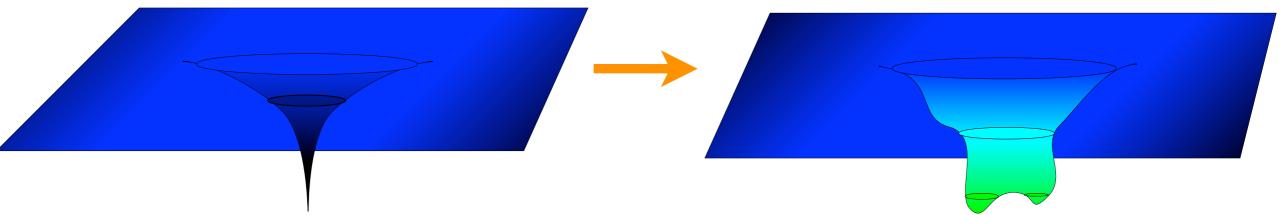
- Is there a way to avoid black holes and horizons in the low energy (massless) limit of string theory = supergravity?
- Can it be done in a manner that looks like a black hole on large scales in four dimensions?

Are there horizonless solitons?

Microstate Geometries:

Definition

- Solution to the bosonic sector of supergravity as a low energy limit of string theory
- Smooth, horizonless solutions with the same asymptotic structure as a given black hole or black ring



Simplifying assumption:

Time independent metric (stationary) and time independent matter <u>Smooth, stable, end-states of stars in massless bosonic sector of string theory?</u>

This is supposed to be impossible because of many no-go theorems:

"No Solitons without horizons"

Intuition: Massless fields travel at the speed of light ... only a black hole can hold such things into a star.

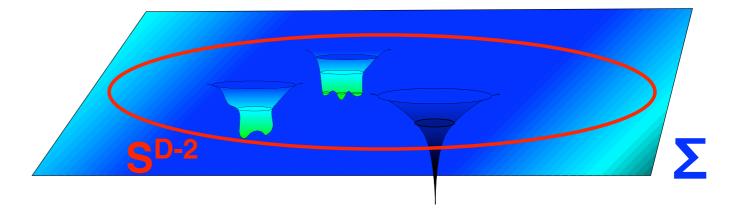
Singularity resolved; Horizon removed

The Komar Mass Formula

In a D-dimensional space-time with a Killing vector, K, that is time-like at infinity one has

$$M = -\frac{1}{16\pi G_D} \frac{(D-2)}{(D-3)} \int_{S^{D-2}} *dK \qquad K = \frac{\partial}{\partial t}$$

where S^{D-2} is (topologically) a sphere near spatial infinity in some hypersurface, Σ .



$$g_{00} = -1 + \frac{16\pi G_D}{(D-2)A_{D-2}} \frac{M}{\rho^{D-3}} + \dots \qquad *dK \approx -(\partial_{\rho}g_{00}) *(dt \wedge d\rho)$$

More significantly

$$d * d\mathbf{K} = -2 * \left(\mathbf{K}^{\mu} \mathbf{R}_{\mu\nu} dx^{\nu} \right) \qquad \mathbf{R}_{\mu\nu} = 8\pi G_D \left(\mathbf{T}_{\mu\nu} - \frac{1}{(D-2)} \mathbf{T} g_{\mu\nu} \right)$$

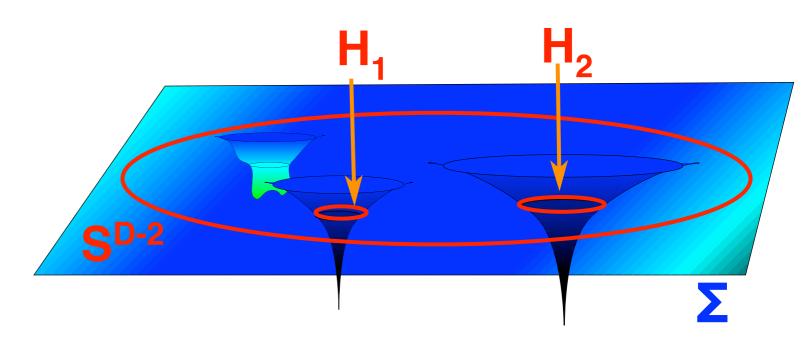
If Σ is smooth with no interior boundaries:

$$M = \frac{1}{8\pi G_D} \frac{(D-2)}{(D-3)} \int_{\Sigma} K^{\mu} R_{\mu\nu} d\Sigma^{\nu} \xrightarrow{} \lim_{\text{linearized}} \approx \int_{\Sigma} T_{00} d\Sigma^{0}$$

Smarr Formula I

More generally, Σ will have interior boundaries that can be located at horizons, H_J.

Excise horizon $\Sigma \to \widetilde{\Sigma}$ interiors:



$$\frac{8\pi G_D (D-3)}{(D-2)} M = \int_{\Sigma} R_{\mu\nu} K^{\mu} d\Sigma^{\nu} + \frac{1}{2} \sum_{H_J} \int_{H_J} *dK$$

Null generators of Kerr-like horizons:

Surface gravity of horizon, K

$$\nabla_a \, \xi^b \; = \; \kappa \, \xi^b$$

$$\xi = K + \vec{\Omega}_H \cdot \vec{L}_H$$

H

 $\Rightarrow \quad \frac{1}{2} \int_{\mathbf{H}} *d\xi = \kappa \mathcal{A}$ ξ^a ^

$$\Rightarrow \quad \frac{1}{2} \sum_{H_J} \int_{H_J} *dK = \sum_{H_I} \left[\kappa_{H_I} \mathcal{A}_{H_I} + 8\pi G_D \, \vec{\Omega}_{H_I} \cdot \vec{J}_{H_I} \right]$$

Vacuum outside horizons:

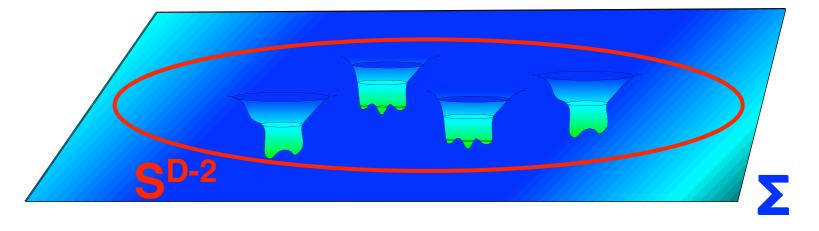
$$\frac{8\pi G_D \left(D-3 \right)}{\left(D-2 \right)} M = \sum_{H_I} \left[\kappa_{H_I} \mathcal{A}_{\mathcal{H}_{\mathcal{I}}} + 8\pi G_D \, \vec{\Omega}_{H_I} \cdot \vec{J}_{H_I} \right]$$

Smarr Formula II: No Solitons Without Horizons

If Σ is smooth with no interior boundaries: $\frac{8\pi G_D (D-3)}{(D-2)} M = \int_{\Sigma} R_{\mu\nu} K^{\mu} d\Sigma^{\nu}$ Goal: Show that $\int_{\Sigma} R_{\mu\nu} K^{\mu} d\Sigma^{\nu} =$ Boundary term (with no contribution at infinity)

Not true for massive fields ... but (almost) true for massless fields

If Σ is a smooth space-like hypersurface populated only by smooth solitons (no horizons) the one must have:



$\mathsf{M}\equiv\mathsf{0}$

Positive mass theorems with asymptotically flatness:

 \Rightarrow Space-time can only be globally flat, $\mathbb{R}^{4,1}$

⇒ "No Solitons Without Horizons"

It all comes down to:

$$M = \frac{1}{8\pi G_D} \frac{(D-2)}{(D-3)} \int_{\Sigma} *_D \left(\frac{K^{\mu} R_{\mu\nu} dx^{\nu}}{D} \right)$$

and "No solitons without horizons" requires showing that

$$*(K^{\mu}R_{\mu\nu}dx^{\nu}) = d(\gamma_{D-2})$$

for some global (D-2)-form, γ .

Bosonic sector of a generic massless supergravity

• Graviton, $\mathbf{g}_{\mu\nu}$ • Scalars, $\Phi^{\mathbf{A}}$ • Tensor gauge fields, $\mathbf{F}_{(\mathbf{p})}^{\mathbf{K}}$ Scalar matrices in kinetic terms: $Q_{JK}(\Phi)$, $M_{AB}(\Phi)$ Bianchi: $d(\mathbf{F}_{(\mathbf{p})}^{\mathbf{K}}) = 0$ Equations of motion: $d*(Q_{JK}(\Phi) \mathbf{F}_{(\mathbf{p})}^{\mathbf{K}}) = 0$ Define: $\mathbf{G}_{J,(\mathbf{D}-\mathbf{p})} \equiv *(Q_{JK}(\Phi) \mathbf{F}_{(\mathbf{p})}^{\mathbf{K}})$ and Q^{JK} by $Q^{IK} Q_{KJ} = \delta^{I}_{J}$ then: $d(\mathbf{F}_{(\mathbf{p})}^{\mathbf{K}}) = 0$ and $d(\mathbf{G}_{J,(\mathbf{D}-\mathbf{p})}) = 0$

Einstein equations:

$$\begin{split} R_{\mu\nu} &= Q_{IJ} \left[F^{I}_{\mu\rho_{1}...\rho_{p-1}} F^{J}_{\nu} {}^{\rho_{1}...\rho_{p-1}} - c \, g_{\mu\nu} F^{I}_{\rho_{1}...\rho_{p}} F^{J\rho_{1}...\rho_{p}} \right] \\ &+ M_{AB} \left[\partial_{\mu} \Phi^{A} \, \partial_{\nu} \Phi^{B} \right] \\ &= a \, Q_{IJ} F^{I}_{\mu\rho_{1}...\rho_{p-1}} F^{J}_{\nu} {}^{\rho_{1}...\rho_{p-1}} + M_{AB} \left[\partial_{\mu} \Phi^{A} \, \partial_{\nu} \Phi^{B} \right] \\ &+ b \, Q^{IJ} \, G_{I \, \mu\rho_{1}...\rho_{D-p-1}} \, G_{J\nu} {}^{\rho_{1}...\rho_{D-p-1}} \\ & \text{for some constants a b and } \end{split}$$

for some constants a,b and c

Time Independent Solutions

Killing vector, K, is time-like at infinity

Assume time-independent matter:

 $K^{\mu}R_{\mu\nu} = a Q_{IJ} K^{\mu} F^{I}_{\mu\rho_1\dots\rho_{n-1}}$

$$\mathcal{L}_{K}F^{I} = 0, \quad \mathcal{L}_{K}\Phi^{A} = 0$$

$$\Rightarrow \quad \mathcal{L}_{K}G_{I} = 0$$

$$F^{J}{}_{\nu}{}^{\rho_{1}\dots\rho_{p-1}} + M_{AB}\left[K^{\mu}\partial_{\mu}\Phi^{A}\partial_{\nu}\Phi^{B}\right]$$

$$+ \ b \, Q^{IJ} \, K^{\mu} \, G_{I \, \mu \rho_1 \dots \rho_{D-p-1}} \, G_{J \, \nu} \, {}^{\rho_1 \dots \rho_{D-p-1}}$$

- $\mathcal{L}_{K}\Phi^{A} = 0 \iff K^{\mu}\partial_{\mu}\Phi^{A} = 0 \implies \text{Scalars drop out of } R_{\mu\nu}K^{\mu}$
- Cartan formula for forms: $\int_{K} \int_{M} \int_{M} \int_{M} d(i_{K}(\omega)) + i_{K}(d\omega)$ $d(F_{(p)}) = 0, \ d(G_{J,(D-p)}) = 0 \implies d(i_{K}(F_{(p)})) = 0, \ d(i_{K}(G_{J,(D-p)})) = 0$
- Ignore topology: $i_{\mathbf{K}}(\mathbf{F}_{(p)}) = d\boldsymbol{\alpha}_{(p-2)}, \quad i_{\mathbf{K}}(\mathbf{G}_{J,(D-p)}) = d\boldsymbol{\beta}_{J,(D-p-2)}$
- Define (D-2)-form, $\gamma_{D-2} = a \alpha_{(p-2)} \wedge G_{J,(D-p)} + b \beta_{J,(D-p-2)} \wedge F_{(p)}^{J}$ Then: $*(K^{\mu}R_{\mu\nu}dx^{\nu}) = d(\gamma_{D-2})$ $\Rightarrow M = 0 \Rightarrow$ "No Solitons Without Horizons"

Omissions:

- Topology
- Chern-Simons terms

Equations of motion in generic massless supergravity:

 $d*(Q_{JK}(\Phi) F_{(p)}^{K}) = Chern-Simons terms$ $\Rightarrow d(G_{J,(D-p)}) = Chern-Simons terms$

 $\Rightarrow *(K^{\mu}R_{\mu\nu}dx^{\nu}) = d(\gamma_{D-2}) + Chern-Simons terms$

⇒ M ~ Topological contributions + Chern-Simons terms

Five Dimensional Supergravity

N=2 Supergravity coupled to two vector multiplets

Three Maxwell Fields, F^{I} , two scalars, X^{I} , $X^{1}X^{2}X^{3} = 1$

$$S = \int \sqrt{-g} d^{5}x \Big(R - \frac{1}{2} Q_{IJ} F^{I}_{\mu\nu} F^{J\mu\nu} - Q_{IJ} \partial_{\mu} X^{I} \partial^{\mu} X^{J} - \frac{1}{24} C_{IJK} F^{I}_{\mu\nu} F^{J}_{\rho\sigma} A^{K}_{\lambda} \bar{\epsilon}^{\mu\nu\rho\sigma\lambda} \Big)$$

$$Q_{IJ} = \frac{1}{2} \operatorname{diag} \left((X^{1})^{-2}, (X^{2})^{-2}, (X^{3})^{-2} \right)$$

Einstein Equations:

$$\mathbf{R}_{\mu\nu} = Q_{IJ} \left[\mathbf{F}^{I}_{\ \mu\rho} \, \mathbf{F}^{J}_{\ \nu}^{\ \rho} - \frac{1}{6} \, g_{\mu\nu} \, \mathbf{F}^{I}_{\ \rho\sigma} \mathbf{F}^{J\rho\sigma} + \partial_{\mu} X^{I} \, \partial_{\nu} X^{J} \right]$$

Generic stationary metric: $ds_5^2 = -Z^{-2} (dt+k)^2 + Z ds_4^2$

Four-dimensional spatial base slices, Σ:

- Assume simply connected
- Topology of interest: $H_2(\Sigma, Z) \neq 0$

Simple connectivity

$$\begin{split} d(i_{K}(F^{I})) &= 0 \implies i_{K}(F^{I}) = d\lambda^{I} & \text{for some functions, } \lambda^{I} \\ K^{\mu}(Q_{IJ}F_{\mu\rho}^{I}F_{\nu}^{J}) &= -\nabla_{\rho}(Q_{IJ}\lambda^{I}F^{J\rho\nu}) + \frac{1}{16}C_{IJK}\epsilon^{\nu\alpha\beta\gamma\delta}\lambda^{I}F_{\alpha\beta}F_{\gamma\delta}^{K} \\ &= \text{Boundary term + Chern-Simons contribution} \\ \underline{\text{Dual 3-forms: }} G_{I} &= *_{5} Q_{IJ}F^{J} & \text{Cartan: } d(i_{K}(G_{I})) = -i_{K}(d(G_{I})) \\ d(G_{I}) &= d * (Q_{IJ}F^{J}) \sim C_{IJK}F^{J} \wedge F^{K} \neq \mathbf{0} \\ \text{Use} & i_{K}F^{J} = d\lambda^{J} \implies i_{K}(C_{ILM}F^{L} \wedge F^{M}) \sim C_{ILM}d(\lambda^{L}F^{M}) \\ \text{Therefore } d\Big(i_{K}(G_{I}) + \frac{1}{2}C_{IJK}\lambda^{J}F^{K}\Big) = 0 \\ &\Rightarrow i_{K}(G_{I}) = d\beta_{I} - \frac{1}{2}C_{IJK}\lambda^{J}F^{K} + H_{I} \\ \text{where } \beta_{I} \text{ are global one-forms and } H_{I} \text{ are closed but not exact two forms} ... \\ K^{\mu}(Q^{IJ}G_{I\mu\rho\sigma}G_{J}^{\nu\rho\sigma}) = -2\nabla_{\rho}(Q^{IJ}\beta_{I\sigma}G_{J}^{\rho\nu\sigma}) - \frac{1}{4}C_{IJK}\epsilon^{\nu\alpha\beta\gamma\delta}\lambda^{I}F^{J}_{\alpha\beta}F^{K}_{\gamma\delta} \\ + Q^{IJ}H_{I}^{\rho\sigma}G_{J\rho\sigma\nu} \end{split}$$

Generalized Smarr Formula

$$R_{\mu\nu} = Q_{IJ} \left[\frac{2}{3} F^{I}_{\mu\rho} F^{J}_{\nu}{}^{\rho} + \partial_{\mu} X^{I} \partial_{\nu} X^{J} \right] + \frac{1}{6} Q^{IJ} G_{I\mu\rho\sigma} G_{J\nu}{}^{\rho\sigma}$$
$$K^{\mu} \partial_{\mu} X^{I} = 0$$

$$\frac{K^{\mu}(Q_{IJ} F^{I}_{\mu\rho} F^{J}_{\nu}{}^{\rho})}{K^{\mu}(Q^{IJ} G_{I\mu\rho\sigma} G_{J}{}^{\nu\rho\sigma})} = -\nabla_{\rho}(Q_{IJ} \lambda^{I} F^{J}{}^{\rho\nu}) + \frac{1}{16} C_{IJK} \epsilon^{\nu\alpha\beta\gamma\delta} \lambda^{I} F^{J}{}_{\alpha\beta} F^{K}{}_{\gamma\delta} + Q^{IJ} G_{I\mu\rho\sigma} G_{J}{}^{\rho\nu\sigma}) - \frac{1}{4} C_{IJK} \epsilon^{\nu\alpha\beta\gamma\delta} \lambda^{I} F^{J}{}_{\alpha\beta} F^{K}{}_{\gamma\delta} + Q^{IJ} H^{\rho\sigma}_{I} G_{J\rho\sigma\nu}$$

$$\Rightarrow K^{\mu}R_{\mu\nu} = -\frac{1}{3}\nabla^{\mu} \left[2Q_{IJ}\lambda^{I}F^{J}{}_{\mu\nu} + Q^{IJ}\beta_{I}{}^{\sigma}G_{J}{}_{\mu\nu\sigma} \right] + \underbrace{\frac{1}{6}Q^{IJ}H^{\rho\sigma}_{I}G_{J\rho\sigma\nu}}_{\text{cohomology}}$$

Chern-Simons contributions cancel!

$$\Rightarrow \quad M = \frac{3}{16\pi G_5} \int_{\Sigma} K^{\mu} R_{\mu\nu} d\Sigma^{\nu} = \frac{1}{16\pi G_5} \int_{\Sigma} H_J \wedge F^J$$
$$i_K(G_I) = d\beta_I - \frac{1}{2} C_{IJK} \lambda^J F^K + H_I$$

No Solitons without Topology

If Σ is a smooth hypersurface with no interior boundaries

$$M = \frac{3}{16\pi G_5} \int_{\Sigma} K^{\mu} R_{\mu\nu} d\Sigma^{\nu} = \frac{1}{16\pi G_5} \int_{\Sigma} H_J \wedge F^J$$

The mass can topologically supported by the cohomology $H^{2}(\Sigma, R)$

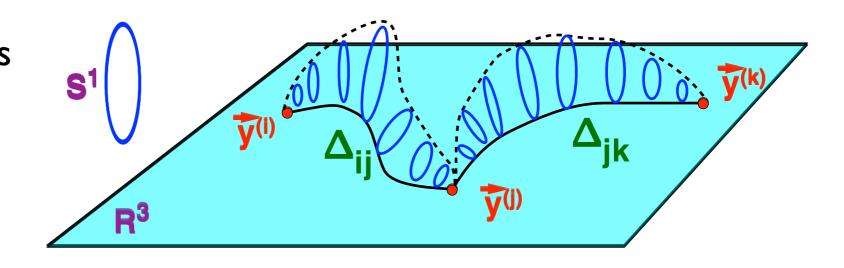
Stationary end-state of star held up by topological flux ...

- Black-Hole Microstate?
- A new object: A Topological Star

Only assumed time independence: Not simply for BPS objects

A Class of BPS Examples

Large families of BPS solutions where the four-dimensional spatial base, Σ , is a circle fibration over flat \mathbb{R}^3 :

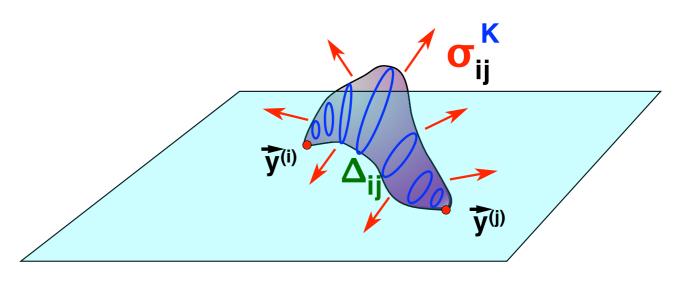


- Fiber pinches off at special points, y = y⁽ⁱ⁾
- Non-trivial 2-cycles, Δ_{ij} : **S**¹ fiber along any curve from $y^{(i)}$ to $y^{(j)}$
- Intersection matrix computed from orientations at intersection points $y^{(i)}$

Fluxes:

 $\sigma_A^K \equiv \sigma_{ij}^K = Flux \text{ of } F^K$ through A^{th} cycle in $H^2(\Sigma, R)$

$$\sigma_{ij}{}^{K} \equiv \int_{\Delta_{ij}} F^{K}$$



Charge and Mass

Chern-Simons Interaction:

$$\nabla_{\rho} \left(Q_{IJ} F^{J\rho}{}_{\mu} \right) = \frac{1}{16} C_{IJK} \epsilon_{\mu\alpha\beta\gamma\delta} F^{J\alpha\beta} F^{K\gamma\delta}$$

<u>Electric Charge</u>, $Q_I \sim$ Intersection of Magnetic fluxes $F^J \wedge F^K$

$$Q_{I} = -C_{IJK} \mathcal{I}^{AB} \sigma_{A}^{J} \sigma_{B}^{K}$$
$$\mathcal{I}^{AB} = \text{Inverse of the Intersection Form}$$

Mass:

$$M = \frac{1}{16\pi G_5} \int_{\Sigma} H_J \wedge F^J \xrightarrow{\text{BPS}} M = -\frac{1}{32\pi G_5} C_{IJK} \alpha^I \int_{\Sigma} F^J \wedge F^K$$

where $\alpha^I \equiv Z(X^I)^{-1} |_{\infty}$ = normalization of U(1) couplings

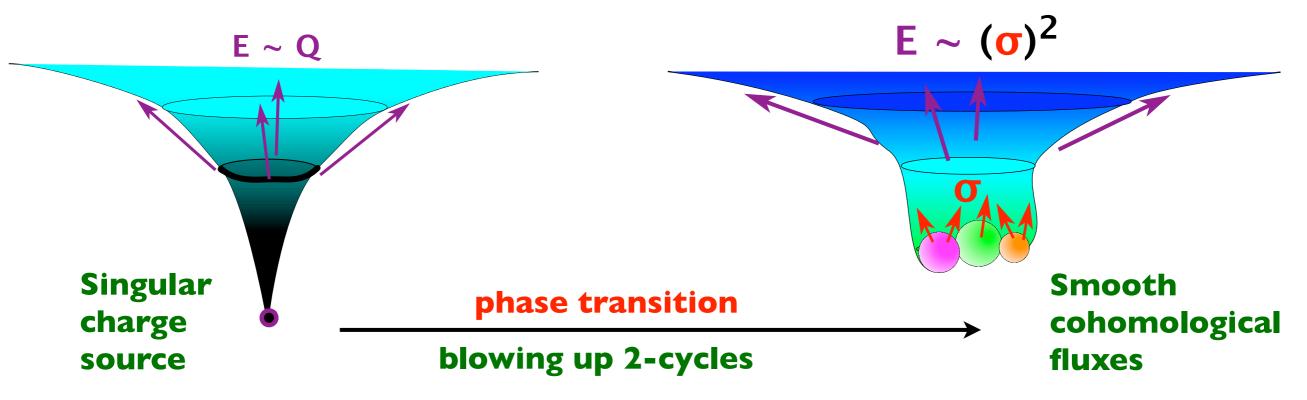
\Rightarrow **M** = $\alpha^{I} Q_{I}$ BPS condition

Mass formula is more general for non-BPS examples

Resolving Black Holes by Geometric Transitions

Standard description of black holes in string theory: Singular brane sources <u>Geometric transitions</u>: Singular brane sources ------> Smooth fluxes

Electric Charge, $\mathbf{Q}_{\mathbf{I}} \sim \mathbf{M}$ agnetic fluxes $\mathbf{O}^{\mathbf{J}} \wedge \mathbf{O}^{\mathbf{K}}$ $\nabla_{\rho} (Q_{IJ} F^{J^{\rho}}{}_{\mu}) = \frac{1}{16} C_{IJK} \epsilon_{\mu\alpha\beta\gamma\delta} F^{J\,\alpha\beta} F^{K\,\gamma\delta}$



New phase of black-hole physics?

Chern-Simons Interaction is also the "dynamical key" to the geometric transition that resolves the singularity and removes the horizon of a black hole

Spin Systems and Bubble Equations

Each 2-cycle, or bubble, has an intrinsic angular momentum:

$$\Gamma_{ij} \equiv \pm \frac{1}{6} C_{IJK} \sigma^{I}_{ij} \sigma^{J}_{ij} \sigma^{K}_{ij}$$

$$\sim (Q_{K} \sigma^{K})_{ij}$$

$$\vec{J}_{ij} = 8 \Gamma_{ij} \frac{\vec{y}_{i} - \vec{y}_{j}}{|\vec{y}_{i} - \vec{y}_{j}|}$$

The Bubble Equations

No closed time-like curves near special points, $y = y^{(i)}$

$$\sum_{j
eq i} \; rac{\Gamma_{ij}}{|ec{y}_i - ec{y}_j|} \; = \; \sigma_i^\infty$$

Fixed fluxes + N points: (N-1) constraints on 3(N-1) variables, $\vec{y}^{(i)}$ (excluding center of mass).

$$\Rightarrow$$
 2(N-1) dimensional moduli space

Rough picture of the classical moduli space

Gravity tends to try to collapse the 2-cycles ...

Bubbles + Flux \Rightarrow Expansion force

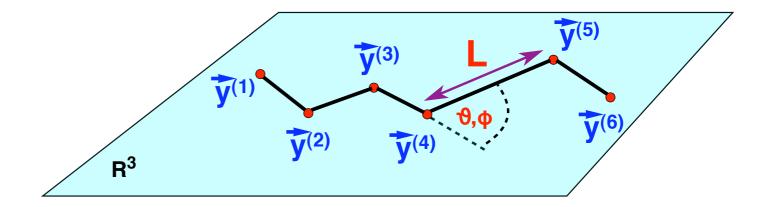
⇒ Equilibrium BPS Configuration

$$\sum_{j
eq i} \; rac{\Gamma_{ij}}{|ec{m{y}}_i - ec{m{y}}_j|} \; = \; \sigma_i^\infty$$

Size of bubble =

Separation of points y⁽ⁱ⁾ when attraction balances fluxes expansion

- Fluxes fix N-1 lengths, "L"
- 2(N-1) moduli: θ, φ ...

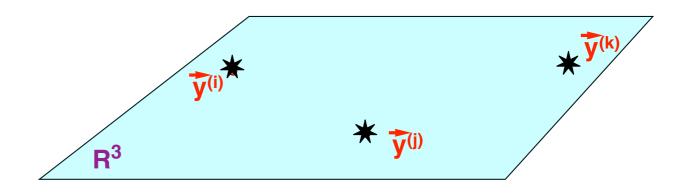


Four Dimensions: Multi-Black Hole Solutions

If the S^1 fiber scale remains finite at infinity then $\Sigma \sim R^3 \times S^1$ and one can compactify to an effective four-dimensional description

The fixed points, y⁽ⁱ⁾, of the S¹ action are singular from a four-dimensional perspective.

⇒ Multi-Black-Hole Solutions



Denef: Quiver Quantum Mechanics

$$\sum_{j
eq i} \; rac{\Gamma_{ij}}{|ec{y}_i - ec{y}_j|} \; = \; \sigma_i^\infty$$

"Integrability conditions"

Rich and complex moduli space:

- Classes of marginally bound configurations
- Walls of marginal stability where some black hole centers fly off to infinity
- Wall crossing formulae for degeneracies of states in dual quiver
- Classes of bound solutions with no walls of marginal stability

Higher-dimensional geometric significance was not appreciated/visible ...

Scaling Solutions

$$\sum_{j
eq i} \; rac{\Gamma_{ij}}{|ec{y}_i - ec{y}_j|} \; = \; \sigma_i^\infty$$

Very important class of solutions to bubble equations where one can have: $|\vec{y}_i - \vec{y}_j| \rightarrow 0$

Simplest example: Three points where the Γ_{ij} satisfy the triangle inequalities:

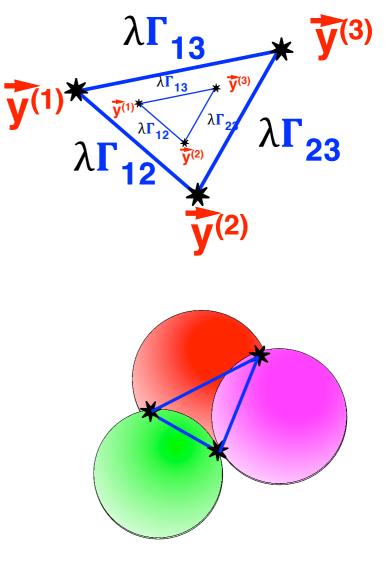
 $\begin{aligned} \left| \Gamma_{13} \right| &\leq \left| \Gamma_{12} \right| + \left| \Gamma_{23} \right| \text{ + permutations} \\ \left| \vec{y}_i - \vec{y}_j \right| &\approx \lambda \left| \Gamma_{ij} \right|, \ \lambda \to 0 \end{aligned}$

Signs of Γ_{ij} cause λ^{-1} terms to cancel in bubble equations

More generally, clusters can scale to zero size in **R**³: Apparently very singular

Homology cycles appear to be collapsing ...

Singular corners of moduli space?



Not from the five dimensional perspective ...

Five Dimensional Geometry of Scaling Solutions

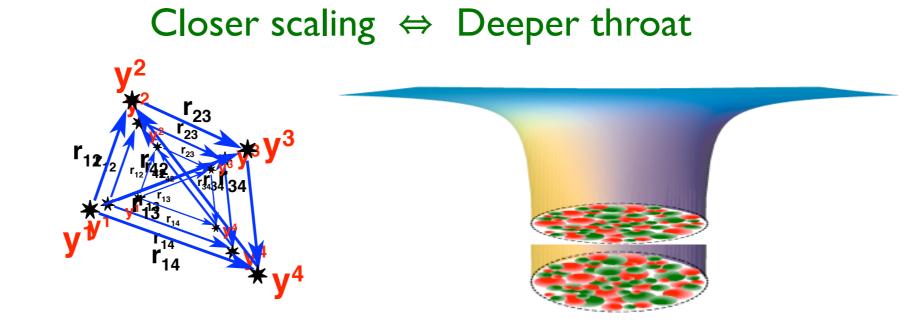
Five-dimensional metric has warp factors:

$$ds_5^2 = -Z^{-2} (dt+k)^2 + Z ds_4^2$$

In scaling limits, Z diverges in precisely the correct manner to open up an $AdS_2 \times S^3$ (or $AdS_2 \times S^3$) throat

Solutions to bubble equations with clusters of points converging:

$$r_{ij} \equiv |\vec{y}_i - \vec{y}_j| \rightarrow 0$$

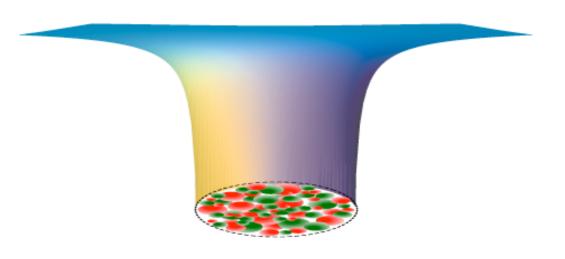


These solutions look exactly like an extremal black hole with a long AdS throat capped off by "bubbled geometry."

Homology cycles limit to a *fixed scale* determined by horizon area

<u>Comments</u>

- Bound states, no walls of marginal stability:(?) Configurations are trapped in long AdS throat ...
- Cycles/bubbles limit to finite size
- The "foam" starts at/extends to the scale of the classical black hole horizon
- They look like classical black holes until one is very close to the horizon
- ★ Macroscopic solutions whose bubbles are much larger than String/Planck scale \Rightarrow Supergravity approximation is valid
- ★ Failure of Black-Hole Uniqueness
- ★ Apply AdS/CFT in throat: These geometries describe black-hole microstates. *"Microstate Geometries*"
- ★ Far more general classes with bubbles whose shapes fluctuate as functions of the extra dimensions
 - ⇒ Capture more black-hole microstate structure



New Parameters for Black Hole Physics?

Two new scales: Classically free parameters

***** The Transition scale, λ_T = Scale of a typical 2-cycle

~ Flux quanta on typical 2-cycle × ℓ_p

★ The Depth of the Throat ~ Maximum Red/Blue shift, **Z**max

<u>Geometry/Holographic Field Theory:</u>

Geometric transition represents a transition to a new infra-red phase

* The Transition Scale:

- Fluxes = VEV of Order parameter of new phase
- Scale of Bubbles = New Dynamically Generated scale of field theory

e.g Holographic duals of N=1 gauge theories Transitioned geometry → Confining phase; fluxes = gaugino condensate

* The Depth of the Throat: Determines Energy gap in dual Field theory

 $E_{gap} \sim (\lambda_{gap})^{-1} \qquad \lambda_{gap} = redshifted wavelength, at infinity of lowest mode of bubbles at the bottom of the throat.$

Quantization of Geometries: The Energy Gap

Bena, Wang and Warner, arXiv:0706.3786 de Boer, El-Showk, Messamah, Van den Bleeken, arXiv:0807.4556 arXiv:0906.0011

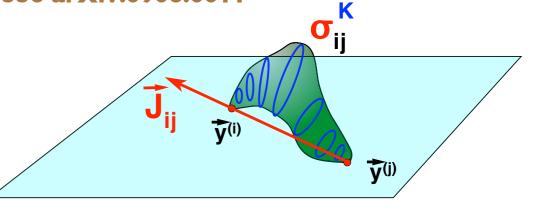
Each bubble has an intrinsic angular momentum

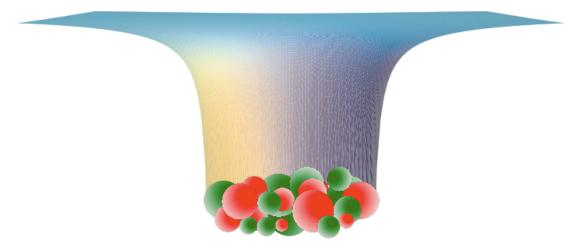
Semi-classical quantization of moduli space: ⇔ quantizing these angular momenta

 \Rightarrow The y⁽ⁱ⁾ cannot be precisely localized

The depth of the AdS throat is a very sensitive function of the orientations of these angular momenta and quantization can make vast, macroscopic changes in geometry

- \Rightarrow Semi-classical quantization
 - Limits throat depth: Fixes Maximum Red/Blue shift, z_{max} , and sets E_{gap} in the dual field theory
 - Cuts off or "compactifies" phase-space volume of long throats.
 - Can wipe out vast regions of smooth geometry in which curvature is small and supergravity is a good approximation





Non-BPS Microstate Geometries

Many examples of extremal, non-BPS microstate geometries

A handful of non-extremal microstate geometries ...

Jejjala, Madden, Ross and Titchener, hep-th/0504181

Non-extremal microstate geometries: A completely open problem ...

Smarr formula in five dimensions: Self-dual fluxes, σ^+ , anti-self-dual fluxes, σ^-

 $M = |\sigma^+|^2 + |\sigma^-|^2$ $Q = |\sigma^+|^2 - |\sigma^-|^2$

BPS ⇔ purely self-dual or purely anti-self-dual cohomology ..

Many five-dimensional axi-symmetric BPS examples: $U(1)^2 \times R$ symmetry Five-dimensional axi-symmetric, non-extremal solutions with $U(1)^2 \times R$ symmetry?

Effectively a two-dimensional problem: Can be reduced to a scalar coset

- Apply inverse scattering methods?
- Care with topology + Chern-Simons terms

BPS Fluctuating Bubbled Geometries

The geometric transition stabilizes a fuzzball against gravity and makes microstate geometries possible ... this happens at scales $\sim \lambda_{T}$

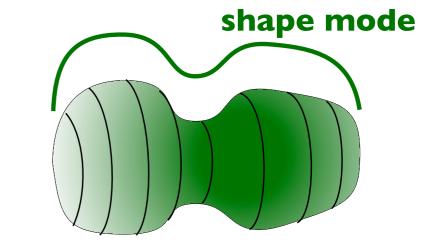
Bubbled geometries can have BPS shape fluctuations that depend upon "transverse/internal dimensions." These shape fluctuations can go down to E_{gap} and/or the Planck scale, ℓ_p .

Huge amount of entropy lies in the shape fluctuations... Is it enough to give a semi-classical picture of the black-hole entropy?

Extensive work in five-dimensions: **BPS** shape fluctuations on 2-cycles depend upon functions of one variable:

Expect entropy like that of a supertube

 $S \sim \sqrt{Q_1 Q_2} \sim Q$



BPS black holes in five-dimesions: **S** ~ Q^{3/2}

Such fluctuating geometries as *functions one variable* cannot capture the sufficient of dynamics underpinning the black hole entropy ...

BPS Microstate Geometries in Six Dimensions

Extra circle is now fibered over every five-dimensional 2-cycle \Rightarrow 3-cycle.

Make the fluctuating cycles in five-dimensions also depend upon new U(1) fiber ... and still be a BPS state?

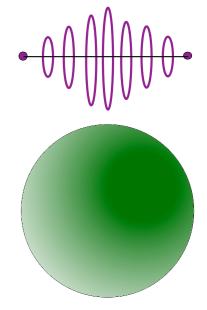
<u>Conjectured object</u> Bena, de Boer, Shigemori and Warner, 1107.2650 The superstratum:

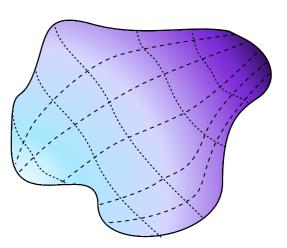
Completely new class of BPS soliton is six dimensions

- New class of solitonic bound state in string theory
- Completely smooth (microstate geometry)
- Defined by a topological 3-cycle fluctuates as *functions two variables*

Construction of examples?

S~Q^{3/2}???





Final Comments

- <u>Microstate Geometry program</u>: Classify and study smooth, horizonless solutions to supergravity. A much richer subject than previously expected Miraculous existence through spatial topology and Chern-Simons terms
- Emerge from geometric transitions:
 Singular brane sources → Smooth cohomological fluxes
 New phase of black hole ... bubbles start before horizon forms
- Mechanism for supporting matter before a horizon forms
- Generalized "no go" theorem for semi-classical solitons in string theory: If the space-time is even remotely classical, then only topological fuzz at the horizon scale can support a soliton: No Solitons without Topology
- Transition scale, λ_T = Scale of individual bubbles: Not fixed classically, large values entropically favored? λ_T >> ℓ_P ?
- Fluctuations of transitioned geometries: Scale Egap. Capture the entropy?
- Multiple scales: The Horizon scale, M; The Transition scale, λ_T ; The Energy Gap, $E_{gap} = (\lambda_{gap})^{-1}$; The Planck Length, ℓ_p .

Microstate Geometries give a beautiful geometric realization of these ideas