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Solitons versus Particles

Electromagnetism:

‣  Self-consistency/Completeness:  Motion of particles should follow 
    from  action of electromagnetism ... 

‣  Divergent self-energy of point particles ... 

★ Replace point sources by smooth “lumps” of classical fields

Mie, Born-Infeld:  Non-linear electrodynamics⇒ 

General Relativity

Non-linearities  ⇒  new classes of solitons?

Four dimensional GR, electromagnetism + asymptotically flat:  

“No Solitons without horizons”

Yang-Mills

•  Non-abelian monopoles and Instantons

Nearest thing:  Extreme, supersymmetric multi-black-hole solutions



Hawking Radiation versus Unitary Evolution of Black Holes

Black hole uniqueness   ⇒   Universality of Hawking Radiation
Independent of details and states of 
matter that made the black hole

Entangled State of Hawking Radiation
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Evaporation of the black hole:  
     Sum over internal states ⇒  

Pure state  →  Density matrix

Complete evaporation of the black hole ⇒   
      Loss of information about the states of matter that made the black hole

Entanglement of N Hawking quanta with 
internal black hole state  = N ln 2

Complete evaporation + Entanglement  ⇒  
      Hawking radiation cannot be described by a simple wave function

Tension of Black hole uniqueness and Unitarity of Quantum Mechanics



Mathur (2009):    Corrections cannot be small for information recovery

  ⇒  There must be O(1) to the Hawking states at the horizon.  

Fix with small corrections to GR?
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Restore the pure state over vast time period for evaporation?

Entangled State of Hawking Radiation

• Is there a way to avoid black holes and horizons in the low energy  
   (massless) limit of string theory = supergravity?

• Can it be done in a manner that looks like a black hole on large
   scales in four dimensions?

Are there horizonless solitons?

New physics at the horizon scale?



Microstate Geometries:  
Definition

‣  Smooth, horizonless solutions with the same asymptotic structure as a 
    given black hole or black ring

‣  Solution to the bosonic sector of supergravity as a low energy limit
    of string theory

Simplifying assumption:

Singularity resolved; Horizon removed 

‣  Time independent metric (stationary) and time independent matter

Smooth, stable, end-states of stars in massless bosonic sector of string theory?

 This is supposed to be impossible because of many no-go theorems:

Intuition:  Massless fields travel at the speed of light ... only a black hole can hold 
such things into a star.

“No Solitons without horizons”



The Komar Mass Formula
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Smarr Formula I
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More generally, Σ will have 
interior boundaries that can 
be located at horizons, HJ.
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Smarr Formula II:  No Solitons Without Horizons

Goal:     Show that 

Z

⌃
Rµ⌫K

µ d⌃⌫
=  Boundary term   
    (with no contribution at infinity)

If Σ is a smooth space-like 
hypersurface populated only 
by smooth solitons (no 
horizons) the one must have:

⇒ 

M ≡ 0

 Space-time can only be globally flat, R4,1

⇒  “No Solitons Without Horizons”  .... 

 Positive mass theorems with asymptotically flatness:

✦ Not true for massive fields ... but (almost) true for massless fields
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It all comes down to:
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and “No solitons without horizons” requires showing that

for some global (D-2)-form, γ.



Bosonic sector of a generic massless supergravity

•  Graviton, gμν •   Tensor gauge fields,  F(p)K•   Scalars,  ΦA

Scalar matrices in kinetic terms: QJK(Φ), MAB(Φ)

Equations of motion:  d❋(QJK(Φ) F(p)K) = 0
Bianchi:   d(F(p)K ) = 0

Einstein equations:
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Time Independent Solutions
Killing vector, K, is time-like at infinity

Assume time-independent matter: LK�A = 0LKF I = 0 ,

⇔ Rµ⌫K
µScalars drop out of ⇒Kµ@µ�
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LKGI = 0⇒

+ MAB

h
Kµ @µ�

A @⌫�
B
i

+ bQIJ Kµ GI µ⇢1...⇢D�p�1
GJ⌫

⇢1...⇢D�p�1

aQIJ Kµ F I
µ⇢1...⇢p�1

F J
⌫
⇢1...⇢p�1KµRµ⌫ =

• 

0

• Cartan formula for forms: LK! = d(iK(!)) + iK(d!)

d(F(p)I) = 0,  d(GJ,(D-p)) = 0 ⇒ d(iK(F(p)I)) = 0,   d(iK(GJ,(D-p))) = 0 

• Ignore topology: iK(F(p)I)  =  dα(p-2)I ,   iK(GJ,(D-p))  =  dβJ,(D-p-2)

• Define (D-2)-form, γD-2 = a α(p-2)J ∧ GJ,(D-p) + b βJ,(D-p-2) ∧ F(p)J
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Omissions:

• Topology

• Chern-Simons terms

 d❋(QJK(Φ) F(p)K)  =  Chern-Simons terms

Equations of motion in generic massless supergravity: 

⇒  d(GJ,(D-p)) = Chern-Simons terms

⇤(Kµ
Rµ⌫dx

⌫) = d(�D�2)⇒ + Chern-Simons terms

⇒  M  ~  Topological contributions + Chern-Simons terms



Five Dimensional Supergravity

N=2 Supergravity coupled to two vector multiplets
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Four-dimensional spatial base slices, Σ:  

• Assume simply connected

• Topology of interest:  H2(Σ,Z) ≠ 0
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Generalized Smarr Formula
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No Solitons without Topology

M =
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If Σ is a smooth hypersurface with no interior boundaries

The mass can topologically supported by the cohomology H2(Σ,R)

SD-2 Σ

Stationary end-state of star held up by topological flux ... 

 •  Black-Hole Microstate?

 •  A new object: A Topological Star

Only assumed time independence: Not simply for BPS objects



A Class of BPS Examples

Large families of BPS solutions 
where the four-dimensional 
spatial base, Σ, is a circle 
fibration over flat R3:
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y(i)

y(j)

y(k)

R3

S1

y(i)

y(j)

y(k)

Δij Δjk
R3

S1

• Non-trivial 2-cycles, Δij:  S1 fiber along any curve from y(i)  to y(j)

• Fiber pinches off at special points, y = y(i)

• Intersection matrix computed from orientations at intersection points y(i)

σAK ≡ σijK  = Flux of FK 
through Ath cycle in H2(Σ,R)

y(i)

y(j)

Δij

σij
 K

�ij
K ⌘

Z
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Fluxes: 



Charge and Mass
Chern-Simons Interaction:
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Electric Charge, QI  ~  Intersection of Magnetic fluxes FJ ⋀ FK  

IAB ≡  Inverse of the Intersection Form 
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BPS

where ↵I ⌘ Z (XI)�1
��
1  = normalization of U(1) couplings 

M  =  αI QI⇒  BPS condition 

Mass formula is more general for non-BPS examples



Resolving Black Holes by Geometric Transitions

Chern-Simons Interaction is also the “dynamical key” to the geometric transition 
that resolves the singularity and removes the horizon of a black hole

E ~ Q E ~ (σ)2

σ

Electric Charge, QI      

Singular 
charge 
source 

Smooth 
cohomological 
fluxesblowing up 2-cycles

phase transition

~      Magnetic fluxes σJ ⋀ σK  

r⇢

�
QIJF

J⇢
µ

�
= 1

16 CIJK ✏µ↵��� F
J ↵� FK ��

Standard description of black holes in string theory:  Singular brane sources

Geometric transitions:  Singular brane sources        Smooth fluxes

New phase of black-hole physics?



Spin Systems and Bubble Equations

Each 2-cycle, or bubble,  has an intrinsic angular momentum:
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The Bubble Equations

No closed time-like curves 
near special points, y = y(i)

X
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 (excluding center of mass).
Fixed fluxes + N points: (N-1) constraints on 3(N-1) variables, y(i)  

2(N-1) dimensional moduli space⇒



y(i)

y(j)
Δij

Rough picture of the classical moduli space

Bubbles + Flux  ⇒ Expansion force 

⇒  Equilibrium BPS 
     Configuration 

Gravity tends to try to collapse the 2-cycles ... 

Size of bubble = 
Separation of points y(i) when attraction balances fluxes expansion

y(1)

y(2)

y(3)

y(4)

y(5)
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L

R3

ϑ,φ

•  Fluxes fix N-1 lengths, “L”

•  2(N-1) moduli:  θ, ϕ ...
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Four Dimensions:  Multi-Black Hole Solutions
If the S1 fiber scale remains finite at infinity then Σ ~ R3 × S1 and one can 
compactify to an effective four-dimensional description

The fixed points, y(i), of the S1 action 
are singular from a four-dimensional 
perspective. 
   ⇒ Multi-Black-Hole Solutions

y(i)

y(j)

y(k)

R3

Denef:  Quiver Quantum Mechanics

X

j 6=i

�ij

|~yi � ~yj |
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i “Integrability conditions”

• Classes of marginally bound configurations
• Walls of marginal stability where some black hole centers fly off to infinity
• Wall crossing formulae for degeneracies of states in dual quiver
• Classes of bound solutions with no walls of marginal stability

Rich and complex moduli space:  

Higher-dimensional geometric significance was not appreciated/visible ... 



Scaling Solutions
Very important class of solutions to 
bubble equations where one can have: 

X
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Simplest example:  Three points where 
the Γij satisfy the triangle inequalities:
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More generally, clusters can scale to zero size 
in R3:    Apparently very singular .... 
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  Homology cycles appear to be collapsing ... 

Singular corners of moduli space? 

Not from the five dimensional perspective ... 

Signs of Γij cause  λ-1 terms to cancel in 
bubble equations



Solutions to bubble 
equations with clusters 
of points converging:
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These solutions look exactly like  an extremal black hole with a long AdS 
throat capped off by “bubbled geometry.”

ds25 = � Z�2 (dt+ k)2 + Z ds24

Five Dimensional Geometry of Scaling Solutions

Five-dimensional metric has warp factors:

In scaling limits, Z diverges in precisely the correct manner to open up an 
AdS2 × S3 (or AdS2 × S3) throat

Closer scaling  ⇔  Deeper throat

Homology cycles limit to a fixed scale determined by horizon area



★ Bound states, no walls of marginal 
   stability:(?)  Configurations are trapped 
   in long AdS throat ... 

★ Macroscopic solutions whose bubbles are much larger than 
   String/Planck scale  ⇒  Supergravity approximation is valid

★ They look like classical black holes until 
   one is very close to the horizon

★ The “foam” starts at/extends to the 
    scale of the classical black hole horizon

★ Failure of Black-Hole Uniqueness 

★ Apply AdS/CFT in throat:  These geometries describe black-hole microstates.

Comments

★ Far more general classes with bubbles
   whose shapes fluctuate as functions of 
   the extra dimensions

⇒  “Microstate Geometries”

⇒  Capture more black-hole microstate structure

★ Cycles/bubbles limit to finite size



New Parameters for Black Hole Physics?
Two new scales:  Classically free parameters

Geometry/Holographic Field Theory:  

★ The Transition scale, λT  =  Scale of a typical 2-cycle 

    ~  Flux quanta on typical 2-cycle × lp
★ The Depth of the Throat  ~  Maximum Red/Blue shift, zmax

λgap =  redshifted wavelength, at infinity of lowest 
mode of bubbles at the bottom of the throat.     

★ The Depth of the Throat:   Determines Energy gap in dual Field theory 

Geometric transition represents a transition to a new infra-red phase 

e.g Holographic duals of N=1 gauge theories 
     Transitioned geometry  ➞  Confining phase; fluxes = gaugino condensate

★ The Transition Scale:      

• Fluxes = VEV of Order parameter of new phase

•  Scale of Bubbles = New Dynamically Generated scale of field theory

Egap ~  (λgap)-1  



Quantization of Geometries:  The Energy Gap

The depth of the AdS throat is a very sensitive 
function of the orientations of these angular 
momenta and quantization can make vast, 
macroscopic changes in geometry

Semi-classical quantization of moduli space:  
⇔  quantizing these angular momenta

⇒

y(i)

y(j)

σij
 K

Jij

Each bubble has an intrinsic angular momentum

• Limits throat depth: Fixes Maximum Red/Blue shift, zmax, and sets
   Egap in the dual field theory
• Cuts off or “compactifies” phase-space volume of long throats.  
• Can wipe out vast regions of smooth geometry in which curvature is 
   small and supergravity is a good approximation 

Semi-classical quantization

Bena,  Wang and Warner,  arXiv:0706.3786
 de Boer,  El-Showk, Messamah,  Van den Bleeken,  arXiv:0807.4556 arXiv:0906.0011

The  y(i) cannot be precisely localized⇒



Non-BPS Microstate Geometries
Many examples of extremal, non-BPS microstate geometries

A handful of non-extremal microstate geometries ...  
Jejjala,  Madden,  Ross and Titchener,   hep-th/0504181

Non-extremal microstate geometries: A completely open problem ... 

Many five-dimensional axi-symmetric BPS examples:  U(1)2 × R symmetry 

Effectively a two-dimensional problem:  Can be reduced to a scalar coset

• Apply inverse scattering methods?

• Care with topology + Chern-Simons terms 

Five-dimensional axi-symmetric,  non-extremal solutions with U(1)2 × R 
symmetry?

Smarr formula in five dimensions:

Q = |�+|2 � |��|2M = |�+|2 + |��|2
Self-dual fluxes, σ+, anti-self-dual fluxes, σ- 

BPS   ⇔ purely self-dual or purely anti-self-dual cohomology .. 



BPS Fluctuating Bubbled Geometries

The geometric transition stabilizes a fuzzball against gravity and makes 
microstate geometries possible ...  this happens at scales ~ λT

Bubbled geometries can have BPS shape fluctuations that depend upon 
“transverse/internal dimensions.”  These shape fluctuations can go down to 
Egap  and/or the Planck scale, lp.

Extensive work in five-dimensions:  
BPS shape fluctuations on 2-cycles 
depend upon functions of one variable:  

Huge amount of entropy lies in the shape fluctuations... 
Is it enough to give a semi-classical picture of the black-hole entropy?    

Expect entropy like that of a supertube

S ⇠
p

Q1 Q2 ⇠ Q

shape mode

S ~ Q3/2   BPS black holes in five-dimesions:

Such fluctuating geometries as functions one variable cannot capture the 
sufficient of dynamics underpinning the black hole entropy ... 



BPS Microstate Geometries in Six Dimensions

The superstratum: 
Conjectured object Bena, de Boer, Shigemori and Warner, 1107.2650

Extra circle is now fibered over every 
five-dimensional 2-cycle  ⇒  3-cycle.  

Make the fluctuating cycles in five-dimensions also depend 
upon new U(1) fiber ... and still be a BPS state?

Completely new class of BPS soliton is six dimensions

• Completely smooth (microstate geometry)

• Defined by a topological 3-cycle 
  fluctuates as functions two variables

S ~ Q3/2   ???

• New class of solitonic bound state  in string theory

Construction of examples? 



Final Comments
• Microstate Geometry program: Classify and study smooth, horizonless   
  solutions to supergravity.  A much richer subject than previously expected

• Emerge from geometric transitions:  
  Singular brane sources → Smooth cohomological fluxes
  New phase of black hole ... bubbles start before horizon forms

• Fluctuations of transitioned geometries:  Scale Egap.  Capture the entropy?

Miraculous existence through spatial topology and Chern-Simons terms   

• Mechanism for supporting matter before a horizon forms

• Transition scale, λT = Scale of individual bubbles: 
  Not fixed classically, large values entropically favored?  λT >>  lp ?

• Generalized “no go” theorem for semi-classical solitons in string theory: 
  If the space-time is even remotely classical, then only  topological fuzz  
  at the horizon scale can support a soliton: No Solitons without Topology 

• Multiple scales:  The Horizon scale, M;  The Transition scale, λT;  
                          The Energy Gap, Egap = (λgap)-1;  The Planck Length, lp.

Microstate Geometries give a beautiful geometric realization of these ideas


