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1 Dramatis personæ

For |q| < 1, let

η(q) ≡ q1/24
∏
n>0

(1− qn) =
∑
n∈Z

(−1)nq(6n+1)2/24

then for =z > 0,
η(exp(2πiz)) = (i/z)1/2η(exp(−2πi/z)).

If f(z) = (
√
−N/z)wf(−N/z), we say that f is a modular form of weight w and level N .

∆(q) ≡ η(q)24 =
∑
n>0

A(n)qn = q−24q2 + 252q3−1472q4 + 4830q5−6048q6−16744q7 + . . .

is a modular form of weight 12 and level 1. Moreover its Fourier coefficients A(n) are
multiplicative, with A(mn) = A(m)A(n) when gcd(m,n) = 1. Finally for prime p there
is a simple rule for obtaining A(pn) from A(p):

L(s) ≡
∑
n>0

A(n)

ns
=
∏
p

1

1− A(p)p−s + p11−2s
.

Note that −1472 = A(4) = 242− 211 and −6048 = A(6) = −24× 252. This product form
leads to the analytic continuation

Λ(s) ≡ Γ(s)

(2π)s
L(s) =

∑
n>0

A(n)
∫ ∞
1

dx
(
xs−1 + x11−s

)
exp(−2πx) = Λ(12− s)

with an easy integral for integer s ∈ [1, 11]. Only two of these 11 L-values are independent,
since 1620Λ(3) = 691Λ(1), 14Λ(5) = 9Λ(3), 48Λ(4) = 25Λ(2) and 5Λ(6) = 4Λ(4).
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1.1 Multiplicative modular forms with level 1

To count these, consider the Eisenstein series defined, for n > 0, by

E2n(q) ≡ 1− 4n

B2n

∑
k>0

k2n−1qk

1− qk

where the Bernoulli numbers yield −4n/B2n = −24, 240,−504, 480,−264, 65520/691, for
n = 1 . . . 6. Then E2 is not modular, since (qd/dq)∆ = E2∆ is not. For n > 1, E2n is
modular, with weight 2n, but is not multiplicative, since it does not vanish at q = 0.

∆ =
E3

4 − E2
6

1728

is both modular and multiplicative. Note that 1728 = 3× 240 + 2× 504. For n > 3, E2n

is a rational polynomial of E4 and E6. For example: E8 = E2
4 , E10 = E4E6,

E12 =
441E3

4 + 250E2
6

691
, E14 = E2

4E6, E16 =
1617E4

4 + 2000E4E
2
6

3617
.

Let Mw be the number of multiplicative modular forms with weight w and level 1. Then

∑
w>0

Mwx
w =

x12

(1− x4)(1− x6)
= x12 + x16 + x18 + x20 + x22 + 2x24 . . .

with ∆ at w = 12, none at w = 14, E4∆ at w = 16, E6∆ at w = 18, E2
4∆ at w = 20,

E4E6∆ at w = 22 and two independent modular forms at w = 24, namely E3
4∆ and E2

6∆.
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1.2 Relations between eta values

For brevity, let ηn(q) ≡ η(qn). Then η1 and η2 are algebraically independent. Yet

η242 = η81η
8
4(η81 + 4η84)

relates {η1, η2, η4} and is the basis for the process

(an+1, bn+1) =

(
an + bn

2
,
√
anbn

)

of the arithmetic–geometric mean (AGM) devised by Gauss for rapid computation of

2

π

∫ π/2

0

dθ

(a0 sin2 θ + b0 cos2 θ)1/2
=

1

agm(a0, b0)
=

1

a∞
=

1

b∞
.

There is a more ornate relation between {η1, η2, η3}. Let

F2(x) ≡ (x+ 8)(x− 1)2

x
, F3(y) ≡ (y2 + 6y − 3)2

y
.

Then, by a method to be explained later, one may obtain the algebraic relation,

26F2

(
29(η2/η1)

24
)

= 33F3

(
35(η3/η1)

12
)
.

Replacing q by q2, one may relate {η2, η4, η6} and eliminate η4 in favour of {η1, η2}. Thus
there are two algebraic relations between {η1, η2, η3, η6}. We shall see that these are
perfectly tuned to allow evaluation of a massive Feynman diagram.
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1.3 Multiplicative modular forms and eta products

For levels N < 16, there are precisely 15 multiplicative modular forms that are products
of eta values. Here they are listed with notes on quantum field theory (QFT):

form weight level QFT
η21η

2
11 2 11

η1η2η7η14 2 14
η1η3η5η15 2 15
η31η

3
7 3 7 BS

η21η2η4η
2
8 3 8 BS

η32η
3
6 3 12 BS + BBBG + BV : Sections 3 and 4

η41η
4
5 4 5 BS

η21η
2
2η

2
3η

2
6 4 6 BS + BB : Sections 3 and 5

η42η
4
4 4 8

η83 4 9
η41η

2
2η

4
4 5 4 BS

η61η
6
3 6 3 BS

η122 6 4 BS
η81η

8
2 8 2 BS

η241 12 1 BK : Section 2

with 10 of these 15 already exposed as participants in QFT, thanks to work by Brown
and Schnetz (BS), Bailey, Borwein, Broadhurst and Glasser (BBBG), Bloch and Vanhove
(BV), Broadhurst and Brown (BB), Broadhurst and Kreimer (BK). The absence of weight-
2 examples is remarkable: does QFT avoid Birch and Swinnerton–Dyer?
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1.4 Multiplicative modular forms and lattice sums

Moreover, QFT has links to a pair of multiplicative modular forms that involve lattice
sums. With ingenuity one may reduce these to combinations of eta products or quotients.

From BBBG and BB, we find a multiplicative modular form with w = 3 and N = 15:

f3,15 ≡ η1η3η5η15
∑
j,k∈Z

qj
2+jk+4k2 = (η3η5)

3 + (η1η15)
3

with a remarkable evaluation as a sum of cubes of eta products.

At w = 6 and N = 6, QFT led me to a multiplicative modular form

f6,6 ≡ (η1η2η3η6)
2

∑
j,k,l,m∈Z

qj
2+jk+k2q2(l

2+lm+m2)

with a lattice sum that factorizes. This too may be written as a sum of cubes:

f6,6 =

(
η32η

3
3

η1η6

)3

+

(
η31η

3
6

η2η3

)3

.

These two modular forms will be used in Section 5 to evaluate Feynman integrals.
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2 Modular forms and multiple zeta values

In 1996, Dirk Kreimer and I (BK) arrived at a conjectural enumeration of irreducible
multiple zeta values (MZVs), graded by weight and depth. Let Dw,d be the number of
MZVs with weight w and depth d that are not reduced by the double–shuffle algebra to
MZVs of lesser weight and depth and their products. From extensive data with d < 4,
and sparser data at higher depths, we conjectured that

∏
w>2

∏
d>0

(1− xwyd)Dw,d = 1− y x3

1− x2
+ y2(1− y2) x12

(1− x4)(1− x6)
.

It is now proven, at the motivic level, that any difference between the left and right hand
sides must be of order y4. Moreover it must vanish at y = 1, where Brown and Zagier
(BZ) have proven an enumeration that is blind to depth. Blümlein, Vermaseren and I
(BBV) have checked the conjecture for depths d < 9 and weights w < 27, by laborious
methods. Francis Brown indicates that further checking may be done more efficiently.

If the BK conjecture be true, it sets a fine puzzle. Why should a count of modular forms

∑
w>0

Mwx
w =

x12

(1− x4)(1− x6)
= x12 + x16 + x18 + x20 + x22 + 2x24 . . .

furnish the bizarre final term of our empirical Ansatz? Is this coincidence significant?
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3 Polylogs and modular forms in φ4 theory

The standard model of particle physics involves all three of the interactions that are
renormalizable, yet not trivially super-renormalizable, in D = 4 spacetime dimensions:

1. φ4 self-coupling of the Higgs boson,

2. Yukawa couplings of the Higgs boson to fermions,

3. gauge couplings of vector bosons to the Higgs boson and to fermions.

In 1985, I studied a 6-loop diagram (see blackboard) that contributes to the 4-point
amplitude for Higgs scattering. Its counterterm contributes to the running of the Higgs
self-coupling. It is the first 6-loop entry in the recent census by Schnetz (S). I conjectured
that the relevant period (B) is:

P6,1 = 168ζ(9)

and Natalia Ussyukina (U) proved this in 1991. In 2012, BS proved a BK conjecture for
all such zigzag diagrams.

3.1 Counterterms reducible to polylogs

In 1995, Dirk Kreimer and I (BK) identified all periods for φ4 primitive divergences up
to 6 loops. At 7 loops we lacked three evaluations. Since then I have determined two of
these, as follows.
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P7,8 =
22383

20
ζ(11)− 4572

5
[ζ(3)ζ(5, 3)− ζ(3, 5, 3)]− 700ζ(3)2ζ(5)

+ 1792ζ(3)
[
27

80
ζ(5, 3) +

45

64
ζ(5)ζ(3)− 261

320
ζ(8)

]
P7,9 =

92943

160
ζ(11)− 3381

20
[ζ(3)ζ(5, 3)− ζ(3, 5, 3)]− 1155

4
ζ(3)2ζ(5)

+ 896ζ(3)
[
27

80
ζ(5, 3) +

45

64
ζ(5)ζ(3)− 261

320
ζ(8)

]
with indices of MZVs written in the order adopted by Zagier, by Borwein, Bradley, Broad-
hurst and Lisonek (BBBL), and in the extensive MZV datamine (BBV):

ζ(5, 3) ≡
∞∑
m=2

1

m5

m−1∑
n=1

1

n3
.

In these two case, the methods of BS allowed the possibility that the periods might
involve alternating sums. In fact they do not. One sheep remains lost: the period P7,11

in the census has not yet been reduced to MZVs. BS suggest that it might eventually be
reduced to polylogs of weight 11 at sixth roots of unity. Such polylogs result from massive
diagrams at lesser weights (B).

3.2 Panzer’s reductions to MZVs

To calculate counterterms at L loops, it is usually sufficient to obtain the ε expansions of
two-point diagrams, at L− 1 loops in D = 4− 2ε dimensions, up to weight 2L− 3.
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In May 2013, Erik Panzer (P) showed that the dressing (see blackboard) of many two-
point diagrams by propagator sub-divergences does not take one beyond the realm of
MZVs. As a concrete example, consider the 3-loop non-planar two-point diagram, whose
ε-expansion was previously known to weight 7. Now it is known up to weight 9:

N3(ε) = 20ζ5 +
(

80

7
ζ32 + 68ζ23

)
ε+

(
408

5
ζ3ζ

2
2 + 450ζ7

)
ε2 +

(
102228

125
ζ42 − 2448ζ3ζ5

−9072

5
ζ5,3

)
ε3 +

(
88036

9
ζ9 −

4640

3
ζ33 −

10336

7
ζ32ζ3 +

19872

5
ζ22ζ5

)
ε4 + . . .

with ζ5,3 ≡
∑
m>n>0 1/(m5n3) appearing at weight 8. Even more impressively, he has

shown that at 3 loops no dressing of internal lines by subdivergences can modify the
polylogarithmic character of the ε-expansion. Specifically, he proves that the only non-
MZV terms that might occur would be alternating Euler sums. As in BS cases at weight
11, no such alternating sum has yet emerged from a massless two-point diagram.

3.3 Brown–Schnetz modular obstructions

In April 2013, Francis Brown and Oliver Schnetz (BS) announced results of a fascinating
study that classifies obstructions to polylogarithmic evaluations of φ4 counterterms at 8,
9 and 10 loops. In 16 cases they were able to exhibit a modular form, inferred from study
of the Symanzik polynomial, modulo a selection of primes. In 9 cases, listed in Section 1,
the modular form was both multiplicative and reducible to an eta product. Here I select
for particular attention φ4 diagrams (see blackboard) that led BS to these modular forms

f3,12 ≡ (η2η6)
3 and f4,6 ≡ (η1η2η3η6)

2.
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4 Sunrise in two spacetime dimensions

Here I consider the two-loop massive sunrise diagram in D = 2 spacetime dimensions:

I(p2,m1,m2,m3) ≡
1

π2

(
3∏

k=1

∫ d2qk
q2k −m2

k + iε

)
δ(2)(p− q1 − q2 − q3)

with a Minkowski metric: p2 ≡ p20 − p21 where p0 is the energy and p1 is the momentum.

4.1 A Bessel moment in configuration space

For 0 < w < m1 +m2 +m3, configuration space yields BBBG’s Bessel moment:

I(w2,m1,m2,m3) = 4
∫ ∞
0

I0(wy)K0(m1y)K0(m2y)K0(m3y)ydy.

4.2 Algebraic geometry in Schwinger parameter space

Algebraic geometers prefer Feynman integrals in parameter space, where Schwinger gives

I(w2,m1,m2,m3) =
∫ ∞
0

∫ ∞
0

dx dy

P (x, y, 1)

with momentum conservation achieved by setting, for example, z = 1 in

P (x, y, z) = (m2
1x+m2

2y +m2
3z)(xy + yz + zx)− w2xyz.

I shall not use this representation, here. Yet I respect Spencer Bloch’s preference for it.
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4.3 Cut constructibility in momentum space

Following BBBG, we obtain an efficient result from the imaginary part on the cut:

I(w2,m1,m2,m3) = 8π
∫ ∞
m1+m2+m3

A(x)xdx

x2 − w2

where

A(w) =
1

agm
(√

F (w),
√
F (w)− F (−w)

)
is the reciprocal of an AGM governed by the quartic

F (w) = (w+m1 +m2 +m3)(w+m1−m2−m3)(w−m1 +m2−m3)(w−m1−m2 +m3)

studied by Davydychev and Delbourgo (DD) and conveniently satisfying

F (w) = F (−w) + 16m1m2m3w.

4.4 Wronskian from Legendre

The sunrise integral satisfies an inhomogeneous second–order differential equation whose
homogeneous form is satisfied by A(w). The complementary solution is

B(w) =
1

agm
(√

F (w),
√
F (−w)

) .
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W (w) = A′(w)B(w)− A(w)B′(w) =
N1(w) +N2(w) +N3(w)

πwF (w)F (−w)

is the Wronskian of the homogeneous equation, easily found by using Legendre’s relation
between elliptic integrals. The Wronskian of F (w) with F (−w) yields

N1(w) = (w2 −m2
1)

2 − (m2
2 −m2

3)
2

with N2(w) and N3(w) obtained by cyclic permutation of masses. Müller–Stach, Weinzierl
and Zayadeh (MWZ) have determined the inhomogeneous term.

4.5 Bloch–Vanhove q-series in the equal–mass case

From now on, we assume that m1 = m2 = m3 = 1. Then F (w) = (w+ 3)(w−1)3 and the
Wronskian is W (w) = 3/(πw(w2 − 1)(w2 − 9)). We define q(w) ≡ exp(−πB(w)/A(w)),
which is the nome of the elliptic integral resulting from the Dalitz plot (in this case a
Dalitz line). Then the inhomogeneous differential equation, found with Jochem Fleischer
and Oleg Tarasov (BFT) in 1993, may be written as

−
(
q(w)

q′(w)

d

dw

)2 (
I(w2, 1, 1, 1)

24
√

3A(w)

)
=
w2(w2 − 1)(w2 − 9)A(w)3

9
√

3
.

At a seminar on 6 June 2013, in Berlin, Spencer Bloch announced the stunning result
that he and Pierre Vanhove (BV) had solved this BFT equation, using q-series. I now
show how to recover the BV result, without using the algebraic geometry that inspired it.
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Regarding w and A(w) as functions of q, we obtain from Maier (M) the parametric solution

w

3
=

(
η3
η1

)4 (
η2
η6

)2

, 4
√

3A =
η61η6
η32η

2
3

.

Moreover, the two algebraic relations between {η1, η2, η3, η6} may be written as

w2 − 1

8
=

(
η2
η1

)9 (
η3
η6

)3

,
w2 − 9

72
=

(
η6
η1

)5
η2
η3
,

whose resultant w.r.t. η6 was given in Section 1. Hence the BFT equation reduces to

−
(
q

d

dq

)2 (
I

24
√

3A

)
=
w

3
f3,12 =

(
η33
η1

)3

+

(
η36
η2

)3

where f3,12 ≡ (η2η6)
3 is the weight-3 level-12 modular form found in φ4 theory by BS and

the sum of cubes yields Lambert q-series given by Borwein and Borwein (B&B) in 1991.

Now define a character with χ(n) = ±1 for n = ±1 mod 6 and χ(n) = 0 otherwise. Then

−
(
q

d

dq

)2 (
I

24
√

3A

)
=
∑
n>0

n2(qn − q5n)

1− q6n
=
∑
n>0

∑
k>0

n2χ(k)qnk.

Integrating twice and using the known imaginary part on the cut, I recover the BV result

I(w2, 1, 1, 1)

4A(w)
= C(−1)− C

(
e−πB(w)/A(w)

)
, C(q) = π log(−q) +

∑
k>0

6
√

3χ(k)qk

k2(1− qk)
,

where the Clausen value C(−1) = −5 Cl2(π/3) makes I(1, 1, 1, 1) finite. So we are done.
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5 Modular forms and higher–loop on–shell sunrises

In two dimensions, equal–mass on–shell sunrise diagrams and massive vacuum banana
diagrams (see blackboard) are examples of Bessel moments studied by BBBG:

SN,L ≡ 2L
∫ ∞
0

I0(y)N−L−1K0(y)L+1ydy

where N is the total number of Bessel functions and L is the number of loops. For
convergence, we require that L < N ≤ 2L+ 2. With N = 2L+ 2 we require that L > 1.
BBBG proved that:

S1,0 = S2,1 = 1, S3,1 =
2π

3
√

3
, S3,2 =

4 Cl2(π/3)√
3

, S4,2 =
π2

4
, S4,3 = 7ζ(3),

S5,2 =
π2

8

(√
15−

√
3
)∑

n∈Z
e−
√
15πn2

4

=

√
3

120π

3∏
k=0

Γ

(
2k

15

)

where the final product of Gamma values results from the Chowla–Selberg theorem. We
also conjectured (and checked to 1000 digits) that

S5,3 =
4π√
15
S5,2, S6,4 =

4π2

3
S6,2, S8,5 =

18π2

7
S8,3.
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5.1 Sunrise at 3 loops from a modular form of weight 3

Let L3,15(s) be the Dirichlet L-function defined by the multiplicative modular form

f3,15 = (η3η5)
3 + (η1η15)

3

with weight 3 and level 15. Then I conjecture (and have checked to 1000 digits) that

S5,2 = 3L3,15(2), S5,3 =
8π2

15
L3,15(1),

where S5,3 is the 5-Bessel moment giving the on-shell 3-loop sunrise diagram.

5.2 Sunrise at 4 loops from a modular form of weight 4

Let L4,6(s) be the Dirichlet L-function defined by the multiplicative modular form

f4,6 = (η1η2η3η6)
2

with weight 4 and level 6. Then I conjecture (and have checked to 1000 digits) that

S6,2 = 6L4,6(2), S6,3 = 12L4,6(3), S6,4 = 8π2L4,6(2),

where S6,4 is the 6-Bessel moment giving the on-shell 4-loop sunrise diagram.
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5.3 Almost sunrise at 6 loops from a modular form of weight 6

Let L6,6(s) be the Dirichlet L-function defined by the multiplicative modular form

f6,6 =

(
η32η

3
3

η1η6

)3

+

(
η31η

3
6

η2η3

)3

with weight 6 and level 6. Then I conjecture (and have checked to 1000 digits) that

S8,3 = 8L6,6(3), S8,4 = 36L4,6(4), S8,5 = 216L4,6(5),

but lack a result for S8,6, the 8-Bessel moment giving the on-shell 6-loop sunrise diagram.

6 Massive bananas

6.1 Schwinger’s bananas

Let A be the diagonal N × N matrix with entries Ai,j = δi,jαi. Let U be the column
vector of length N with unit entries, Ui = 1. Then B = UŨ is the N×N matrix with unit
entries, Bi,j = 1. The banana diagram with N + 1 edges of unit mass, in two space-time
dimensions, may be evaluated by Schwinger’s trick as a multiple of the N -dimensional
integral

V N+1 =
∫
αi>0

dα1 . . . dαN
Det(A+B)(Tr(A) + 1)

(1)
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where

Det(A+B) =
N∑
i=0

1

αi

N∏
j=0

αj

is the first Symanzik polynomial, with α0 = 1 fixed by momentum conservation, and the
second Symanzik polynomial

Tr(A) + 1 =
N∑
i=0

αi

results from the fact that the N + 1 edges are propagators with unit mass.

6.2 Bessels’s bananas

We may also evaluate banana diagrams in x-space, since the two-dimensional Fourier
transform of the p-space Euclidean propagator 1/(p2 +m2), with p2 = p20 + p21, yields the
Bessel function K0(mx), with x2 = x20 + x21. The normalization in (1) corresponds to

V N+1 = 2N
∫ ∞
0

[K0(t)]
N+1t dt (2)

which differs by a power of 2 from the Bessel moments that I studied with Bailey, Borwein
and Glasser.

Hence I but a bar over V and use the subscript N + 1 to indicate the number of Bessel
functions.
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6.3 Known bananas

V 1 = 1

V 2 = 1

V 3 = 3L−3(2)

V 4 = 7ζ(3)

where

L−3(s) =
∑
n≥0

(
1

(3n+ 1)s
− 1

(3n+ 2)s

)

is the Dirichlet L function with conductor −3.

6.4 Unknown banana

The next diagram has 5 edges and hence 4 loops. After an easy first integration, we obtain

V 5 =
∫ ∞
0

∫ ∞
0

∫ ∞
0

M(a, b, c) da db dc

(ab+ a+ b)c2 + (ab+ a+ b)(a+ b)c+ (a+ b)ab

with

M(a, b, c) = log(a+ b+ c+ 1) + log
(

1 +
1

a
+

1

b
+

1

c

)
.
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But then integration over c will produce complicated dilogarithms with arguments involv-
ing the square root of the discriminant

D(a, b) = (ab+ a+ b)(a+ b)(ab(a+ b) + (a− b)2)

of the quadratic in c. The result will have the form

V 5 =
∫ ∞
0

∫ ∞
0

L2(a, b)da db√
D(a, b)

with undisclosed dilogs in L2(a, b). Integration by parts, to reduce the dilogs to logs,
would require us to introduce an elliptic function, since D(a, b) is a quartic in b.

We know nothing about the number theory of V 5. Its value is known to 1000 decimal
places.

6.5 Cut bananas

For N > 2 we may cut an edge in V N and set the two external half edges on the unit
mass shell, which is at p2 = −1. I call the result SN . It has N − 1 internal edges and
hence N − 2 loops.
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6.6 Schwinger’s cut bananas

At N loops, the integral over Schwinger parameters is

SN+2 =
∫
αi>0

dα1 . . . dαN

Det(A+B)Tr(A) + ŨCU
. (3)

where C is the adjoint of A+B, with

(A+B)C = Det(A+B)I

where I is the unit matrix with Ii,j = δi,j. The denominator in (3) is the second Symanzik
polynomial.

6.7 Bessels’s cut bananas

In x-space, cutting an edge and putting it on the mass shell corresponds to replacing one
instance of the Bessel function K0(t) by I0(t), to obtain

SN+2 = 2N
∫ ∞
0

I0(t)[K0(t)]
N+1t dt (4)

at N loops.
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6.8 Known cut bananas

S3 = 2L−3(1) =
2π

3
√

3

S4 = Li2(1)− Li2(−1) =
π2

4

and it is conjectured that

S5
?
=

1

30
√

5
Γ
(

1

15

)
Γ
(

2

15

)
Γ
(

4

15

)
Γ
(

8

15

)
(5)

which holds to at least 1000 decimal places.

6.9 Cut banana at the 15th singular value

At three loops, we have

S5 =
∫ ∞
0

∫ ∞
0

∫ ∞
0

da db dc

P (a, b, c)

where
P (a, b, c) = (abc+ ab+ bc+ ca)(a+ b+ c) + (ab+ bc+ ca)

with the final term, (ab + bc + ca), resulting from the adjoint matrix. Grouping powers
of c, we see that

P (a, b, c) = (ab+ a+ b)c2 + (ab+ a+ b)(a+ b+ 1)c+ (a+ b+ 1)ab
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yields a discriminant

∆(a, b) = (ab+ a+ b)(a+ b+ 1)((ab+ a+ b)(a+ b+ 1)− 4ab)

and the integral over c gives

S5 =
∫ ∞
0

∫ ∞
0

da db√
∆(a, b)

log

(
1 +X(a, b)

1−X(a, b)

)

with

X(a, b) =

√
1− 4ab

(ab+ a+ b)(a+ b+ 1)
.

The conjecture for S5 was stimulated by a proven result for

T 5 ≡ 4
∫ ∞
0

[I0(t)]
2[K0(t)]

3t dt =
∫ ∞
0

∫ ∞
0

da db√
∆(a, b)

namely

T 5 =

√
3

120π
Γ
(

1

15

)
Γ
(

2

15

)
Γ
(

4

15

)
Γ
(

8

15

)
(6)

obtained at the 15th singular value.
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7 L-series of a K3 surface from 5 Bessels

For s > 2 let

L(s) =
∏
p

1

1− Ap

ps
+
(
p
15

)
p2

p2s

where
(
·
15

)
is a Kronecker symbol, the product is over all primes p, and

A3 = −3,

A5 = 5,

Ap = 0, for
(
p

15

)
= −1,

Ap = 2x2 + 2xy − 7y2, for x2 + xy + 4y2 = p ≡ 1, 4 mod 15, (7)

Ap = x2 + 8xy + y2, for 2x2 + xy + 2y2 = p ≡ 2, 8 mod 15, (8)

with pairs of integers (x, y) defined, for x > 0, by the quadratic forms in (7,8).

The L-series

L(s) =
∑
n>0

An
ns

is generated by the weight-3 modular form

f3(q) = η(q)η(q3)η(q5)η(q15)
∑

m,n∈Z
qm

2+mn+4n2

=
∑
n>0

Anq
n (9)
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I now describe how I was able to evaluate 20000 good digits of the conditionally convergent
series L(2) =

∑
n>0An/n

2. Let

Λ(s) =
Γ(s)

cs
L(s), with c =

2π√
15
.

Then we have the functional equation Λ(s) = Λ(3− s), which may be used to extend the
Mellin transform

Λ(s) =
∑
n>0

An

∫ ∞
0

dx

x
xs exp(−cnx) (10)

throughout the complex s-plane, as follows

Λ(s) =
∑
n>0

An

(
Γ(s, cnλ)

(cn)s
+

Γ(3− s, cn/λ)

(cn)3−s

)
(11)

where

Γ(s, y) =
∫ ∞
y

dx

x
xs exp(−x)

is the incomplete Γ function and λ ≥ 0 is an arbitrary real parameter. To establish (11),
I remark that it agrees with (10), at λ = 0, and that its derivative with respect to λ
vanishes by virtue of the inversion symmetry

M(λ) ≡ λ3/2
∑
n>0

An exp(−cnλ) = M(1/λ).

Optimal convergence is achieved at λ = 1. Setting s = 2, we obtain
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L(2) ≡
∑
n>0

An
n2

=
∑
n>0

An
n2

(
1 +

4πn√
15

)
exp

(
− 2πn√

15

)
(12)

from which I obtained more than 20000 good digits in less than a minute, by computing
the first 30000 terms, with the aid of (7,8). The result is consistent with the conjecture

3L(2)
?
= T 5 (13)

≡ 4
∫ ∞
0

[I0(t)]
2[K0(t)]

3t dt (14)

=
∫ ∞
0

∫ ∞
0

da db√
(ab+ a+ b)(a+ b+ 1)((ab+ a+ b)(a+ b+ 1)− 4ab)

(15)

=
π2

8

(√
15−

√
3
)(

1 + 2
∑
n>0

exp
(
−
√

15πn2
))4

(16)

=

√
3

120π
Γ
(

1

15

)
Γ
(

2

15

)
Γ
(

4

15

)
Γ
(

8

15

)
(17)

?
=

√
15

4π
S5 (18)

8 L-series for 6 Bessel functions

We are interested in relating Bessel moments of the form

V N = 2N−1
∫ ∞
0

[K0(t)]
N t dt, for N > 0, (19)
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SN = 2N−2
∫ ∞
0

I0(t)[K0(t)]
N−1t dt, for N > 2, (20)

TN = 2N−3
∫ ∞
0

I20 (t)[K0(t)]
N−2t dt, for N > 4, (21)

UN = 2N−4
∫ ∞
0

I30 (t)[K0(t)]
N−3t dt, for N ≥ 6, (22)

WN = 2N−5
∫ ∞
0

I40 (t)[K0(t)]
N−4t dt, for N ≥ 8, (23)

to L-series derived from modular forms. To high precision, we have the conjectural rela-
tions

S5
?
=

4π√
15
T 5 (24)

S6
?
=

4π2

3
U6 (25)

T 8
?
=

18π2

7
W 8 (26)

with a notable appearance of 7 in the denominator on the right hand side of (26).

Francis Brown suggested that the weight-4 modular form

f4(q) =
[
η(q)η(q2)η(q3)η(q6)

]2
=
∑
n>0

A4,nq
n (27)

might yield an L-series

L4(s) =
∑
n>0

A4,n

ns
=

1

1 + 21−s
1

1 + 31−s

∏
p>3

1

1− A4,p

ps
+ p3

p2s
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with values related to the problem with 6 Bessel functions. Note that A4,1 = 1, since
2(1 + 2 + 3 + 6) = 24.

Then, at s = 2 and s = 3, I obtained the very convenient formulas

L4(2) =
∑
n>0

A4,n

n2

(
2 +

4πn√
6

)
exp

(
−2πn√

6

)
(28)

L4(3) =
∑
n>0

A4,n

n3

(
1 +

2πn√
6

+
2π2n2

3

)
exp

(
−2πn√

6

)
(29)

and hence computed 20000 good digits of (28,29) in less than 100 seconds. Then the
conjectural evaluations

S6
?
= 48ζ(2)L4(2)

T 6
?
= 12L4(3)

U6
?
= 6L4(2)

were discovered and checked at 1000-digit precision.
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9 L-series for 8 Bessel functions

Next, Francis Brown provided the first 100 Fourier coefficients of a weight-6 modular form∑
n>0A6,nq

n, whose L-series

L6(s) =
∑
n>0

A6,n

ns
=

1

1− 22−s
1

1 + 32−s

∏
p>3

1

1− A6,p

ps
+ p5

p2s

was expected to yield values related to the problem with 8 Bessel functions. His data may
be condensed down to the values

-66, 176, -60, -658, -414, 956, 600, 5574, -3592, -8458, 19194, 13316, -19680,

-31266, 26340, -31090, -16804, 6120, -25558, 74408, -6468, -32742, 166082

of A6,p for the primes p = 5, 7, . . . , 97. From this, I inferred a modular form∑
n>0

A6,nq
n = g(q)g(q2) (30)

g(q) =
[
η(q)η(q3)

]2 ∑
m,n∈Z

qm
2+mn+n2

(31)

Proceeding along the lines of the 6-Bessel problem I accelerated the convergence of

L6(3) =
∑
n>0

A6,n

n3

(
2 +

4πn√
6

+
2π2n2

3

)
exp

(
−2πn√

6

)
, (32)

L6(4) =
∑
n>0

A6,n

n4

(
1 +

2πn√
6

+
4π2n2

9
+

4π3n3

9
√

6

)
exp

(
−2πn√

6

)
, (33)
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L6(5) =
∑
n>0

A6,n

n5

(
1 +

2πn√
6

+
π2n2

3
+

2π3n3

9
√

6
+
π4n4

27

)
exp

(
−2πn√

6

)
. (34)

The resulting fits

T 8
?
= 216L6(5) (35)

U8
?
= 36L6(4) (36)

W 8
?
= 8L6(3) (37)

are rather satisfying. Moreover, I discovered that

L6(5)
?
=

4

7
ζ(2)L6(3) (38)

10 The problem of 7 Bessel functions

It would be neat if we could find a weight-5 modular form f5(q) =
∑
n>0A5,nq

n, whose
L-series, L5(s) =

∑
n>0A5,n/n

s, might yield a rational multiple of U7, at s = 3, and a
rational multiple of T 7, at s = 4.

My first guess was modelled on the results with 5 and 8 Bessel functions, which involved
the lattice sums.
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Consider the weight-5 modular form

f5(q) =
∑
n>0

A5,nq
n =

[
η(q)η(q7)

]3 ∑
m,n∈Z

qm
2+mn+2n2

2

(39)

with A5,1 = 1, since 3(1 + 7) = 24. Then convergence of the L-series

L5(s) =
∑
n>0

A5,n

ns
=

1

1− 72−s

∏
p 6=7

1

1− A5,p

ps
+
(
p
7

)
p4

p2s

may be accelerated, as before, to compute

L5(3) =
∑
n>0

A5,n

n3

(
1 +

3πn√
7

+
4π2n2

7

)
exp

(
−2πn√

7

)
(40)

L5(4) =
∑
n>0

A5,n

n4

(
1 +

2πn√
7

+
2π2n2

7
+

8π3n3

21
√

7

)
exp

(
−2πn√

7

)
(41)

to high precision.

These numbers do not appear to be rational multiples of U7 and T 7.

So what are these numbers? Empirically, they are given by

L5(4)
?
=

√
7π

8
L5(3)

?
=

π4

96

(
1 + 2

∑
n>0

exp
(
−
√

7πn2
))8

=
1

42

Γ
(
1
7

)
Γ
(
2
7

)
Γ
(
4
7

)
4π

4

.

(42)
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Thus the modular form of weight 5 in (39) defines an L-series that evaluates at s = 4 as
a rational multiple of the 4th power of a complete elliptic integral

L5(4)
?
=

1

6

∫ π/2

0

dθ√
1− k27 sin2 θ

4 (43)

at the 7th singular value, k7 =
√

2(3−
√

7)/8.

This is quite amusing, but seems to be unrelated to the issue of moments of 7 Bessel func-
tions, for which no relation to the 7th singular value had been found, despite considerable
effort.

However there is a relation to the square of an L-series of the Brown-Schnetz K3 surface:

L5(4)
?
=

14

3

[
L(2)

]2
.

Work is in hand to try relate the 7-Bessel problem to the symmetric square of weight-3
newform in Γ0(525) with eigenfield Q(

√
−1,
√

6,
√

14).
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Conclusions

1. Point counting in finite fields may give clues about analytical structure.

2. It suggests that a unique 7-loop graph in φ4 theory may not reduce to MZVs, but
rather to polylogs of the sixth root of unity.

3. It has motivated numerically successful guesses for massive Feynman integrals in-
volving 5, 6 and 8 Bessel functions.

4. The problem with 7 Bessel functions seems to be tougher. Not needed for QED,
which conserves fermion number.

5. For g − 2 at 4 loops we expect to encounter

S6
?
= 48ζ(2)L4(2)

where the integer 48 was discovered at few-digit precision and then gives thousands
of digits in a few seconds.
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