
Digital Object Identifier (DOI) 10.1007/s00607-005-0122-6
Computing (2005)

Elastic Principal Graphs and Manifolds
and their Practical Applications

A. Gorban, Leicester, and A. Zinovyev, Paris

Received January 14, 2005
Published online: May 18, 2005

© Springer-Verlag 2005

Abstract

Principal manifolds serve as useful tool for many practical applications. These manifolds are defined as
lines or surfaces passing through “the middle” of data distribution. We propose an algorithm for fast
construction of grid approximations of principal manifolds with given topology. It is based on analogy
of principal manifold and elastic membrane. First advantage of this method is a form of the functional
to be minimized which becomes quadratic at the step of the vertices position refinement. This makes
the algorithm very effective, especially for parallel implementations. Another advantage is that the same
algorithmic kernel is applied to construct principal manifolds of different dimensions and topologies.
We demonstrate how flexibility of the approach allows numerous adaptive strategies like principal graph
constructing, etc. The algorithm is implemented as a C++ package elmap and as a part of stand-alone
data visualization tool VidaExpert, available on the web. We describe the approach and provide several
examples of its application with speed performance characteristics.

AMS Subject Classifications: 62H25, 62-07, 62-09, 68P05.

Keywords: Principal manifolds, elastic functional, data analysis, data visualization, surface modeling.

1. Introduction

Principal manifolds were introduced by Hastie and Stueltze in 1984, 1989 as lines
or surfaces passing through “the middle” of the data distribution [22], [23]. This
intuitive definition was supported by mathematical notion of self-consistency: every
point of the principal manifold is a conditional mean of all points that are projected
into this point. In the case of datasets only one or zero data points are projected in
a typical point of the principal manifold, thus, one has to introduce smoothers that
become an essential part of the principal manifold construction algorithms.

Since the pioneering work of Hastie, many modifications and alternative definitions
of principal manifolds have appeared in the literature. Theoretically, existence of
self-consistent principal manifolds is not guaranteed for arbitrary probability dis-
tributions. Many alternative definitions were introduced (see, for example, [25]) in
order to improve the situation and to allow the construction of principal curves
(manifolds) for a distribution of points with several finite first moments. A promis-
ing approach is based on analogy of principal manifold and elastic membrane. The

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [595 842] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

A. Gorban and A. Zinovyev

idea of using the elastic energy functional for principal manifold construction in
the context of neural network methodology was proposed in mid 1990s (see [9], [13]
and bibliography there). This idea was developed and tested on practical applica-
tions in [12], [14], [16]–[20], [41]–[43]. Another computationally effective and robust
algorithmic kernel for principal curve construction, called the polygonal algorithm,
was proposed by Kégl et al. [27]. A variant of this strategy for constructing principal
graphs was also formulated in the context of the skeletonization of hand-written dig-
its [26]. An interesting approach we would also like to mention is the construction of
principal manifolds in a piece-wise manner by fitting unconnected line segments [38].

Probably, most scientific and industrial applications of principal manifold method-
ology were implemented using the Kohonen Self-Organizing Maps (SOM) approach
developed in the theory of neural networks [24]. These applications are too numerous
to be mentioned here. We only mention that SOMs, indeed, can provide principal
manifold approximations (for example, see [31], [32]) and are computationally effec-
tive. The disadvantage of this approach is that it is entirely based on heuristics; also
it was shown that in the SOM strategy there does not exist any objective function
that is minimized by the training process [8].

In this paper, we introduce a computationally effective framework for principal
manifold construction. Our approach [17], [18], [41] combines ideas developed in
[9], [13]–[15] with the approach of Kégl [25], and takes some details from the SOM
approach as well. We use grid approximations to the principal manifold, defining
manifold in a finite number of points. To describe elastic properties we utilize mesh
of springs. The topology of the manifold can be fixed or modified during the process
of construction.

Following metaphor of elasticity, we introduce two smoothness penalty terms, which
are quadratic at the vertex optimization step. This allows using standard minimi-
zation of quadratic functionals (i.e., solving a system of linear algebraic equations
with a sparse matrix), which is considerably more computationally effective than
gradient optimization of more complicated function, introduced by Kégl.

Minimization of a positive definite quadratic functional can be provided by the
sequential one-dimensional minimization for every space coordinate (cyclic). If for
a set of coordinates {xi}i∈J terms xixj (i, j ∈ J , i �= j) do not present in the func-
tional, then for these coordinates the functional can be minimized independently.
The quadratic functional we formulate has a sparse structure, it gives us the possi-
bility to use parallel minimization that is expected to be particularly effective in the
case of multidimensional data.

Another feature of our approach is a universal and flexible way to describe grid. A
grid approximation to a principal manifold is defined as a connected graph of nodes
placed in data space and having a “natural” node placement in a low-dimensional
space. The same algorithmic kernel is used to optimize the embedded graph with
respect to the dataset. Thus, the same algorithm, given an initial definition of the
grid, provides construction of principal manifolds with different dimensions and
topologies.

Elastic Principal Graphs and Manifolds and their Practical Applications

Our algorithm is implemented as a C++ package elmap [7] and as a stand-alone
application VidaExpert for multidimensional data visualization [39]. Some of the
applications of the approach to the data visualization were reported in series of
works [12], [14], [16]–[20], [41]–[43].

2. Outline of the Method

We define an elastic net as a connected unordered graphG(Y,E), whereY = {y(i), i =
1..p} denotes the collection of graph nodes, and E = {E(i), i = 1..s} is the collection
of graph edges. We combine some of the incident edges in pairs R(i) = {E(i) , E(k)}
and denote by R = {R(i), i = 1..r} the collection of elementary ribs.

Every edge E(i) has a beginning node E(i)(0) and an ending node E(i)(1). An ele-
mentary rib is a pair of incident edges. It has a beginning node R(i)(1), an ending
node R(i)(2) and a central node R(i)(0) (see Fig. 1).

Introducing edges is equivalent to introducing connectivity on the graph; this con-
nectivity defines a topology of the principal manifold to be constructed, along with
its dimension. Ribs together with edges are used to define a smoothness penalty
function, defining in such a way a “natural” form of the graph. Edges connect pairs
of nodes, ribs connect triples (or, connect two nodes through another one).

Figure 2 illustrates some examples of the graphs practically used. The first is a sim-
ple polyline, the second is a planar rectangular grid, the third is a planar hexagonal
grid and the forth is a non-planar graph with nodes arranged on a sphere (spherical
grid), then a 3D cubical grid, torus and hemisphere. Elementary ribs at these graphs
are incident edges touching with a blunt angle.

We underline here that the grids presented on Fig. 2 correspond to manifolds of
different topology and dimension. The grid embedded in data space is optimized
with respect to the data point positions.

In optimization criterion we use the standard mean squared point-to-node distance
as a main term, and two penalty terms, which are useful to interpret in terms of
physical elastic properties of the grid.

For the graph G we define the energy U that includes energies of every node, edge
and rib:

U = U(Y) + U(E) + U(R). (1)

y(i) E (0) E (1) R (1) R (0) R (2) (i) (i)(i) (i) (i)

Fig. 1. Node, edge and rib

A. Gorban and A. Zinovyev

Fig. 2. Elastic nets used in practice

Let us divide the data points into subcollections K(i), i = 1 . . . p. The set Ki contains
the data points for which the node yi is the closest one:

K(i) =
{
x(j) :

∥∥∥x(j) − y(i)
∥∥∥ ≤

∥∥∥x(j) − y(m)
∥∥∥, for all m = 1, . . . , p

}
.

Let us also assign a weight wj to every point. We define

U(Y) = 1∑
x(j)

wj

p∑
i=1

∑

x(j)∈K(i)

wj

∥∥∥x(j) − y(i)
∥∥∥

2
, (2)

U(E) =
s∑

i=1

λi

∥∥∥E(i)(1) − E(i)(0)

∥∥∥
2
, (3)

U(R) =
r∑

i=1

µi

∥∥∥R(i)(1) + R(i)(0) − 2R(i)(0)

∥∥∥
2
. (4)

The U(Y) term is the usual average weighted square of distances between y(i) and
data points in K(i); U(E) is the analogue of energy of elastic stretching and U(R) is
the analogue of energy of elastic bending of the net. We can imagine that every node
is connected by elastic bonds to the closest data points and simultaneously to the
adjacent nodes (see Fig. 3).

Values λi and µj are coefficients of stretching elasticity of every edge E(i) and of
bending elasticity of every rib R(j). In the simplest case we have

λ1 = λ2 = ... = λs = λ(s), µ1 = µ2 = ... = µr = µ(r).

Elastic Principal Graphs and Manifolds and their Practical Applications

U

U , U

Fig. 3. Energy of elastic net

To obtain λ(s) and µ(r) dependences we simplify the task and consider the case
of a regular, evenly stretched and evenly bended grid. Let us consider a lattice of
nodes of “internal” dimension d (d = 1 in the case of a polyline, d = 2 in case of a
rectangular grid, d = 3 in the case of a cubical grid and so on). Let the “volume”
of the lattice be equal to V . Then the edge length equals (V/s)1/d . Having in mind
that for typical regular grids r ≈ s, we can calculate the smoothening parts of the

functional: U(E) ∼ λs
d−2
d , U(R) ∼ µr

d−2
d . Then in the case where we want U(R), U(E)

be independent on the grid “resolution”,

λ = λ0s
2−d
d , µ = µ0r

2−d
d , (5)

where λ0, µ0 are elasticity parameters. This calculation is not applicable, of course,
for the general case of any graph. The dimension in this case can not be easily defined
and, in practical applications, the λi , µi are often made different in different parts
of a graph according to some adaptation strategy (see below).

The elastic net approximates the cloud of data points and has regular properties.
Minimization of the U(Y) term provides approximation, the U(E) penalizes the total
length (or, indirectly, “square”, “volume”, etc.) of the grid and U(R) is a smoother
term, preventing the grid from folding and twisting.

In order to perform the vertex optimization step we derive the system of algebraic
linear equations to be solved. Let us consider the situation when our collection of
data points is already separated in K(i), i = 1 . . . p.

Let us denote

�(x, y) =
{

1, x = y

0, x �= y,

�Eij ≡ �(E(i)(0), y(j)) − �(E(i)(1), y(j)),

�Rij ≡ �(R(i)(2), y(j)) + �(R(i)(1), y(j)) − 2�(R(i)(0), y(j)).

A. Gorban and A. Zinovyev

That is, �Eij = 1 if yj = E(i)(0), �Eij = −1 if yj = E(i)(0), and �Eij = 0 for all
other yj ; �Rij = 1 if yj = R(i)(1) or yj = R(i)(2), �Rij = −2 if yj = R(i)(0), and
�Rij = 0 for all other yj . After a short calculation we obtain the system of p linear
equations to find new positions of nodes in multidimensional space {yi, i =1 . . . p}:

p∑
k=1

ajky
(k) = 1∑

x(i)

wi

∑

x(i)∈Kj

wix
(i),

where

ajk = nj δjk∑
x(i)

wi

+ ejk + rjk, j = 1 . . . p, (6)

δjk =
{

1, i = j

0, i �= j

and nj = ∑
x(i)∈K(j)

wi , ejk =
s∑

i=1
λi�Eij�Eik, rjk =

r∑
i=1

µi�Rij�Rik. The values of

ejk and rjk depend only on the structure of the grid. If the structure does not change
then they are constant. Thus only the diagonal elements of the matrix (6) depend
on the data set. The a matrix has sparse structure for a typical grid used in practice.
In the Appendix we define this structure, giving an algorithm for calculating only
nonzero elements of the matrix.

To minimize the energy of the graph U we use the following two-step iterative algo-
rithm:

(1) Initialize the grid of nodes in data space.
(2) Given the nodes placement, separate the collection of data points into subcol-

lections K(i), i = 1 . . . p.
(3) Given this separation, minimize the graph energy U and calculate new positions

of nodes.
(4) Go back to step 2.

It is evident that this algorithm converges to a final placement of nodes of the grid
(energy U is a non-decreasing value, and the number of divisions of data points
into K(i) is finite). Moreover, theoretically the number of iterations of the algorithm
before converging is finite. In practice this number may be too large; therefore we
interrupt the process of minimization if change of U becomes less than a small value
ε or after a fixed number of iterations.

3. Optimization Strategies

We can only guarantee that the algorithm described at the end of the previous section
leads to a local minima of the functional. Obtaining a solution close to the global
minimum can be a non-trivial task, especially in case where the initial position of

Elastic Principal Graphs and Manifolds and their Practical Applications

the grid is very different from the expected (or unknown) optimal solution. In many
practical situations the “softening” strategy can be used to obtain solutions with
low energy levels robustly. This strategy starts with “rigid” grids (small length, small
bending and large λ, µ coefficients) at the beginning of the learning process and
finishes with soft grids (small λ, µ values), Fig. 4. Thus, the training goes in several
epochs, each epoch with its own grid rigidness. The process of “softening” is one of
numerous heuristics that pretend to find the global minimum of energy U or rather
close configuration.

Nevertheless, for some artificial distributions (like spiral point distribution, used as
a test in many papers on principal curves construction) “softening” starting from
any linear configuration of nodes does not lead to the expected solution. In this case,
adaptive strategies, like “growing curve” (analogue of what was used by Kégl in his
polygonal algorithm [27] or “growing surface” can be used to obtain suitable config-
uration of nodes. This configuration does not have to be optimal, in the adaptation
process one can still use the grids more rigid than it is needed for good approxima-
tion (thus, providing more robust ways of doing this), finishing the optimization at
the next stage with a softer grid (see spiral example in the examples section).

4. Adaptive Strategies

The method described above allows us to construct different adaptive strategies by
playing with (a) individual λi and µj weights; (b) the grid connection topology; (c)
the number of nodes.

This is a way of extending the approach significantly making it suitable for practi-
cal applications. The elmap package with implementation of the method described
above supports several adaptive strategies that will be described in this section.

First of all, let us define a basic operation on the grid, which allows inserting new
nodes. Let us denote by N, S, R the sets of all nodes, edges and ribs respectively.
Let us denote by C(i) the set of all nodes which are connected to the i-th node by
an edge. If one has to insert a new node in the middle of an edge I , connecting two
nodes k and l, then the following operations have to be accomplished:

(1) Delete from R those ribs which contain node k or node l;
(2) Delete the edge I from S;

Fig. 4. Training elastic net in several epochs (softening)

A. Gorban and A. Zinovyev

(3) Put a new node m in N;
(4) Put in S two new edges connecting k and m, m and l;
(5) Put in R new ribs, connecting m, k and all i ∈ C(k), and m, l and all i ∈ C(l).

At steps 4 and 5 one has to assign new weights to the edges and ribs. This choice
depends on the task to be solved. If one constructs a “growing” grid, then these
weights must be chosen the same as they were at the deleted ones. If one constructs
a refinement of an already constructed grid, one must choose these weights to be
twice bigger than they were at the deleted ones.

The grow-type strategy is applicable mainly to grids with planar topology (linear,
rectangular, cubic grids). It consists of an iterative determining of those grid parts,
which have the largest “load” and doubling the number of nodes in this part of the
grid. The load can be defined in different ways. One natural way is to calculate the
number of points that are projected onto the nodes. For linear grids the grow-type
strategy consists of

(1) Initializing the grid; it must contain at least two nodes and one edge;
(2) Determining the edge which has the largest load, by summing the number of

data points (or the sum of their weights) projected to both ends of every edge;
(3) Inserting a new node in the middle of the edge, following the operations described

above;
(4) Optimizing the positions of the nodes.

One stops this process usually when a certain number of nodes in the grid is reached
(see, for example, [28]). This number is connected with the total amount of points.
In the elmap package this is an explicit parameter of the method, allowing the user
to implement his own stopping criterion. Because of this stopping condition the
computational complexity is not proportional to the number of data points and, for
example, grows like n5/3 in the case of the Polygonal Line algorithm. Another form
of the stopping condition is when the mean-square error (MSE) does not change
more than a small number ε after several insertion/optimization operations.

We should mention here also growing lump and growing flag strategies used in physi-
cal and chemical applications [10], [11]. In growing lump strategy we add new nodes
uniformly at the boundary of the grid using a linear extrapolation of the grid embed-
ding. Then the optimization step follows, and, after that, again the step of growing
could be done.

For the growing flag one uses sufficiently regular grids, in which many points are
situated on the coordinate lines, planes, etc. First, we build a one-dimensional grid
(as a one-dimensional growing lump, for example). Then we add a new coordinate
and start growing in new direction by adding lines. After that, we can add the third
coordinate, and so on.

The break-type adaptive strategy changes individual rib weights in order to adapt
the grid to those regions of data space where the “curvature” of data distribution has
a break or is very different from the average. It is particular useful in applications of

Elastic Principal Graphs and Manifolds and their Practical Applications

principal curves for contour extraction (see Fig. 7). For this purpose the following
steps are performed:

(1) Collect statistics for the distances from every node i to the mean point of the
datapoints that are projected into this node:

rj =

∥∥∥∥∥∥∥
yj −

 ∑

x(i)∈Kj

wi

−1 ∑

x(i)∈Kj

wix
(i)

∥∥∥∥∥∥∥
.

(2) Calculate mean and standard deviation for some power of r : m = rα, s = σrα ;
where α > 1 is a parameter which in our experiments is chosen to be 4.

(3) Determine those nodes for which rj > m+βs, where β > 0 is another parameter,
equal 2 in our experiments.

(4) For every node k determined at the previous step one finds those ribs that have
k as their central point and change their weight for µ

(new)
j = µ

(old)
j · m

rα
j

.

(5) Optimize the node positions.
(6) Repeat this process a certain number of times.

Principal graph strategy, implemented in the elmap package allows performing clus-
tering of curvilinear data features along principal curves. Two example applications
of this approach are satellite image analysis [2] or hand-written symbol skeletoniza-
tion [26] (see also Figs. 8, 9). First, notice that the grid we constructed does not have
to be a connected graph. The system matrix (6) is not singular if for every connected
component of the graph there are data points that are projected onto one of its
nodes. This allows using the same algorithmic kernel to optimize node positions of
unconnected graph. Notice also that if the sets of edges and ribs are empty, then this
algorithm acts exactly like standard K-means clustering.

To construct a “skeleton” for two-dimensional point distribution, we apply a variant
of local linear principal component analysis first, then connect local components
into several connected parts and optimize the node positions after. This procedure
is robust and efficient in applications to clustering along curvilinear features and it
was implemented as a part of elmap package. The following steps are performed:

(1) Make a “grid” from a number of unconnected nodes (sets of edges and ribs are
empty at this stage). Optimize the node positions (i.e., do K-means clustering).
The number of nodes is chosen to be a certain proportion of the number of data
points. In our experiments we used 5% of the total number of data points. At
every iteration of the K-means algorithm, the “empty” nodes (those for which
there is no data point having this node as this closest one) change their position
randomly. After a certain number of K-means iterations, empty nodes (or nodes
with only one datapoint as well) are removed from the set of all nodes.

(2) For every node of the grid in position yi , the local first principal direction is
calculated. By local we mean that the principal direction is calculated inside the
cluster of datapoints corresponding to the node i. Then this node is substituted
by two new nodes in positions y(new1) = yi + αsn, y(new2) = yi − αsn, where n
is the unit vector in the principal direction, s is the standard deviation of data

A. Gorban and A. Zinovyev

points belonging to the node i, α is a parameter, which we set to 1. These two
nodes are connected by an edge (see Fig. 9b).

(3) A collection of edges and ribs is generated, following this simple rule: every node
is connected to the node which is closest to this node but not already connected
at the step 2. The edges with length much bigger than the average are pruned.
Every new edge generates two ribs consisting of a new edge and one of the edges
made at step 2.

(4) Weights of the ribs are calculated. A rib is assigned a weight equal to |cos(α)|,
where α is an intersection angle of two edges contained in this rib, if α ≥ π

2 .
Otherwise it is zero (or, equally, the rib is eliminated).

(5) The node positions are optimized.

One possible way to improve the resulting graph further is to apply graph simplifi-
cation rules, analogously to how it was done in [26]. The idea of this algorithm is
close to the k-segments algorithm of Verbeek [38] and, indeed, one possible option
is to use k-segment clustering instead of K-means clustering on the first step of the
algorithm.

The adaptive strategies: “grow”, “break” and the principal graphs can be combined
and applied one after another. For example, the principal graph strategy can be
followed by break-type weight adaptation or by grow-type grid adaptation.

5. Projecting

In the process of the grid construction we use projection of data into the closest
node. This allows us to improve the speed at the data projection step without loos-
ing too much when the grid resolution is good enough. The effect of an estimation
bias, connected with this type of projection, was observed in [25]. In our approach
the bias is indirectly reduced by utilizing the U(E) smoother term that makes the
grid almost isometric (having the same form, the grid will have lesser energy with
equal edge lengths). For presentation of data points or for data compression, other
projectors can be applied. A natural way to do it is to introduce a set of simplexes
on the grid (line segments for one-dimensional grids, triangles for two-dimensional
grids, and tetrahedrons for the 3D grids). Then one performs orthogonal projection
onto this set. In order to not calculate all distances to all simplexes, one can apply a
simplified version of the projector: find the closest node of the grid and then consider
only those simplexes that contain this node. This type of projection is used in the
elmap package and demonstrated by the example on Fig. 9.

Since the grid has penalty on its length (and, for higher dimensions, indirectly, area,
volume), the result of the optimization procedure is a bounded manifold, embedded
in the cloud of data points. Because of this, if the penalty coefficient is big, many
points can have projection on the boundary of the manifold. This can be undesirable,
for example, in data visualization applications. To avoid this effect, we introduced
in the elmap package the possibility to make a linear extrapolation of the bounded
rectangular manifold (extending it by continuity in different directions). Other, more
complicated extrapolations can be performed as well, like using Carleman’s formulas
(see [1], [5], [10], [11], [14], [15]).

Elastic Principal Graphs and Manifolds and their Practical Applications

6. Principal Manifold as Elastic Membrane

Let us discuss in more detail the central idea of this paper: using metaphor of elastic
membrane in principal manifold construction algorithm. The system represented on
Fig. 3 can be modeled as elastic membrane with external forces applied to the nodes.
In this section we consider the question of correspondence between our spring net-
work system and realistic physical systems (evidently, we make comparison in 3D).

Spring meshes are widely used to create physical models of elastic media (for exam-
ple, [3]). The advantages, comparing with the continuous approaches like Finite
Elements Method (FEM), are evident: computational speed, flexibility, possibility
to solve the inverse elasticity problem easily [37].

Modeling elastic media by spring networks has a number of applications in com-
puter graphics, where, for example, there is a need to create realistic models of soft
tissues (human skin, as an example). In [37], it was shown that it is not generally
possible to model elastic behavior of a membrane using spring meshes with simple
scalar springs. In [40], the authors introduced complex system of penalizing terms to
take into account angles between scalar springs as well as shear elasticity terms. This
allowed to improve the results of modeling and develop applications in subdivision
surface design.

In a recent paper [21], it was demonstrated that there is an exact correspondence
between the FEM approach and spring networks where elastic behavior of every
spring is defined by 6 × 6 matrix

KS =
(

ks −ks

−ksT ksT

)
,

where ks is a 3×3 matrix describing the elastic behavior of spring s with one of the two
ends fixed. In particular, to model 2D-elastic membrane by a regular close-packed
triangular lattice spring model, one takes the springs with the following stiffness
matrix (in the coordinate frame where the spring is oriented along the x-axis)

ks = 1

2
√

3

(
3λ′ + 5µ′ 0
0 µ′ − λ′

)
, (7)

where λ′ and µ′ are Lamé constants of the initial membrane. Simple scalar springs
can be utilized only in the particular case λ′ = µ′.

Let us slightly reformulate our problem to make it more close to the standard nota-
tions in the elasticity theory. We introduce the m×p-dimensional vector of displace-
ments, stacking all coordinates for every node:

u = {u(1)

1 ; u
(1)

2 ; ..; u(1)
m ; ...; u

(p)

1 ; u
(p)

2 ; ..; u
(p)
m }T ,

where m is dimension, p is the number of nodes, u
(k)
i is the i-th component of the

k-th node displacement. The absolute positions of nodes are y(k) = ỹ(k) + u(k),
where ỹ(k) are equilibrium (relaxed) positions. Then our minimization problem can
be stated in the following generalized form:

uT Eu + D(u; x) → min, (8)

A. Gorban and A. Zinovyev

where E is a symmetric (m × p) × (m × p) element stiffness matrix. This matrix
reflects elastic properties of the spring network and has the following properties: (1)
it is sparse; (2) it is invariant with respect to translations of the whole system (as a
result, for any band of m consecutive rows corresponding to a given node k, the sum
of the m × m off-diagonal blocks should always be equaled to the corresponding
diagonal block taken with the opposite sign). The D(u; x) term describes how well
the set of data x is approximated by the spring network with the node displacement
vector u. It can be interpreted as the energy of external forces applied to the nodes
of the system. To minimize (8) we solve the problem of finding equilibrium between
elastic internal forces of the system (defined by E) and external forces:

Eu = f, f = −1
2

∂

∂u
D(u; x). (9)

In the method introduced above, we propose to assemble the matrix E with use of
simple scalar springs plus ribs to introduce bending elasticity. The matrix is assem-
bled very similar to how it is described in the Appendix. There is one important
point: the springs (edges) have zero rest lengths, it means that equilibrium node
positions are all in zero: ỹ(k) = 0, k = 1..p. The system behavior then can be
described as “super-elastic”. From the point of view of data analysis it means that
we do not impose any pre-defined shape on the data cloud structure.

Let us look at the structure of E for a simple configuration of nodes, see Fig. 5. Edges
give local connections, whereas the ribs produce terms that describe connection of
two nodes through another (in a rib two ending nodes are connected through the
central one). These non-local connections are marked on Fig. 5 by gray circles. This
observation tells that generally our stiffness matrix differs in its structure from the
one used in the FEM approach (where all connections are local). The same is true for
the system of terms used in [40]: for example, the term penalizing angle deviations
introduces non-local connections in the corresponding stiffness matrix.

1 2 3 4 5 6 7
1
2
3
4
5
6
7

1

3 2

4

5 6

7

Fig. 5. The stiffness matrix structure for one particular elastic graph. Dashed lines denote ribs. Black
circles correspond to local connections of nodes. Gray circles correspond to non-local connections (inside

ribs), through one node

Elastic Principal Graphs and Manifolds and their Practical Applications

For D(u;x) we use the usual mean square distance measure, see (2): D(u; x) = U(Y).
The force applied to the j -th node equals

fj = n(j)

N

(
x̃(j) − u(j)

)
, (10)

where

x̃(j) =

∑
x(i)∈K(j)

wix
(i)

n(j)
, n(j) =

∑

x(i)∈K(j)

wi, N =
∑

x(i)

wi .

It is proportional to the vector connecting the j th node and the weighted average
x̃(j) of the data points in K(j) (i.e., the average of the points that surround the j -th
node: see (2) for definition of K(j)). The proportionality factor is simply the relative
size of K(j). The linear structure of (10) allows to move u in the left part of Eq. (9).
Thus the problem is linear.

Now let us show how we can benefit from the definition (9) of the problem. First, we
can introduce a pre-defined equilibrium shape of the manifold: this initial shape will
be elastically deformed to fit the data. This approach corresponds to introducing a
model into the data. After we assemble a physically realistic stiffness matrix E con-
structed following the recipe from [21]. In a particular but very practical case of a
regular close-packed triangular lattice spring model we assemble E using individual
spring matrices in the form (7).

Secondly, one can try to change the form (10) of the external forces applied to the sys-
tem. In this way one can utilize other, more sophisticated approximation measures:
for example, taking the outliers into account.

Third, in three-dimensional applications one can benefit from existing solvers for
finding equilibrium form of elastic membranes. They can be utilized to solve the
problems analogous to the one shown on Fig. 7. For multidimensional data point
distributions one has to adapt the engines, but this adaptation is mostly formal.

Finally, there is a possibility of a hybrid approach: we utilize first “super-elastic”
energy functional (1) to find the initial approximation. Then we “fix” the result and
define it as the equilibrium. After we utilize physical elastic functional to find elastic
deformation of the equilibrium form to fit the data.

7. Examples

On Fig. 6 we present two examples of 2D-datasets provided by Kégl1.

The first dataset called spiral is one of the standard in the principal curve literature
ways to show that one’s approach has better performance than the initial algorithm

1 http://www.iro.umontreal.ca/ ∼ Kegl/research/pcurves/implementations/Samples/

A. Gorban and A. Zinovyev

 spiral large(b)
(a)

 Data

Gen.curve

Grid

Fig. 6. Two-dimensional examples of principal curves construction

provided by Hastie and Stuelze. As we have already mentioned, this is a bad case
for optimization strategies, which start from linear distribution of nodes and try
to optimize all the nodes together in one loop. But the adaptive “growing curve”
strategy, though being by order of magnitude slower than the “softening”, finds the
solution quite stably, with exception for the region in the neighborhood of zero,
where the spiral has very different (comparing to the average) curvature.

Second dataset, called large is a simple case, despite the fact that it has comparatively
large sample size (10000 points). The nature of this simplicity lies in the fact that
the initial first principal component based approximation is already effective; the
distribution is in fact quasilinear, since the principal curve can be unambiguously
orthogonally projected onto a line. On Fig. 6b, it is shown that the generating curve,
which was used to generate this dataset, has been discovered almost perfectly and
in a very short time. To give the idea of speed, we mention that in the case of the
simplest optimization (one epoch with fixed grid rigidness, which is suitable in the
case of a good initial approximation) the algorithm we described gives the principal
curve, approximated by 100 nodes in less than 0.5 seconds on a computer with an
Athlon 1800 MHz processor. Application of a softening strategy with 4 epochs gives
the principal curve in approximately 1.5 seconds on the same computer.

The third example illustrates modeling of surfaces in 3D. An interesting challenge is
to model molecular surfaces of complex biological molecules like proteins using prin-
cipal manifold approach. We extracted the Van-der-Waals molecular surface, using
slightly modified Rasmol source code [34] (available from the authors by request) for
a simple fragment of DNA. The topology of the surface is expected to be spherical.
We should notice that since it is impossible to make the lengths of all edges equal for
the sphere-like grid, in the elmap package some corrections are performed for edge
and rib weights during the grid initialization (shorter edges are given with larger
weights proportionally and the same for the ribs). As a result one gets a smooth
principal manifold with a spherical topology approximating rather a complicated

Elastic Principal Graphs and Manifolds and their Practical Applications

set of points. This also allows us to introduce a global spherical coordinate system
on the molecular surface. The advantage of this method is its ability to deal not only
with star-like shapes as the spherical harmonic functions approach does (see, for
example, [4]) but also to model complex forms with cavities as well as non-spherical
forms. The result of applying the principal manifold construction by elmap package
is shown on Fig. 7.

The forth example demonstrates extracting curvilinear features from images with
the elmap package. Figure 8 demonstrates how “principal graph” strategy is used
for contour extraction. Figure 9 shows how “principal graph” strategy is used for
skeletonization of hand-written symbols.

Our final, fifth example illustrates an application of the principal manifold method
in multidimensional data visualization and dimension reduction. As in the case of
molecular surface modeling, we take an example of a dataset from bioinformat-
ics. The genome of C.eleganse (small worm with only one-hundred cells) contains
approximately 17000 genes, each of them can be characterized by its codon usage
(there are 64 codons, i.e., triplets of 4 genetic letters, this gives a 64-dimensional
vector of their frequencies), dinucleotide and nucleotide usage (this gives additional
20 dimensions). The resulting dataset has 17083 points with 84 dimensions. PCA
view of the dataset is shown in Fig. 10a. To make noise-filtering, the dataset was
projected first into 25-dimensional space spanned by the first 25 principal vectors.
In this space, using our elmap package, we constructed a two dimensional princi-
pal surface, approximated by 1296 nodes. The datapoints were projected onto the
manifold by projecting onto the closest point of the manifold (as proposed above).
Using a 3-epoch optimization strategy, provided in the sample initialization file
for the elmap package, it takes 300 seconds to do this on a computer with Athlon
1800 MHz processor. The initial mean-square error (MSE), obtained by a principal
plane approximation was 4.59. The resulting manifold provides MSE about 3.60;
what is at 22% better than approximation by the principal plane (this value is rel-
atively big, bearing in mind that we approximate a 25-dimensional dataset). The
resulting image of projections is shown in Fig. 10b. By changing point forms/sizes
we marked two signals that are clearly seen on this plot. More detailed analysis
shows that indeed these two groups of points (genes) have very special positions in

Fig. 7. Construction of principal surface with spherical topology for a distribution of points on Van der
Waals molecular surface of a biological molecule

A. Gorban and A. Zinovyev

Fig. 8. Contour extraction with closed principal curve. (a) initial countour; (b) blurred contour; (c)
Floyd-Steinberg error diffusion color image binarization; (d, f) fitting closed principal curve with con-
stant “elasticity”, regions of higher curvature can not be fitted equally well; (e, g) fitting closed principal

curve with adaptive elasticity (“break” adaptation strategy)

the dataspace (i.e., codons and dinucleotide compositions) with respect to the main
cluster of data. The principal manifold we constructed can be utilized for displaying
different functions defined in the dataspace. In Fig. 10c, visualization of a simple
non-parametric estimation of the density distribution is shown. One can see that in
general the nonlinear manifold captures more essential features of the dataset than
the PCA plot.

8. Method Implementation

In the implementation of the algorithm we used the SparseLib [6] library together
with IML++ library to store the matrix and to solve the system of linear equations.
We used the BLAS kernel provided by the authors of SparseLib without any plat-
form-specific optimization. This combination showed rather good performance

Elastic Principal Graphs and Manifolds and their Practical Applications

Fig. 9. Skeletonization using principal curves: (a) initial image; (b) calculation of local principal com-
ponents; (c) connecting the graph; (d) graph vertices optimization with principal manifolds algorithm

Fig. 10. Visualization of a big dataset in 84-dimensional space. (a) PCA view; (b) projection onto the
manifold constructed; two strong signals are marked by changing point sizes/forms; (c) principal manifold

as a screen for displaying points density distribution

characteristics, still being easily portable, i.e., written, using ANSI standards. The
elmap package together with a stand-alone data visualization tool VidaExpert are
available online [7], [39].

A. Gorban and A. Zinovyev

9. Discussion

We introduced a new algorithmic kernel for calculating grid approximations for prin-
cipal manifolds of different topologies and dimensions. The main advantages of this
method are speed and good performance. The optimization criterion we formulated
has a particularly simple form and natural physical interpretation. Together with the
usual mean square node-to-point distance term our minimized functional contains
two penalizing terms: U(E) and U(R), both quadratic with respect to the grid node
positions. As one can see from (3) and (4) they are similar to the sum of squared
grid approximations of the first and second derivatives, in the directions, guided
by natural choice of ribs2. The U(E) term penalizes the total length (or area, vol-
ume) of the principal manifold and, indirectly, makes the grid regular by penalizing
non-equidistant distribution of nodes along the grid. The U(R) term is a smoothing
factor. It penalizes the nonlinearity of the ribs embedding into the Euclidean space.
This term is quadratic, it gives us benefits in comparison with the cosine function
as in the algorithm of Kégl [27], for example.

Attractive characteristics of the method such as its universality, speed and inher-
ited parallelism open new fields to the applications of principal manifolds, espe-
cially for the analysis of huge datasets with hundreds of thousands of points with
dimensionality of the order of hundreds. The algorithm we described with its C++
implementation provide a way to construct a principal manifold for these datasets
approximated by a number of nodes of the order of 10000 in a reasonable time.

In applications of principal manifolds to 3D-surface modeling, one can find similar
“physics-based” new methods in surface modeling in computer graphics (see, for
example [30], [40]). The method of constructing the elastic energy functional con-
sidered here can be compared with the approach described in [40]. Our functional
contains only restricted subset of elastic energies proposed there; we utilize such a
“physics-based” model, which allows quadratic description, thus leads to quadratic
optimization problem. In this way we significantly speed-up the optimization step.
Also one can consider use of physically realistic energy functionals and pre-defined
equilibrium forms as described above. In general, our point is to construct com-
putationally effective approximation method rather than closely imitate realistic
behavior (though it is also possible): this is particularly true for multidimensional
applications where the notion of “physical realism” does not make sense.

One important application of principal manifolds is dimension reduction and data
visualization. In this field they compete with multidimensional scaling methods and
the recently introduced advanced algorithms of dimension reduction, such as locally
linear embedding (LLE) [33] and ISOMAP [36] algorithms. The difference between
the two approaches is that the later ones seek new point coordinates directly and
do not use any intermediate geometrical objects. This has several advantages, in

2 The differences should be divided by node-to-node distances in order to be true derivative approxi-
mations, but in this case the quadratic structure of the term would be violated. We suppose that the grid
is regular with almost equal node-to-node distances, then the dependence of coefficients λi , µj on the
total number of nodes contains this factor.

Elastic Principal Graphs and Manifolds and their Practical Applications

particular that a) there is a unique solution for the problem (the methods are not
iterative in their nature, there is no problem of grid initialization) and b) there is
no problem of choosing a good way to project points onto a nonlinear manifold.
Another advantage is that the methods are not limited by several first dimensions
in dimension reduction (it is difficult in practice to manipulate nonlinear manifolds
of dimension more than three).

Principal manifold can serve as a nonlinear low-dimensional screen to project data.
It gives additional benefits to users. First, the manifold approximates data and can
be used itself, without applying projection, to visualize different functions defined in
data space (for example, density estimation). Also the manifold as an intermediate
that fixes the structure of a learning dataset, can be used in visualization of data
points that were not used in the learning process, for example, for visualization of
dataflow “on the fly”. Constructing manifolds does not use a point-to-point distance
matrix that is particularly useful for large datasets. Also using principal manifolds
is expected to be more robust to additive noise than the methods based on the local
properties of point-to-point distances. To conclude this short comparison, LLE and
ISOMAP methods are more suitable if the low-dimensional structure in multidi-
mensional data space is complicated but is expected to exist, and if the data points
are situated rather tightly on it. Principal manifolds are more applicable for the visu-
alization of real-life noisy observations, appearing in economics, biology, medicine
and other sciences, and for constructing data screens showing not only the data but
different related functions defined in data space.

Appendix

Constructing the Sparse Matrix

Matrix (6) has p2 elements (where p is a number of grid nodes), but for typical grids
only kp of them are nonzero, where k � p . Here we provide a simple procedure to
fill only nonzero elements of the matrix, thus, define its sparse structure.

For the ejk matrix:

(1) All ejk values are initialized by zero;
(2) If for an edge Ei with weight λi , the beginning node is yk1 and the ending node

is yk2, then we update the ejk values:

ek1k1 = ek1k1 + λi, e
k2k2 = ek2k2 + λi, e

k1k2 = ek1k2 − λi, e
k2k1 = ek2k1 − λi.

(3) Steps 1–2 are repeated for every edge.

For the rjk matrix:

(1) All rjk values are initialized by zeros;
(2) If for a rib Ri with weight µi , the beginning node is yk1, the middle node is yk2

and the ending node is yk3, then we update the rjk values:

A. Gorban and A. Zinovyev

rk1k1 = rk1k1 + µi, r
k2k2 = rk2k2 + 4µi, r

k3k3 = rk3k3 + µi

rk1k2 = rk1k2 − 2µi, r
k2k1 = rk2k1 − 2µi,

rk2k3 = rk2k3 − 2µi, r
k3k2 = rk3k2 − 2µi,

rk1k3 = rk1k3 + µi, r
k3k1 = rk3k1 + µi.

(3) Steps 1–2 are repeated for every rib.

References

[1] Aizenberg, L.: Carleman’s formulas in complex analysis: theory and applications. Math. Appl., vol.
244. Kluwer 1993.

[2] Banfield, J. D., Raftery, A. E.: Ice flow identification in satellite images using mathematical mor-
phology and clustering about principal curves. J. Am. Stat. Assoc. 87(417), 7–16 (1992).

[3] Born, M., Huang, K.: Dynamical theory of crystal lattices. Oxford: Oxford University Press 1954.
[4] Cai, W., Shao, X., Maigret, B.: Protein-ligand recognition using spherical harmonic molecular sur-

faces: towards a fast and efficient filter for large virtual throughput screening. J. Mol. Graph. Model
20(4), 313–28 (2002).

[5] Dergachev, V. A., Gorban, A. N., Rossiev, A. A., Karimova, L. M., Kuandykov, E. B., Makarenko,
N. G., Steier, P.: The filling of gaps in geophysical time series by artificial neural networks. Radio-
carbon 43(2A), 365–371 (2001).

[6] Dongarra, J., Lumsdaine, A., Pozo, R., Remington, K.: A sparse matrix library in C++ for high
performance architectures. In: Proc. 2nd Object Oriented Numerics Conference, pp. 214–218, 1994.

[7] Elmap: C++ package available online: http://www.ihes.fr/∼zinovyev/vidaexpert/elmap.
[8] Erwin, E., Obermayer, K., Schulten, K.: Self-organizing maps: ordering, convergence properties

and energy functions. Biol. Cybern. 67, 47–55 (1992).
[9] Gorban, A. N. (ed.): Methods of neuroinformatics (in Russian). Krasnoyarsk State University

Press, p. 205, 1998.
[10] Gorban, A. N., Karlin, I. V., Zinovyev, A. Yu.: Invariant grids for reaction kinetics. Physica A 333,

106–154 (2004). Preprint online: http://www.ihes.fr/PREPRINTS/P03/Resu/resu-P03–42.html.
[11] Gorban, A. N., Karlin, I. V., Zinovyev, A. Yu.: Constructive methods of invariant manifolds for

kinetic problems. Phys. Reports 396(4–6), 197–403 (2004). Preprint online: http://arxiv.org/abs/
cond-mat/0311017.

[12] Gorban, A. N., Pitenko, A. A., Zinov’ev, A. Y., Wunsch, D. C.: Vizualization of any data using
elastic map method. Smart Eng. Syst. Des. 11, 363–368 (2001).

[13] Gorban, A. N., Rossiev, A. A.: Neural network iterative method of principal curves for data with
gaps. J. Computer Sys. Sci. Int. 38(5), 825–831 (1999).

[14] Gorban, A., Rossiev, A., Makarenko, N., Kuandykov, Y., Dergachev, V.: Recovering data gaps
through neural network methods. Int. J. Geomagnetism Aeronomy 3(2), 191–197 (2002).

[15] Gorban, A. N., Rossiev, A. A., Wunsch, D. C. II: Neural network modeling of data with gaps:
Method of principal curves, Carleman’s formula, and other. In: USA–NIS Neurocomputing
Opportunities Workshop, Washington, July 1999 (Associated with IJCNN’99). Preprint online:
http://arXiv.org/abs/cond-mat/0305508.

[16] Gorban, A. N., Zinovyev, A. Yu.: Visualization of data by method of elastic maps and its appli-
cations in genomics, economics and sociology. Preprint of Institut des Hautes Etudes Scientiques,
M/01/36, 2001. http://www.ihes.fr/PREPRINTS/M01/Resu/resu-M01-36.html

[17] Gorban, A. N., Zinovyev, A. Yu.: Method of elastic maps and its applications in data visualization
and data modeling. Int. J. Comput. Anticipatory Syst. CHAOS 12, 353–369 (2001).

[18] Gorban, A. N., Zinovyev, A. Yu., Pitenko, A. A.: Visualization of data using method of elastic
maps (in Russian). Informatsionnie Technologii 6, 26–35 (2000).

[19] Gorban, A. N., Zinovyev, A. Yu., Pitenko, A. A.: Visualization of data. Method of elastic maps
(in Russian). Neurocomputers 4, 19–30 (2002).

[20] Gorban, A. N., Zinovyev, A. Yu., Wunsch, D. C.: Application of the method of elastic maps in
analysis of genetic texts. In: Proc. Int. Joint Conference on Neural Networks (IJCNN), Portland,
July 20–24, 2003.

Elastic Principal Graphs and Manifolds and their Practical Applications

[21] Gusev, A.: Finite element mapping for spring network representations of the mechanics of solids.
Phys. Rev. Lett. 93(2), 034302 (2004).

[22] Hastie, T.: Principal curves and surfaces. PhD Thesis, Stanford University, 1984.
[23] Hastie, T., Stuetzle, W.: Principal curves. J. Am. Stat. Assoc. 84(406), 502–516 (1989).
[24] Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43,

59–69 (1982).
[25] Kégl, B.: Principal curves: learning, design, and applications. PhD Thesis, Concordia University,

Canada, 1999.
[26] Kégl, B., Krzyzak, A.: Piecewise linear skeletonization using principal curves. IEEE Trans. Pattern

Anal. Machine Intell. 24(1), 59–74 (2002).
[27] Kégl, B., Krzyzak, A., Linder, T., Zeger, K.: A polygonal line algorithm for constructing principal

curves. Neural Inf. Processing Sys. 501–507 (1999).
[28] Kégl, B., Krzyzak, A., Linder, T., Zeger, K.: Learning and design of principal curves. IEEE Trans.

Pattern Anal. Machine Intell. 22(2), 281–297 (2000).
[29] LeBlanc, M., Tibshirani, R.: Adaptive principal surfaces. J. Amer. Stat. Assoc. 89, 53–64 (1994).
[30] Mandal, C., Qin, H., Vemuri, B. C.: A novel FEM-based dynamic framework for subdivision

surfaces. Comp. Aided Des. 32 , 479–497 (2000).
[31] Mulier, F., Cherkassky, V.: Self-organization as an iterative kernel smoothing process. Neural

Comput. 7, 1165–1177 (1995).
[32] Ritter, H., Martinetz, T., Schulten, K.: Neural computation and self-organizing maps: an introduc-

tion. Addison-Wesley Reading, Massa. 1992.
[33] Roweis, S., Saul, L. K.: Nonlinear dimensionality reduction by locally linear embedding. Science

290, 2323–2326 (2000).
[34] Sayle, R., Bissell, A., RasMol: a program for fast realistic rendering of molecular structures with

shadows. In: Proc. 10th Eurographics UK’92 Conference, University of Edinburgh, Scotland, 1992.
[35] Stanford, D., Raftery, A. E.: Principal curve clustering with noise. IEEE Trans. Pattern Anal.

Machine Intell. 22(6), 601–609 (2000).
[36] Tenenbaum, J. B., De Silva, V., Langford, J. C.: A global geometric framework for nonlinear dimen-

sionality reduction. Science 290, 2319–2323 (2000).
[37] Van Gelder, A., Wilhelms, J.: Simulation of elastic membranes and soft tissue with triangulated

spring meshes. Technical Report: UCSC-CRL-97–12, 1997.
[38] Verbeek, J. J., Vlassis, N., Krose, B.: A k-segments algorithm for finding principal curves. Technical

report, 2000. Online: http://citeseer.nj.nec.com/article/verbeek00ksegments.html.
[39] VidaExpert: Stand-alone application for multidimensional data visualization. Available online:

http://www.ihes.fr/∼zinovyev/vidaexpert/vidaexpert.htm.
[40] Xie, H., Qin, H.: A physics-based framework for subdivision surface design with automatic

rules control. In: Proc. 10th Pacific Conference on Computer Graphics and Applications (Pacific
Graphics 2002), IEEE Press, 304–315, 2002.

[41] Zinovyev, A.: Visualization of multidimensional data. Krasnoyarsk State University Press Publ.,
2000.

[42] Zinovyev, A. Yu., Gorban, A. N., Popova, T. G.: Self-organizing approach for automated gene
identification. Open Sys. Inf. Dyn. 10(4), 321–333 (2003).

[43] Zinovyev, A. Yu., Pitenko, A. A., Popova, T. G.: Practical applications of the method of elastic
maps (in Russian). Neurocomputers 4, 31–39 (2002).

A. Gorban A. Zinovyev
University of Leicester Institut Curie
University Road 26, rue d’Ulm
Leicester, LE1 7RH Paris, 75248
UK France
e-mail: ag153@le.ac.uk e-mail: andrey.zinovyev@curie.fr

