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Abstract

Phase transitions are a central theme of statistical mechanics, and of probability more
generally. Lattice spin models represent a general paradigm for phase transitions in finite
dimensions, describing ferromagnets and even some fluids (lattice gases). It has been under-
stood since the 1980s that random geometric representations, such as the random walk and
random current representations, are powerful tools to understand spin models. In addition
to techniques intrinsic to spin models, such representations provide access to rich ideas from
percolation theory. In recent years, for two-dimensional spin models, these ideas have been
further combined with ideas from discrete complex analysis. Spectacular results obtained
through these connections include the proofs that interfaces of the two-dimensional Ising
model have conformally invariant scaling limits given by SLE curves and the fact that the
connective constant of the self-avoiding walk on the hexagonal lattice is given by

√
2 +

√
2.

In higher dimensions, the understanding also progresses with the proof that the phase tran-
sition of Potts models is sharp, and that the magnetization of the three-dimensional Ising
model vanishes at the critical point. These notes are largely inspired by [39, 41, 42].

A simulation of the 4-state Potts model due to V. Beffara.
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1 Graphical representation of the Potts model

1.1 Lattice spin models

Lattice models have been introduced as discrete models for real life experiments and were later
on found useful to model a large variety of phenomena and systems ranging from ferroelectric
materials to gas-liquid transitions. They also provide discretizations of Euclidean and Quantum
Field Theories and are as such important from the point of view of theoretical physics. While
the original motivation came from physics, they appeared as extremely complex and rich math-
ematical objects, whose study required the developments of important new tools that found
applications in many other domains of mathematics.

The zoo of lattice models is very diverse: it includes models of spin glasses, quantum chains,
random surfaces, spin systems, percolation models. Here, we focus on a smaller class of lattice
models called spin systems. These systems are random collections of spin variables assigned to
the vertices of a lattice. The archetypical example of such a model is provided by the Ising
model, for which spins take value ±1. We refer to [64] for an introduction on lattice models.

1.1.1 Definition of nearest-neighbor ferromagnetic lattice spin models

In these notes, ∥⋅∥ denotes the Euclidean norm on Rd. A graph G = (V,E) is given by a vertex-set
V and an edge set E which is a subset of pairs {x, y} ⊂ V . We will denote an (unoriented) edge
with endpoints x and y by xy. While lattice models could be defined on very general lattices,
we focus on the special case of the lattice given by the vertex-set V ∶= Zd and the edge-set E
composed of edges xy with endpoints x and y (in Zd) satisfying ∥x − y∥ = 1. Below, we use the
notation Zd to refer both to the lattice and its vertex-set. For a subgraph G = (V,E) of Zd, we
introduce the boundary of G defined by

∂G ∶= {x ∈ V ∶ ∃y ∈ Zd such that xy ∈ E ∖E}.

For a finite subgraph G = (V,E) of Zd, attribute a spin variable σx belonging to a certain
set Σ ⊂ Rr to each vertex x ∈ V . A spin configuration σ = (σx ∶ x ∈ V ) ∈ ΣV is given by the
collection of all the spins. Introduce the Hamiltonian of σ defined by

H f
G(σ) ∶= − ∑

xy∈E
σx ⋅ σy,

where a⋅b denotes the scalar product between a and b in Rd. The above Hamiltonian corresponds
to a ferromagnetic nearest-neighbor interaction. We will restrict ourselves to this case in these
lectures, and refer to the corresponding papers for details on the possible generalizations to
arbitrary interactions.

The Gibbs measure on G at inverse temperature β ≥ 0 with free boundary conditions is defined
by the formula

µf
G,β[f] ∶=

∫
ΣV

f(σ) exp [ − βH f
G(σ)]dσ

∫
ΣV

exp [ − βH f
G(σ)]dσ

(1.1)

for every f ∶ ΣV → R, where dσ = ⊗x∈V dσx is a product measure whose marginals dσx are
identical copies of a reference finite measure dσ0 on Σ. Note that if β = 0, then spins are chosen
independently according to the probability measure dσ0/ ∫Σ dσ0.

Similarly, for b ∈ Σ, introduce the Gibbs measure µb
G,β on G at inverse temperature β with

boundary conditions b defined as µf
G,β[ ⋅ ∣σx = b,∀x ∈ ∂G].

A priori, Σ and dσ0 can be chosen arbitrarily, thus leading to different examples of lattice
spin models. The following (far from exhaustive) list of spin models already illustrates the vast
variety of possibilities that such a formalism offers.
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Figure 1: From left to right, T2, T3 and T4.

Ising model. Σ = {−1,1} and dσ0 is the counting measure on Σ. This model was introduced by
Lenz in 1920 [97] to model the temperature, called Curie’s temperature, above which a magnet
loses its ferromagnetic properties. It was studied in his PhD thesis by Ising [87].

Potts model. Σ = Tq (q ≥ 2 is an integer), where Tq is a simplex in Rq−1 (see Fig. 1) containing
1 ∶= (1,0, . . . ,0) such that for any a, b ∈ Tq,

a ⋅ b =
⎧⎪⎪⎨⎪⎪⎩

1 if a = b,
− 1
q−1 otherwise.

and dσ0 is the counting measure on Σ. This model was introduced as a generalization of the
Ising model to more than two possible spins by Potts in 1952 [107] following a suggestion of his
adviser Domb. While the model received little attention early on, it became an object of great
interest in the last forty years. Since then, mathematicians and physicists have been studying
it intensively, and a lot is known on its rich behavior.

Spin O(n) model. Σ is the unit sphere in dimension n and dσ0 is the surface measure. This
model was introduced by Stanley in 1968 [119]. This is yet another generalization of the Ising
model (the case n = 1 corresponds to the Ising model) to continuous spins. The n = 2 and n = 3
models were introduced before the general case and are called the XY and (classical) Heisenberg
models respectively.

Discrete Gaussian Free Field (GFF). Σ = R and dσ0 = exp(−σ2
0/2)dλ(σ0), where dλ is the

Lebesgue measure on R. The discrete GFF is a natural model for random surfaces fluctuations.
We refer to Biskup’s lecture notes for details.

The φ4
d lattice model on Zd. Σ = R and dσ0 = exp(−aσ2

0 − bσ4
0)dλ(σ0), where a ∈ R and

b ≥ 0. This model interpolates between the GFF corresponding to a = 1/2 and b = 0, and the
Ising model corresponding to the limit as b = −a/2 tends to +∞.

Notation. The family of lattice models is so vast that it would be hopeless to discuss them
in full generality. For this reason, we chose already (in the definition above) to focus on
nearest-neighbor ferromagnetic interactions. Also, we will mostly discuss two generalizations
of the Ising model, namely the Potts and O(n) models.

1.1.2 Phase transition in Ising, Potts and O(n) models

We wish to illustrate that the theory of lattice spin models is both very challenging and very
rich. For this, we wish to screen quickly through the possible behaviors of spin models. An
important disclaimer: this section is not rigorous and most of the claims will not be justified
before much later in the lectures. It is therefore not surprising if some of the claims of this
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section sound slightly bold at this time. We refer to [68] for a book on Gibbs measures and
phase transitions.

Assume that the measures introduced above can be extended to infinite volume by taking
weak limits of measures µf

G,β and µb
G,β as G tends to Zd (sometimes called taking the thermo-

dynamical limit), and denote the associated limiting measures by µf
β and µb

β .
The behavior of the model in infinite volume can differ greatly depending on β. In order to

describe the possible behaviors, introduce the following properties:

• The model exhibits spontaneous magnetization at β if

µb
β[σ0 ⋅ b] > 0. (MAGβ)

• The model exhibits long-range ordering at β if

lim
∥x∥→∞

µf
β[σ0 ⋅ σx] > 0. (LROβ)

• The model exhibits exponential decay of correlations at β if

∃cβ > 0 such that µf
β[σ0 ⋅ σx] ≤ e−cβ∥x∥ for all x ∈ Zd. (EXPβ)

(Note that the symmetries of Σ imply µb
β[σ0 ⋅ b] does not depend on the choice of b.) These

three properties lead to three critical parameters separating phases in which they occur or not:

βmag
c ∶= inf{β > 0 ∶ (MAGβ)},
βlro
c ∶= inf{β > 0 ∶ (LROβ)},

βexp
c ∶= sup{β > 0 ∶ (EXPβ)}.

The first parameter βmag
c is usually called the critical inverse temperature and is simply denoted

βc. In the cases studied below, βlro
c = βc (see Section 1.3.3) and we therefore do not discuss when

they are distinct in detail.
Models with Σ discrete for d ≥ 2, or arbitrary Σ for d ≥ 3, are expected to have spontaneous

magnetization for β ≫ 1 (thus proving that βc < ∞). We will also see later that when βc < ∞,
one can often prove1 that βexp

c = βc. In such case, we say that the model undergoes a sharp
order/disorder phase transition. If the model satisfies (MAGβc), the phase transition is said to
be discontinuous; otherwise, it is continuous.

On the contrary, the Mermin-Wagner theorem [84, 102] states that a model on Z2 for which
Σ is a compact continuous connected Lie group satisfies βc = +∞. Then, two cases are possible:

● βexp = ∞: the model does not undergo any phase transition. Polyakov [106] predicted this
behavior for planar O(n)-models with n ≥ 3. We refer to [50] and references therein for a more
precise discussion.

● βexp <∞: the model undergoes a Berezinsky-Kosterlitz-Thouless (BKT) phase transition. This
type of phase transition is named after Berezinsky and Kosterlitz-Thouless2, who introduced it
(non-rigorously) for the planar XY -model in two independent papers [18, 94]. Note that in such
case, there is no spontaneous magnetization at any β.

Exercise 1 Prove that for the Ising model on Z, βc = βexp
c = βlro

c = +∞. Prove the same result for the Potts model
with q ≥ 3. What can be said for the spin O(n) models?

To conclude this section, let us draw a panorama of questions. The table below gathers the
behaviors that are expected for the Ising, Potts and spin O(n) models.

1One may also have βexp
c < βc < ∞, as shown in [67] for the planar clock model with q ≫ 1 states, but this

situation is less common.
2Kosterlitz and Thouless were awarded a Nobel prize in 2016 for their work on topological phase transitions.
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Figure 2: Simulations of three-state planar Potts model at subcritical, critical and supercritical
temperatures.

d = 2 d ≥ 3

Ising Continuous sharp order-disorder PT

Potts
q ∈ {3,4}

q ≥ 5 Discontinuous sharp order-disorder PT

O(n)
n = 2 BKT PT

n ≥ 3 Absence of PT Continuous sharp order-disorder PT

The claims about Ising and Potts models will all be proved, except the discontinuity of the
phase transition for q ≥ 3 and d ≥ 3, which is known only for q ≥ qc(d) ≫ 1 [95] or d ≥ dc(q) ≫ 1
[20]. We will not deal with continuous spins, but we mention that the understanding is more
restricted there. In two dimensions, it is known that models with continuous spin symmetry
cannot have an order-disorder phase transition [102]. The proof that the XY model (i.e. the
O(2) model) undergoes a BKT phase transition is due to Fröhlich and Spencer [67], while the
existence of a phase transition in dimension d ≥ 3 goes back to Fröhlich, Simon and Spencer [66].
To the best of our knowledge, there is no proof of sharpness or continuity in dimension d ≥ 3.
Proving Polyakov’s conjecture, i.e. that spin O(n) models do not undergo any phase transition
in dimension 2, is one of the biggest problems in mathematical physics.

Notation. The behavior of lattice models with a space of spins which is continuous is
quite different from the one with discrete spins. For this reason, we choose to focus on
typical examples of the second kind. From now on, we work with the Ising and Potts model
only. We denote the measure of the q-state Potts model by µ#

G,β,q. In order to lighten the
notation, the measure of the Ising model is denoted by µ#

G,β rather than µ#
G,β,2. Also, we

will use + and − instead of +1 and −1.

1.2 Graphical representation of Potts models

We would like to have a more geometric grasp of correlations between spins of lattice models.
In order to do so, we introduce another type of models, called percolation models.

A percolation configuration ω = (ωe ∶ e ∈ E) on G = (V,E) is an element of {0,1}E . If ωe = 1,
the edge e is said to be open, otherwise e is said to be closed. A configuration ω can be seen as
a subgraph of G with vertex-set V and edge-set {e ∈ E ∶ ωe = 1}. A percolation model is given
by a distribution on percolation configurations on G.

In order to study the connectivity properties of the (random) graph ω, we introduce some
notation. A cluster is a maximal connected component of the graph ω (it may be an isolated
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Figure 3: Simulations of the critical planar Potts model with q equal to 2, 3, 4, 5, 6 and 9
respectively. The behavior for q ≤ 4 is clearly different from the behavior for q > 4. In the first
three pictures, each color (corresponding to each element of Tq) seems to play the same role,
while in the last three, one color wins over the other ones.

vertex). Two vertices x and y are connected in ω if they are in the same cluster. We denote this
event by x←→ y. For A,B ⊂ Zd, set A←→ B if there exists a vertex of A connected to a vertex
of B. We also allow ourselves to consider B = ∞, in which case we mean that a vertex in A is
in an infinite cluster.

The simplest example of percolation models is provided by Bernoulli percolation: each edge
is open with probability p, and closed with probability 1−p, independently of the states of other
edges. Below, the measure is denoted by Pp (its expectation is denoted by Ep). This model was
introduced by Broadbent and Hammersley in 1957 [28] and has been one of the most studied
probabilistic model. We refer to [75] for a book on the subject.

Here, we will be interested in a slightly more complicated percolation model, named the
random-cluster model, which is a percolation model in which the states open or closed of edges
depend on each other. This model was introduced by Fortuin and Kasteleyn in 1972 [62] and is
sometimes referred to as the Fortuin-Kasteleyn percolation. We refer to [74] for a very complete
account on the subject.

1.2.1 Definition of the random-cluster model

Let G be a finite subgraph of Zd. Let o(ω) and c(ω) denote the number of open and closed
edges of ω. Define boundary conditions ξ to be a partition P1 ⊔ ⋅ ⋅ ⋅ ⊔ Pk of ∂G. For boundary
conditions ξ, define the graph ωξ obtained from ω by contracting, for each 1 ≤ i ≤ k, all the
vertices of Pi into one vertex. Also, let k(ωξ) be the number of clusters in the graph ωξ.

As an example, the free boundary conditions (denoted 0) correspond to the partition com-
posed of singletons only: ω0 = ω and we prefer the lighter notation k(ω) to k(ω0). The wired
boundary conditions (denoted 1) correspond to the partition {∂G}: k(ω1) is the number of clus-
ters obtained if all clusters touching the boundary are counted as 1. In general, a subgraph ξ of
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Zd induces boundary conditions as follows: two vertices of ∂G are in the same Pi if they are in
the same cluster of ξ. In this case, boundary conditions will often be identified with the graph
ξ.

Exercise 2 Construct the random-cluster model on the torus as the random-cluster model on a finite box with a
proper choice of boundary conditions.

Definition 1.1 The probability measure φξG,p,q of the random-cluster model on G with edge-
weight p ∈ [0,1], cluster-weight q > 0 and boundary conditions ξ is defined by

φξG,p,q[ω] ∶=
po(ω)(1 − p)c(ω)qk(ωξ)

ZξG,p,q
(1.2)

for every configuration ω ∈ {0,1}E. The constant ZξG,p,q is a normalizing constant, referred to
as the partition function, defined in such a way that the sum over all configurations equals 1.

Fortuin and Kasteleyn introduced the random-cluster model as the unification of different
models of statistical physics satisfying series/parallel laws when modifying the underlying graph:

• For q = 1, the random-cluster model corresponds to Bernoulli percolation. In this case, and
to distinguish with the case q ≠ 1, we prefer the notation Pp instead of the random-cluster
notation.

• For integers q ≥ 2, the model is related to Potts models; see Section 1.2.2.

• For p→ 0 and q/p→ 0, the model is connected to electrical networks via Uniform Spanning
Trees; see Exercise 3.

Exercise 3 Consider a finite graph G = (V,E). Prove that the limit of φ0
G,p,q with p→ 0 and q/p→ 0 is the Uniform

Spanning Tree on G, i.e. the uniform measure on connected subgraphs of the form H = (V,F ), with F not containing
any cycle.

Let us mention two important properties of random-cluster models. For boundary conditions
ξ = P1 ⊔⋯ ⊔ Pk and ψ ∈ {0,1}E∖{e}, where e = xy, one may easily check that

φξG,p,q[ωe = 1∣ω∣E∖{e} = ψ] = φ
ψξ

{e},p,q[ωe = 1] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p if x←→ y in ψξ,
p

p + q(1 − p)
otherwise. (1.3)

Note that in particular the model satisfies the finite-energy property, meaning that there exists
cFE > 0 such that for any e and ψ

φξG,p,q[ωe = 1∣ω∣E∖{e} = ψ] ∈ [cFE,1 − cFE]. (FE)

Also, (1.3) can be extended by induction to any subgraph G′ = (V ′,E′) of G, in the sense that
for any boundary conditions ξ and any ψ ∈ {0,1}E∖E′

and ψ′ ∈ {0,1}E′

,

φξG,p,q[ω∣E′ = ψ′∣ω∣E∖E′ = ψ] = φψ
ξ

G′,p,q(ψ
′). (DMP)

(Recall the definition of the graph ψξ from above.) This last property is called the domain
Markov property.

Exercise 4 Prove carefully the finite-energy property (FE) and the domain Markov property (DMP).
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1.2.2 The coupling between the random-cluster and Potts models

The random-cluster model enables us to rephrase correlations in Potts models in terms of random
subgraphs of Zd. This is the object of this section.

Consider an integer q ≥ 2 and let G be a finite graph. Assume that a configuration ω ∈ {0,1}E
is given. One can deduce a spin configuration σ ∈ TVq by assigning uniformly and independently
to each cluster a spin. More precisely, consider an iid family of uniform random variables σC on
Tq indexed by clusters C in ω. We then define σx to be equal to σC for every x ∈ C. Note that
all the vertices in the same cluster automatically receive the same spin.

Proposition 1.2 (Coupling for free boundary conditions) Fix an integer q ≥ 2, p ∈ (0,1)
and G finite. If ω is distributed according to φ0

G,p,q then σ constructed above is distributed
according to the q-state Potts measure µf

G,β,q, where

β ∶= − q−1
q ln(1 − p). (1.4)

Proof Consider the law P of the pair (ω,σ), where ω is a percolation configuration with free
boundary conditions and σ is the corresponding spin configuration constructed as explained
above. By definition, the first marginal of the distribution is sampled according to φ0

G,p,q. We
wish to compute the law of the second marginal.

Say that the configurations σ ∈ TVq and ω ∈ {0,1}E are compatible if

∀xy ∈ E ∶ ωxy = 1Ô⇒ σx = σy.

Then, if ω and σ are not compatible, P[(ω,σ)] = 0, and if they are,

P[(ω,σ)] = 1
Z0
G,p,q

po(ω)(1 − p)c(ω)qk(ω) ⋅ q−k(ω) = 1
Z0
G,p,q

po(ω)(1 − p)c(ω).

For σ ∈ TVq , introduce Eσ ∶= {xy ∈ E ∶ σx ≠ σy} and note that ω compatible with σ must satisfy
ωxy = 0 for edges xy ∈ Eσ, and that there is no restriction on ωxy for edges xy ∉ Eσ. Summing
P[(ω,σ)] over configurations ω compatible with σ, we find

P[σ] = 1

Z0
G,p,q

(1 − p)∣Eσ ∣ ∑
ω′∈{0,1}E∖Eσ

po(ω
′)(1 − p)c(ω

′)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=1

= e−β∣E∣

Z0
G,p,q

´¹¹¹¹¹¸¹¹¹¹¹¹¶
C

exp[−βH f
G(σ)].

In the second equality, we used that 1 − p = exp(− q
q−1β) and

H f
G[σ] = 1

q−1 ∣Eσ ∣ − ∣E ∖Eσ ∣ = q
q−1 ∣Eσ ∣ − ∣E∣.

The proof follows readily since C does not depend on σ, hence is equal to 1/Z f
G,β,q. ◻

Exercise 5 (reverse procedure) In the coupling above, what is the procedure to obtain the configuration ω from
a configuration σ?

The same coloring procedure as above, except for the clusters C intersecting the boundary
∂G for which σC is automatically set to be equal to b, provides us with another coupling.

Proposition 1.3 (Coupling for monochromatic boundary conditions) Fix an integer q ≥
2, p ∈ (0,1) and G finite. If ω is distributed according to φ1

G,p,q, then σ constructed above is
distributed according to the q-state Potts measure µb

G,β,q, where β = − q−1
q ln(1 − p).
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Exercise 6 Write carefully the proof of Proposition 1.3.

This coupling provides us with a dictionary between the properties of the random-cluster
model and the Potts model. In order to illustrate this fact, let us mention two consequences.

Corollary 1.4 Fix d, q ≥ 2. Let G be a finite subgraph of Zd. Let β > 0 and p ∈ [0,1] be
connected by (1.4). For any x ∈ V ,

µf
G,β,q[σx ⋅ σy] = φ

0
G,p,q[x←→ y], (1.5)

µb
G,β,q[σx ⋅ b] = φ

1
G,p,q[x←→ ∂G]. (1.6)

Proof We do the proof for µf
G,β,q[σx ⋅ σy]. Consider the coupling P between ω and σ and

denote its expectation by E. If x ↔ y denotes the event that x and y are connected in ω, we
find that

µf
G,β,q[σx ⋅ σy] = E[σx ⋅ σy1x←→y] +E[σx ⋅ σy1x /←→y] = φ0

G,p,q[x←→ y],

where we used that σx = σy if x is connected to y, and σx and σy are independent otherwise.
The same reasoning holds for µb

G,β,q[σx ⋅ b]. ◻

As a side remark, note that we just proved that µf
G,β,q[σx ⋅ σy] and µb

G,β,q[σx ⋅ b] are non-
negative. In the case of the Ising model, one can extend the previous relation to the following:
for any A ⊂ V ,

µf
G,β[σA] = φ

0
G,p,2[FA], (1.7)

where σA ∶=∏x∈A σx and FA is the event that every cluster of ω intersects A an even number of
times. In particular, we deduce the first Griffiths inequality µf

G,β[σA] ≥ 0.

Exercise 7 Prove (1.7).

1.3 The percolation phase transition for the random-cluster model

1.3.1 Positive association and monotonicity

Up to now, we considered as granted the fact that spin-spin correlations of the Potts model were
increasing in β, but this is not clear at all. One of the advantages of percolation configurations
compared to spin configurations is that {0,1}E is naturally ordered (simply say that ω ≤ ω′ if
ωe ≤ ω′e for any e ∈ E) so that we may define the notion of an increasing event:

A is increasing ⇐⇒ [(ω ∈ A and ω ≤ ω′)Ô⇒ ω′ ∈ A]. (1.8)

The random-cluster model with cluster-weight q ≥ 1 enjoys some monotonicity properties re-
garding increasing events, and this special feature makes it more convenient to work with than
Potts models.

From now on, we always assume that the cluster-weight is larger or equal to 1, so that we
will have the proper monotonicity properties (listed below).

We say that µ is stochastically dominated by ν if for any increasing event A, µ[A] ≤ ν[A].
Note that there is a natural way of checking that µ is stochastically dominated by ν. Assume
that there exists a probability measure P on pairs (ω, ω̃) ∈ {0,1}E × {0,1}E such that

• the law of ω is µ,
• the law of ω̃ is ν,
• P[ω ≤ ω̃] = 1.

10



Then, µ is automatically stochastically dominated by ν, since for any increasing event A,

µ[A] = P[ω ∈ A] = P[ω ∈ A and ω ≤ ω̃] ≤ P[ω̃ ∈ A] = ν[A].

When µ and ν are equal to two Bernoulli percolation measures Pp and Pp′ with p ≤ p′, it is
quite simple to construct P. Indeed, consider a collection of independent uniform [0,1] random
variables Ue indexed by edges in E. Then, define ω and ω̃ as follows

ωe =
⎧⎪⎪⎨⎪⎪⎩

1 if Ue ≥ 1 − p,
0 otherwise

and ω̃e =
⎧⎪⎪⎨⎪⎪⎩

1 if Ue ≥ 1 − p′,
0 otherwise.

By construction, ω and ω̃ are respectively sampled according to Pp and Pp′ (the states of different
edges are independent, and the probability that an edge is open is respectively p and p′) and
ω ≤ ω̃.

In general, it is more complicated to construct P. The next lemma provides us with a
convenient criterion to prove the existence of such a coupling. We say that a measure µ on
{0,1}E is strictly positive if µ(ω) > 0 for any ω ∈ {0,1}E .

Lemma 1.5 Consider two strictly positive measures µ and ν on {0,1}E such that for any e ∈ E
and ψ,ψ′ ∈ {0,1}E∖{e} satisfying ψ ≤ ψ′, one has

µ[ωe = 1∣ω∣E∖{e} = ψ] ≤ ν[ωe = 1∣ω∣E∖{e} = ψ′]. (1.9)

Then, there exists a measure P on pairs (ω, ω̃) with P[ω ≤ ω̃] = 1 such that ω and ω̃ have laws
µ and ν. In particular, µ is stochastically dominated by ν.

Proof In order to construct P, we use a continuous-time Markov chain (ωt, ω̃t) constructed
as follows. Associate to each edge e ∈ E an independent exponential clock and a collection of
independent uniform [0,1] random variables Ue,k.

At each time an exponential clock rings – say we are at time t and it is the k-th time the
edge e rings – set (below ωt

−

and ω̃t
−

denote the configurations just before time t)

ωte =
⎧⎪⎪⎨⎪⎪⎩

1 if Ue,k ≥ µ[ωe = 0∣ω∣E∖{e} = ωt
−

∣E∖{e}]
0 otherwise,

ω̃te =
⎧⎪⎪⎨⎪⎪⎩

1 if Ue,k ≥ ν[ωe = 0∣ω∣E∖{e} = ω̃t
−

∣E∖{e}]
0 otherwise.

By definition, (ωt) is an irreducible (because of strict positivity, one can go from any state to the
state with all edges open, and back to any other configuration) continuous time Markov chain.
The jump probabilities are such3 that µ is its (unique) stationary measure. As a consequence,
the law of ωt converges to µ. Similarly, the law of ω̃t converges to ν.

Finally, if the starting configurations ω0 and ω̃0 are respectively the configurations with all
edges closed, and all edges open, then ω0 ≤ ω̃0 and the condition (1.9) implies that for all t ≥ 0,
ωt ≤ ω̃t. Letting t tend to infinity provides us with a coupling of µ and ν with P[ω ≤ ω̃] = 1. ◻

Theorem 1.6 (Positive association) Fix q ≥ 1, p ∈ [0,1], ξ some boundary conditions and G
finite. Then

• (Comparison between boundary conditions) For any increasing event A and ξ′ ≥ ξ (mean-
ing that the partition ξ′ is coarser than the partition ξ),

φξ
′

G,p,q[A] ≥ φξG,p,q[A]. (CBC)
3The probability that ωte = 1 is exactly the probability that ωe = 1 knowing the state of all the other edges.
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• (Monotonicity) For any increasing event A and any p′ ≥ p,

φξG,p′,q[A] ≥ φξG,p,q[A]. (MON)

• (Fortuin-Kasteleyn-Ginibre inequality) For any increasing events A and B,

φξG,p,q[A ∩ B] ≥ φξG,p,q[A]φξG,p,q[B]. (FKG)

The assumption q ≥ 1 is not simply technical: the different properties above fail when q < 1. For
instance, a short computation on a small graph shows that the random-cluster model with q < 1
does not satisfy the FKG inequality. Also recall that as p→ 0 and q/p→ 0, one may obtain the
Uniform Spanning Tree, which is known to be edge-negatively correlated. It is natural to expect
some form of negative correlation for random-cluster models with q < 1, but no general result is
known as of today.

One important feature of the comparison between boundary conditions is that the free and
wired boundary conditions are extremal in the following sense: for any increasing event A and
any boundary conditions ξ,

φ0
G,p,q[A] ≤ φξG,p,q[A] ≤ φ1

G,p,q[A]. (1.10)

For more applications of (CBC), we refer to Exercises 9 and 10.

Proof We wish to apply the previous lemma. Consider an edge e = xy ∈ E and ψ ≤ ψ′ two
configurations in {0,1}E∖{e}. Recall that (1.3) is stating that

φξG,p,q[ωe = 1∣ω∣E∖{e} = ψ] =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

p if x and y are connected in ψξ,
p

p + q(1 − p)
otherwise.

Observe that if x and y are connected in ψξ, they also are in (ψ′)ξ (and a fortiori in (ψ′)ξ′),
and that p ≥ p

p+q(1−p) (since q ≥ 1). With the previous observations, (MON) and (CBC) follow
readily from the previous lemma.

For (FKG), we need to be slightly more careful. Without loss of generality, we may assume
that B has positive probability. Define the measures µ = φξG,p,q and ν = µ[⋅∣B]. One may
easily check that (1.9) is satisfied. The measure ν is not strictly positive, but this played a role
only in proving that the Markov chains had unique invariant measures. The fact that ω̃0 is
in B (since B is non-empty and increasing, and all the edges are open in ω̃0) implies that the
stationary measure of (ω̃t) is ν, so that the conclusions of the previous lemma are still valid and
ν stochastically dominates µ. As a consequence,

φξG,p,q[A] = µ[A] ≤ ν[A] =
φξG,p,q[A ∩ B]

φξG,p,q[B]
,

which proves (FKG). ◻

The coupling between random-cluster and Potts models implies the following nice conse-
quence of monotonicity.

Corollary 1.7 Fix G finite and q ≥ 2 an integer. The functions β ↦ µf
G,β,q[σx ⋅ σy] and β ↦

µb
G,β,q[σx ⋅ b] are non-decreasing.
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Exercise 8 (Second Griffiths inequality) Using the coupling with the random-cluster model, prove the second
Griffiths inequality for the Ising model: for any set of vertices A and B,

µf
G,β[σAσB] ≥ µf

G,β[σA]µf
G,β[σB]. (2nd Griffiths)

Exercise 9 (Comparison with boundary conditions 1) Fix p ∈ [0,1], q ≥ 1, a finite graph G = (V,E) and ξ
some boundary conditions. Let F be a subset of E and H be the graph with edge-set F and vertex-set given by
the endpoints of edges in F . Then, for any increasing events A and B depending only on edges in F and E ∖ F
respectively, show that

φ0
H,p,q[A] ≤ φξG,p,q[A∣B] ≤ φ1

H,p,q[A].

Exercise 10 (Comparison with boundary conditions 2) Consider a graph G = (V,E) and F ⊂ E. Let G′ =
(W,F ) be the graph with edge-set F and vertex-set given by the endpoints of the edges in F . Let A be an increasing
event depending on edges in F only. Let ξ be some boundary conditions on ∂G.

1. Define the set S = S(ω) of vertices in V not connected in ω to a vertex in ∂G. Show that for any S ⊂ V , the event
{S = S} is measurable in terms of edges with at least one endpoint outside S.

2. Fix S ⊂ V . Consider the graph H with vertex-set S and edge-set composed of edges in E with both endpoints in
S. Use the previous observation to prove that

φξG,p,q[A,S = S ∣∂G′ /←→ ∂G] ≤ φ0
H,p,q[A]φξG,p,q[S = S ∣∂G′ /←→ ∂G].

3. Prove that φξG,p,q[A ∣∂G′ /←→ ∂G] ≤ φ0
G,p,q[A].

4. We now restrict ourselves to two dimensions. A circuit is a path starting and ending at the same vertex. Let B be
the event that there exists an open circuit in E ∖F disconnecting W from ∂G. Prove that φξG,p,q[A ∣B] ≥ φ1

G,p,q[A].

Exercise 11 (Holley and FKG lattice conditions) 1. Show that for strictly positive measures, (1.9) is equiva-
lent to the Holley criterion: for any ω and ω′,

ν[ω ∨ ω′]µ[ω ∧ ω′] ≥ ν[ω]µ[ω′], (Holley)

where ∨ and ∧ are the min and max of two configurations.

2. Show that for a strictly positive measure µ, (FKG) holds if the FKG lattice condition holds: for any ω and any
edges e and f ,

µ[ωef ]µ[ωef ] ≥ µ[ωef ]µ[ωfe ], (FKG lattice condition)

where ωef , ωef , ωef and ωfe denote the configurations ω′ coinciding with ω except at e and f , where (ω′e, ω′f ) are
equal respectively to (1,1), (0,0), (1,0) and (0,1).

Exercise 12 Is there a monotonicity in q at fixed p?

1.3.2 Phase transition in the random-cluster and Potts models

When discussing phase transitions, we implicitly considered infinite-volume Potts measures to
define βc. Their definition is not a priori clear since the Hamiltonian would then be an infi-
nite sum of terms equal to 1 or −1/(q − 1). One can always consider sub-sequential limits of
measures µf

G,β,q, but one can in fact do much better using the random-cluster model: mono-
tonicity properties of the previous section enable us to prove convergence of certain sequences
of measures.

Below and in the rest of this document, set for every n ≥ 0, Λn ∶= [−n,n]d ∩Zd. Also, En will
denote the set of edges between two vertices of Λn.

Proposition 1.8 Fix q ≥ 1. There exist two (possibly equal) measures φ0
p,q and φ1

p,q on {0,1}E,
called the infinite-volume random-cluster measures with free and wired boundary conditions re-
spectively, such that for any event A depending on a finite number of edges,

lim
n→∞

φ1
Λn,p,q[A] = φ1

p,q[A] and lim
n→∞

φ0
Λn,p,q[A] = φ0

p,q[A].

One warning: while boundary conditions cannot be defined as a partition of the boundary
in infinite volume, one still needs to keep track of the dependency on boundary conditions for
finite-volume measures when constructing the measure. Therefore, the measures φ1

p,q and φ0
p,q
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have no reason to be the same and we will see examples of values of p and q for which they are in
fact different. In addition to this, one may imagine other infinite-volume measures obtained via
limits of measures on finite graphs with arbitrary (and possibly random) boundary conditions.

Proof We deal with the case of free boundary conditions. Wired boundary conditions are
treated similarly. Fix an increasing event A depending on edges in ΛN only. We find that for
any n ≥ N ,

φ0
Λn+1,p,q[A] (DMP)= φ0

Λn+1,p,q[φ
ξ
Λn,p,q

[A]]
(CBC)
≥ φ0

Λn,p,q[A],
where ξ is the random boundary conditions induced by the configuration ω∣En+1∖En . We deduce
that (φ0

Λn,p,q
[A])n≥0 is increasing, and therefore converges to a certain value P [A] as n tends

to infinity.
Since the probability of an event B depending on finitely many edges can be written by

inclusion-exclusion (see Exercise 13) as a combination of the probability of increasing events,
taking the same combination defines a natural value P (B) for which φ0

Λn,p,q
[B] converges to

P (B).
The fact that (φ0

Λn,p,q
)n≥0 are probability measures implies that the function P (which is a

priori defined on the set of events depending on finitely many edges) can be extended into a
probability measure on FE. We denote this measure by φ0

p,q. ◻

Exercise 13 For ψ ∈ {0,1}E , write {ω ∈ {0,1}E ∶ ωe = ψe,∀e ∈ E} as A∖B with B ⊂ A two increasing events. Deduce
that any event depending on finitely many edges can be written by inclusion-exclusion using increasing events.

The properties of finite-volume measures (FKG inequality, monotonicity, ordering between
boundary conditions) extend to infinite volume in a straightforward fashion. In particular,
one may define a critical parameter pc ∈ [0,1] such that

pc = pc(q, d) ∶= inf{p > 0 ∶ φ1
p,q[0↔∞] > 0} = sup{p > 0 ∶ φ1

p,q[0↔∞] = 0}.

Let us conclude by explaining what this implies for Potts models. One can extend the coupling
between random-cluster models and Potts models in order to construct q + 1 measures µf

β,q and
µb
β,q with b ∈ Tq on Zd by doing the same couplings as in finite volume, except that clusters

intersecting the boundary are replaced by infinite clusters.

Corollary 1.9 The measures µf
β,q and µb

β,q with b ∈ Tq are the limits of the measures µf
Λn,β,q

and µb
Λn,β,q

. Furthermore, if β and p satisfy (1.4), then

m∗(β, q) ∶= µb
β,q[σ0 ⋅ b] = φ1

p,q[0←→∞].

The proof of the corollary is immediate from the convergence of the random-cluster measures
and the coupling. Note that this enables us to define rigorously

βc = βc(q, d) ∶= inf{β > 0 ∶m∗(β, q) > 0} = sup{β > 0 ∶m∗(β, q) = 0},

which is related to pc(q, d) by the formula

βc(q, d) ∶= − q−1
q log [1 − pc(q, d)]. (1.11)

Exercise 14 Is there some ordering between the measures φ1
p,q in q ≥ 1 at fixed p? Deduce from the study of

Bernoulli percolation that pc(q, d) > 0.

Exercise 15 1. Prove that for p < pc, φ1
p,q = φ0

p,q.

2. (To do after reading Section 2.4) Prove that on Z2, φ1
p,q = φ0

p,q for p > pc.

Exercise 16 A probability measure φ on {0,1}E is called an infinite-volume random-cluster measure with parameters
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p and q if for every finite graph G = (V,E),

φ[ω∣E = η ∣FE] = φξG,p,q[η] , ∀η ∈ {0,1}E ,

where ξ are the boundary conditions induced by the configuration outside G and FE is the σ-algebra induced by
(ωe ∶ e ∉ E). Prove that φ0

p,q ≤ φ ≤ φ1
p,q for any infinite-volume measure with parameters p and q ≥ 1. Deduce that

there exists a unique infinite-volume measure if and only if φ0
p,q = φ1

p,q.

Exercise 17 Using (FE), prove that pc(q, d) > 0.

1.3.3 Long-range ordering and spontaneous magnetization

Let us now focus on the following question: is (LROβ) equivalent to (MAGβ)? In terms of
random-cluster model, this gets rephrased as follows: is φ1

p,q[0↔∞] = 0 equivalent to φ0
p,q[0↔

x] tends to 0 as ∥x∥ tends to infinity? Two things could prevent this from happening. First,
φ1
p,q and φ0

p,q could be different. Second, it may be that, when an infinite cluster exists, then
automatically infinitely many of them do, so that the probability that two vertices are connected
tends to zero.

Let us first turn to the second problem and prove that the infinite cluster, when it exists, is
unique.

Theorem 1.10 Fix p ∈ [0,1] and q ≥ 1. For # equal to 0 or 1, either φ#
p,q[0 ↔ ∞] = 0 or

φ#
p,q[∃ a unique infinite cluster] = 1.

This result was first proved in [7] for Bernoulli percolation. It was later obtained via different
types of arguments. The beautiful argument presented here is due to Burton and Keane [30].

We begin by studying ergodic properties of φ1
p,q and φ0

p,q. Let τx be a translation of the
lattice by x ∈ Zd. This translation induces a shift on the space of configurations {0,1}E. Define
τxA ∶= {ω ∈ {0,1}E ∶ τ−1

x ω ∈ A}. An event A is invariant under translations if for any x ∈ Zd,
τxA = A. A measure µ is invariant under translations if µ[τxA] = µ[A] for any event A and any
x ∈ Zd. The measure is said to be ergodic if any event invariant under translation has probability
0 or 1.

Lemma 1.11 The measures φ1
p,q and φ0

p,q are invariant under translations and ergodic.

Proof Let us treat the case of φ1
p,q, the case of φ0

p,q is left to the reader (Exercise 19). Let A
be an increasing event depending on finitely many edges, and x ∈ Zd. Choose k such that x ∈ Λk.
Since Λn−k ⊂ τxΛn ⊂ Λn+k, the comparison between boundary conditions (CBC) gives

φ1
Λn+k,p,q

[τxA] ≤ φ1
τxΛn,p,q[τxA] ≤ φ1

Λn−k,p,q
[τxA].

We deduce that

φ1
p,q[A] = lim

n→∞
φ1

Λn,p,q[A] = lim
n→∞

φ1
τxΛn,p,q[τxA] = φ1

p,q[τxA].

Since the increasing events depending on finitely many edges span the σ-algebra of measurable
events, we obtain that φ1

p,q is invariant under translations.
Any event can be approximated by events depending on finitely many edges, hence the

ergodicity follows from mixing (see Exercise 18), i.e. from the property that for any events A
and B depending on finitely many edges,

lim
∥x∥→∞

φ1
p,q[A ∩ τxB] = φ1

p,q[A]φ1
p,q[B]. (Mixing)
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Figure 4: Construction of a trifurcation at the origin starting from three disjoint infinite clusters
(in gray) intersecting Λn. The three paths inside Λn are vertex-disjoint, except at the origin.

Observe that by inclusion-exclusion, it is sufficient to prove the equivalent result for A and B
increasing and depending on finitely many edges. Let us give ourselves these two increasing
events A and B depending on edges in Λk only, and x ∈ Zd. The FKG inequality and the
invariance under translations of φ1

p,q imply that

φ1
p,q[A ∩ τxB] ≥ φ1

p,q[A]φ1
p,q[τxB] = φ1

p,q[A]φ1
p,q[B].

In the other direction, for any n ≥ 2k, if x is far enough from the origin, then Λn and τxΛn do
not intersect. Thus, the comparison between boundary conditions (more precisely Exercise 9 for
H = ΛN with N ≥ n + k, and then a limit as N tends to infinity) gives

φ1
p,q[A ∩ τxB] ≤ φ1

Λn,p,q[A]φ1
τxΛn,p,q[τxB] = φ

1
Λn,p,q[A]φ1

Λn,p,q[B].

The result follows by taking x to infinity. ◻

Exercise 18 Prove that the mixing property (Mixing) implies ergodicity. Hint. Consider an event A which is
invariant by translation and approximate it by an event B depending on finitely many edges. Then, use that the
probability that B ∩ τxB tends to the square of the probability of B together with the fact that A = A ∩ τxA.

Exercise 19 Prove that φ0
p,q is invariant under translations and ergodic.

Proof of Theorem 1.10 We present the proof in the case of wired boundary conditions and
for p ∈ (0,1) (the result is obvious for p equal to 0 or 1). Let E≤1, E<∞ and E∞ be the events that
there are no more than one, finitely many and infinitely many infinite clusters respectively. Since
having no infinite cluster is an event which is invariant under translations, it has probability 0
or 1 by ergodicity, and it is therefore sufficient to prove that φ1

p,q[E≤1] = 1.

Let us start by showing that φ1
p,q[E<∞ ∖ E≤1] = 0. By ergodicity, E<∞ and E≤1 both have

probability equal to 0 or 1. Since E≤1 ⊂ E<∞, we only need to prove that φ1
p,q[E<∞] > 0 implies

φ1
p,q[E≤1] > 0. Let F be the event that all (there may be none) the infinite clusters intersect Λn.

Since F is independent of En, (DMP) together with (FE) imply that

φ1
p,q[F ∩ {ωe = 1,∀e ∈ En}] ≥ φ1

p,q[F] c ∣En∣
FE .

Now, assume that φ1
p,q[E<∞] > 0. Since any configuration in the event on the left contains

zero or one infinite cluster (all the vertices in Λn are connected), choosing n large enough that
φ1
p,q[F]≥ 1

2φ
1
p,q[E<∞] > 0 implies that φ1

p,q[E≤1] > 0.
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We now exclude the possibility of an infinite number of infinite clusters. Consider n > 0 large
enough that

φ1
p,q[K infinite clusters intersect the box Λn] ≥ 1

2φ
1
p,q[E∞], (1.12)

where K =K(d) is large enough that three vertices x, y, z of ∂Λn at a distance at least three of
each other that are connected to infinity in ω∣E∖En . Using these three vertices, one may modify4

the configuration in En as follows:
1. Choose three paths in Λn intersecting each other only at the origin, and intersecting ∂Λn

only at one point, which is respectively x, y and z.
2. Open all the edges of these paths, and close all the other edges in En.

We deduce from this construction that leaves

φ1
p,q[T0] ≥ c ∣En∣

FE ⋅ 1
2φ

1
p,q[E∞], (1.13)

where T0 is the following event: Zd ∖ {0} contains three distinct infinite clusters which are
connected to 0 by an open edge. A vertex x ∈ Zd is called a trifurcation if τxT0 =∶ Tx occurs.

Fix n≥1 and denote the number of trifurcations in Λn by T. By invariance under translation,
φ1
p,q[Tx] = φ1

p,q[T0] and therefore

φ1
p,q[T] = φ1

p,q[T0] × ∣Λn∣. (1.14)

Let us now bound deterministically T. In order to do this, first perform the following two
“peelings” of the set F0 ∶= {e1, . . . , er} of edges in En that are open in ω.

• For each 1 ≤ i ≤ r, if ei is on a cycle formed by edges in Fi−1, set Fi = Fi−1∖{ei}, otherwise,
set Fi = Fi−1. In the end, the set F̃0 ∶= Fr = {f1, . . . , fs} is a forest.

• For each 1 ≤ j ≤ s, if F̃j−1 ∖ {fj} contains a cluster not intersecting ∂Λn, then set F̃j to
be F̃j−1 ∖ {fj} and the cluster in question. Otherwise, set F̃j = F̃j−1. At the end, F̃s is a
forest whose leaves belong to ∂Λn.

Since the trifurcations are vertices of degree at least three in this forest, we deduce that T is
smaller than the number of leaves in the forest, i.e. T ≤ ∣∂Λn∣. This gives

φ1
p,q[T0]

(1.14)=
φ1
p,q[T]
∣Λn∣

≤ ∣∂Λn∣
∣Λn∣

Ð→ 0 as n→∞.

Combined with (1.13), this implies that φ1
p,q[E∞] = 0. The claim follows. ◻

Exercise 20 We say that an (countable) infinite locally finite transitive graph G is amenable if

inf
G⊂G

∣∂G∣
∣G∣

= 0.

Show that Theorem 1.10 still holds in this context. What about graphs which are not amenable, do we always have
uniqueness of the infinite cluster?

We now turn to the first problem and prove the following.

Theorem 1.12 For q ≥ 1, the set of edge-weights p for which φ1
p,q ≠ φ0

p,q is at most countable.

4Note that one may wish to pick K = 3 in (1.12) instead of a (a priori) larger K, but that this choice would
make the construction of the trifurcations described below more difficult due to the fact that the three clusters
may arrive very close to each other on the corner of Λn, and therefore prevent us from “rewiring them” to construct
a trifurcation at the origin.
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The theorem implies that for any p > pc, there exists p′ ∈ (pc, p) such that φ1
p′,q = φ0

p′,q. As a
consequence,

φ0
p,q[0←→∞] ≥ φ0

p′,q[0←→∞] = φ1
p′,q[0←→∞] > 0. (1.15)

In other words, φ0
p,q[0↔∞] > 0 for any p > pc and we could have defined the critical point using

the free boundary conditions instead of the wired ones. We will use this fact quite often.
The proof of Theorem 1.12 goes back to Lebowitz and Martin-Löf [89] in the case of the Ising

model. The very elegant argument harvests the convexity of the free energy (see Exercise 21).
Here, we present a slightly rephrased version of this argument, which relies on the fact that the
probability of an edge to be open is increasing.

Proof Before diving into the proof, let us remark that

φ0
p,q = φ1

p,q ⇐⇒ φ0
p,q[ωe] = φ1

p,q[ωe], ∀e ∈ E.

The direct implication being obvious, we assume the assertion on the right and try to prove the
one on the left. Consider an increasing event A depending on a finite set E of edges, then if Pn

denotes the increasing coupling between ω ∼ φ0
Λn,p,q

and ω̃ ∈ φ1
Λn,p,q

constructed in the proof of
Lemma 1.5, we find that

0 ≤ φ1
Λn,p,q[A] − φ0

Λn,p,q[A] = Pn[ω̃ ∈ A, ω ∉ A]
≤ ∑
e∈E

Pn[ω̃e = 1, ωe = 0] = ∑
e∈E

φ1
Λn,p,q[ωe] − φ

0
Λn,p,q[ωe].

Letting n go to infinity implies that φ1
p,q[A] = φ0

p,q[A]. Since increasing events depending on
finitely many edges generate the σ-algebra, this gives that φ1

p,q = φ0
p,q.

Our goal is to prove that φ1
p,q[ω0] = φ0

p,q[ωe] at any point of continuity of p ↦ φ1
p,q[ωe].

Since this function is increasing, it has at most countably many points of discontinuity and the
theorem will follow. Below, we fix such a point of continuity p. We also consider p′ < p and set
a ∶= φ0

p,q[ωe] and b ∶= φ1
p′,q[ωe].

Consider 0 < ε < min{1−a, b} and n ≥ 1. The comparison between boundary conditions gives
that

φ0
Λn,p,q[o(ω)] ≤ a∣En∣ so that φ0

Λn,p,q[o(ω) ≤ (a + ε)∣En∣] ≥ ε, (1.16)

φ1
Λn,p′,q[o(ω)] ≥ b∣En∣ so that φ1

Λn,p′,q[o(ω) ≥ (b − ε)∣En∣] ≥ ε. (1.17)

(For the inequalities on the right, we also used that 0 ≤ o(ω) ≤ ∣En∣.) Now, using that k(ω1) ≤
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k(ω) ≤ k(ω1) + ∣∂Λn∣ and setting λ ∶= p′(1−p)
(1−p′)p < 1, we find5 that

ε
(1.17)
≤ φ1

Λn,p′,q[o(ω) > (b − ε)∣En∣] ≤ q∣∂Λn∣ φ0
Λn,p′,q[o(ω) > (b − ε)∣En∣]

≤ q∣∂Λn∣ φ
0
Λn,p,q

[λo(ω)1o(ω)>(b−ε)∣En∣]
φ0

Λn,p,q
[λo(ω)1o(ω)≤(a+ε)∣En∣]

(1.16)
≤ q∣∂Λn∣λ(b−a−2ε)∣En∣

ε
.

The fact that ∣En∣/∣∂Λn∣ tends to infinity as n tends to infinity implies that b ≤ a + 2ε. Since
this is true for any ε > 0, we deduce b ≤ a. Letting p′ tend to p and using the continuity of
p′ ↦ φ1

p′,q[ωe] at p gives that φ1
p,q[ωe] ≤ φ0

p,q[ωe]. Since we already have φ1
p,q[ω0] ≥ φ0

p,q[ωe], this
concludes the proof. ◻

Exercise 21 1. Show that Z1
Λ2n,p,q

≥ (Z1
Λn,p,q

)2d .

2. Deduce that f1
n(p, q) ∶= 1

∣E2n ∣
log(Z1

Λ2n ,p,q
) converges to a quantity f(p, q) (called the free energy).

3. Show that f0
n(p, q) ∶= 1

∣E2n ∣
log(Z0

Λ2n ,p,q
) converges to f(p, q) as well.

4. Show that the right and left derivatives of

t↦ f( et

1 + et
, q) + log(1 + et)

are respectively φ1
p,q[ωe] and φ0

p,q[ωe].

5. Show that p↦ f(p, q) is convex and therefore not differentiable in at most countably many points. Conclude.

Let us conclude this section by stating the following corollary for the Potts model.

Corollary 1.13 Consider the Potts model on Zd. For any β > βc, (LROβ) holds true, while for
any β < βc, (LROβ) does not hold.

Note that we do not claim that the property is equivalent to (MAGβ) since at βc, one may have
(MAGβc) but not (LROβc).

Proof By the coupling with the random-cluster model, we need to prove that φ0
p,q[0 ↔ x]

tends to 0 when p < pc, which is obvious, and that φ0
p,q[0↔ x] does not tend to 0 when p > pc,

which follows from

φ0
p,q[0←→ x] ≥ φ0

p,q[0←→∞, x←→∞] ≥ φ0
p,q[0←→∞]2 (1.15)

> 0,

where the first inequality is due to the uniqueness of the infinite cluster, and the second to the
FKG inequality and the invariance under translations. ◻

5We use that for a random variable X, that

φξG,p′,q[X] =
φξG,p,q[Xλ

o(ω)
]

φξG,p,q[λ
o(ω)]

since

∑
ω∈{0,1}E

X(ω)p′o(ω)(1 − p′)c(ω)qk(ω) = (1 − p′)∣E∣
∑

ω∈{0,1}E

X(ω)( p′
1−p′ )

o(ω)
qkξ(ω)

= (1 − p′)∣E∣
∑

ω∈{0,1}E

λo(ω)X(ω)( p
1−p

)
o(ω)

qk(ω)

= (
1−p′
1−p

)
∣E∣

∑
ω∈{0,1}E

λo(ω)X(ω)po(ω)(1 − p)c(ω)qk(ω).
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2 Computation of critical points and sharp phase transitions

We would now like to discuss how the critical point of a planar percolation model can sometimes
be computed, and how fast correlations decay when p < pc. We start by studying Bernoulli
percolation, and then focus on the random-cluster model.

2.1 Kesten’s theorem

In this section, we focus on the case d = 2. We begin by discussing the duality relation for
Bernoulli percolation. Consider the dual lattice (Z2)∗ ∶= (1

2 ,
1
2) +Z2 of the lattice Z2 defined by

putting a vertex in the middle of each face, and edges between nearest neighbors. Each edge
e ∈ E is in direct correspondence with an edge e∗ of the dual lattice crossing it in its middle.
For a finite graph G = (V,E), let G∗ be the graph with edge-set E∗ = {e∗, e ∈ E} and vertex-set
given by the endpoints of the edges in E∗.

A configuration ω is naturally associated with a dual configuration ω∗: every edge e which
is closed (resp. open) in ω corresponds to an open (resp. closed) edge e∗ in ω∗. More formally,

ω∗e∗ ∶= 1 − ωe ∀e ∈ E.

Note that if ω is sampled according to Pp, then ω∗ is sampled according to P1−p. This duality
relation suggests that the critical point of Bernoulli percolation on Z2 is equal to 1/2. We discuss
different levels of heuristic leading to this prediction.

Heuristic level 0 The simplest non-rigorous justification of the fact that pc = 1/2 invokes the
uniqueness of the phase transition, i.e. the observation that the model should undergo a single
change of macroscopic behavior as p varies. This implies that pc must be equal to 1 − pc, since
otherwise the model will change at pc (with the appearance of an infinite cluster in ω), and
at 1 − pc (with the disappearance of an infinite cluster in ω∗). Of course, it seems difficult to
justify why there should be a unique phase transition. This encourages us to try to improve our
heuristic argument.

Heuristic level 1 One may invoke a slightly more subtle argument. On the one hand, assume
for a moment that pc < 1/2. In such case, for any p ∈ (pc,1 − pc), there (almost surely) exist
infinite clusters in both ω and ω∗. Since the infinite cluster is unique almost surely, this seems
to be difficult to have coexistence of an infinite cluster in ω and an infinite cluster in ω∗, and it
therefore leads us to believe that pc ≥ 1/2. On the other hand, assume that pc > 1/2. In such
case, for any p ∈ (1 − pc, pc), there (almost surely) exist no infinite cluster in both ω and ω∗.
This seems to contradict the intuition that if clusters are all finite in ω, then ω∗ should contain
an infinite cluster. This reasoning is wrong in general (there may be no infinite cluster in both
ω and ω∗), but it seems still believable that this should not occur for a whole range of values of
p. Again, the argument is fairly weak here and we should improve it.

Heuristic level 2 Consider the event, called Hn, corresponding to the existence of a path of
open edges of ω in Rn ∶= [0, n] × [0, n − 1] going from the left to the right side of Rn. Observe
that the complement of the event Hn is the event that there exists a path of open edges in ω∗

going from top to bottom in the graph R∗
n; see Fig. 6. Using the rotation by π/2, one sees that

at p = 1/2, these two events have the same probability, so that

P1/2[Hn] = 1
2 ∀n ≥ 1. (2.1)

Now, one may believe that for p < pc, the clusters are so small that the probability that one
of them contains a path crossing Rn from left to right tends to 0, which would imply that the
probability of Hn would tend to 0, and therefore that pc ≤ 1/2. On the other hand, one may
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Figure 5: The rectangle Rn together with its dual R∗
n (the green edges on the boundary are

irrelevant for the crossing, so that we may consider only the black edges, for which the dual
graph is isomorphic to the graph itself (by rotating it). The dual edges (in red) of the edge-
boundary of the cluster of the right boundary in ω (in blue) is a cluster in ω∗ crossing from top
to bottom in R∗

n.

believe that for p > pc, the infinite cluster is so omnipresent that it contains with very high
probability a path crossing Rn from left to right, thus implying that the probability of Hn would
tend to 1. This would give pc ≥ 1/2. Unfortunately, the first of these two claims is difficult to
justify. Nevertheless, the second one can be proved as follows.

Proposition 2.1 Assume that Pp[0↔∞] > 0, then lim
n→∞

Pp[Hn] = 1.

Proof Fix n ≥ k ≥ 1. Since a path from Λk to Λn ends up either on the top, bottom, left or
right side of Λn, the square root trick using the FKG inequality (See Exercise 22) implies that

Pp[Λk is connected in Λn to the left of Λn] ≥ 1 − Pp[Λk /←→∞]1/4.

Set n′ = ⌊(n − 1)/2⌋. Consider the event An that (n′, n′) + Λk is connected in Rn to the left of
Rn, and (n′ + 2, n′) +Λk is connected in Rn to the right of Rn. We deduce that

Pp[An] ≥ 1 − 2Pp[Λk /←→∞]1/4.

The uniqueness of the infinite cluster implies6 that

lim inf
n→∞

Pp[Hn] = lim inf
n→∞

Pp[An] ≥ 1 − 2Pp[Λk /←→∞]1/4.

Letting k tend to infinity and using that the infinite cluster exists almost surely, we deduce that
Pp[Hn] tends to 1. ◻

6The event An ∖Hn is included in the event that there are two distinct clusters in Rn going from Λk to ∂Rn.
The intersection of the latter events for n ≥ 1 is included in the event that there are two distinct infinite clusters,
which has zero probability. Thus, the probability of An ∖Hn goes to 0 as n tends to infinity.
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Figure 6: Construction in the proof of Proposition 2.1. One path connects the left side of Rn (in
blue) to the blue hatched area. The other one on the right side of Rn (in red) to the red hatched
area. The two paths must be in the same cluster (of Rn) by uniqueness, which therefore must
contain a path from left to right.

Exercise 22 (Square root trick) Prove, using (FKG), that for any increasing events A1, . . . ,Ar,

max{Pp[Ai] ∶ 1 ≤ i ≤ r} ≥ 1 − (1 − Pp[
r

⋃
i=1

Ai])
1/r
.

Exercise 23 (Zhang argument) 1. Show that

P1/2[top of Λn is connected to infinity outside Λn] ≥ 1 − P1/2[Λn /←→∞]1/4.

2. Deduce that the probability of the event Bn that there exist infinite paths in ω from the top and bottom of Λn to
infinity in Z2 ∖Λn, and infinite paths in ω∗ from the left and right sides to infinity satisfies

P1/2[Bn] ≥ 1 − 4P1/2[Λn /←→∞]1/4.

3. Using (FE) and the uniqueness of the infinite cluster, prove that P1/2[Λn /↔∞] cannot tend to 0.

This proposition together with (2.1) implies the following corollary

Corollary 2.2 There is no infinite cluster at p = 1/2. In particular, pc ≥ 1/2.

As mentioned above, the last thing to justify rigorously is the fact that for p < pc, Pp[Hn]
tends to 0. There are alternative ways of getting the result, in particular by proving that the
function p ↦ Pp[Hn] undergoes a sharp threshold7 near 1/2. This sharp threshold could be
proved by hand (as done in [93]), or using abstract theorems coming from the theory of Boolean
functions (as done in [24]). Overall, one obtains the following result, which goes back to the
early eighties.

Theorem 2.3 (Kesten [93]) For Bernoulli percolation on Z2, pc is equal to 1/2. Furthermore,
there is no infinite cluster at pc.

7A sequence (fn) of continuous homeomorphisms from [0,1] onto itself satisfies a sharp threshold if for any
ε > 0, ∆n(ε) ∶= f

−1
n (1 − ε) − f−1

n (ε) tends to 0.

22



In these lectures, we choose a different road to prove that Pp[Hn] tends to 0. Assume for a
moment that for any p < pc, there exists cp > 0 such that for all n ≥ 1,

Pp[0←→ ∂Λn] ≤ exp(−cpn).

Then, Pp[Hn] tends to 0 as n tends to infinity since

Pp[Hn] ≤
n−1

∑
k=0

Pp[(0, k) is connected to the right of Rn]

≤ nPp[0←→ ∂Λn] ≤ n exp(−cpn).

Overall, Kesten’s theorem thus follows from the following result.

Theorem 2.4 Consider Bernoulli percolation on Zd,

1. For p < pc, there exists cp > 0 such that for all n ≥ 1, Pp[0↔ ∂Λn] ≤ exp(−cpn).

2. There exists c > 0 such that for p > pc, Pp[0↔∞] ≥ c(p − pc).

Note that the second item, called the mean-field lower bound is not relevant for the proof of
Kesten’s Theorem. Also note that Theorem 2.4 is a priori way too strong compared to what is
needed since it holds in arbitrary dimensions.

Exercise 24 (pc(G) + pc(G∗) = 1) In this exercise, we use the notation A
B←→ C the event that A and C are con-

nected by a path using vertices in B only. Consider Bernoulli percolation on a planar lattice G embedded in such a
way that Z2 acts transitively on G. We do not assume any symmetry of the lattice. We call the left, right, top and
bottom parts of a rectangle Left, Right, Top and Bottom. Also, H(n, k) and V(n, k) are the events that [0, n]× [0, k]
is crossed horizontally and vertically by paths of open edges.

1. Use the Borel-Cantelli lemma and Theorem 2.4 (one may admit the fact that the theorem extends to this context)
to prove that for p < pc(G), there exists finitely many open circuits surrounding a given vertex of G∗. Deduce that
pc(G) + pc(G∗) ≤ 1.

We want to prove the converse inequality by contradiction. From now on, we assume that both p > pc(G) and
p∗ > pc(G∗).

2. For s > 0 and x ∈ Z2, define Sx = x + [0, s]2. Prove that for any rectangle R, there exists x = x(R) ∈ R ∩ Z2 such
that there exists x′ and x′′ neighbors of x in Z2 satisfying

Pp[Sx
R←→ Bottom] ≥ Pp[Sx

R←→ Top] Pp[Sx
R←→ Left] ≥ Pp[Sx

R←→ Right], (2.2)

Pp[Sx′
R←→ Top] ≥ Pp[Sx′

R←→ Bottom] Pp[Sx′′
R←→ Right] ≥ Pp[Sx′′

R←→ Left]. (2.3)

3. Set H ∶= R+ ×R, `+ ∶= {0}×R+, `− ∶= {0}×R− and ` = `− ∪ `+. Prove that there exists x = x(m) with first coordinate
equal to m satisfying

Pp[Sx
H←→ `−] ≥ Pp[Sx

H←→ `+] and Pp[Sx+(0,1)
H←→ `−] ≤ Pp[Sx+(0,1)

H←→ `+].

4. Using the square root trick, deduce that

Pp[Sx
H←→ `−] ≥ 1 −

√
Pp[Sx /←→ `] and Pp[Sx+(0,1)

H←→ `+] ≥ 1 −
√

Pp[Sx+(0,1) /←→ `].

5. Using the fact that there exists a unique infinite cluster in ω almost surely, prove that the probability that {0}×[0,1]
is connected in ω∗ ∩H to infinity is tending to 0.

6. Prove that the distance between x(R) and the boundary of R is necessarily tending to infinity as min{n, k} tends
to infinity.

7. Using x(R), prove that max{Pp[V(n, k)],Pp[H(n, k + 1)]} tends to 1 and min{Pp[V(n, k)],Pp[H(n, k)]} tends to
0 as min{k,n} tends to infinity. Hint. Use the square root trick and the uniqueness criterion like in the previous
questions.

8. By considering the largest integer k such that Pp[V(n, k)] ≥ Pp[H(n, k)], reach a contradiction. Deduce that
pc(G) + pc(G∗) ≥ 1.

9. (to do after Section 2.4) How does this argument extend to random-cluster models with q ≥ 1?
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2.2 Two proofs of sharpness for Bernoulli percolation

Theorem 2.4 was first proved by Aizenman, Barsky [3] and Menshikov [101] (these two proofs
are presented in [73]). Here, we choose to present two new arguments from [60, 61] and [53].

Before diving into the proofs, note that for any function X ∶ {0,1}E Ð→ R where E is finite,

dEp[X]
dp

= 1
p(1−p) ∑

e∈E
Covp[X,ωe], (DF)

(where Covp is the covariance for Pp) which is obtained readily by differentiating the quantity
Ep[X] = ∑

ω∈{0,1}E
X(ω)p∑e ωe(1−p)∑e 1−ωe . We insist on the fact that we are considering functions

X depending on finitely many edges only (in particular it is clear that Ep[X] is analytic).

2.2.1 Proof using the ϕp(S) quantity

Let S be a finite set of vertices containing the origin. We say that 0
S←→ x if 0 is connected to x

using only edges between vertices of S. We denote the edge-boundary of S by

∆S = {xy ⊂ E ∶ x ∈ S, y ∉ S}.

For p ∈ [0,1] and 0 ∈ S ⊂ Zd, define

ϕp(S) ∶= p ∑
xy∈∆S

Pp[0
S←→ x]. (2.4)

Set
p̃c ∶= sup{p ∈ [0,1] ∶ ∃S ∋ 0 finite with ϕp(S) < 1}. (2.5)

Step 1: for p < p̃c, (EXPp) holds true. By definition, one can fix a finite set S containing the
origin, such that ϕp(S) < 1. Choose L > 0 such that S ⊂ ΛL−1. Consider k ≥ 1 and assume that

the event 0 ↔ ∂ΛkL holds. Introduce the random variable C ∶= {x ∈ S ∶ x S←→ 0} corresponding
to the cluster of 0 in S. Since S∩∂ΛkL = ∅, one can find an open edge xy ∈ ∆S such that 0

S←→ x

and y Cc←→ ∂ΛkL. Using the union bound, and then decomposition on the possible realizations of
C, we find

Pp[0←→ ∂ΛkL] ≤ ∑
xy∈∆S

∑
C⊂S

Pp[{0
S←→ x} ∩ {C = C} ∩ {ωxy = 1} ∩ {y Cc←→ ∂ΛkL}]

≤ ∑
xy∈∆S

∑
C⊂S

Pp[{0
S←→ x} ∩ {C = C}] ⋅ p ⋅ Pp[y

Cc←→ ∂ΛkL]

≤ p( ∑
xy∈∆S

∑
C⊂S

Pp[{0
S←→ x} ∩ {C = C}])Pp[0←→ ∂Λ(k−1)L]

≤ p( ∑
xy∈∆S

Pp[0
S←→ x])Pp[0←→ ∂Λ(k−1)L]

= ϕp(S)Pp[0←→ ∂Λ(k−1)L].

In the second line, we used that {y Cc←→ ∂ΛkL}, {ωxy = 1} and {0
S←→ x} ∩ {C = C} are indepen-

dent. Indeed, these events depend on disjoint sets of edges: the first one on edges with both
endpoints outside of C, the second one on xy only, and the third one on edges between vertices
of S with at least one endpoint in C. In the third line, we used y ∈ ΛL implies

Pp[y
Cc←→ ∂ΛkL] ≤ Pp[0←→ ∂Λ(k−1)L].
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In the fourth line, we used that the events {0
S←→ x} ∩ {C = C} partition the event 0

S←→ x.
Induction on k gives Pp[0↔ ∂ΛkL] ≤ ϕp(S)k, thus proving the claim.

Step 2: For p > p̃c, Pp[0 ↔ ∞] ≥ p−p̃c
p(1−p̃c) . Let us start by the following lemma providing a

differential inequality valid for every p. Define θn(p) ∶= Pp[0↔ ∂Λn].

Lemma 2.5 Let p ∈ (0,1) and n ≥ 1,

θ′n(p) ≥ 1
p(1−p) ⋅ inf

S⊂Λn
0∈S

ϕp(S) ⋅ (1 − θn(p)). (2.6)

Let us first see how the second step follows from Lemma 2.5. Above p̃c, (2.6) becomes
θ′n ≥ 1

p(1−p)(1 − θn) which can be rewritten as

[ log ( 1
1−θn )]

′ ≥ [ log ( p
1−p)]

′
.

Integrating between p̃c and p implies that for every n ≥ 1,

θn(p) ≥
p − p̃c

p(1 − p̃c)
.

By letting n tend to infinity, we obtain the desired lower bound on Pp[0↔∞].

Proof of Lemma 2.5 Apply (DF) to X ∶= −10 /←→∂Λn to get

θ′n(p) = 1
p(1−p) ∑

e∈En
Ep[10 /←→∂Λn(p − ωe)]. (2.7)

Fix an edge e and consider the event A that ω∣En∖{e} satisfies the following three properties
P1 one of the endpoints of e is connected to 0,
P2 the other one is connected to ∂Λn,
P3 0 is not connected to ∂Λn.

(This event corresponds in the standard terminology to the fact that the edge e is pivotal for
0 /←→ ∂Λn but this is irrelevant here.) By definition, ωe is independent of {0 /←→ ∂Λn} ∩ Ac.
Since ωe is a Bernoulli random variable of parameter p, we deduce that

Ep[1Ac10 /←→∂Λn(p − ωe)] = 0.

Also, for ω ∈ A, 0 is not connected to ∂Λn if and only if the edge e is closed, and in this case ω
itself (not only its restriction to En ∖ {e}) satisfies P1, P2 and P3. Therefore, we can write

Ep[1A10 /←→∂Λn(p − ωe)] = pPp[ω satisfies P1, P2 and P3].

Overall, the previous discussion implies that (2.7) can be rewritten as

θ′n(p) = 1
p(1−p) ∑

x,y∈Λn
xy∈En

pPp[0←→ x, y ←→ ∂Λn,0 /←→ ∂Λn]. (2.8)

Introduce S ∶= {z ∈ Λn ∶ z /←→ ∂Λn} and a fixed set S. The intersection of {S = S} with the event
on the right-hand side of (2.8) can be rewritten nicely. The fact that 0 /←→ ∂Λn becomes the
condition that S contains 0. Furthermore, the conditions 0 ←→ x and y ←→ ∂Λn get rephrased
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as xy ∈ ∆S and 0 is connected to x in S. Thus, partitioning the event on the right of (2.8) into
the possible values of S gives

θ′n(p) = 1
p(1−p) ∑

0∈S⊂Λn

∑
xy∈∆S

pPp[0
S←→ x,S = S]

= 1
p(1−p) ∑

0∈S⊂Λn

∑
xy∈∆S

pPp[0
S←→ x]Pp[S = S]

≥ 1
p(1−p) ⋅ inf

0∈S⊂Λn
ϕp(S) ⋅ (1 − θn(p)),

where in the second line we used that 0
S←→ x is measurable in terms of edges with both endpoints

in S, and S = S is measurable in terms of the other edges. In the last line, we used that the
family of events {S = S} with S ∋ 0 partition the event that 0 is not connected to ∂Λn. ◻

Steps 1 and 2 conclude the proof since p̃c must be equal to pc, and therefore the proof of the
theorem.

Exercise 25 (Percolation with long-range interactions) Consider a family (Jx,y)x,y∈Zd of non-negative cou-
pling constants which is invariant under translations, meaning that Jx,y = J(x − y) for some function J. Let Pβ be
the bond percolation measure on Zd defined as follows: for x, y ∈ Zd, {x, y} is open with probability 1− exp(−βJx,y),
and closed with probability exp(−βJx,y).

1. Define the analogues β̃c and ϕβ(S) of p̃c and ϕp(S) in this context.

2. Show that there exists c > 0 such that for any β ≥ β̃c, Pβ[0←→∞] ≥ c(β − β̃c).

3. Show that if the interaction is finite range (i.e. that there exists R > 0 such that J(x) = 0 for ∥x∥ ≥ R), then for
any β < β̃c, there exists cβ > 0 such that Pβ[0←→ ∂Λn] ≤ exp(−cβn) for all n.

4. In the general case, show that for any β < β̃c, ∑
x∈Zd

Pβ[0←→ x] <∞.

Hint. Consider S such that ϕβ(S) < 1 and show that for n ≥ 1 and x ∈ Λn, ∑
y∈Λn

Pβ[x
Λn←→ y] ≤ ∣S∣

1 − ϕβ(S)
.

Remark 2.6 Since ϕp({0}) = 2dp, we find pc(d) ≥ 1/2d. Also, pc(d) ≤ pc(2) = 1
2 .

Remark 2.7 The set of parameters p such that there exists a finite set 0 ∈ S ⊂ Zd with ϕp(S) < 1
is an open subset of [0,1]. Since this set is coinciding with [0, pc), we deduce that ϕpc(Λn) ≥ 1
for any n ≥ 1. As a consequence, the expected size of the cluster of the origin satisfies at pc,

∑
x∈Zd

Ppc[0←→ x] ≥ 1
dpc

∑
n≥0

ϕpc(Λn) = +∞.

In particular, Ppc[0↔ x] cannot decay faster than algebraically (see Exercise 26 for more detail).

Exercise 26 (Definition of the correlation length) Fix d ≥ 2 and set e1 = (1,0, . . . ,0).

1. Prove that, for any p ∈ [0,1] and n,m ≥ 0, Pp[x0 ←→ (m + n)e1] ≥ Pp[x0 ←→me1] ⋅ Pp[x0 ←→ ne1]

2. Deduce that ξ(p) = ( lim
n→∞

− 1
n

logPp[0←→ ne1])
−1

and that Pp[0←→ ne1] ≤ exp(−n/ξ(p)).

3. Prove that ξ(p) tends to infinity as p tends to pc.

4. Prove that for any x ∋ ∂Λn,
Ppc [0←→ 2ne1] ≥ Ppc [0←→ x]2.

5. Using that ϕpc(Λn) ≥ 1 for every n, prove that there exists c > 0 such that for any x ∈ Zd, Ppc [0↔ x] ≥ c

∥x∥2d(d−1) .
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2.2.2 Proof using randomized algorithms

The second proof uses the notion of random decision trees or equivalently randomized algorithms
(the two terms will be used interchangeably). In theoretical science, determining the compu-
tational complexity of tasks is a difficult problem (think of P against NP ). To simplify the
problem, computer scientists came up with computational problems involving so-called decision
trees. Informally speaking, a decision tree associated with a Boolean function f takes ω ∈ {0,1}n
as an input, and reveals algorithmically the value of ω at different coordinates one by one. At
each step, which coordinate will be revealed next depends on the values of ω revealed so far.
The algorithm stops as soon as the value of f is the same no matter the values of ω on the
remaining coordinates. The question is then to determine how many bits of information must
be revealed before the algorithm stops.

Formally, a decision tree is defined as follows. Consider a finite set E of cardinality n. For
a n-tuple x = (x1, . . . , xn) and t ≤ n, write x[t] = (x1, . . . , xt) and ωx[t] = (ωx1 , . . . , ωxt). A
decision tree T = (e1, ψt, t < n) takes ω ∈ {0,1}E as an input and gives back an ordered sequence
e = (e1, . . . , en) constructed inductively as follows: for any 2 ≤ t ≤ n,

et = ψt(e[t−1], ωe[t−1]
) ∈ E ∖ {e1, . . . , et−1},

where ψt is a function interpreted as the decision rule at time t (ψt takes the location and the
value of the bits for the first t − 1 steps of the induction, and decides of the next bit to query).
For f ∶ {0,1}E → R, define

τ(ω) = τf,T (ω) ∶= min{t ≥ 1 ∶ ∀ω′ ∈ {0,1}E , ω′e[t] = ωe[t] Ô⇒ f(ω) = f(ω′)}.

Remark 2.8 In computer science, a decision tree is usually associated directly to a boolean
function f and defined as a rooted directed tree in which each internal nodes are labeled by
elements of E, leaves by possible outputs, and edges are in correspondence with the possible
values of the bits at vertices (see [105] for a formal definition). In particular, the decision trees
are usually defined up to τ , and not later on.

The OSSS inequality, originally introduced in [105] as a step toward a conjecture of Yao [125],
relates the variance of a Boolean function to the influence of the variables and the computational
complexity of a random decision tree for this function.

Theorem 2.9 (OSSS for Bernoulli percolation) Consider p ∈ [0,1] and a finite set of edges
E. Fix an increasing function f ∶ {0,1}E Ð→ [0,1] and an algorithm T . We have

Varp(f) ≤ 2 ∑
e∈E

δe(f, T )Covp[f,ωe], (2.9)

where δe(f, T ) ∶= Pp[∃t ≤ τ(ω) ∶ et = e] is the revealment (of f) for the decision tree T .

The general inequality does not require f to be increasing, but we will only use it in this context.

Proof Our goal is to apply a Linderberg-type argument. Consider two independent sequences
ω and ω̃ of iid Bernoulli random variables of parameter p. Write P for the coupling between
these variables (and E for its expectation). Construct e by setting e1 = e1 and for t ≥ 1,
et+1 ∶= ψt(e[t], ωe[t]

). Similarly, define

τ ∶= min{t ≥ 1 ∶ ∀x ∈ {0,1}E , xe[t]
= ωe[t]

⇒ f(x) = f(ω)}.

Finally, for 0 ≤ t ≤ n, define

ωt ∶= (ω̃e1 , . . . , ω̃et , ωet+1 , . . . , ωeτ−1 , ω̃eτ , ω̃eτ+1 , . . . , ω̃en),
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where it is understood that the n-tuple under parentheses is equal to ω̃ if t ≥ τ . (We used a
slight abuse of notation, the order here is shuffled to match the order in which the edges are
revealed by the algorithm.)

Since ω0 and ω coincide on et for any t ≤ τ , we deduce that f(ω0) = f(ω). Also, f(ωn) = f(ω̃)
since ωn = ω̃. As a consequence, conditioning on ω gives

Varp(f) ≤ Ep[∣f −Ep[f]∣] = E[∣E[f(ω0)∣ω] −E[f(ωn)∣ω] ∣] ≤ E[∣f(ω0) − f(ωn)∣].

The triangular inequality and the observation that ωt = ωt−1 for any t > τ gives that

Varp(f) ≤
n

∑
t=1

E[∣f(ωt) − f(ωt−1)∣] =
n

∑
t=1

E[∣f(ωt) − f(ωt−1)∣1t≤τ ].

Let us now decomposed this expression according to the possible values for et. Note that et is
measurable in terms of ω[t−1], and that τ is a stopping time, so that {t ≤ τ} = {τ ≤ t− 1}c is also
measurable in terms of ω[t−1]. Overall, we get that

Varp(f) ≤ ∑
e∈E

n

∑
t=1

E[E[∣f(ωt) − f(ωt−1)∣ ∣ ω[t−1]]1t≤τ,et=e].

Let f1(ω) and f0(ω) denote the function f applied to the configuration equal to ω except
at e where it is equal to 1 or to 0 respectively. Note that since f is increasing, we find that
f1 ≥ f0. Now, conditionally on ω[t−1] and {t ≤ τ,et = e}, both ωt and ωt−1 are sequences of iid
Bernoulli random variables of parameter p, differing (potentially) exactly at e (since ωte = ω̃e and
ωt−1
e = ωe). We deduce that

E[ ∣f(ωt) − f(ωt−1)∣ ∣ ω[t−1]] = 2p(1 − p)Ep[f1(ω) − f0(ω)] = 2Covp[f,ωe].

Recalling that ∑nt=1 P[t ≤ τ,et = e] = δe(f, T ) concludes the proof. ◻

Let us start by the proof of a general lemma.

Lemma 2.10 Consider a converging sequence of increasing differentiable functions fn ∶ [0, x0]Ð→
[0,M] satisfying

f ′n ≥
n

Σn
fn (2.10)

for all n ≥ 1, where Σn = ∑n−1
k=0 fk. Then, there exists x1 ∈ [0, x0] such that

P1 For any x < x1, there exists cx > 0 such that for any n large enough, fn(x) ≤ exp(−cxn).
P2 For any x > x1, f = lim

n→∞
fn satisfies f(x) ≥ x − x1.

Proof Define
x1 ∶= inf {x ∶ lim sup

n→∞

log Σn(x)
logn

≥ 1}.

Assume x < x1. Fix δ > 0 and set x′ = x − δ and x′′ = x − 2δ. We will prove that there is
exponential decay at x′′ in two steps.

First, there exists an integer N and α > 0 such that Σn(x) ≤ n1−α for all n ≥ N . For such
an integer n, integrating f ′n ≥ nαfn between x′ and x – this differential inequality follows from
(2.10), the monotonicity of the functions fn (and therefore Σn) and the previous bound on Σn(x)
– implies that

fn(x′) ≤M exp(−δ nα), ∀n ≥ N.
Second, this implies that there exists Σ < ∞ such that Σn(x′) ≤ Σ for all n. Integrating

f ′n ≥ n
Σfn for all n between x′′ and x′ – this differential inequality is again due to (2.10), the

monotonicity of Σn, and the bound on Σn(x′) – leads to

fn(x′′) ≤M exp(− δ
Σ
n), ∀n ≥ 0.
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Figure 7: A realization of the clusters intersecting ∂Λk. Every edge having one endpoint in this
set has been revealed by the decision tree. Furthermore in this specific case, we know that 0 is
not connected to the boundary of Λn.

Assume x > x1. For n ≥ 1, define the function Tn ∶= 1
logn ∑

n
i=1

fi
i . Differentiating Tn and using

(2.10), we obtain

T ′n = 1

logn

n

∑
i=1

f ′i
i

(2.10)
≥ 1

logn

n

∑
i=1

fi
Σi

≥ log Σn+1 − log Σ1

logn
,

where in the last inequality we used that for every i ≥ 1,

fi
Σi

≥ ∫
Σi+1

Σi

dt

t
= log Σi+1 − log Σi.

For x′ ∈ (x1, x), using that Σn+1 ≥ Σn is increasing and integrating the previous differential
inequality between x′ and x gives

Tn(x) − Tn(x′) ≥ (x − x′) log Σn(x′) − logM

logn
.

Hence, the fact that Tn(x) converges to f(x) as n tends to infinity implies

f(x) − f(x′) ≥ (x − x′) [ lim sup
n→∞

log Σn(x′)
logn

] ≥ x − x′.

Letting x′ tend to x1 from above, we obtain f(x) ≥ x − x1. ◻

We now present the proof of Theorem 2.4. We keep the notation introduced in the previous
section

θn(p) = Pp[0←→ ∂Λn] and Sn ∶=
n−1

∑
k=0

θk.
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Lemma 2.11 For any n ≥ 1, one has

∑
xy∈En

Covp[10↔∂Λn , ωe] ≥
n

8Sn
⋅ θn(1 − θn).

The proof is based on Theorem 2.9 applied to a well-chosen decision tree determining 10↔∂Λn .
One may simply choose the trivial decision tree checking every edge of the box Λn. Unfortunately,
the revealment of the decision tree being 1 for every edge, the OSSS inequality will not bring
us much information. A slightly better decision tree would be provided by the decision tree
discovering the cluster of the origin “from inside”. Edges far from the origin would then be
revealed by the decision tree if (and only if) one of their endpoints is connected to the origin.
This provides a good bound for the revealment of edges far from the origin, but edges close to
the origin are still revealed with large probability. In order to avoid this last fact, we will rather
choose a family of decision trees discovering the clusters of ∂Λk for 1 ≤ k ≤ n and observe that
the average of their revealment for a fixed edge will always be small.

Proof For any k ∈ J1, nK, we wish to construct a decision tree T determining 10↔∂Λn such that
for each e = uv,

δe(T ) ≤ Pp[u←→ ∂Λk] + Pp[v ←→ ∂Λk]. (2.11)

Note that this would conclude the proof since we obtain the target inequality by applying
Theorem 2.9 for each k and then summing on k. As a key, we use that for u ∈ Λn,

n

∑
k=1

Pp[u←→ ∂Λk] ≤
n

∑
k=1

Pp[u←→ ∂Λ∣k−d(u,0)∣(u)] ≤ 2Sn.

We describe the decision tree T , which corresponds first to an exploration of the clusters in
Λn intersecting ∂Λk that does not reveal any edge with both endpoints outside these clusters,
and then to a simple exploration of the remaining edges.

More formally, we define e (instead of the collection of decision rules φt) using two growing
sequences ∂Λk = V0 ⊂ V1 ⊂ ⋯ ⊂ V and ∅ = F0 ⊂ F1 ⊂ ⋯ ⊂ F (where F is the set of edges between
two vertices within distance n of the origin) that should be understood as follows: at step t, Vt
represents the set of vertices that the decision tree found to be connected to ∂Λk, and Ft is the
set of explored edges discovered by the decision tree until time t.

Fix an ordering of the edges in F . Set V0 = ∂Λk and F0 = ∅. Now, assume that Vt ⊂ V and
Ft ⊂ F have been constructed and distinguish between two cases:

• If there exists an edge e = xy ∈ F ∖ Ft with x ∈ Vt and y ∉ Vt (if more than one exists, pick
the smallest one for the ordering), then set et+1 = e, Ft+1 = Ft ∪ {e} and set

Vt+1 ∶=
⎧⎪⎪⎨⎪⎪⎩

Vt ∪ {x} if ωe = 1

Vt otherwise.

• If e does not exist, set et+1 to be the smallest e ∈ F ∖Ft (for the ordering) and set Vt+1 = Vt
and Ft+1 = Ft ∪ {e}.

As long as we are in the first case, we are still discovering the clusters of ∂Λk. Also, as soon as
we are in the second case, we remain in it. The fact that τ is not greater than the last time we
are in the first case gives us (2.11).

Note that τ may a priori be strictly smaller than the last time we are in the first case (since
the decision tree may discover a path of open edges from 0 to ∂Λn or a family of closed edges
disconnecting the origin from ∂Λn before discovering the whole clusters of ∂Λk). ◻

We are now in a position to provide our alternative proof of exponential decay. Fix n ≥ 1.
Lemma 2.11 together with the different formula gives

θ′n = 1
p(1−p) ∑

e∈En
Cov(10↔∂Λn , ωe) ≥ n

2Sn
⋅ θn(1 − θn).
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To conclude, fix p0 ∈ (pc,1) and observe that for p ≤ p0, 1 − θn(p) ≥ 1 − θ1(p0) > 0. Then, apply
Lemma 2.10 to fn = 2

(1−θ1(p0))θn.
Other models can be treated using the OSSS inequality (to mention only two, Voronoi

percolation [52] and Boolean percolation [54]) but the study of the random-cluster model requires
a generalization of the OSSS inequality, which we present below.

Let us make a small detour, analyze what we did in the previous proof, and discuss the study
of averages of boolean functions. We proved an inequality of the form

θ′n ≥ Cnθn (2.12)

for a constant Cn that was large as soon as θn was small. In particular, when θn was decaying
polynomially fast, Cn was polynomially large, a statement which allowed us to prove that θn
was decaying stretched exponentially fast and then exponentially fast for smaller values of p (see
the proof of P1 of Lemma 2.10).

Historically, differential inequalities like (2.12) were obtained using abstract sharp threshold
theorems. The general theory of sharp thresholds for discrete product spaces was initiated by
Kahn, Kalai and Linial in [90] in the case of the uniform measure on {0,1}n, i.e. in the case of
Pp with p = 1/2. There, Kahn, Kalai and Linial used the Bonami-Beckner inequality [11, 26]
to deduce inequalities between the variance of a boolean function and so-called influences of
this function. Bourgain, Kahn, Kalai, Katznelson and Linial [27] extended these inequalities to
product spaces [0,1]n and to Pp with arbitrary p ∈ [0,1]. For completeness, let us state a version
of this result due to Talagrand [120]: there exists a constant c > 0 such that for any p ∈ [0,1]
and any increasing event A,

Pp[A](1 − Pp[A]) ≤ c log 1
p(1−p) ∑

e∈E

Covp[1A, ωe]
log(1/Covp[1A, ωe])

.

Notice that as soon as all covariances are small, the sum of covariances is large. This result can
seem counterintuitive at first but it is definitely very efficient to prove differential inequalities
like (2.12). In particular, Covp[1A, ωe] ≤ Pp[A] so that applying the previous displayed equation
to A = {0↔ ∂Λn} gives

θn(1 − θn) ≤
cp

log(1/θn)
θ′n.

In order to compare this inequality to what we got with the OSSS inequality, let us look at the
case where θn is decaying polynomially fast. In this case, the value of Cn is of order logn. This
is not a priori sufficient to prove that θn decays exponentially fast for smaller values of p since
it only improves the decay of θn by small polynomials. From this point of view, the logarithm
in the expression log(1/θn) is catastrophic.

Mathematicians succeeded in going around this difficulty by considering crossing events (see
Section 5 for more detail). A beautiful example of the application of sharp threshold results to
percolation theory is the result of Bollobás and Riordan about critical points of planar percolation
models [24, 23].

Recently, Graham and Grimmett [71] managed to extend the BKKKL/Talagrand result to
random-cluster models. Combined with ideas from [23], this led to a computation of the critical
point of the random-cluster model (see below). Nonetheless, these proofs involving crossing
probabilities are pretty specific to planar models and, to the best of our knowledge, fail to
apply in higher dimensions. In particular, it seems necessary to use a generalization of the
OSSS inequality rather than a generalization of the BKKKL/Talagrand result, which is what
we propose to do in the next section.
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Exercise 27 (A k-dependent percolation model) Consider a family of iid Bernoulli random variables (ηx)x∈Zd
of parameter 1 − p and say that an edge e ∈ Zd is open if both endpoints are at a distance less than or equal to R
from any x ∈ Zd with ηx = 1 (it corresponds to taking the vacant set of balls of radius R centered around the vertices
x ∈ Zd with ηx = 1). Adapt the previous proof to show that the model undergoes a sharp phase transition, and that
(EXPp) holds for any p < pc.

2.3 Sharpness for random-cluster models

We now turn to the proof of the following generalization of Theorem 2.4.

Theorem 2.12 (DC, Raoufi, Tassion [53]) Consider the random-cluster model on Zd with
q ≥ 1.

1. There exists c > 0 such that for p > pc, φ1
p,q[0↔∞] ≥ c(p − pc).

2. For p < pc, there exists cp > 0 such that for all n ≥ 1,

φ1
Λn,p,q[0←→ ∂Λn] ≤ exp(−cpn).

The result extends to any infinite locally-finite quasi-transitive graph G. The proof will be
based on the following improvement of the OSSS inequality (2.13). Below, VarG,p,q and CovG,p,q
are respectively the variance and the covariance for φ1

G,p,q.

Theorem 2.13 Consider q ≥ 1, p ∈ [0,1], and a finite graph G. Fix an increasing function
f ∶ {0,1}E Ð→ [0,1] and an algorithm T . We have

VarG,p,q(f) ≤ CG,p,q ∑
e∈E

δe(f, T )CovG,p,q[f,ωe], (2.13)

where δe(f, T ) ∶= Pp[∃t ≤ τ(ω) ∶ et = e] is the revealment (of f) for the decision tree T , and
cG,p,q is defined by

CG,p,q ∶=
1

infe∈E VarG,p,q(ωe)
.

Before proving this statement, let us remark that it implies the theorem in the same way as
in Bernoulli percolation.

Proof of Theorem 2.12 Set θn(p) = φ1
Λ2n,p,q

[0↔ ∂Λn] and Sn = ∑n−1
k=0 θk. Following the same

reasoning as in Lemma 2.11, we find

∑
e∈E2n

CovΛ2n,p,q(10↔∂Λn , ωe) ≥ VarΛ2n,p,q(ωe)
nθn(1 − θn)

4 max
x∈Λn

n−1

∑
k=0

φ1
Λ2n,p,q[x↔ ∂Λk(x)]

,

where Λk(x) is the box of size k around x. Since Λ2k(x) ⊂ Λ2n for any x ∈ Λn and 2k ≤ n, we
deduce

n−1

∑
k=0

φ1
Λ2n,p,q[x↔ ∂Λk(x)] ≤ 2

(n−1)/2
∑
k=0

φ1
Λ2n,p,q[x↔ ∂Λk(x)]

(CBC)
≤ 2

(n−1)/2
∑
k=0

θk(p) ≤ 2Sn(p).

Overall, we find

∑
e∈E2n

CovΛ2n,p,q(10↔∂Λn , ωe) ≥ VarΛ2n,p,q(ωe)
n

8Sn
⋅ θn(1 − θn).

Now, (DF) trivially extends to random-cluster models with q > 0 so that

d

dp
φ1

Λ2n,p,q[0↔ ∂Λn] = 1
p(1−p) ∑

e∈E2n

CovΛ2n,p,q(10↔∂Λn , ωe).
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We deduce that for p ∈ [p0, p1],
θ′n ≥ c

n

Sn
θn,

where
c ∶= 1

2φ
1
Λ2n,p0,q(ωe)(1 − φ

1
Λ2n,p1,p[ωe])(1 − θ1(p1)) > 0.

To conclude, observe that measurability and the comparison between boundary conditions
imply that

lim inf θn ≥ lim inf φ1
p,q[0←→ ∂Λn] = φ1

p,q[0←→∞]
and that for any k ≥ 1,

lim sup θn ≤ lim supφ1
Λ2n,p,q[0←→ ∂Λk] = φ1

p,q[0←→ ∂Λk].

Letting k tend to infinity implies that θn tends to φ1
p,q[0↔∞]. We are therefore in a position

to apply Lemma 2.10, which implies the first item of Theorem 2.12 and the fact that for p < pc,
there exists cp > 0 such that for any n ≥ 0, θn(p) ≤ exp(−cpn). It remains to observe that

φ1
Λ2n,p,q[0←→ ∂Λ2n] ≤ φ1

Λ2n,p,q[0←→ ∂Λn] = θn(p)

to obtain the second item of the theorem8. ◻

We now turn to the proof of Theorem 2.13. The strategy is a combination of the original
proof of the OSSS inequality for product measures (which is a Efron-Stein type reasoning),
together with an encoding of random-cluster measures in terms of iid random variables.

We start by a useful lemma explaining how to construct ω with a certain law µ on {0,1}E
from iid uniform random variables. Recall the notation E⃗ and e[t]. For u ∈ [0,1]n and e ∈ E⃗,
define Fµe (u) = x inductively for 1 ≤ t ≤ n by

xet ∶=
⎧⎪⎪⎨⎪⎪⎩

1 if ut ≥ µ[ωet = 0 ∣ωe[t−1]
= xe[t−1]

],
0 otherwise.

(2.14)

Lemma 2.14 Let U be an iid sequence of uniform [0,1] random variables, and e a random
variable taking values in E⃗. Assume that for every 1 ≤ t ≤ n, Ut is independent of (e1, . . . ,et),
then X = Fµe (U) has law µ.

Proof Let x ∈ {0,1}E and e ∈ E⃗ such that P[X = x,e = e] > 0. The probability P[X = x,e = e]
can be written as

n

∏
t=1

P[Xet = xet ∣e[t] = e[t],Xe[t−1]
= xe[t−1]

] ×
n

∏
t=1

P[et = et ∣e[t−1] = e[t−1],Xe[t−1]
= xe[t−1]

].

(All the conditionings are well defined, since we assumed P[X = x,e = e] > 0.) Since Ut is
independent of e[t] and U[t−1] (and thus Xe[t−1]

), the definition (2.14) gives

P[Xet = xet ∣e[t] = e[t],Xe[t−1]
= xe[t−1]

] = µ[ωet = xet ∣ωe[t−1]
= xe[t−1]

]

so that the first product is equal to µ[ω = x] independently of e. Fixing x ∈ {0,1}E , and summing
on e ∈ E⃗ satisfying P[X = x,e = e] > 0 gives

P[X = x] =∑
e

P[X = x,e = e]

= µ[ω = x]∑
e

n

∏
t=1

P[et = et∣e[t−1] = e[t−1],Xe[t−1]
= xe[t−1]

] = µ[ω = x].

◻

8Formally, we only obtained the result for n even, but the result for n odd can be obtained similarly.
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Proof of Theorem 2.9 Consider two independent sequences of iid uniform [0,1] random
variables U and V. Write P for the coupling between these variables (and E for its expectation).
Construct (e,X, τ) inductively as follows: set e1 = e1, and for t ≥ 1,

Xet =
⎧⎪⎪⎨⎪⎪⎩

1 if Ut ≥ φ1
G,p,q[ωet = 0 ∣ωe[t−1]

= Xe[t−1]
]

0 otherwise
and et+1 ∶= ψt+1(e[t],Xe[t]

),

and τ ∶= min{t ≥ 1 ∶ ∀x ∈ {0,1}E , xe[t]
= Xe[t]

⇒ f(x) = f(X)}. Finally, for 0 ≤ t ≤ n, define
Yt ∶= Fe(Wt), where

Wt ∶= Wt(U,V) = (V1, . . . ,Vt,Ut+1, . . . ,Uτ ,Vτ+1, . . . ,Vn)

(in particular Wt is equal to V if t ≥ τ).
Lemma 2.14 applied to (U,e) gives that X has law µ and is U-measurable. Lemma 2.14

applied to (V,e) implies that Yn has law µ and is independent of U. Therefore,

φ1
G,p,q[∣f − φ1

G,p,q(f)∣] ≤ E[∣E[f(X)∣U] −E[f(Yn)∣U] ∣] ≤ E[∣f(X) − f(Yn)∣].

Exactly as for iid random variables, f(X) = f(Y0). Following the same lines as in the iid case,
we obtain (recall that f takes values in [0,1])

VarG,p,q(f) ≤ ∑
e∈E

n

∑
t=1

E[E[∣f(Yt) − f(Yt−1)∣ ∣ U[t−1]]1t≤τ,et=e]

so that the proof of the theorem follows from the fact that on {t ≤ τ,et = e},

E[ ∣f(Yt) − f(Yt−1)∣ ∣ U[t−1]] ≤ 1
VarG,p,q(ωe) CovG,p,q(f,ωe). (2.15)

Note that Fµe (u) is both increasing in u and in µ (for stochastic domination). We deduce that
both Yt−1 and Yt are sandwiched between

Z ∶= F
φ1
G,p,q[⋅∣ωe=0]

e (Wt−1) = F
φ1
G,p,q[⋅∣ωe=0]

e (Wt)

and
Z′ ∶= F

φ1
G,p,q[⋅∣ωe=1]

e (Wt−1) = F
φ1
G,p,q[⋅∣ωe=1]

e (Wt).

Since Wt is independent of U[t−1], Lemma 2.14 and the fact that f is increasing give us

E[ ∣f(Yt) − f(Yt−1)∣ ∣ U[t−1]] ≤ E[f(Z′)] −E[f(Z)]
= φ1

G,p,q[f(ω)∣ωe = 1] − φ1
G,p,q[f(ω)∣ωe = 0]

=
CovG,p,q(f,ωe)

φ1
G,p,q[ωe](1 − φ1

G,p,q[ωe])
.

◻

2.4 Computation of the critical point for random-cluster models on Z2

The goal of this section is to explain how one can compute the critical point of the random-cluster
model on Z2 using Theorem 2.12. As mentioned in the end of Section 2.2, the following theorem
was first proved using a sharp threshold theorem, and we refer to [12, 49, 51] for alternative
proofs.
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Theorem 2.15 (Beffara, DC [12]) For the random-cluster model on Z2 with cluster-weight
q≥1,

pc =
√
q

1 +√
q
.

Also, for p < pc, there exists cp > 0 such that φ1
p,q[0↔ ∂Λn] ≤ exp(−cpn) for all n ≥ 0.

This theorem has the following corollary.

Corollary 2.16 (Beffara, DC [12]) The critical inverse-temperature of the Potts model on Z2

satisfies
βc(q) ∶= q−1

q log(1 +√
q).

We start by discussing duality for random-cluster models. The boundary conditions on
a finite subgraph G = (V,E) of Z2 are called planar if they are induced by some configuration
ξ ∈ {0,1}E∖E . For any planar boundary conditions ξ, one can associate dual boundary conditions
ξ∗ on G∗ induced by the configuration ξ∗e∗ = 1 − ξe for any e ∉ E.

As an example, the free boundary conditions correspond to ξe = 0 for all e ∈ E∖E. Similarly,
when G is connected and has connected complement, the wired boundary conditions correspond
to ξe = 1 for all e ∈ E ∖E. (This explains the notations 0 and 1 for the free and wired boundary
conditions.) In this case, the dual of wired boundary conditions is the free ones, and vice-versa.

A typical example of non-planar boundary conditions is given by “periodic” boundary condi-
tions on Λn, for which (k,n) and (k,−n) (resp. (n, k) and (−n, k)) are paired for every k ∈ J−n,nK.
Another (slightly less interesting) example is given by the wired boundary conditions when G
has non-connected complement in Z2.

Proposition 2.17 (Duality) Consider a finite graph G and planar boundary conditions ξ. If
ω has law φξG,p,q, then ω

∗ has law φξ
∗

G∗,p∗,q, where p
∗ is the solution of

pp∗

(1 − p)(1 − p∗)
= q.

There is a specific value of p for which p = p∗. This value will be denoted psd, and satisfies

psd(q) =
√
q

1 +√
q
.

Proof Let us start with G connected with connected complement, and free boundary condi-
tions. Let v, e, f and c be the number of vertices, edges, faces and clusters of the graph (ω∗)1

embedded in the plane9. We wish to interpret Euler’s formula in terms of k(ω), o(ω∗) and
k((ω∗)1). First, v is a constant not depending on ω and e is equal to o(ω∗). Also, the bounded
faces of the graph are in direct correspondence with the clusters of ω, and therefore f = k(ω)+1
(note that there is exactly one unbounded face). Overall, Euler’s formula (f = c+ e− v +1) gives

k(ω) = k((ω∗)1) + o(ω∗) − v.

Set Z ∶= Z0
G,p,q and recall that q(1−p)

p = p∗

1−p∗ . Since c(ω) = o(ω
∗), we get

φ0
G,p,q[ω] =

p∣E∣

Z
(1−p
p

)c(ω)qk(ω)

= p∣E∣q−v

Z
(1−p
p

)o(ω
∗)
qk((ω

∗)1)+o(ω∗)

= p∣E∣q−v

Z
( p∗

1−p∗ )
o(ω∗)

qk((ω
∗)1)

= φ1
G∗,p∗,q[ω∗].

9Recall that (ω∗)1 is the graph ω∗ where all vertices of ∂G∗ are identified together. This graph can clearly
be embedded in the plane by “moving” the vertices of ∂G∗ to a single point chosen in the exterior face of ω,
and drawing the edges incident to ∂G∗ by “extending” the corresponding edges of ω∗ by continuous curves not
intersecting each other or edges of ω, and going to this chosen point.

35



(Note that we also proved that Z1
G∗,p∗,q = Z0

G,p,qq
vp−∣E∣(1 − p∗)∣E∣.)

For arbitrary planar boundary conditions, the proof follows from the domain Markov prop-
erty. Indeed, pick n large enough so that there exists ψ ∈ {0,1}En∖E inducing the boundary
conditions ξ (such an n always exists), and introduce

ωψe =
⎧⎪⎪⎨⎪⎪⎩

ωe if e ∈ E,
ψe if e ∈ En ∖E,

Since the boundary conditions induced by ψ∗ on E∗
n ∖ E∗ with the boundary of Λn wired are

exactly ξ∗, we deduce that

φξG,p,q[ω]
(DMP)= cφ0

Λn,p,q[ω
ψ] = cφ1

Λ∗
n,p

∗,q[(ωψ)∗]
(DMP)= φξ

∗

G∗,p∗,q[ω
∗],

where c is a constant not depending on ω. This concludes the proof. ◻

Exercise 28 (Duality for the random-cluster model on the torus) Let Tn = [0, n]2 and consider the bound-
ary conditions where (0, k) and (n, k) are identified for any 0 ≤ k ≤ n, and (j,0) and (j, n) are identified for any
0 ≤ j ≤ n. We write the measure φTn,p,q.

1. A configuration ω is said to have a net if ω∗ does not contain any non-retractable loop. Let s(ω) be the number
of nets in ω (it is equal to 0 or 1). Prove that

∣V ∣ + f(ω) + 2s(ω) = k(ω) + o(ω) + 1 ,

where f(ω) is the number of faces in the configuration.

2. Show that φ̃Tn,p,q(ω) = φ̃T∗n,p∗,q(ω
∗), where

φ̃Tn,p,q(ω) =
√
q2s(ω) ⋅ p

o(ω)(1 − p)c(ω)qk(ω)

Z̃perTn,p,q
.

3. Deduce that the probability of Hn is exactly 1/2 for the measure φ̃Tn,psd,q.

We are now in a position to prove Theorem 2.15.

Proof of Theorem 2.15 The previous duality relation enables us to generalize the duality
argument for crossing events. Indeed, considering the limit (as G ↗ Z2) of the duality relation
between wired and free boundary conditions, we get that the dual measure of φ1

p,q is φ0
p∗,q. Recall

that Hn is the event that the rectangle of size n + 1 times n is crossed horizontally. For q ≥ 1,
the self-duality at psd implies that

φ1
psd,q

[Hn] + φ0
psd,q

[Hn] = 1.

The comparison between boundary conditions thus implies

φ1
psd,q

[Hn] ≥ 1
2 ≥ φ0

psd,q
[Hn]. (2.16)

Note that the φ1
psd,q

[Hn] is no longer equal to 1/2. Indeed, the complement event is still a
rotated version of Hn, but the law of ω∗ is not the same as the one of ω, since the boundary
conditions are free instead of wired.

We are ready to conclude. The fact that φ1
psd,q

[Hn] ≥ 1/2 implies that φ1
psd,q

[0 ↔ ∂Λn] ≥
1/(2n) (exactly as for Bernoulli percolation). Since this quantity is not decaying exponentially
fast, Theorem 2.12 gives that pc ≤ psd.

Also, if φ0
p,q[0↔∞] > 0, then limφ0

p,q[Hn] = 1. Indeed, the measure is ergodic (Lemma 1.11)
and satisfies the almost sure uniqueness of the infinite cluster (Theorem 1.10). Since it also
satisfies the FKG inequality, the proof of Proposition 2.1 works the same for random-cluster
models with q ≥ 1. Together with (2.16), this implies that φ0

psd,q
[0↔∞] = 0 and therefore that

psd ≤ pc. ◻
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Remark 2.18 Note that we just proved that φ0
pc,q[0↔∞] = 0.

Exercise 29 (Critical points of the triangular and hexagonal lattices) Define p such that p3 + 1 = 3p and
set pc for the critical parameter of the triangular lattice.

1. Consider a graph G and add a vertex x inside the triangle u, v,w. Modify the graph F by removing edges uv, vw
and wu, and adding xu, xv and xw. The new graph is denoted G′. Show that the Bernoulli percolation of parameter
p on G can be coupled to the Bernoulli percolation of parameter p on G′ in such a way that connections between
different vertices of G are the same.

p p

p

1− p

1− p 1− p

u u vv

w w

x

2. Using exponential decay in subcritical for the triangular lattice, show that if p < pc, the percolation of parameter
1 − p on the hexagonal lattice contains an infinite cluster almost surely. Using the transformation above, reach a
contradiction.

3. Prove similarly that p ≤ pc(T).

4. Find a degree three polynomial equation for the critical parameter of the hexagonal lattice.

5. What happens for the random-cluster model?

3 Where are we standing? And a nice conjecture...

Up to now, we proved that the critical inverse-temperature of the Potts model exists, and that
it corresponds to the point where long-range ordering emerges. We also proved monotonicity
of correlations. In the specific case of Z2, we computed the critical point exactly. Last but not
least, we proved that correlations decay exponentially fast when β < βc. Overall, we gathered a
pretty good understanding of the off-critical phase, but we have little information on the critical
one. In particular, we would like to determine whether the phase transition of Potts models
is continuous or not. In terms of random-cluster model, it corresponds to deciding whether
φ1
pc,q[0↔∞] is equal to 0 or not.
We proved in the previous section that for critical Bernoulli percolation on Z2, there was

no infinite cluster almost surely. For q > 1, we only managed to prove this result for the free
boundary conditions. This is therefore not sufficient to discriminate between a continuous and
a discontinuous phase transition for planar Potts models.

Before focusing on this question in the next sections, let us briefly mention that even for
Bernoulli percolation, knowing whether there exists an infinite cluster at criticality is a very
difficult question in general. For Zd with d ≥ 3, the absence of an infinite cluster at criticality
was proved using lace expansion for d ≥ 19 [77] (it was recently improved to d ≥ 11 [108]). The
technique involved in the proof is expected to work until d ≥ 6. For d ∈ {3,4,5}, the strategy
will not work and the following conjecture remains one of the major open questions in our field.

Conjecture 1 For any d ≥ 2, Ppc[0←→∞] = 0.

Some partial results were obtained in Z3 in the past decades. For instance, it is known that
the probability, at pc of an infinite cluster in N × Z2 is zero [8]. Let us also mention that
Ppc(Z2×G)[0←→∞] was proved to be equal to 0 on graphs of the form Z2 ×G, where G is finite;
see [55], and on graphs with exponential growth in [15] and [81] (see also the following exercise).

This exercise presents the beautiful proof due to Tom Hutchcroft of absence of percolation at criticality for amenable
locally-finite transitive graphs with exponential growth. We say that G has exponential growth if there exists cvg > 0
such that ∣Λn∣ ≥ exp(cvgn).

Exercise 30 (Ppc [0↔∞] = 0 for amenable Cayley graphs with exponential growth) Let G be an amenable
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infinite locally-finite transitive graphs with exponential growth.

1. Use amenability to prove that Ppc [0↔∞] > 0Ô⇒ inf{Ppc [x↔ y], x, y ∈ G} > 0. Hint: use Exercise 20.

2. Use the FKG inequality to prove that un(p) = inf{Ppc [x↔ 0], x ∈ ∂Λn} satisfies that for every n and m,

un+m(p) ≥ un(p)um(p).

3. Adapt Step 1 of the proof of Theorem 2.4 (see also Question 4 of Exercise 25) to get that for any p < pc,
∑
x∈G

Pp[0←→ x] <∞.

4. Use the two previous questions to deduce that for any p < pc, un(p) ≤ exp(−cvgn) for every n ≥ 1.

5. Conclude.

4 Continuity of the phase transition for the Ising model

Many aspects of the Ising model are simpler to treat than in other models (including Bernoulli
percolation). We therefore focus on this model first. We will prove that the phase transition
of the model is always continuous for the nearest neighbor model on Zd with d ≥ 2. Before
proceeding further, let us mention that the Ising model does not always undergo a continuous
phase transition: the long-range model on Z with coupling constants Jx,y = 1/∣x− y∣2 undergoes
a discontinuous phase transition (we refer to [4] for details).

The section is organized as follows. We start by providing a simple argument proving than
in two dimensions, the phase transition is continuous. We then introduce a new object, called
the random current representation, and study its basic properties. Finally, we use the properties
of this model to prove that the phase transition is continuous in dimension d ≥ 3.

4.1 An elementary argument in dimension d = 2

We present a very elegant argument, due to Wendelin Werner, of the following.

Proposition 4.1 On Z2, µ+βc[σ0] = 0.

Proof The crucial observation is the following: the measure µf
βc

is mixing, and therefore
ergodic. Indeed, recall that σ ∼ µf

βc
can be obtained from a percolation configuration ω ∼

φ0
pc,2 by coloring independently different clusters. The absence of an infinite cluster for φ0

pc,2

(Remark 2.18) enables us to deduce the mixing property of µf
βc

from the one of φ0
pc,2 (see

Exercise 31).
The Burton-Keane argument implies that when existing, the infinite cluster of minuses is

unique. Consider the event H̃n that there exists a path of minuses in [0, n]2 crossing from left
to right. The complement of this event contains the event that there exists a path of pluses in
[0, n]2 crossing from top to bottom. We deduce that µf

βc
[H̃n] ≤ 1

2 for every n ≥ 1. The proof of
Proposition 2.1 works the same here and we deduce that the probability that there is an infinite
cluster of minuses is zero, since otherwise the probability of H̃n would tend to 1.

We now prove that µ+βc[σ0] is smaller than or equal to 0, which immediately implies that it
is equal to zero since we already know that it is larger than or equal to 0. Consider the set C of
x ∈ Λn which are not connected to ∂Λn by a path of minuses. Conditionally on {C = C}, the law
of the configuration in C is equal to µ+C,βc since {C = C} is measurable in terms of spins outside
C or on ∂C, and that spins on ∂C are all pluses (we use the Gibbs property for lattice models,
which is obtained similarly to the domain Markov property for random-cluster models). Also
note that

µ+C,βc[σ0] = φ1
C,pc,2[0←→ ∂C] ≥ φ1

pc,2[0←→∞] = µ+βc[σ0].
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Note that if 0 ∉ C, then σ0 = −1. We deduce that

0 = µf
βc[σ0] = µf

βc[σ010∉C] + ∑
0∈C⊂Λn

µ+C,βc[σ0]µf
βc[C = C]

≥ −µf
βc[0 ∉ C] + µ

+
βc[σ0] ∑

0∈C⊂Λn

µf
βc[C = C]

= −µf
βc[0 ∉ C] + µ

+
βc[σ0]µf

βc[0 ∈ C].

Letting n tend to infinity and using that µf
βc
[0 ∉ Cn] tends to zero (since there is no infinite

cluster of minuses) gives the result. ◻

Exercise 31 Prove the mixing property of µf
βc
.

Exercise 32 Prove that the Ising model satisfies (CBC) and (FKG) for the natural order on {±1}V .

4.2 High-temperature expansion, random current representation and perco-
lation interpretation of truncated correlations

For many reasons, the Ising model is special among Potts models. One of these reasons is the
+/− gauge symmetry: flipping all the spins leaves the measure invariant (for free boundary
conditions). We will harvest this special feature in the following.

The high temperature expansion of the Ising model is a graphical representation introduced by
van der Waerden [123]. It relies on the following identity based on the fact that σxσy ∈ {−1,+1}:

eβσxσy = cosh(β) + σxσy sinh(β) = cosh(β) [1 + tanh(β)σxσy] . (4.1)

For a finite graph G, the notation η will always refer to a percolation configuration in {0,1}E
(we will still use the notation o(η) for the number of edges in η). We prefer the notation η instead
of ω to highlight the fact that η will have source constraints, i.e. that the parity of its degree at
every vertex will be fixed. More precisely, write ∂η for the set of vertices of η with odd degree.
Note that ∂η = ∅ is equivalent to saying that η is an even subgraph of G, i.e. that the degree at
each vertex is even.

For A ⊂ V , set
σA ∶= ∏

x∈A
σx.

Proposition 4.2 Let G be a finite graph, β > 0, and A ⊂ V . We find

∑
σ∈{±1}V

σA exp[−βH f
G(σ)] = 2∣V ∣ cosh(β)∣E∣ ∑

∂η=A
tanh(β)o(η). (4.2)

Proof Using (4.1) for every xy ∈ E gives

∑
σ∈{±1}V

σA exp[−βH f
G(σ)] = ∑

σ∈{±1}V
σA ∏

xy∈E
eβσxσy

= cosh(β)∣E∣ ∑
σ∈{±1}V

σA ∏
xy∈E

[1 + tanh(β)σxσy]

= cosh(β)∣E∣ ∑
σ∈{±1}V

∑
η∈{0,1}E

tanh(β)o(η)σA ∏
xy∈E
ηxy=1

σxσy

= cosh(β)∣E∣ ∑
η∈{0,1}E

tanh(β)o(η) ∑
σ∈{±1}V

σA ∏
xy∈E
ηxy=1

σxσy.
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Using the involution of {0,1}V sending σ to the configuration coinciding with σ except at x
where the spin is flipped, one sees that if any of the terms σx appears with an odd power in the
previous sum over σ, then the sum equals 0. Since the power corresponds to the degree of x in
η if x ∉ A, and is equal to the degree minus 1 if x ∈ A, we deduce that

∑
σ∈{±1}V

σA ∏
xy∈E
ηxy=1

σxσy =
⎧⎪⎪⎨⎪⎪⎩

2∣V ∣ if ∂η = A,
0 otherwise

and the formula therefore follows. ◻

Exercise 33 (Kramers-Wannier duality) 1. Show that there exists a correspondence between even subgraphs of
G and spin configurations for the Ising model on G∗, with + boundary conditions on the exterior face.

2. Express the partition function of the Ising model at inverse-temperature β∗ on G∗ with + boundary conditions in
terms of even subgraphs of G.

3. For which value of β∗ do we obtain the same expression (up to a multiplicative constant) as (4.2).

The previous expansion of the partition function is called the high-temperature expansion. We
deduce

µf
G,β[σA] =

∑
∂η=A

tanh(β)o(η)

∑
∂η=∅

tanh(β)o(η)
≥ 0. (4.3)

(The inequality is called Griffiths’s first inequality). Notice two things about the high-temperature
expansion of spin-spin correlations:

• the sums in the numerator and denominator of (4.3) are running on different types of
graphs (the source constraints are not the same), which illustrates a failure of this repre-
sentation: we cannot a priori rewrite this quantity as a probability.

• when squaring this expression, we end up considering, in the numerator and denominator,
two sums over pairs of configurations η1 and η2 with ∂η1 = ∂η2. This means that η1 + η2

has even degree at each vertex, both in the numerator and denominator.

In order to harvest this second observation, we introduce a system of currents. This introduction
is only a small detour, since we will quickly get back to percolation configurations.

A current n on G is a function from E to N ∶= {0,1,2, ...} (the notation n will be reserved
to currents). A source of n = (nxy ∶ xy ∈ E) is a vertex x for which ∑y∼x nxy is odd. The set of
sources of n is denoted by ∂n. Also set

wβ(n) = ∏
xy∈E

βnxy

nxy!
.

One may follow the proof of Proposition 4.2 with the Taylor expansion

exp(βσxσy) =
∞
∑

nxy=0

(βσxσy)nxy

nxy!

replacing (4.1) to get
∑

σ∈{±1}V
σA exp[−βH f

G(σ)] = 2∣V ∣ ∑
∂n=A

wβ(n), (4.4)

(this expression is called the random current expansion of the partition function) from which we
deduce an expression for correlations which is very close to (4.3)

µf
G,β[σA] =

∑
∂n=A

wβ(n)

∑
∂n=∅

wβ(n)
. (4.5)
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The random current perspective on the Ising model’s phase transition is driven by the hope
that the onset of long range order coincides with a percolation transition in a system of duplicated
currents (this point of view was used first in [2, 72], see also [44] and references therein for a
recent account). While we managed to rewrite the spin-spin correlations of the Ising model in
terms of the random-cluster model or the high-temperature expansion, the representations fail
to apply to truncated correlations10. From this point of view, the expression (4.5) is slightly
better than (4.3) when considering the product of two spin-spin correlations since weighted sums
over two “independent” currents n1 and n2 can be rewritten in terms of the sum over a single
current m (see below). This seemingly tiny difference enables us to switch the sources from one
current to another one and to recover a probabilistic interpretation in terms of a percolation
model.

More precisely, recall that FA is the event that every cluster of the percolation configuration
is intersecting A an even number of times11. We will prove below that for any A ⊂ V ,

µf
G,β[σA]

2 = P∅
G,β[FA], (4.6)

where P∅
G,β is a percolation model defined as follows (we define a slightly more general percolation

model which will be used later). For B ⊂ V ,

PB
G,β[ω] =

∑
∂n1=B
∂n2=∅

wβ(n1)wβ(n2)1n̂1+n2=ω

∑
∂n1=B
∂n2=∅

wβ(n1)wβ(n2)
(4.7)

for any ω ∈ {0,1}E , where to each current n, we associate a percolation configuration n̂ on E
by setting n̂xy = 1 if nxy > 0, and 0 otherwise.

This yields an alternative graphical representation for spin-spin correlations, which can be
compared to the expression µf

G,β[σA] = φ
0
G,p,q[FA] obtained using the random-cluster model. It

involves the same increasing event FA (see Exercise 7), but for a different percolation model,
and for the square of spin-spin correlations this time.

Let us now prove the following lemma, which leads immediately to (4.6).

Lemma 4.3 (Switching lemma [72, 2]) For any A,B ⊂ V and any F ∶ NE → R,

∑
∂n1=A
∂n2=B

F (n1 + n2)wβ(n1)wβ(n2) = ∑
∂n1=A∆B
∂n2=∅

F (n1 + n2)wβ(n1)wβ(n2)1n̂1+n2∈FB , (switch)

where A∆B ∶= (A ∖B) ∪ (B ∖A) is the symmetric difference between the sets A and B.

Before proving this lemma, let us mention a few implications. First, (4.6) follows directly from
this lemma since

µf
G,β[σA]

2 =

∑
∂n1=A
∂n2=A

wβ(n1)wβ(n2)

∑
∂n1=∅
∂n2=∅

wβ(n1)wβ(n2)
(switch)= P∅

G,β[FA],

We can go further and try to rewrite more complicated expressions. For instance,

µf
G,β[σA]µ

f
G,β[σB] =

∑
∂n1=A
∂n2=B

wβ(n1)wβ(n2)

∑
∂n1=∅
∂n2=∅

wβ(n1)wβ(n2)
(switch)= µf

G,β[σAσB] ⋅PA∆B
G,β [FB].

10Truncated correlations is a vague term referring to differences of correlation functions (for instance µ+β[σxσy]−
µ+β[σx]µ

+
β[σy] or µ

+
β[σxσy] − µ

f
β[σxσy] or U4(x1, x2, x3, x4) defined later in this section).

11When A = {x, y}, the event FA is simply the event that x and y are connected to each other.
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In particular, the fact that the probability on the right is smaller or equal to 1 gives the second
Griffiths inequality

µf
G,β[σAσB] ≥ µf

G,β[σA]µ
f
G,β[σB]. (G2)

Note that here we have an explicit formula for the difference between the average of σAσB and
the product of the averages, which was not the case in the proof presented in Exercise 8 (which
was using the FKG inequality and the random-cluster model). This will be the main advantage
of the previous representation: it will enable us to rewrite truncated correlations in terms of
connectivity properties of this new percolation model.

Let us conclude this section by mentioning that we saw two representations of the Ising model
partition function in this section: the high-temperature expansion in terms of even subgraphs,
and the random current expansion. The coupling between the random-cluster model with q = 2
and the Ising model provides us with a third expansion (we leave it to the reader to write
it properly). There exist several other representations: the low-temperature expansion, the
representation in terms of dimers, the Kac-Ward expansion (see e.g. [32, 38, 98, 99]).

Exercise 34 (Lebowitz’s inequality) Set µ ∶= µf
G,β and σi for the spin at a vertex xi. Define

U4(x1, x2, x3, x4) = µ[σ1σ2σ3σ4] − µ[σ1σ2]µ[σ3σ4] − µ[σ1σ3]µ[σ2σ4] − µ[σ1σ4]µ[σ2σ3]

for x1, x2, x3, x4 ∈ G. Using the switching lemma, show that

U4(x1, x2, x3, x4) = −2µ[σ1σ2σ3σ4]P{x1,x2,x3,x4}
G,β

[x1, x2, x3, x4 all connected].

Note that in particular U4(x1, x2, x3, x4) ≤ 0, which is known as Lebowitz’s inequality.

Proof of the switching lemma We make the change of variables m = n1 + n2 and n = n1.
Since

wβ(n)wβ(m − n) = ∏
xy∈E

β(m−n)xy

(m − n)xy!
βnxy

nxy!
= wβ(m)(m

n
),

where (m
n
) ∶=∏xy∈E (mxy

nxy
), we deduce that

∑
∂n1=A
∂n2=B

F (n1 + n2)wβ(n1)wβ(n2) = ∑
∂m=A∆B

F (m)wβ(m) ∑
n≤m,∂n=B

(m

n
). (4.8)

Now, consider the multigraphM obtained from m as follows: the vertex set is V and x and y
in V are connected by mxy edges. Then, (m

n
) can be interpreted as the number of subgraphs of

M with exactly nxy edges between x and y. As a consequence,

∑
n≤m,∂n=B

(m

n
) = ∣{N ⊂M ∶ ∂N = B}∣,

where ∂N = B means that N has odd degree on vertices of B, and even degree everywhere else.
Note that this number is 0 if m̂ ∉ FB. Indeed, any subgraph N with ∂N = B contains

disjoint paths pairing the vertices of B. In particular, any cluster ofM intersecting an element
x of B must also intersect the element of B paired to x by N .

On the other hand, if m̂ ∈ FB, then any cluster ofM intersects an even number of vertices
in B. We claim that in this case there exists K ⊂ M with ∂K = B. The fact that m̂ ∈ FB
clearly implies the existence of a collection of paths inM pairing the vertices of B12. A priori,
these paths may self-intersect or intersect each other. We now prove that this is not the case
if the collection has minimal total length among all the possible choices for such collections of

12Meaning that these paths start and end in B, and each element in B appears exactly once in the set of
beginning and ends of these paths.
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paths. Assume for instance that there exist an edge e = xy and two paths γ = γ1 ○ xy ○ γ2 and
γ′ = γ′1 ○ yx ○ γ′2, where we use the intuitive notation that γ is the concatenation of a path γ1

going to x, then using the edge e, and a path γ2 from y to the end, and similarly for γ′ (note
that we may reverse γ′, so that we can assume it first goes through y and then through x). But
in this case the paths γ1 ○ γ′2 and γ′1 ○ γ2 also pair the same vertices, and have shorter length.
The same argument shows that the paths must be self-avoiding. To conclude, simply set K to
be the graph with edge set composed of edges in the paths constructed above.

The map N ↦ N∆K is a bijection (in fact an involution) mapping subgraphs of M with
∂N = B to subgraphs ofM with ∂N = ∅. As a consequence, in this case

∣{N ⊂M ∶ ∂N = B}∣ = ∣{N ⊂M ∶ ∂N = ∅}∣.

Overall,

∑
n≤m,∂n=B

(m

n
) = 1m̂∈FB ∑

n≤m,∂n=∅
(m

n
).

Inserting this in (4.8) and making back the change of variables n1 = n and n2 = m−n1 gives the
result. ◻

Exercise 35 How should currents be defined in order to rewrite correlations for the Ising model with Hamiltonian
Hf
G(σ) = −∑x,y∈V Jx,yσxσy , where Jx,y are coupling constants? What is wβ(n) in this context? Is the switching

lemma still true?

To conclude this section, note that the currents enter in the definition of PB
G,β only through

their sources and their traces (i.e. whether they are positive or 0), so that we could have replaced
currents taking values in N by objects taking values in {0,1,2} with 0 if the current is 0, 1 if
it is odd and 2 if it is positive and even. But also note that they do not rely only on the
degree of the percolation configuration at every vertex (or equivalently on sources), so that the
high-temperature expansion would not have been enough to define PA

G,β . The random current
representation is crucial to express truncated correlation functions. This is the end of the detour
and we will now try to use the percolation representation coming from random currents to prove
continuity of correlations.

Exercise 36 In this exercise, we consider three measures on G:

• The first one, denoted P∅
G,β

, is attributing a weight to configurations η ∈ {0,1}E proportional to tanh(β)o(η)1∂η=∅
(this measure is sometimes known as the loop O(1) model).

• The second one, denoted by P∅
G,β

, is attributing a weight to configuration n ∈ {0,1}E proportional to
∑n∈NE wβ(n)1n̂=n.

• The last one is given by φ0
G,β , where β = − 1

2
log(1 − p).

1. Prove that n ∼ P∅
G,β

is obtained from η ∼ P∅
G,β

by opening independently additional edges with parameter p1 =
1 − 1

coshβ
.

2. Consider a graph ω. How many even subgraphs does it contain? Deduce from this formula that if one picks
uniformly at random an even subgraph η from ω ∼ φf

G,β , one obtains a random even subgraph of law P∅
G,β

.

3. Prove that by opening independently additional edges from η ∼ P∅
G,β

with probability p2 = tanh(β), one recovers
ω ∼ φ0

G,β .

4. What is the procedure to go from n ∼ P∅
G,β

to ω ∼ φ0
G,β?

5. Use Kramers-Wannier duality (Exercise 33) to prove that P∅
G,β

is the law of the interfaces between pluses and
minuses in an Ising model with + boundary conditions on G∗ with inverse-temperature β∗.

4.3 Continuity of the phase transition for Ising models on Zd for d ≥ 3

In this section, we prove that the phase transition of the Ising model is continuous for any d ≥ 3.
Let us start by saying that, like in the case of Z2, the critical Ising model with free boundary
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conditions on Zd does not have long-range ordering. This can easily be seen from a classical
result, called the infrared bound: for any β < βc,

µf
β[σxσy] ≤ C

βG(x, y), (IR)

where G(x, y) is the Green function of simple random walk, or equivalently the spin-spin cor-
relations for the discrete GFF. The proof of this inequality is based on the so-called reflection-
positivity (RP) technique introduced by Fröhlich, Simon and Spencer [66]; see e.g. [21] for a
review. This technique has many applications in different fields of mathematical physics. We
added the constant C > 0 factor compared to the standard statement (where C = 1/2) since the
infrared bound is proved in Fourier space, and involves an averaging over y. One may then use
the Messager-Miracle inequality (see Exercise 37 or the original reference [1]) to get a bound for
any fixed x and y.

By letting β ↗ βc, (IR) implies that

µf
βc[σxσy] ≤

C
βc
G(x, y). (4.9)

Here, it is important to understand what we did: we took the limit as β ↗ βc of µf
βc
[σxσy].

This left-continuity is not true for µ+βc[σxσy] since we use here the following exchange of two
supremums:

µf
βc[σxσy] = sup

n
µf

Λn,βc[σxσy]

= sup
n

sup
β<βc

µf
Λn,β[σxσy]

= sup
β<βc

sup
n
µf

Λn,β[σxσy] = sup
β<βc

µf
β[σxσy].

For µ+β[σxσy], one of the supremums would be an infimum and the previous argument would not
hold. In fact, β ↦ µ+β[σxσy] is right-continuous (since then it involves only infimums). Similarly,
p ↦ φ0

p,q[A] and p ↦ φ1
p,q[A] are respectively left and right continuous for increasing events

depending on finitely many edges (and therefore for any event depending on finitely many edges).
Also, by taking an increasing sequence of increasing events An with limit A, then p ↦ φ0

p,q[A]
is left-continuous. Note that this is not true for any measurable event, an archetypical example
being A ∶= {0↔∞}, which is the limit of a decreasing sequence of increasing events.

Let us go back to the consequence of (4.9). Since the simple random walk is transient on
Zd for d ≥ 3, the right-hand side tends to 0 as ∥x − y∥ tends to infinity. This claim implies that
(LROβc) does not hold.

Exercise 37 We wish to prove that
µf
β[σ0σx] ≤ µf

β[σ0σy] (Mes-Mir)

if x = (x1, . . . , xd) and y = (y1, . . . , yd) satisfy either of the following two conditions
C1 0 ≤ x1 ≤ y1 and xi = yi for every i ≥ 2;
C2 x1 + x2 = y1 + y2 and 0 ≤ x1 − x2 ≤ y1 − y2 and xi = yi for every i ≥ 3.

1. Define the graph L obtained from Zd by adding another edge between u and u + (1,0, . . . ,0), for each u with first
coordinate u1 equal to x1 (let E be the set of new edges). How should we set coupling constants Jx,y (in the sense
of Exercise 35) on edges of E ∪E to have a model which is equivalent to the original model on Zd?

2. Define E1 ∶= {uv ⊂ Zd ∶ u1, v1 ≤ x1} ∪E and E2 ∶= E ∖E1. Show that

∑
∂n={0,y}

w(n) = ∑
n1∈NE1 ,n2∈NE2

∂(n1+n2)={0,y}

w(n1)w(n2) and ∑
∂n={0,x}

w(n) = ∑
n1∈NE1 ,n2∈NE2

∂(n1+n2)={0,x}

w(n1)w(n2).

2. Consider y = x + (1,0, . . . ,0). Using the current n′2 ∈ NE1 obtained from n2 by taking the reflection with respect
to {z ∈ Rd ∶ z1 = x1 + 1/2} (with the convention that an edge of E is sent to the corresponding edge of Zd with the
same endpoints), show that

∑
∂n={0,y}

w(n) ≤ ∑
∂n={0,x}

w(n).
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Hint. Use the multi-graph M obtained from n1 + n′2 and observe that for terms involved in the left-hand side, M
necessarily contains a path from x to {z ∈ Rd ∶ z1 = y1}, and that in such case one may use a “switching lemma”.

3. Prove (Mes-Mir) under condition C1. Adapt the proof to show (Mes-Mir) under condition C2.

4. Show that (Mes-Mir) implies that if e1 = (1,0, . . . ,0), then for every x ∈ ∂Λn,

µf
β[σ0σne1 ] ≥ µf

β[σ0σx] ≥ µf
β[σ0σdne1 ]. (4.10)

It is unclear whether the absence of long-range ordering for µf
βc

implies that µ+βc[σ0] = 0 since
µf
βc

and µ+βc are a priori different. We will see that µb
βc

is different from µf
βc

for q-state Potts
model with q ≥ 4 in two dimensions. Nonetheless, the following result tells us that this is never
the case for the Ising model on Zd.

Theorem 4.4 (Aizenman, DC, Sidoravicius [5]) For the Ising model at inverse tempera-
ture β on Zd, (MAGβ) implies (LROβ). As a consequence, the spontaneous magnetization is
equal to 0 at criticality.

The proof is based on the percolation representation obtained using random currents. We will
prove that the difference between spin-spin correlations with plus and free boundary conditions
(which can be understood as truncated correlations) can be expressed in terms of a percolation
model. We will then study the ergodic properties of this model to derive that (MAGβ) implies
(LROβ). The strategy is somewhat similar to Section 1.3.3.

Step 1: expressing truncated correlations using a percolation model based on ran-
dom currents. Let us start by expressing spin-spin correlations with + boundary conditions
in terms of currents. Let int(V ) ∶= V ∖ ∂G be the set of interior vertices. In order to do so,
perform the same expansion (with Taylor series) as for the free boundary conditions to obtain

∑
σ∈{±1}V

σA exp[−βH f
G(σ)]1σ∣∂G=+ = 2∣int(V )∣ ∑

∂n∩int(V )=A
wβ(n), (4.11)

where we use that

∑
σ∈{±1}V
σ∣∂G=+

σA ∏
xy∈E

(σxσy)nxy =
⎧⎪⎪⎨⎪⎪⎩

2∣int(V )∣ if ∂n ∩ int(V ) = A
0 otherwise.

Introduce, as in the case of free boundary conditions, the measure

P+
G,β[ω] =

∑
∂n1∩int(V )=∅

∂n2=∅

wβ(n1)wβ(n2)1n̂1+n2=ω

∑
∂n1∩int(V )=∅

∂n2=∅

wβ(n1)wβ(n2)
.

The key observation in the proof below is the following lemma.

Lemma 4.5 For G finite and β > 0, we have that

µ+G,β[σxσy]µ
f
G,β[σxσy] = P+

G,β[x←→ y] ∀x, y ∈ V ∖ ∂G, (4.12)

µ+G,β[σxσy] − µ
f
G,β[σxσy] ≤ 1

sinh(β)P
+
G,β[A(xy)] ∀xy ∈ E, (4.13)

where A(xy) is the event that ωxy = 1 and that in ω ∖ {xy}, x and y are connected to ∂G but
not to each other (see Fig. 8).
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x y

Figure 8: Event A(xy). The bullets in the boundary are representing the sources of n1.

Proof Equation 4.12 follows easily from (4.11) and the switching lemma by decomposing into
possible values of ∂n1 ∩ ∂G:

µ+G,β[σxσy]µ
f
G,β[σxσy] =

∑
A⊂∂G

∑
∂n1=A∆{x,y}
∂n2={x,y}

wβ(n1)wβ(n2)

∑
∂n1∩int(V )=∅

∂n2=∅

wβ(n1)wβ(n2)

=

∑
A⊂∂G

∑
∂n1=A
∂n2=∅

wβ(n1)wβ(n2)1
x

n̂1+n2←→ y

∑
∂n1∩int(V )=∅

∂n2=∅

wβ(n1)wβ(n2)
= P+

G,β[xÐ→ y].

Let us now turn to (4.13), which is slightly more subtle. We may use the switching lemma (in
a similar fashion to what we did above) to get

µ+G,β[σxσy] − µ
f
G,β[σxσy] =

∑
∂n1∩int(V )={x,y}

wβ(n1)

∑
∂n1∩int(V )=∅

wβ(n1)
−

∑
∂n2={x,y}

wβ(n2)

∑
∂n2=∅

wβ(n2)

=

∑
∂n1∩int(V )={x,y}

∂n2=∅

wβ(n1)wβ(n2)1(n1,n2)∈B(xy)

∑
∂n1∩int(V )=∅

∂n2=∅

wβ(n1)wβ(n2)
, (4.14)

where B(xy) is the event that x and y are not connected in n̂1 + n2. Note that on B(xy), the
source constraints in n1 are forcing x and y to be connected to sources of n1, i.e. to ∂G. Also
note that n1 is equal to 0 on xy.

Consider (n1,n2) ∈ B(xy) and define the set of currents C(n1) coinciding with n1 except at
xy, where they have an odd value. Note that currents in C(n1) have no sources in int(V ) (since
n1 was equal to 0 at xy, and that now the current is odd) and that the trace of ñ1 + n2 is in
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A(xy) for any ñ1 ∈ C(n1). Finally, note that the sets C(n1) are disjoint for different n1 and
that the sum of the weights of currents in C(n1) is equal to sinh(β)wβ(n1). Overall, changing
n1 to the sum over ñ1 in C(n1) in the previous sum gives the result. ◻

Step 2: ergodic properties of the infinite volume version of P+
G,β. We now prove

that one may define an infinite-volume version of P+
G,β , denoted P+

β , which is invariant under
translations and ergodic. We further prove that P+

β contains at most one infinite cluster almost
surely.

Lemma 4.6 The sequence of measures P+
Λn,β

converges to a measure P+
β on {0,1}E which is

invariant under translations and ergodic.

Proof Note that ω with law P+
G,β is obtained as the union of two independent configurations

obtained by taking the trace of only one current, either sourceless or with sources located on
∂G. Furthermore, conditioned on the parity of the currents (which we recall is simply the
high-temperature expansion η), whether a current is positive or not is decided independently
for each edge (if the current is odd, it must be positive, otherwise it is positive with probability
1 − cosh(β)−1). Therefore, convergence, invariance under translation and ergodicity of the limit
of the laws of the parity of each current is implying the claim. Since the proof is the same in
both cases, we focus on the current defined on G.

Let Pf
G,β be the measure defined for η ∈ {0,1}E by

Pf
G,β[η] =

tanh(β)o(η)

∑
∂η=∅

tanh(β)o(η)
.

For a set of edges F , define the event CF that ηe = 0 for each e ∈ F . We deduce from Lemma 4.2
that

Pf
G,β[CF ] = µf

G,β[e
−βKF ] cosh(β)∣F ∣ (4.15)

with KF (σ) ∶= ∑xy∈F σxσy . The convergence of the above expression follows now directly from
the convergence of Ising measures as G↗ Zd. Since the events CF with F finite generate the σ-
algebra, we obtain the convergence of measures. The invariance under translations of µf

β implies
immediately the invariance under translations of the limiting measure Pf

β .
To prove ergodicity, we prove that the measure is mixing, which we only need to prove for

events of the form CF . Fix two finite sets F and F ′ of edges. Using the expression (4.15) for x
large enough so that F ∩ (x + F ′) = ∅, we find

Pf
β[CF∪(x+F ′)]

Pf
β[CF ]P

f
β[C

′
F ]

=
µf
β[e

−βKF e−βKx+F ′ ]
µf
β[e−βKF ]µ

f
β[e−βKF ′ ]

. (4.16)

Ergodicity can therefore be presented as an implication of the statement that this ratio tends
to 1. To see this convergence, observe that µf

β is itself mixing for functions of the spin-space
that are even. Indeed, consider A and B two sets of even cardinality and x large enough that
A ∩ (x +B) = ∅. The coupling with the random-cluster model gives

µf
β[σAσx+B]

µf
β[σA]µ

f
β[σB]

=
φ0
p,2[FA∪(x+B)]

φ0
p,2[FA]φ0

p,2[FB]
Ð→ 1,

with p = 1 − e−2β , where the last convergence is due to the mixing property of φf
p,2 and the fact

that
φ0
p,2[FA∪(x+B) ∖FA ∩Fx+B]Ð→ 0.
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(This last fact is due to the fact that this event is included in the event that there are two
disjoint clusters going from A to distance ∥x∥/2, which by uniqueness of the infinite cluster, has
a probability going to zero as x goes to infinity.) Since the random-variables σA for ∣A∣ even
generate the σ-algebra of even functions of the spin-space, the result follows. ◻

The ergodicity of P+
β implies that an infinite cluster exists with probability either 0 or 1. We

now prove that when it exists, it is unique almost surely.

Lemma 4.7 For any β > 0, there exists at most one infinite cluster Pβ-almost surely.

Proof The proof of this theorem follows from the Burton-Keane argument presented in the
proof of Theorem 1.10. The only difference lies in the fact that we do not have the finite-energy
property (FE) anymore. Nevertheless, we have the following insertion tolerance claim, which we
leave as an exercise (see Exercise 38): for any event A depending on edges different from xy,

P+
β[ωxy = 1∣A] ≥ cIT. (IT)

Note that the probability on the left may a priori be arbitrarily close to 1, but the previous
lower bound is sufficient for our purpose.

Recall the notation from the proof of Theorem 1.10. First, one may check that the proof that
P+
β[E<∞∖E≤1] = 0 is the same. To exclude the possibility of an infinite number of infinite clusters,

one cannot really work with trifurcations anymore since constructing them would require the
finite-energy rather than the insertion tolerance. Nevertheless, one can work with a notion of
coarse trifurcation, where 0 is a coarse trifurcation if edges in EN are open, and ω∖EN contains
at least three infinite clusters intersecting ΛN . Similarly, one defines the fact that x is a coarse
trifurcation. Note that if there is an infinite number of infinite clusters, then the construction
of Theorem 1.10 and (IT) imply that coarse trifurcations occur with positive probability. The
end of the proof works the same, except that up to ∣ΛN ∣ coarse trifurcations can intersect a
fixed coarse trifurcation, so that the deterministic bound for the number of trifurcations is now
∣ΛN ∣ ⋅ ∣∂Λn∣. ◻

Step 3: conclusion of the proof. The proof now follows readily. We work by contraposition
and assume that (LROβ) does not hold. Then, taking the limit of (4.12) (as G ↗ Zd) together
with ergodicity and the uniqueness of the infinite cluster (when it exists) implies that there is
no infinite cluster for P+

β almost surely. Now, the limit as G tends to Zd of A(xy) is included in
the event that there exists an infinite cluster. Therefore, by taking the limit as G tends to Zd
in (4.13), we obtain that µf

β[σxσy] = µ
+
β[σxσy] for any xy ∈ E.

To conclude, note that this translates into the fact that φ0
p,2[x ↔ y] = φ1

p,2[x ↔ y]. Yet, a
simple computation13 gives that

φ0
p,2[ωxy] =

p
2(1 + φ

0
p,2[x←→ y]).

and similarly for φ1
p,2 so that φ0

p,2[ωxy] = φ1
p,2[ωxy]. We already argued in the proof of Theo-

rem 1.12 that this implies φ0
p,2 = φ1

p,2. In particular, for any x, y ∈ Zd,

µ+β[σxσy] = φ
1
p,2[x←→ y] = φ0

p,2[x←→ y] = µf
β[σxσy]

tends to 0 as ∥x − y∥ tends to infinity (by the infrared bound). By uniqueness of the infinite
connected component, we deduce that φ1

p,2[0←→∞] = 0, which is the claim.

13Or more elegantly the use of Exercise 5, which states that φ0
p,2[ωxy] = p ⋅ µ

f
β[σx = σy], which combined with

µf
β[σx = σy] = 2µf

β[σxσy] − 1 = 2φ0
p,2[x↔ y] − 1 gives the requested equality.
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Exercise 38 Prove (IT) using an argument similar to the proof of (4.13).

Exercise 39 Consider the Ising model with a magnetic field h, i.e. the model with Hamiltonian

HG,h(σ) = HG(σ) − ∑
x∈V

hσx.

We denote the infinite-volume measure by µf
β,h.

1. Interpret the correlations of the model in terms of random currents on the graph Gh with vertex-set V ∪ {g} and
edge-set given by E ∪ {xg ∶ x ∈ V }. What is the weight wβ,h(n) of a current?

2. Following a reasoning similar to the proof of (4.13), show that µf
β,h[σxσ0]−µf

β,h[σx]µf
β,h[σ0] can be reinterpreted

as the probability under a system of duplicated currents that x is connected to 0 but not to g.

3. Using insertion tolerance, prove that this probability decays exponentially fast in ∥x∥.

4.4 Polynomial decay at criticality for d ≥ 3

It is natural to ask how fast the spin-spin correlations decay at criticality. We will prove the
following

Theorem 4.8 For d ≥ 3, there exists c,C ∈ (0,∞) such that for every x ∈ Zd,

c

∥x∥d−1
≤ µf

βc[σ0σx] ≤
C

∥x∥d−2
. (4.17)

Proof The upper bound is provided by the infrared bound (IR). For the lower bound, we
invoke Simon’s inequality (see Exercise 40), stating that for every n ≥ 1,

µf
β[σ0σx] ≤ ∑

y∈∂Λn

µf
β[σ0σy]µf

β[σyσx].

Assume that ϕβ(Λn) ∶= ∑y∈∂Λn µ
f
β[σ0σy] < 1 for some n, and observe that by a reasoning similar

to the first step of Section 2.2, we find that if x ∈ Λkn,

µf
β[σ0σx] ≤ ϕβ(Λn)k.

Now, β ↦ µ+β[σ0σx] is continuous from the right since it is the infimum of the continuous
increasing functions β ↦ µ+G,β[σ0σx]. We deduce that

lim
β↘βc

ϕβ(Λn) ≤ lim
β↘βc

∑
y∈∂Λn

µ+β[σ0σy] = ∑
y∈∂Λn

µ+βc[σ0σy] = ϕβc(Λn),

where in the last equality we used that µf
βc
= µ+βc .

Therefore, if ϕβc(Λn) < 1, then ϕβ(Λn) < 1 for some β > βc. By the reasoning above, this
would imply that correlations decay exponentially fast for β > βc, which is absurd. In conclusion,
ϕβc(Λn) ≥ 1 for every n ≥ 1.

The Messager-Miracle inequality (Mes-Mir) used twice (more precisely (4.10)) implies that
for any y ∈ ∂Λn,

µf
βc[σ0σne1] ≥ µ

f
βc[σ0σy] ≥ µf

βc[σ0σdne1] (4.18)

where e1 = (1,0, . . . ,0). The left inequality together with ϕβc(Λn) ≥ 1 imply that

µf
βc[σ0σne1] ≥

1

∣∂Λn∣

for every n. The proof follows readily from the right inequality of (4.18). ◻
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Exercise 40 (Simon’s inequality) Using the switching lemma, prove Simon’s inequality: for any set S discon-
necting x from y (in the sense that any path from x to y intersects S),

µf
G,β[σxσz] ≤ ∑

y∈S

µf
G,β[σxσy]µf

G,β[σyσz]. (Simon)

A slightly stronger inequality, called Lieb’s inequality, can also be obtained using random currents (the proof is
more difficult). The improvement lies in the fact that µf

G,β[σxσy] can be replaced by µf
S,β[σxσy]:

µf
G,β[σxσz] ≤ ∑

y∈S

µf
S,β[σxσy]µf

G,β[σyσz]. (Lieb)

In fact, one can prove much more in dimension d ≥ 5, and therefore the previous theorem is
mostly interesting in three dimension.

Theorem 4.9 (Aizenman, Fernandez [6]) For any d ≥ 5, there exist constants c1, c2 ∈ (0,∞)
such that for any x ∈ Zd,

c1

∥x∥d−2
≤ µf

βc[σ0σx] ≤
c2

∥x∥d−2
.

5 Continuity/Discontinuity of the phase transition for the planar
random-cluster model

We now turn to the case of the random-cluster model in two dimensions. We will discuss the
following result.

Theorem 5.1 Consider the random-cluster model with cluster-weight q ≥ 1 on Z2. Then
φ1
pc,q[0↔∞] = 0 if and only if q ≤ 4.

As an immediate corollary, we obtain the following result.

Corollary 5.2 The phase transition of the Potts model is continuous for q ∈ {2,3,4} and dis-
continuous for q ≥ 5.

The section is organized as follows. We first study crossing probabilities for planar random-
cluster models by building a Russo-Seymour-Welsh type theory for these models. This part
enables us to discriminate between two types of behavior:

• the continuous one in which crossing probabilities do not go to zero, even when boundary
conditions are free (which correspond to the worse ones for increasing events). In this
case, the infinite-volume measures with free and wired boundary conditions are equal and
correlations decay polynomially fast.

• the discontinuous one in which crossing probabilities with free boundary conditions go
to zero exponentially fast. In this case, the infinite-volume measure with free boundary
conditions looks subcritical in the sense that the probability that 0 is connected to distance
n is decaying exponentially fast, while the infinite-volume measure with wired boundary
conditions contains an infinite cluster almost surely.

We then prove that for q ≤ 4, the probability of being connected to distance n for the free
boundary conditions goes to zero at most polynomially fast, thus proving that we are in the
continuous case. In order to do that, we introduce parafermionic observables. Finally, we discuss
the q > 4 case, in which we sketch the proof that the probability of being connected to distance
n decays exponentially fast, thus proving that we are in the discontinuous phase.
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5.1 Crossing probabilities in planar random-cluster models

We saw that the probability of crossing squares was equal to 1/2 for Bernoulli percolation, and
that it was either bounded from above or below by 1/2 for random-cluster models depending on
the boundary conditions. This raises the question of probabilities of crossing more complicated
shapes, such as rectangle with aspect ratio ρ ≠ 1. While this could look like a technical question,
we will see that studying crossing probabilities is instrumental in the study of critical random
cluster models.

We begin with some general notation. For a rectangle R ∶= [a, b] × [c, d] (when a, b, c or d
are not integers, an implicit rounding operation is performed), introduce the event H(R) that
R is crossed horizontally, i.e. that the left side {a}× [c, d] is connected by a path in ω ∩R to the
right side {b} × [c, d]. Similarly, define V(R) be the event that R is crossed vertically, i.e. that
the bottom side [a, b] × {c} is connected by a path in ω ∩R to the top side [a, b] × {d}. When
R = [0, n] × [0, k], we rather write V(n, k) and H(n, k).

Exercise 41 Consider Bernoulli percolation (of parameter p) on a planar transitive locally finite infinite graph with
π/2 symmetry.

1. Using the rectangles R1 = [0, n] × [0,2n], R2 = [0, n] × [n,3n], R3 = [0, n] × [2n,4n], R4 = [0,2n] × [n,2n] and
R5 = [0,2n] × [2n,3n], show that

Pp[H(n,4n)] ≤ 5P[H(n,2n)] .

2. Deduce that u2n ≤ 25u2
n where un = Pp[H(n,2n)]. Show that (un) decays exponentially fast as soon as there

exists n such that un < 1
25
.

3. Deduce that un ≥ 1
25

for every n or (EXPp). What did we prove at pc?

5.1.1 The RSW theory for infinite-volume measures

Recall from (2.16) that we know that

φ1
pc,q[H(n,n)] ≥ φ1

pc,q[H(n + 1, n)] ≥ 1
2 .

It is natural to wish to improve this result by studying crossing probabilities for wired boundary
conditions for rectangles of fixed aspect ratio remain bounded away from 0 when n tends to
infinity. This is the object of the following theorem.

Theorem 5.3 (Beffara, DC [12]) Let ρ > 0, there exists c = c(ρ) > 0 such that for every n ≥ 1,

φ1
pc,q[H(ρn,n)] ≥ c.

For Bernoulli percolation, a uniform upper bound follows easily from the uniform lower
bound and duality since the complement of the event that a rectangle is crossed vertically is the
event that the dual rectangle is crossed horizontally in the dual configuration. This is not the
case for general random-cluster models since the dual measure is the measure with free boundary
conditions. In fact, we will see in the next sections that a uniform upper bound is not necessarily
true: crossing probabilities could go to 1 for wired boundary conditions, and to 0 for free ones.
It was therefore crucial to state this theorem for “favorable” boundary conditions at infinity.

Also, as soon as a uniform lower bound (in n) for ρ = 2 is proved, then one can easily combine
crossings in different rectangles to obtain a uniform lower bound for any ρ > 1. Indeed, define
(for integers i ≥ 0) the rectangles Ri ∶= [in, (i + 2)n] × [0, n] and the squares Si ∶= Ri ∩ Ri+1.
Then,

φ1
pc,q[H(ρn,n)] ≥ φ1

pc,q[⋂
i≤ρ

(H(Ri) ∩ V(Si))]
(FKG)
≥ c(2)2⌊ρ⌋.

One may even prove lower bounds for crossing probabilities in arbitrary topological rectangles
(see Exercise 42 below).
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Exercise 42 Consider a simply connected domain with a smooth boundary Ω with four distinct points a, b, c and
d on the boundary. Let (Ωδ, aδ, bδ, cδ, dδ) be the finite graph with four marked points on the boundary defined as
follows: Ωδ is equal to Ω ∩ δZ2 (we assume here that it is connected and of connected complement, so that the
boundary is a simple path) and aδ, bδ, cδ, dδ be the four points of ∂Ωδ closest to a, b, c and d.

Prove that there exists c = c(q,Ω, a, b, c, d) > 0 such that for any δ > 0,

φ1
pc,q[(aδbδ)

Ωδ←→ (cδdδ)] ≥ c,

where (aδbδ) and (cδdδ) are the portions of ∂Ωδ from aδ to bδ, and from cδ to dδ, when going counterclockwise
around ∂Ωδ.

On the other hand, it is a priori not completely clear how to obtain a lower bound for ρ = 2 (or
any ρ > 1) from a lower bound for ρ = 1. In fact, the main difficulty of Theorem 5.3 lies in passing
from crossing squares with probabilities bounded uniformly from below to crossing rectangles in
the hard direction with probabilities bounded uniformly from below. In other words, the main
step is the following proposition.

Proposition 5.4 For every n ≥ 1, φ1
pc,q[H(2n,n)] ≥ 1

16(1+q2)φ
1
pc,q[H(n,n)]6.

A statement claiming that crossing a rectangle in the hard direction can be expressed in terms
of the probability of crossing squares is called a Russo-Seymour-Welsh (RSW) type theorem.
For Bernoulli percolation on Z2, this RSW result was first proved in [112, 115]. Since then,
many proofs have been produced (for Bernoulli), among which [24, 23, 25, 122, 121]. We refer
to [59] for a review of recent progress in this field. Here, we provide a proof for random-cluster
models.

Proof We treat the case of n even, the case n odd can be done similarly. Let us introduce the
two rectangles

R ∶= [−2n,2n] × [−n,n] S ∶= [0,2n] × [−n,n] S′ ∶= [−2n,0] × [−n,n].

Also introduce the notation α ∶= φ1
pc,q[H(S)]. Also, define the sets

A+ ∶= {−2n} × [0, n] B+ ∶= {0} × [0, n] C+ ∶= {2n} × [0, n]
A− ∶= {−2n} × [−n,0] B− ∶= {0} × [−n,0] C− ∶= {2n} × [−n,0].

By symmetry with respect to the x-axis, the probability that there is a path in ω ∩S from B to
C+ is larger than or equal to α/2. Similarly, the probability that there is a path in ω ∩ S from
B− to C is larger than or equal to α/2. Since the probability of V(S) is also α. The combination
of these three events implies the event E that there exists a path in ω ∩S from B− to C+. Thus,
the FKG inequality gives

φ1
pc,q[E] ≥

α3

4 .

Let E ′ be the event that there exists a path in ω∩S′ from A− to B+. By symmetry with respect
to the origin, we have

φ1
pc,q[E

′] ≥ α3

4 .

On the event E ∩ E ′, consider the paths of edges Γ and Γ′ defined by:
• Γ is the bottom-most open crossing of S from B− to C+,
• Γ′ is the top-most open crossing of S′ from A− to B+,

Construct the graph G = G(Γ,Γ′) with edge-set composed of edges with at least one endpoint
in the cluster of the origin in R2 ∖ (Γ ∪ Γ′ ∪ σΓ ∪ σΓ′) (here the paths are considered as subsets
of R2), where σΓ and σΓ′ are the reflections of Γ and Γ′ with respect to the y-axis; see Fig. 9.

Let us assume for a moment that we have the following bound: for any two possible realiza-
tions γ and γ′ of Γ and Γ′,

φmix
G,pc,q[γ

G←→ γ′] ≥ 1
1+q , (5.1)
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where the mix boundary conditions correspond to wired on γ and γ′, and free elsewhere (i.e. the
partition is given by P1 = γ, P2 = γ′ and singletons). Then,

φ1
pc,q[H(4n,2n)] = φ1

pc,q[H(R)] (5.2)

≥ φ1
pc,q[{Γ

G←→ Γ′} ∩ E ∩ E ′]

= ∑
γ,γ′

φ1
pc,q[{γ

G←→ γ′} ∩ {Γ = γ,Γ′ = γ′}]

≥ ∑
γ,γ′

φmix
G,pc,q[γ

G←→ γ′] ⋅ φ1
pc,q[Γ = γ,Γ′ = γ′]

(5.1)
≥ 1

1+q ∑
γ,γ′

φ1
pc,q[Γ = γ,Γ′ = γ′]

= 1
1+q φ

1
pc,q[E ∩ E

′]
(FKG)
≥ α6

16(1+q) ,

where in the fourth line we used the fact that Γ = γ and Γ′ = γ′ are measurable events of edges
not in G, and that the boundary conditions induced on ∂G always dominate the mixed boundary
conditions. In the last line, we used that the events {Γ = γ,Γ′ = γ′} partition E ∩ E ′, and the
lower bounds on the probability of the events E and E ′ proved above.

We now turn to the proof of (5.1). We wish to use a symmetry argument (similar to the
proof that crossing a square has probability larger or equal to 1/2). We believe the argument to
be more transparent on Fig. 9 and we refer to its caption.

Fix G = (V,E). Since the mix boundary conditions are planar boundary conditions, it will
be simpler to consider a configuration ξ ∈ {0,1}E∖E inducing them. We choose the following
one: ξe = 1 for all edges e ∈ γ ∪ γ′and ξe = 0 for all other edges. Set ωξ to be the configuration
coinciding with ω on E, and with ξ on E ∖E.

Consider ω′ to be the translation by (1/2,1/2) and then reflection with respect to the y axis
of (ωξ)∗. By duality, the law of ω′ on G is dominated by the mix′ boundary conditions defined
to be wired on γ ∪ γ′, and free elsewhere (i.e. P1 = γ ∪ γ′ and then singletons14). The absence of
path in ω from γ to γ′ is included in the event that there is a path in ω′∣E from γ to γ′, so that

1 − φmix
G,pc,q[γ

G←→ γ′] ≤ φmix′

G,pc,q[γ
G←→ γ′] ≤ q φmix

G,pc,q[γ
G←→ γ′],

where in the second inequality we used that the Radon-Nikodym derivative is smaller or equal
to q since kmix(ω) − kmix′(ω) ∈ {0,1}. The inequality (5.1) follows readily. This concludes the
proof. ◻

Let us conclude this section by recalling that crossing probabilities in rectangles are expected
to converge to explicit functions of ρ as n tends to infinity. More generally, crossing probabilities
in topological rectangles should be conformally invariant; see [116] for the case of site percolation
(see also [14, 124] for reviews) and [37, 16, 88] for the case of the Ising model.

Here, we present a beautiful argument due to Vincent Tassion proving some weak form of crossing property for general
FKG measures (with sufficient symmetry). We refer to [122] for more detail.

Exercise 43 (Weak RSW for FKG measures) Consider a measure µ on {0,1}E which is invariant under the
graph isomorphisms of Z2 onto itself. We further assume that µ satisfies the FKG inequality. We assume that
infn µ[H(n,n)] > 0 . The goal of this exercise is prove that

lim sup
n

µ[H(3n,n)] > 0 . (5.3)

1. Let En be the event that the left side of [−n,n]2 is connected to the top-right corner (n,n). Use the FKG inequality
to prove that lim supn µ[En] > 0 implies (5.3).

14Note that they are not equal to the mix boundary conditions since γ and γ′ are wired together.
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A+
B+ C+

C−A−

B

Figure 9: The sets A±, B± and C±. We depicted Γ, Γ′ and their symmetric with respect to
the y-axis. In gray, the set G. Hatched in red, the dual graph of G together with a path in ω∗

preventing the existence of a path from Γ to Γ′ in G. In blue, the translation by (1/2,1/2) of
the symmetric of G with respect to the y-axis, as well as the image by the same transformation
of the dashed path. This path of ω′ crossed G from Γ to Γ′.

2. Assume the limit superior above is zero. Now, for any −n ≤ α < β ≤ n, define the event Fn(α,β) to be the
existence of a crossing from the left side of [−n,n]2 to the segment {n} × [α,β]. We consider the function

hn(α) = µ[Fn(0, α)] − µ[Fn(α,n)] .

Show that hn is an increasing function, and that there exists c0 > 0 such that hn(n) > c0 for all n.

3. Assume that hn(n/2) < c0/2. Use (FKG) to prove that (5.3).

4. Assume that hn(n/2) > c0/2, and let αn = inf{α ∶ h(α) > c0/2}. Define the event Xn(α) by the existence of a
cluster in [−n,n]2 connecting the four segments {−n} × [−n,−α], {−n} × [α,n], {n} × [−n,−α], and {n} × [α,n].
Prove that there exists a constant c1 > 0 independent of n such that µ[Xn(α)] ≥ c1 .

5. Prove that, for infinitely many n’s, αn < 2α2n/3.

6. Prove that, whenever αn < 2α2n/3, there exists a constant c2 such that µ[H(8/3n,2n)] > c2. Conclude.

5.1.2 A dichotomy for random-cluster models

Physicists work with several definitions of continuous phase transitions. For instance, a contin-
uous phase transition may refer to the divergence of the correlation length, the continuity of
the order parameter (here the spontaneous magnetization or the density of the infinite cluster),
the uniqueness of the Gibbs states at criticality, the divergence of the susceptibility, the scale
invariance at criticality, etc. From a mathematical point of view, these properties are not clearly
equivalent (there are examples of models for which they are not), and they therefore refer to a
priori different notions of continuous phase transition.

In the following result, we use the study of crossing probabilities to prove that all these
properties are equivalent for the planar random-cluster model.

Theorem 5.5 (DC, Sidoravicius, Tassion [56]) Let q ≥ 1, the following assertions are equiv-
alent at criticality:

P1 (Absence of an infinite cluster) φ1
pc,q[0←→∞] = 0.
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P2 (Uniqueness of the infinite-volume measure) φ0
pc,q = φ

1
pc,q.

P3 (Infinite susceptibility) ∑
x∈Z2

φ0
pc,q[0←→ x] =∞.

P4a (Slow decay with free boundary conditions) lim
n→∞

1
n1/3 logφ0

pc,q[0←→ ∂Λn] = 0.

P4b (Sub-exponential decay for free boundary conditions) lim
n→∞

1
n logφ0

pc,q[0←→ ∂Λn] = 0.

P5 (Uniform crossing probabilities) There exists c = c(ρ) > 0 such that for all n ≥ 1 and all
boundary conditions ξ, if R denotes the rectangle [−n, (ρ + 1)n] × [−n,2n], then

c ≤ φξR,pc,q [H(ρn,n)] ≤ 1 − c. (5.4)

The previous theorem does not show that these conditions are all satisfied, only that they
are equivalent. In fact, whether the conditions are satisfied or not depend on the value of q, as
we will see in the next two sections.

While Properties P1–P4b are quite straightforward to interpret, P5 is maybe more mys-
terious. One may wonder why having bounds that are uniform in boundary conditions is so
relevant. The answer will become clear in the next sections: uniformity in boundary conditions
is crucial to handle quantitatively dependencies between events in different parts of the graph.
Note that the lower bound in P5 is a priori much stronger than the result of Theorem 5.3 since
the study of the previous section provided no information for free boundary conditions, even for
crossing squares.

Let us conclude this discussion by noticing that property P5 is not equivalent to the stronger
statement P5’ where boundary conditions are put on the boundary of the rectangle R′ ∶= [0, ρn]×
[0, n] instead of R. In fact, the probability of crossing R′ with free boundary conditions on ∂R′

tends to 0 for the random-cluster model with cluster-weight q = 4, while P5 is still true there.
One may show that P5’ is true for q < 4, but the proof is more complicated (see [48] and [56]
for proofs for q = 2 and q ∈ [1,4) respectively).

Last but not least, observe that the upper bound in (5.4) follows from the lower bound by
duality.

The proof of Theorem 5.5 can be divided in several steps. First, one can see that several
implications are essentially trivial.

Proposition 5.6 We have that P5⇒P1⇒P2⇒P3⇒P4a⇒P4b.

The last implication P4b⇒P5 is the most difficult and is postponed to the next section. In fact
we will only prove P4a⇒P5 since this will be sufficient for the applications we have in mind.
We refer to [56] for the proof of P4b⇒P5.

Proof The implications P3⇒P4a⇒P4b are completely obvious, and P1⇒P2 is the object of
Exercise 16. For P5⇒P1, introduce the event A ∶= V([−3n,3n]× [2n,3n]). If ∂Λn is connected
to ∂Λ4n, then one of the four rotated versions of the event A must also occur (where the angles
of the rotation are π

2k with 0 ≤ k ≤ 3). Therefore,

φ1
Λ4n∖Λn,pc,q [∂Λn ←→ ∂Λ4n]

(FKG)
≤ 1 − φ1

Λ4n∖Λn,pc,q[A
c]4 P5

≤ 1 − c,

where c ∶= c(6)4 (we also used the comparison between boundary conditions in the second
inequality). By successive applications of the domain Markov property and the comparison
between boundary conditions (Exercise 9), we deduce the existence of α > 0 such that

φ1
Λn,pc,q [0←→ ∂Λn] ≤ ∏

4k≤n
φ1

Λ
4k
∖Λ

4k−1 ,pc,q
[∂Λ4k−1 ←→ ∂Λ4k] ≤ (1 − c)⌊log4 n⌋ ≤ n−α (5.5)
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which gives P1 by passing to the limit. For P2⇒P3, recall the definition of Hn so that

nφ0
pc,q[0←→ ∂Λn] ≥ φ0

pc,q[Hn]
P2= φ1

pc,q[Hn]
(2.16)= 1/2. (5.6)

We deduce that

∑
x∈Z2

φ0
pc,q[0←→ x] =

∞
∑
n=0

∑
x∈∂Λn

φ0
pc,q[0←→ x] ≥ ∑

n≥1

φ0
pc,q[0←→ ∂Λn] ≥ ∑

n≥1

1
2n = +∞.

◻

Note that (5.5) and (5.6) show that under P5, for all n ≥ 1,

1

2n
≤ φ0

pc,q[0←→ ∂Λn] ≤
1

nα
. (PD)

This is one among a long list of properties implied by P5. Let us mention a few others: mixing
properties (Exercise 45, the existence of sub-sequential scaling limits for interfaces, the value
of certain critical exponents called universal critical exponents (it has nothing to do with the
universality of the model itself), the fractal nature of large clusters (with some explicit bounds
on the Hausdorff dimension). It is also an important step toward the understanding of conformal
invariance of the model, scaling relations between several critical exponents, etc.

In the next two exercises, we assume P5.

Exercise 44 1. Prove that there exists c > 0 such that φ0
pc,q[0←→ ∂Λn] ≤ cφ0

pc,q[0←→ ∂Λ2n].

2. Prove that there exist c1, c2 > 0 such that for any x ∈ ∂Λn,

c1φ
0
pc,q

[0←→ ∂Λn]2 ≤ φ0
pc,q[0←→ x] ≤ c2φ0

pc,q[0←→ ∂Λn]2.

Exercise 45 (Polynomial mixing) 1. Show that there exists a constant c > 0 such that for any n ≥ 2k and any
event A depending on edges in Λk only, φξΛk,pc,q[Λk /←→ ∂Λn∣A] ≥ 1 − ( k

n
)c.

2. Construct a coupling between ω ∼ φξΛ2n,pc,q
and ω̃ ∼ φ1

Λ2n,pc,q
in such a way that ω and ω̃ coincide on Λk when

Λk is not connected to ∂Λn in ω̃. Hint. Construct the coupling step by step using an exploration of the cluster
connected to the boundary. Deduce that

φξΛk,pc,q
[A] ≥ (1 − ( k

n
)c)φ1

Λk,pc,q
[A].

3. Construct a coupling between ω ∼ φξΛ2n,pc,q
and ω̃ ∼ φ1

Λ2n,pc,q
in such a way that ω and ω̃ coincide on Λk when

there exists an open circuit in ω surrounding Λk. Deduce that

φ1
Λk,pc,q

[A] ≥ (1 − ( k
n
)c)φξΛk,pc,q[A].

4. Deduce that for any event B depending on edges outside Λn only,

∣φ1
pc,q[A ∩ B] − φ1

pc,q[A]φ1
pc,q[B]∣ ≤ 2 ( k

n
)c φ1

pc,q[A]φ1
pc,q[B].

5.1.3 Proof of P4a⇒P5 of Theorem 5.5

We drop the dependency on q ≥ 1 and pc in the subscripts of the measures. In the next proofs,
we omit certain details of reasoning concerning comparison with respect to boundary conditions.
We already encountered such arguments several times (for instance in Exercise 10 and in the
proof of Proposition 5.4). We encourage the reader to try to fill up the details of each one of
these omissions (Exercise 48).

In order to prove P4a⇒P5, we developed a geometric renormalization for crossing probabil-
ities: crossing probabilities at scale 2n are expressed in terms of crossing probabilities at scale
n. The renormalization scheme is built in such a way that as soon as the crossing probability
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passes below a certain threshold, they start decaying stretched exponentially fast. As a conse-
quence, either crossing probabilities remain bounded away from 0, or they decay to 0 stretched
exponentially fast. Let An be the event that there exists a circuit15 of open edges in Λ2n ∖ Λn
surrounding the origin and set

un ∶= φ0
Λ8n

[An].
The proof articulates around Proposition 5.7 below, which relates un to u7n.

Proposition 5.7 There exists a constant C <∞ such that u7n ≤ C u2
n for all n ≥ 1.

This statement allows us to prove recursively that Cu7kn ≤ (Cun)2k . In particular, if there
exists n such that Cun < 1, then u7kn decays stretched exponentially fast. Therefore, the proof
of P4a⇒P5 follows trivially from the previous proposition and the following fairly elementary
facts:

• (un) bounded away from 0 implies P5 (Exercise 46).

• Stretched exponential decay of u7kn implies stretched exponential decay of φ0[0 ↔ ∂Λn]
(Exercise 47). Note that this last fact is very intuitive since in order to have a circuit in
Λ2n ∖Λn surrounding the origin, one must have fairly big clusters.

Exercise 46 1. Fix ε > 0 and ρ > 0. Combine circuits in annuli to prove the existence of c = c(ρ, ε) > 0 such that
for all n, if R = [−εn, (ρ + ε)n] × [−εn, (1 + ε)n] then φ0

R[H(ρn,n)] ≥ c.

2. Deduce that φξR[H(ρn,n)] ≥ c. for every boundary conditions ξ.

3. Use duality to prove that for any ξ and n, φξR[H(ρn,n)] ≤ 1 − c′ for some c′ = c′(ρ, ε) > 0.

Exercise 47 In this exercise, we assume that lim sup 1
nα

logφ0[0←→ ∂Λn] = 0 for some constant α > 0.

1. Prove that φ0[0 ←→ ∂Λn] ≤ ∑
k≥n

∑
x∉Λk

φ0
Λk

[0 ←→ x]. Hint. Use the farthest point on the cluster of 0 and an

argument similar to Exercise 16.

2. Deduce that lim sup
x→∞

1
kα

logφ0
Λk

[0←→ x] = 0, where k is defined in such a way that x ∈ ∂Λk.

3. Prove that lim sup
x→∞

1
kα

logφ0
Λ3k

[0←→ 2ke1] = 0, where e1 = (1,0, . . . ,0).

4. Prove that for every n, lim sup
k→∞

1
kα

logu7kn = 0.

To prove Proposition 5.7, first consider the strip S = Z × [−n,2n], and the random-cluster
measure φ1/0

S with free boundary conditions on Z×{−n} and wired everywhere else. We refer to
Exercise 49 for the (slightly technical) proof of this lemma.

Lemma 5.8 For all ρ > 0, there exists a constant c > 0 such that for all n ≥ 1,

φ
1/0
S [H(ρn,n)] ≥ c. (5.7)

Even though we do not provide a proof of this statement, the intuition is fairly convincing:
the boundary conditions are still somehow “balanced” between primal and dual configurations,
and it is therefore not so surprising that crossing probabilities are bounded away from above.

In the next lemma, we consider horizontal crossings in rectangular shaped domains with free
boundary conditions on the bottom and wired elsewhere.

Lemma 5.9 For all ρ > 0 and ` ≥ 2, there exists c = c(ρ, `) > 0 such that for all n > 0,

φ
1/0
D [H (ρn,n)] ≥ c (5.8)

with D = [0, ρn]×[−n, `n], and φ1/0
D is the random-cluster measure with free boundary conditions

on the bottom side, and wired on the three other sides.
15i.e. a path of edges starting and ending at the same point.

57



Proof For ` = 2, Lemma 5.8 and the comparison between boundary conditions (used on the
sides) imply the result readily. Now, assume that the result holds for ` and let us prove it for
` + 1. The comparison between boundary conditions in [0, ρn] × [0, (` + 1)n] implies that

φ
1/0
D [H(R)] ≥ c(ρ, `),

where R = [0, ρn] × [n,2n]. The comparison between boundary conditions implies that condi-
tioned on H(R), the measure restricted to edges in R′ ∶= [0, ρn]×[0, n] dominates the restriction
(to R′) of the measure on D′ ∶= S ∩D with free boundary conditions on the bottom of D′, and
wired on the other sides. We deduce that

φ
1/0
D [H (ρn,n) ∩H(R)] ≥ c(ρ,2)φ1/0

D [H(R)] ≥ c(ρ,2)c(ρ, `).

◻

Proof of Proposition 5.7 Fix n ≥ 1 and setN ∶= 56n. Below, the constants ci are independent
of n. Define A±n to be the translates of the event An by z± ∶= (±5n,0).

Conditioned on A7n, the restriction of the measure to Λ7n dominates the restriction of the
measure with wired boundary conditions at infinity. Using this in the second inequality, we find

φ0
ΛN

[A+n ∩A−n] ≥ φ0
ΛN

[A+n ∩A−n ∩A7n] ≥ φ1[A+n ∩A−n]u7n ≥ c1u7n, (5.9)

where in the last inequality we combined crossings in rectangles of aspect ratio 4 to create
circuits, and then used Theorem 5.3 to bound the probability from below (which is justified
since the boundary conditions are wired at infinity).

Let Bn be the event that R ∶= [−N,N] × [−2n,2n] is not connected to R′ ∶= [−N,N] ×
[−3n,3n]. Under φ0

N [ ⋅ ∣A+n ∩ A−n], the boundary conditions outside of R are dominated by
wired boundary conditions on R and free boundary conditions on the boundary of ΛN . As a
consequence, Lemma 5.9 applied to the dual measure in the two rectangles [−N,N] × [2n,N]
and [−N,N] × [−N,−2n] implies that

φ0
ΛN

[Bn∣A+n ∩A−n] ≥ c2. (5.10)

Altogether, (5.9) and (5.10) lead to the estimate

φ0
ΛN

[A+n ∩A−n ∩ Bn] ≥ c3 u7n. (5.11)

Define C to be the set of points in R′ which are not connected to the top or the bottom sides of
R′. Let Cn be the event that the left and right sides of S ∶= [−3n,3n]2 are not connected together
in C. Conditionally on A+

n ∩A−n ∩Bn ∩ {C = C}, the boundary conditions in C are dominated by
the boundary conditions of the restriction (to C) of the measure in S with free on the top and
bottom sides of S, and wired on the left and right. A duality argument in S implies that the
probability to have a top to bottom dual crossing is bounded from below by 1

1+q . This implies
that in C, the probability of a dual crossing from top to bottom is a fortiori bounded from below
by 1

1+q . Averaging on the possible values of C, this implies

φ0
ΛN

[Cn ∣A+n ∩A−n ∩ Bn] ≥ 1
1+q . (5.12)

A similar reasoning gives that if Dn and En denote respectively the events that the left and right
sides of [−13n,7n] × [−3n,3n] and [7n,13n] × [−3n,3n] are not connected in S, we have

φ0
ΛN

[Cn ∩Dn ∩ En ∣A+n ∩A−n ∩ Bn] ≥ 1
(1+q)3
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Λ16n

Figure 10: The different events involved in the construction. In light blue, a circuit in ω implying
the occurrence of the event A7n. Inside the circuit, the measure dominates a random-cluster
measure with wired boundary conditions at infinity. Therefore, conditionally on A7n, one can
construct the two blue circuits (corresponding to A±n) with positive probability. For the rest of
the construction, the event A7n is not taken into account anymore. The dashed paths in the
red areas correspond to two paths in ω∗, which imply the occurrence of the event Bn. In the
top red rectangle (which goes further left and right, but could not be drawn on the picture),
conditionally on A+n∩A−n, the boundary conditions are dominated by wired boundary conditions
on the bottom and free on the boundary of ∂ΛN , hence one can apply Lemma 5.9. The same
reasoning is valid for the bottom red rectangle. The dashed green paths correspond to events
in ω∗ implying the occurrence of Cn, Dn and En. The dashed green areas correspond to the
intersection of C with [−3n,3n]2, [−13n,−7n] × [−3n,3n] and [7n,13n] × [−3n,3n]. In these
areas, the boundary conditions are dominated by the wired boundary conditions on left and
right, and free on top and bottom.
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which, together with (5.11), leads to

φ0
ΛN

[A+n ∩A−n ∩ Bn ∩ Cn ∩Dn ∩ En] ≥ c4 u7n. (5.13)

Now, on A−n ∩ Bn ∩ Cn ∩Dn ∩ En, there is a dual circuit in the box Λ of size 8n around z+
surrounding the box Λ′ of size 2n around z+ and therefore the comparison between boundary
conditions implies that conditioned on this event, the boundary conditions in Λ′ are dominated
by the free boundary conditions on ∂Λ. As a consequence,

φ0
ΛN

[A+n∣A−n ∩ Bn ∩ Cn ∩Dn ∩ En] ≤ φ0
Λ8n

[An] = un.

Similarly, φ0
ΛN

[A−n∣Bn∩Cn∩Dn∩En] ≤ un. Plugging these two estimates in (5.13) gives u2
n ≥ c4u7n,

which concludes the proof. ◻

Exercise 48 Fill up all the details of the different comparison between boundary conditions used in the last two
proofs.

Exercise 49 Below, we use the notation A
S←→ B to denote the existence of a path from A to B staying in S. We

assume that φ1/0
S [H(ρn,n)] ≤ 1

2
. Set

S′ ∶= Z × [0, n] R ∶= [0,9λ] × [0, n] R′ ∶= [4λ,9λ] × [0, n].

Set λ = n/11 and `i = [iλ, (i + 1)λ] × {0}.

1. Show that if φ1/0
S [`i

S′←→ `i+2] ≥ c, then φ1/0
S [H(ρn,n)] ≥ c11ρ.

2. Show that φ1/0
S [V(ρn,n)] ≥ 1

2
.

3. Deduce that one of the following two conditions occur:

C1 φ
1/0
S [`4

R←→ Z × {n}] ≥ 1
44ρ

.

C2 φ
1/0
S [`4

R←→ {0} × Z] ≥ 1
88ρ

.

4. Assume that C1 holds true. Show that φ1/0
S [`2

S′←→ `4] ≥ 1
1+q

( 1
36ρ

)2. Hint. Use the same reasoning as for the
proof of (5.12).

5. Assume that C2 holds true. Show that

φ
1/0
S [{`4

R←→ {7λ} × Z} ∩ {`6
R′←→ {4λ} × Z}] ≥ ( 1

88ρ
)2.

* Construct a symmetric domain to prove that

φ
1/0
S [`4

S′←→ `6] ≥ 1
1+q

( 1
88ρ

)2.

6. Conclude.

5.2 Proving continuity for q ≤ 4: the parafermionic observables

In this section, we prove that for q ∈ [1,4], P1–5 are satisfied by proving that P4a is satisfied. In
order to do so, we introduce the so-called parafermionic observables. The next section is intended
to offer an elementary application of the parafermionic observable by studying a slightly different
problem, namely the question of computing the connective constant of the hexagonal lattice.
We will then go back to the random-cluster model later on.

5.2.1 Computing the connective constant of the hexagonal lattice

Let H = (V,E) be the hexagonal lattice (for now, we assume that 0 is a vertex of H and we
assume that the edge on the right of 0 is horizontal). Points in the plane are considered as
complex numbers. A walk γ of length n is a path γ ∶ {0, . . . , n} ↦ V such that γ0 = 0 and
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γiγi+1 ∈ E for any i < n. The walk is self-avoiding if γi = γj implies i = j. Let cn be the number
of self-avoiding walks of length n.

A self-avoiding walk of length n +m can be uniquely cut into a self-avoiding walk of length
n and a translation of a self-avoiding walk of length m. Hence,

cn+m ≤ cncm,

from which it follows (by Fekete’s lemma on sub-multiplicative sequences of real numbers) that
there exists µc ∈ [1,+∞), called the connective constant, such that

µc ∶= lim
n→∞

c1/n
n .

On the hexagonal lattice, Nienhuis [104, 103] used the Coulomb gas formalism to conjecture
non-rigorously what µc should be. In this section, we present a mathematical proof of this
prediction.

Theorem 5.10 (DC, Smirnov [58]) We have µc =
√

2 +
√

2.

Before diving into the argument, let us recall the following classical fact. We choose to leave
the proof of this statement as an exercise (Exercise 50) since the argument is instructive. A
self-avoiding bridge is a self-avoiding walk γ ∶ {0, . . . , n}↦ H satisfying that 0 < Re(γi) ≤ Re(γn)
for every 1 ≤ i ≤ n. Let bn be the number of bridges of length n.

Proposition 5.11 (Hammersley-Welsh [76]) We have that lim
n→∞

b1/nn = µc.

Exercise 50 1. Prove that b1/nn converges to a value µ and that bn ≤ µn for all n.

2. Let hn be the number of (half-space) self-avoiding walks with Re(γi) > 0 for all i ≥ 1. Prove that

cn ≤
n

∑
k=0

hk+1hn+1−k.

Hint. Cut the walk at a point of maximal first coordinate and add horizontal edges. Deduce that lim
n→∞

h
1/n
n = µc.

3. By decomposing with respect to the last point with maximal first coordinate, show that

hn ≤
n

∑
k=0

bkhn−k.

4. Let pn be the number of partitions of n into integers, i.e. the number of h1 ≥ h2 ≥ ⋅ ⋅ ⋅ ≥ h` such that h1+⋅ ⋅ ⋅+h` = n.
Let Pn = ∑nk=0 pk. By iterating the decomposition above, and observing that the width of the different half-space walks
is decreasing, deduce that

hn ≤ Pnµn.

5. Prove that the generation function Pof the number pn of partitions of an integer satisfies

P (t) =
∞

∑
n=0

Pnt
n =

∞

∏
n=1

1

1 − tn
.

6. Deduce that µ = µc. Remark: One may also invoke a result of Hardy-Ramanujan stating that pn ≤ exp(O(√n))
to make the previous result quantitative.

Assume that the lattice has mesh size 1 and is shifted by (−1
2 ,0) so that the origin is now a

mid-edge, i.e. the middle of an edge, which we call a. We also assume that this edge is horizontal
(as in Fig. 11). We now consider that self-avoiding walks are in fact starting at a and ending
at mid-edges. Their length, denoted by ∣γ∣, is still the number of vertices on it. We consider a
truncated vertical strip S(T,L) of width T cut at height L at an angle of π/3 (see Fig. 11), i.e.

S(T,L) ∶= {z ∈ C ∶ 0 ≤ Re(z) ≤ 3
2T and

√
3∣Im(z)∣ ≤ 3L +Re(z)}.
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S(T; L)

a
β

α

"

"

Figure 11: The graph S(T,L) and its boundary parts α, β, ε and ε̄.

Denote by α the left boundary of S(T,L) and by β the right one. Symbols ε and ε̄ denote the
top and bottom boundaries of S(T,L). For x > 0, introduce the following quantities:

AT,L ∶= ∑
γ⊂S(T,L)

γ ends on α∖{a}

x∣γ∣ BT,L ∶= ∑
γ⊂S(T,L)
γ ends on β

x∣γ∣ ET,L ∶= ∑
γ⊂S(T,L)

γ ends on ε∪ε̄

x∣γ∣.

We will prove the following lemma.

Lemma 5.12 If x ∶= 1/
√

2 +
√

2, then for any T,L ≥ 0,

1 = cos (3π
8
)AT,L +BT,L + cos (π4 )ET,L. (5.14)

Before proving this statement, let us show how it implies the claim. Observe that sequences
(AT,L)L>0 and (BT,L)L>0 are increasing in L and are bounded. They therefore converge. We
immediately deduce that (ET,L)L>0 also does. Let AT , BT and ET be the corresponding limits.

Upper bound on the connective constant Observe that BT ≤ 1 for any T (since BT,L ≤ 1)
so that for any y < x,

∞
∑
n=0

bny
n ≤ ∑

T≥0

BT ( yx)
T <∞

(we use that a bridge of width T has length at least T ). Proposition 5.11 thus implies

µc = lim
n→∞

b1/nn ≤
√

2 +
√

2. (5.15)

Lower bound on the connective constant Assume first that ET > 0 for some T . Then,

n

∑
n=0

cnx
n ≥

∞
∑
L=0

ET,L = +∞,
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which implies µc ≥
√

2 +
√

2. Assume on the contrary that ET = 0 for all T . Taking the limit in
(5.14) implies

1 = cos (3π
8
)AT +BT . (5.16)

Observe that self-avoiding walks entering into account for AT and not for AT−1 have to visit a
vertex x ∈ V on the right of the strip of width T , i.e. satisfying Re(x) = 3

2T − 1
2 . Cutting such

a walk at the first such point (and adding half-edges to the two halves), we obtain two bridges.
We conclude that

AT −AT−1 ≤ 1
xB

2
T . (5.17)

Combining (5.16) for T − 1 and T with (5.17) gives

0 = 1 − 1 = cos (3π
8
) (AT −AT−1) +BT −BT−1 ≤ cos (3π

8
) 1
xB

2
T +BT −BT−1,

so
cos (3π

8
) 1
xB

2
T +BT ≥ BT−1.

By induction, it is easy to check that

BT ≥
min[B1, x/ cos (3π

8
)]

T

for every T ≥ 1. This implies that µc ≥
√

2 +
√

2 in this case as well since

∞
∑
n=0

bnx
n =

∞
∑
T=0

BT = +∞.

At the light of the previous discussion, we shall now prove Lemma 5.12. Fix T and L.
Introduce the parafermionic observable16 defined as follows: for a mid-edge z in S(T,L), set

F (z) ∶= ∑
γ⊂S(T,L)
γ ends at z

e−iσWγ(a,z)x∣γ∣,

where σ ∶= 5
8 and Wγ(u, v) is equal to π

3 times the number of left turns minus the number of
right turns made by the walk γ when going from u to v.

Lemma 5.13 For any v ∈ V ∩ S(T,L),

(p − v)F (p) + (q − v)F (q) + (r − v)F (r) = 0, (5.18)

where p, q, r are the mid-edges of the three edges incident to v.

Proof In this proof, we further assume that the mid-edges p, q and r are oriented counter-
clockwise around v. Note that (p−v)F (p)+(q−v)F (q)+(r−v)F (r) is a sum of “contributions”

c(γ) = (z − v)e−iσWγ(a,z)x∣γ∣

over all possible walks γ finishing at z ∈ {p, q, r}. The set of such walks can be partitioned into
pairs and triplets of walks in the following way, see Fig 12:

Walks visiting the three mid-edges p, q and r can be grouped in pairs: If a walk γ1 visits all three
mid-edges, it means that the edges belonging to γ1 form a self-avoiding path up to v plus (up to
a half-edge) a self-avoiding loop from v to v. One can associate to γ1 the walk passing through
the same edges, but exploring the loop from v to v in the other direction.

16Let us mention that there are other instances of parafermionic observables for the self-avoiding walk, see
[10, 69]. We do not discuss this further here since our goal is to quickly move back to the random-cluster model.
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Walks not visiting the three mid-edges p, q and r can be grouped in triplets: If a walk γ1 visits
only one mid-edge, it can be grouped with two walks γ2 and γ3 that visit exactly two mid-edges
by prolonging the walk one step further (there are two possible choices). The reverse is true: a
walk visiting exactly two mid-edges belongs to the group of a walk visiting only one mid-edge
(this walk is obtained by erasing the last step).

If the sum of contributions for each pair and each triplet described above vanishes, then the
total sum is zero. We now intend to show that this is the case.

Let γ1 and γ2 be two walks that are grouped as in the first case. Without loss of generality,
we assume that γ1 ends at q and γ2 ends at r. Since γ1 and γ2 coincide up to the mid-edge p
(they are matched together), we deduce that ∣γ1∣ = ∣γ2∣ and

Wγ1(a, q) =Wγ1(a, p) +Wγ1(p, q) =Wγ1(a, p) − 4π
3 ,

Wγ2(a, r) =Wγ2(a, p) +Wγ2(p, r) =Wγ1(a, p) + 4π
3 .

In order to evaluate the winding of γ1 between p and q, we used the fact that a is on the
boundary of S(T,L) so that the walk does necessarily four more turns on the right than turns
on the left between p and q. Altogether,

c(γ1) + c(γ2) = (q − v)e−iσWγ1(a,q)x∣γ1∣ + (r − v)e−iσWγ2(a,r)x∣γ2∣

= (p − v)e−iσWγ1(a,p)x∣γ1∣ (jλ̄4 + j̄λ4) = 0

where j = ei2π/3 and λ = exp(−i5π/24) (here we use the crucial choice of σ = 5
8).

Let γ1, γ2, γ3 be three walks matched as in the second case. Without loss of generality, we
assume that γ1 ends at p and that γ2 and γ3 extend γ1 to q and r respectively. As before, we
easily find that ∣γ2∣ = ∣γ3∣ = ∣γ1∣ + 1 and

Wγ2(a, q) =Wγ2(a, p) +Wγ2(p, q) =Wγ1(a, p) − π
3 ,

Wγ3(a, r) =Wγ3(a, p) +Wγ3(p, r) =Wγ1(a, p) + π
3 .

Following the same steps as above, we obtain

c(γ1) + c(γ2) + c(γ3) = (p − v)e−iσWγ1(a,p)x∣γ1∣ (1 + xjλ̄ + xj̄λ) = 0.

Here is the only place where we use the crucial fact that x−1 =
√

2 +
√

2 = 2 cos π8 . The claim
follows readily by summing over all pairs and triplets. ◻

Exercise 51 (Parafermionic observable for the loop O(n)-model) Consider the loop O(n) model defined as
follows. Let E(Ω) be the set of even subgraphs of Ω ⊂ H (equivalently, these are the families of non-intersecting
loops). Also, let Ea,z(Ω) be the family of loops, plus one self-avoiding walk γ(ω) going from a to z not intersecting
any of the loops. Define the parafermionic observable

F (z) = ∑
ω∈Ea,z(Ω)

e−iσWγ(a,z)x∣ω∣n`(ω),

where ∣ω∣ is the total length of the loops and the self-avoiding walk, and `(ω) is the number of loops. Note that this
model generalizes both the self-avoiding walk (n = 0) and the Ising model on the hexagonal lattice (n = 1) via the
high-temperature expansion.

Show that for n ∈ [0,2], there exist two values of σ, and for each one a single value of x such that F satisfies (5.18).
The smallest of the two values of x is conjectured by Nienhuis to be the critical point of the model.
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γ1 γ2 γ1 γ2 γ3

Figure 12: Left: a pair of walks visiting the three mid-edges and matched together. Right:
a triplet of walks, one visiting one mid-edge, the other two visiting two mid-edges, which are
matched together.

Proof of Lemma 5.12 Sum the relation (5.18) over all v ∈ V ∩ S(T,L). Values at interior
mid-edges cancel and we end up with

0 = −∑
z∈α

F (z) +∑
z∈β

F (z) + j∑
z∈ε
F (z) + j̄∑

z∈ε̄
F (z), (5.19)

where j = e2iπ/3. Using the symmetry of the domain with respect to the x axis, we deduce that
F (z̄) = F̄ (z). Observe that the winding of any self-avoiding walk from a to the bottom part of
α is −π while the winding to the top part is π. We conclude

∑
z∈α

F (z) = F (a) + ∑
z∈α∖{a}

F (z) = 1 + e−i5π/8 + ei5π/8

2
AT,L = 1 − cos (3π

8
)AT,L.

Above, we have used the fact that the only walk from a to a is of length 0. Similarly, the winding
from a to any half-edge in β (resp. ε and ε̄) is 0 (resp. 2π

3 and −2π
3 ), therefore

∑
z∈β

F (z) = BT,L and j∑
z∈ε
F (z) + j̄∑

z∈ε̄
F (z) = cos (π4 )ET,L.

The lemma follows readily by plugging these three formulæ in (5.19). ◻

The proof of Lemma 5.12 can be understood in the following way. Coefficients in (5.18) are
three cubic roots of unity multiplied by p−v, so that the left-hand side can be seen as a discrete
integral along an elementary contour on the dual lattice in the following sense. For a closed
path c = (zi)i≤n of vertices in the triangular lattice T dual to H, define the discrete integral of a
function F on mid-edges by

∮
c
F (z)dz ∶=

n−1

∑
i=0

F ( zi+zi+1

2
) (zi+1 − zi). (5.20)

Equation (5.18) at v ∈ V implies that the discrete contour integral going around the face of T
corresponding to v is zero. Decomposing a closed path into a sum of elementary triangles gives
that the discrete integral along any closed path vanishes.

The fact that the integral of the parafermionic observable along closed path vanishes is a
glimpse of conformal invariance of the model in the sense that the observable satisfies a weak
notion of discrete holomorphicity. Nevertheless, these relations do not uniquely determine F .
Indeed, the number of mid-edges (and therefore of unknown variables) exceeds the number of
linear relations (5.18) (which corresponds to the number of vertices). Nonetheless, one can
combine the fact that the discrete integral along the exterior boundary of S(T,L) vanishes with
the fact that the winding of self-avoiding walks ending at boundary mid-edges is deterministic
and explicit. This extra information is sufficient to derive some non-trivial information on the
model. In the next section, we will use a similar idea in the case of random-cluster models.
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Figure 13: On the left, the lattice Z2, its dual lattice (Z2)∗ and medial lattice (Z2)◇. On the
right, a natural orientation on the medial lattice.

5.2.2 The loop representation and the parafermionic observable

In order to define parafermionic observables for random-cluster models, we first discuss the loop
representation of the model.

In the definitions below, we recommend looking at Figures 13, 14 and 15.

Let Ω be a connected graph with connected complement in Z2, and a and b two vertices
on its boundary. The triplet (Ω, a, b) is called a Dobrushin domain. The set ∂Ω is divided
into two boundary arcs denoted by (ab) and (ba): the first one goes from a to b when going
counterclockwise around ∂Ω, while the second goes from b to a. The Dobrushin boundary
conditions are defined to be free on (ab) and wired on (ba). In other words, the partition is
composed of (ba) together with singletons. Note that the state of edges on (ba) is now irrelevant
since the vertices of (ba) are wired together anyway. We will therefore consider that edges on
(ba) are not in Ω (this will be relevant when defining Ω∗). Also, the Dobrushin boundary
conditions are planar, and it is therefore convenient to choose a configuration ξ inducing them.
We set ξe = 0 for all e ∈ E ∖E except for edges on (ba), for which ξe = 1. Below, the measure on
(Ω, a, b) with Dobrushin boundary conditions is denoted by φa,bΩ,p,q.

Let Ω∗ be the dual of the graph Ω (recall that edges in (ba) are not part of Ω anymore).
We draw the dual configuration ω∗ with the additional condition that edges between vertices
of ∂Ω∗ that are bordering (ab) are open in ω∗ (we call the set of such edges (ab)∗). This is
coherent with the duality relation since the dual boundary conditions of the Dobrushin ones
are induced by the configuration ξ∗ equal to 1 on (ab)∗, and 0 elsewhere. Keep in mind that
from this point of view, primal and dual models play symmetric roles with respect to Dobrushin
boundary conditions.

We now explain how to construct the loop configuration, which is defined on another graph,
called the medial graph. This graph is defined as follows. Let (Z2)◇ be the medial lattice defined
as follows. The set of vertices is given by the midpoints of edges of Z2. The edges are pairs
of nearest vertices (i.e. vertices at a distance

√
2/2 of each other). It is a rotated and rescaled

version of Z2, see Fig. 13. For future reference, note that the edges of the medial lattice can be
oriented in a counterclockwise way around faces that are centered on a vertex of Z2 (the dark
faces on Fig. 13). Let Ω◇ be the subgraph of (Z2)◇ made of vertices corresponding to an edge
of Ω or Ω∗. Let ea and eb be the two medial edges entering and exiting Ω◇ between the arc (ba)
and (ab)∗ (see Fig. 14).

Draw self-avoiding loops on Ω◇ as follows: a loop arriving at a vertex of the medial lattice
always takes a ±π/2 turn at vertices so as not to cross the edges of ω or ω∗, see Fig. 15. The
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Figure 14: The configuration ω (in bold lines) with its dual configuration ω∗ (in dashed lines).
Notice that the edges of ω are open on (ba), and that those of ω∗ are open on (ab)∗.

Figure 15: The loop configuration ω associated with the primal and dual configurations ω and
ω∗ in the previous picture. The exploration path is drawn in bold. It starts at ea and finishes
at eb.
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loop configuration is defined in an unequivocal way since:

• there is either an edge of ω or an edge of ω∗ crossing non-boundary vertices in Ω◇, and
therefore there is exactly one coherent way for the loop to turn at non-boundary vertices.

• the edges of ω in (ba) and the edges of ω∗ in (ab)∗ are such that the loops at boundary
vertices turn in order to remain in Ω◇.

From now on, the loop configuration associated with ω is denoted by ω. Beware that the
denomination is slightly misleading: ω is made of loops together with a self-avoiding path going
from ea to eb, see Figures 15. This curve is called the exploration path and is denoted by γ = γ(ω).

We allow ourselves a slight abuse of notation: below, φa,bΩ,p,q denotes the measure on percola-
tion configurations as well as its push forward by the map ω ↦ ω. Therefore, the measure φa,bΩ,p,q
will sometimes refer to a measure on loop configurations.

Proposition 5.14 Let Ω be a connected finite subgraph of Z2 connected complement in Z2. Let
p ∈ [0,1] and q > 0. For any configuration ω,

φa,bΩ,p,q[ω] =
xo(ω)

√
q`(ω)

ZΩ,p,q

,

where x ∶= p√
q(1−p) , `(ω) is the number of loops17 in ω and ZΩ,p,q is a normalizing constant.

In particular, x = 1 when p = pc(q) and the probability of a loop configuration is expressed
in terms of the number of loops only.

Proof Let v be the number of vertices of the graph Ω where (ba) has been contracted to a
point. Induction on the number of open edges shows that

`(ω) = 2k(ω) + o(ω) − v. (5.21)

Indeed, if there is no open edge, then `(ω) = k(ω) = v since there is a loop around each one of
the vertices of Ω ∖ (ba), and one exploration path. Now, adding an edge can either:

• join two clusters of ω, thus decreasing both the numbers of loops and clusters by 1,
• close a cycle in ω, thus increasing the number of loops by 1 and not changing the number

of clusters.
Equation (5.21) implies that

po(ω)(1 − p)c(ω)qk(ω) = po(ω)(1 − p)∣E∣−o(ω)qk(ω)

= (1 − p)∣E∣√qv( p
(1−p)√q)

o(ω)√
q2k(ω)+o(ω)−v

= (1 − p)∣E∣√qvxo(ω)√q`(ω).

The proof follows readily. ◻

We are now ready to define the parafermionic observable. Recall that γ = γ(ω) is the
exploration path in the loop configuration ω. The winding Wγ(e, e′) of the exploration path γ
between two medial-edges e and e′ of the medial graph is equal to π/2 times the number of left
turns minus the number of right turns done by the curve between e and e′. When e or e′ are
not on γ, we set the winding to be equal to 0.

17The exploration path γ is considered as a loop and counts as 1 in `(ω).
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Definition 5.15 Consider a Dobrushin domain (Ω, a, b). The parafermionic observable F =
F (Ω, p, q, a, b) is defined for any (medial) edge e of Ω◇ by

F (e) ∶= φa,bΩ,p,q[e
iσWγ(e,eb)1e∈γ],

where σ is a solution of the equation

sin(σπ/2) = √
q/2. (5.22)

Note that σ belongs to R for q ≤ 4 and to 1 + iR for q > 4. This suggests that the critical
behavior of random-cluster model is different for q > 4 and q ≤ 4. For q ∈ [0,4], σ has the
physical interpretation of a spin, which is fractional in general, hence the name parafermionic18.
For q > 4, σ is not real anymore and does not have any physical interpretation.

These observables first appeared in the context of the Ising model (there they are called
order-disorder operators) and dimer models. They were later on extended to the random-cluster
model and the loop O(n)-model by Smirnov [117] (see [57] for more detail). Since then, these
observables have been at the heart of the study of these models. They also appeared in a slightly
different form in several physics papers going back to the early eighties [63, 19]. They have been
the focus of much attention in recent years: physicists exhibited such observables in a large class
of models of two-dimensional statistical physics [82, 109, 111, 31, 83].

5.2.3 Contour integrals of the parafermionic observable

The parafermionic observable satisfies a very special property at criticality.

Theorem 5.16 (Vanishing contour integrals) Fix q > 0 and p = pc, For any Dobrushin
domain (Ω, a, b) and any vertex of Ω◇ with four incident edges in Ω◇,

F (e1) − F (e3) = iF (e2) − iF (e4), (5.23)

where e1, e2, e3 and e4 are the four edges incident to this vertex, indexed in counterclockwise
order.

As in the case of the self-avoiding walk, interpret (5.23) as follows: the integral of F along a
small square around a face is equal to 0. One may also sum this relation on every vertex to
obtain that discrete contour integrals vanish.

ea ea

ebeb

e1 e1 e2e2

e3 e3e4e4

Figure 16: Left. The neighborhood of v for two associated configurations ω and ω′.

18Fermions have half-integer spins while bosons have integer spins, there are no particles with fractional spin,
but the use of such fractional spins at a theoretical level has been very fruitful in physics.
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Proof We follow a strategy close to the proof of Lemma 5.12 and pair configurations in such
a way that sums of contributions cancel.

Let e be an edge of Ω◇ and let

Xe(ω) ∶= eiσWγ(ω)(e,eb)1e∈γ(ω)φ
a,b
Ω,pc,q

[ω]

be the contribution of the configuration ω to F (e). Let ω′ be the configuration obtained from
ω by switching the state open or closed of the edge in ω passing through v. Since ω ↦ ω′ is an
involution, the following relation holds:

F (e) = ∑
ω

Xe(ω) = 1
2 ∑
ω

[Xe(ω) +Xe(ω′)].

To prove (5.23), it is thus sufficient to show that for any configuration ω,

Xe1(ω) +Xe1(ω
′) −Xe3(ω) −Xe3(ω

′) = i[Xe2(ω) +Xe2(ω
′) −Xe4(ω) −Xe4(ω

′)]. (5.24)

There are three possible cases:

Case 1. No edge incident to v belongs to γ(ω). Then, none of these edges is incident to γ(ω′)
either. For any e incident to v, the contribution to (5.24) is equal to 0 so that (5.24) trivially
holds.

Case 2. Two edges incident to v belong to γ(ω), see Fig. 16. Since γ(ω) and the medial lattice
possess a natural orientation, γ(ω) enters through either e1 or e3 and leaves through e2 or e4.
Assume that γ(ω) enters through the edge e1 and leaves through the edge e4. It is then possible
to compute the contributions for ω and ω′ of all the edges incident to v in terms of X = Xe1(ω).
Indeed, since ω′ has one less loop, we find

φa,bΩ,pc,q
[ω′] = 1√

qφ
a,b
Ω,pc,q

[ω].

Furthermore, windings of γ(ω) and γ(ω′) at e2, e3 and e4 can be expressed using the winding
at e1 (for instance, Wγ(ω)(e2, eb) = Wγ(ω)(e1, eb) − π/2 – the other cases are treated similarly).
The contributions are given in the following table.

configuration e1 e2 e3 e4

ω X 0 0 eiσπ/2X

ω′ X√
q eiσπ X√

q e−iσπ/2 X√
q eiσπ/2 X√

q

Using the identity eiσπ/2 − e−iσπ/2 = i
√
q, we deduce (5.24) by summing (with the right weight)

the contributions of all the edges incident to v.

Case 3. The four edges incident to v belong to γ(ω). Then only two of these edges belong to
γ(ω′) and the computation is similar to Case 2 by exchanging the weights of ω′ and ω.

In conclusion, (5.24) is always satisfied and the claim is proved. ◻
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5.2.4 Continuous phase transition for random-cluster models with q ∈ [1,4]

This section is devoted to the proof of the following result.

Theorem 5.17 (DC [40]) For q ∈ [1,4], the property P4a is satisfied.

As a consequence, we deduce from Theorem 5.5 that the properties P1–P5 also are19. This
gives “one half” of Theorem 5.1.

We first focus on the case q ≤ 2. The proof follows an argument similar to the computation
for self-avoiding walks: we will use that the discrete contour integral along the boundary of a
domain vanishes together with the fact that windings are deterministic on the boundary.

Proof of Theorem 5.17 in the case q ∈ [1,2] In this proof, the first and second coordinates
of a vertex x ∈ Z2 are denoted by x1 and x2. Also, define Λ̃n ∶= {x ∈ Z2 ∶ ∣x1∣ + ∣x2∣ ≤ n}.

Fix n odd. Consider a degenerated case of Dobrushin domain in which

Ω ∶= {x ∈ Λ̃n such that x1 + x2 ≤ 0}

and (ba) = {0} as well as (ab) = ∂Ω. In this case, the parafermionic observable F still makes
sense: ea and eb are the edges of Ω◇ north-west and south-east of 0, and γ(ω) is the loop going
around 0 (and therefore through ea and eb). Note that, by definition, the Dobrushin boundary
conditions are coinciding with the free boundary conditions in this context since the arc (ba) is
restricted to a point.

Summing (5.23) on every vertex v ∈ Ω◇, we obtain that

∑
e∈α

F (e) =∑
e∈β

F (e) + i∑
e∈ε
F (e) − i∑

e∈ε̄
F (e),

where α, ε, β and ε are respectively the sets of medial edges intersecting the north-east, north-
west, south-west and south-east boundaries of Ω◇. This immediately leads to

∣∑
e∈α

F (e)∣ ≤∑
e∉α

∣F (e)∣, (5.25)

where the sum on the right is on edges of Ω◇ intersecting the boundary only. Any such edge e
is bordering a vertex x ∈ ∂Ω. Also, γ(ω) goes through e if and only if x and 0 are connected by
a path of edges in ω. We deduce that

∣F (e)∣ = φ0
Ω,pc,q[0←→ x]

(CBC)
≤ φ0

pc,q[0←→ x]. (5.26)

Since there are exactly two medial edges bordering a prescribed vertex, and that each such
vertex x is in ∂Λ̃n, (5.25) becomes

∣∑
e∈α

F (e)∣ ≤ 2 ∑
x∈∂Λ̃n

φ0
pc,q[0←→ x]. (5.27)

Let us now focus on the term on the left. First, note that since γ(ω) deterministically goes
through ea and eb, we get

F (ea) + F (eb) = 1 + eiπσ = 2 cos(π2σ)e
iσπ/2. (5.28)

Second, pick an edge e ∈ α ∖ {ea, eb}. Since the winding of the loop is deterministic, we may
improve the equality in (5.26) into

F (e) = eiσW (e)φ0
Ω,pc,q[0←→ x], (5.29)

19We did not prove that P4b implies P5, but since P4a implies P4b and P5, this follows readily.
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where x is the vertex of ∂Ω bordered by e, and W (e) ∈ {−π,0, π,2π} depending on which side
of 0 the edge e is, and whether it is pointing inside or outside of Ω◇.

Define
S ∶= {x ∈ ∂Ω ∖ ∂Λ̃n ∶ x1 > 0}.

By gathering the contributions of edges bordering a vertex x ∈ S and its symmetric −x, and using
the symmetry of Ω with respect to the line x1 = x2, we deduce from (5.28) and the previous
displayed equation that

∑
e∈α∖{ea,eb}

F (e) = ∑
x∈S

(e2iπσ + eiπσ + 1 + e−iπσ)φ0
Ω,pc,q[0←→ x]

= sin(σ2π)
sin(σπ/2)eiσπ/2 ∑

x∈S
φ0

Ω,pc,q[0←→ x].

For q ∈ [1,2], cos(σπ/2) > 0 and sin(2πσ)
sin(π2 σ)

≥ 0. We deduce that

∣∑
e∈α

F (e)∣ ≥ 2 cos(π2σ) > 0.

Plugging this lower bound in (5.27) and then summing over odd n gives

∑
x∈Z2

φ0
pc,q[0←→ x] =∞,

which is P3. Since P3 implies P4a, the proof follows. ◻

Observe that for q > 2, the value of σ is such that sin(2πσ) becomes negative so that we
may not conclude directly anymore. One may wonder whether this is just a technical problem,
or whether something deeper is hidden behind this. It is natural to predict that the following
quantity decays like a power law:

φ0
Ω,pc,q[0←→ ∂Λn/2] = n−α(q,π)+o(1),

where α(q, π) is a constant depending on q only (π refers to the “angle of the opening” of Ω at
0), and o(1) denotes a quantity tending to 0 as n tends to infinity. Moreover, one may argue
using P5 (which we believe is true) that the event that x ←→ 0 in Ω has a probability close to
the probability that 0 and x are connected to distance n/2 in Ω (see also Exercise 44). For x not
too close to the corners, the boundary of Ω looks like a straight line and it is therefore natural
to predict that

φ0
Ω,pc,q[0←→ x] = n−2α(q,π)+o(1).

Summing over all x (the vertices near the corner do not contribute substantially) we should find

∑
∥x∥1=n

φ0
Ω,pc,q[0←→ x] = n1−2α(q,π)+o(1). (5.30)

Now, it is conjectured in physics that

α(q, π) = 1 − 2
arccos(√q/2)

π
.

Therefore, for q ∈ (2,4], the quantity on the left-hand side of (5.30) is converging to 0 as n→∞
and the strategy consisting in proving that it remains bounded away from 0 is hopeless for q > 2.

Nevertheless, we did not have to consider a flat boundary near 0 in the first place. For
instance, one may consider Ω′ obtained by taking the set of x = (x1, x2) with ∥x∥1 ≤ n and
(x1, x2) ≠ (n,0) with n ≥ 0. Then, one expects that

φ0
Ω′,pc,q[0←→ ∂Λn/2] = n−α(q,2π)+o(1),
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Figure 17: The graph U.

where α(q,2π) is a value which is a priori smaller than α(q, π) since S is larger (2π refers this
time to the “opening angle” of Ω′ at 0). Therefore, if one applies the same reasoning as above,
we may prove that

∑
∥x∥1=n

φ0
Ω′,pc,q[0←→ x] = n1−α(q,π)−α(q,2π)+o(1).

In fact, we know how to predict α(q,2π): the map z ↦ z2 maps R∗
+ ×R to R2 ∖ −R+, conformal

invariance (see Section 6 for more detail) predicts that α(q,2π) = α(q, π)/2. As a consequence,

∑
∥x∥1=n

φ0
Ω′,pc,q[0←→ x] = n1− 3

2
α(q,π)+o(1),

so that this quantity can indeed be larger or equal to 1 provided that q ≤ 3.
The previous discussion remained at the level of predictions. It relies on conformal invariance,

which is extremely hard to get, and definitely much more advanced than what we are seeking.
A very good news is that the strategy of the previous proof can indeed be applied to Ω′ instead
of Ω to give that for q ≤ 3, there exists c = c(q) > 0 such that for any n ≥ 1,

∑
∥x∥1=n

φ0
Ω′,pc,q[0←→ x] ≥ c.

Since Ω′ is a subset of Z2, the comparison between boundary conditions implies that for any
q ≤ 3.

∑
x∈Z2

φ0
pc,q[0←→ x] =∞,

thus extending the result to every q ≤ 3. We leave the details to Exercise 52.

Exercise 52 Fill up the details of the q ≤ 3 case by considering Ω′ instead of Ω.

This reasoning does not directly extend to q > 3 since 3
2α(q, π) > 1 in this case. Nevertheless, one

could consider a graph generalizing Ω and Ω′ with a “larger opening than 2π” at 0. In fact, one
may even consider a graph with “infinite opening” at 0 by considering subgraphs of the universal
cover U of the plane minus a face of Z2, see Fig. 17. This is what was done in [40]. The drawback
of taking this set U is that it is not a subset of Z2 anymore. Thus, one has to translate the
information obtained for the random-cluster model on U into information for the random-cluster
model on Z2, which is a priori difficult since there is no easy comparison between the two graphs
(for instance the comparison between boundary conditions is not sufficient). This is the reason
why in general one obtain P4a instead of P3.

5.2.5 Discontinuous phase transition for the random-cluster model with q > 4

The goal of this section is to briefly discuss the following theorem. This completes the results of
the previous sections and determines the continuous/discontinuous nature of the phase transition
for every q ≥ 1. Below, we keep the notation Λ̃n for the box of size n for the graph distance.
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Figure 18: Consider a loop configuration ω containing the loop L (in bold).

Theorem 5.18 (DC, Gagnebin, Harel, Manolescu, Tassion [46]) For q > 4, the proper-
ties P1–5 are not satisfied. In particular

lim
n→∞

− 1
n logφ0

pc,q[0←→ ∂Λ̃n] = λ + 2
∞
∑
k=1

(−1)k
k tanh(kλ) > 0, (5.31)

where λ > 0 satisfies cosh(λ) =
√
q

2 .

Note that in particular, one may get the asymptotics in (5.31) as q ↘ 4: it behaves asymptotically
as 8 exp (−π2/

√
q − 4). Physically, that means that the correlation length of the models explodes

very quickly (much faster than any polynomial) as q approaches 4.
Before sketching the ideas involved in the proof of this statement, let us make a small detour

and prove that P1–5 cannot be satisfied for q ≫ 1 (see [43] for details).

Proof of discontinuity for q > 256. Consider a loop L of the medial lattice (Z2)◇ surrounding
the origin. We assume that L is oriented counterclockwise. Let n be the number of edges of
(Z2)◇ on L and consider a graph Ω containing the full loop. Let EL be the event that the loop
L is a loop of the configuration ω.

Our goal is to bound φ0
Ω,pc,q

[EL]. In order to do so, we construct a one-to-one “repair map”
fL from EL to the set of loop configurations on Ω such that the image fL(ω) has much larger
probability than the probability of ω. This will imply a bound on the probability of EL (see
below).

Let ω be a loop configuration in EL. A loop of ω is said to be inside (resp. outside) L
if it is included in the bounded connected component of 0 in R2 ∖ L. Perform the following
three successive modifications on ω (See Figure 21 for an illustration.) to obtain a configuration
fL(ω):

Step 1. Remove the loop L from ω.
Step 2. Translate the loops of ω which are inside L by the vector 1−i

2 .
Step 3. Complete the configuration thus obtained by putting loops of length four around black
faces of Ω◇ bordered by an edge which is not covered by any loop after Step 2.

The configuration fL(ω) is a loop configuration on Ω◇ (Exercise 53). Furthermore, Step 1 of the
construction removes a loop from ω, but Step 3 adds one loop per edge of L pointing south-west.
Since the number of edges added in the last step is four times this number, and that the final
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Figure 19: (Step 1) Remove the loop L from ω. The loops inside L are depicted in bold.

Figure 20: (Step 2) Translate the loops inside L in the south-east direction.

Figure 21: (Step 3) Fill the “holes” (depicted in darker gray) with loops of length four.
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configuration has as many edges as the first one, we deduce that this number is equal to n/4.
Thus, we have

φ0
Ω,pc,q[ω] =

√
q`(ω)−`(fL(ω))φ0

Ω,pc,q[fL(ω)] =
√
q1−n/4φ0

Ω,pc,q[fL(ω)].

Using the previous equality in the second line and the fact that fL is one-to-one in the third
(this uses the fact that L is fixed at the beginning of the proof), we deduce that

φ0
Ω,pc,q[EL] = ∑

ω∈EL
φ0

Ω,pc,q[ω]

= q1/2−n/8 ∑
ω∈EL

φ0
Ω,pc,q[fL(ω)]

= q1/2−n/8 φ0
Ω,pc,q[fL(EL)] ≤ q

1/2−n/8.

Let us now prove that connectivity properties decay exponentially fast provided that q > 256.
Consider two vertices 0 and x and a graph Ω containing both 0 and x. If 0 and x are connected
to each other in ω, then there must exist a loop in ω surrounding 0 and x which is oriented
counterclockwise (simply take the exterior-most such loop). Since any such loop contains at
least ∥x∥ edges, we deduce that

φ0
Ω,pc,q[0←→ x] ≤ ∑

L surrounding
0 and x

φ0
Ω,pc,q[EL]

≤ ∑
n≥∥x∥

∑
L of length n
surrounding 0

q1/2−n/8

≤ ∑
n≥∥x∥

n2n ⋅ q1/2−n/8.

In the last line we used that the number of loops surrounding 0 with n edges on Ω◇ is smaller
than n2n. Letting Ω tend to the full lattice Z2, we deduce that

φ0
pc,q[0←→ x] ≤ ∑

n≥∥x∥
n2n ⋅ q1/2−n/8 ≤ exp(−c∥x∥).

The existence of c > 0 follows from the assumption 2q−1/8 < 1. ◻

Exercise 53 Prove that the repair map fL actually yields a loop configuration.

Mapping to the six-vertex model and sketch of the proof for q > 4 We do not discuss
the exact computation of the correlation length. The proof is based on a relation between the
random-cluster model on a graph Ω and the six-vertex model on its medial graph Ω◇.

The six-vertex model was initially proposed by Pauling in 1931 for the study of the ther-
modynamic properties of ice. While we are mainly interested in it for its connection to the
random-cluster model, the six-vertex model is a major object of study on its own right. We do
not attempt to give here an overview of the model and we rather refer to [110] and Chapter 8
of [9] (and references therein) for a bibliography on the subject.

The mapping between the random-cluster model and the six-vertex model being very sensi-
tive to boundary conditions, we will work on a torus. As in the previous section, the first and
second coordinates of x ∈ Z2 are denoted by x1 and x2. For M and N , consider the subgraph
T = T(M,N) of the square lattice induced by the set of vertices

{x ∈ Z2 ∶ 0 ≤ x1 + x2 ≤M and ∣x1 − x2∣ ≤ N}.
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Introduce the periodic boundary conditions per in which x and y on ∂T are identified together
iff x1 +x2 = y1 + y2 or x1 −x2 = y1 − y2. Together with these boundary conditions, T may be seen
as a torus.

An arrow configuration ω⃗ on T◇ (the medial graph is defined in an obvious fashion here) is
a map attributing to each edge xy ∈ E one of the two oriented edges (x, y) and (y, x). We say
that an arrow configuration satisfies the ice rule if each vertex of T◇ is incident to two edges
pointing toward it (and therefore to two edges pointing outwards from it). The ice rule leaves
six possible configurations at each vertex, depicted in Fig. 22, whence the name of the model.
Each arrow configuration ω⃗ receives a weight

w6V(ω⃗) ∶=
⎧⎪⎪⎨⎪⎪⎩

an1+n2 ⋅ bn3+n4 ⋅ cn5+n6 if ω⃗ satisfies the ice rule,
0 otherwise,

(5.32)

where a, b, c are three positive numbers, and ni denotes the number of vertices with configuration
i ∈ {1, . . . ,6} in ω⃗. In what follows, we focus on the case a = b = 1 and c > 2, and will therefore
only consider such weights from now on.

1 2 3 4 5 6

Figure 22: The 6 possibilities for vertices in the six-vertex model. Each possibility comes with
a weight a, b or c.

In our context, the interest of the six-vertex model stems from its solvability using the
transfer-matrix formalism. More precisely, the partition function of a toroidal six-vertex model
may be expressed as the trace of the M -th power of a matrix V called the transfer matrix,
whose leading eigenvalues can be computed using the so-called Bethe-Ansatz. This part does
not invoke probability at all, and relies heavily on exact computations. For more detail on the
subject, we refer the curious reader to [45, 46]. Here, we will only use the following consequence
of the study.

For a six-vertex configuration ω⃗ on T◇, write ∣ω⃗∣ for the number of north-east arrows inter-
secting the line x1 + x2 = 0 (this number is the same for all lines x1 + x2 = k with −M ≤ k ≤M).
The total number of arrows in each line is 2N . It can be shown that typical configurations have
N such arrows. In fact, one may prove a more refined statement. Set

Z6V (N,M) =∑
ω⃗

w6V (ω⃗) and Z̃6V (N,M) = ∑
ω⃗∶ ∣ω⃗∣=N−1

w6V (ω⃗).

Theorem 5.19 For c > 2 and r > 0 integer, fix λ > 0 satisfying eλ + e−λ = c2. Then,

lim
N→∞

lim
M→∞

− 1
M log ( Z̃6V (N,M)

Z6V (N,M)
) = λ + 2

∞
∑
k=1

(−1)k
k tanh(kλ) > 0. (5.33)

Our goal now is to explain how one deduces discontinuity of the phase transition for random-
cluster models from this theorem. In order to do so, we relate the random-cluster model to the
six-vertex model. We denote the random-cluster measure on T by φper

T,pc,q (there is no boundary
conditions since T has no boundary). Let knc(ω) be the number of non-retractable clusters of
ω, and A the event that both ω and ω∗ contain exactly one cluster winding around the torus in
the south-west north-east direction.
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Proposition 5.20 Let q > 4 and set c =
√

2 +√
q. For N,M even,

φper
T,pc,q[A] = q Z̃6V (N,M)

Z6V (N,M)
φper
T,pc,q[(

4
q
)knc(ω)].

Proof Define wRC(ω) = po(ω)(1 − p)c(ω)qk(ω). As in Proposition 5.14, we may use Euler’s
formula (see Exercise 28) on the torus to show that

√
q`(ω)+2s(ω) = c0wRC(ω), (5.34)

where s(ω) is the indicator function of the event that all clusters of ω∗ are retractable, and
c0 > 0 is independent of the configuration.

Write ω for oriented loop configurations, i.e. configurations of loops to which we associated
an orientation. Let `−(ω ) and `+(ω ) for the number of retractable loops of ω which are
oriented clockwise and counterclockwise, respectively. Introduce eµ + e−µ = √

q and write, for an
oriented loop configuration ω ,

w (ω ) = eµ`+(ω ) e−µ`−(ω ).

Fix ω a random-cluster configuration and consider its associated loop configuration ω. In sum-
ming the 2`(ω) oriented loop configurations ω obtained from ω by orienting loops, we find

∑
ω

w (ω ) = (1 + 1)`0(ω)(eµ + e−µ)`(ω)−`0(ω) = c0(4
q
)knc(ω)

q−s(ω)wRC(ω), (5.35)

where `0(ω) is the number of non-retractive loops of ω. In the last equality, we used (5.34) and
the fact when s(ω) = 0, any non-retractable cluster corresponds to two non-retractable loops.
We also used that when s(ω) = 0, there is no non-retractable loop.

Notice now that an oriented loop configuration gives rise to 8 different configurations at each
vertex. These are depicted in Fig. 24. For an oriented loop configuration ω , write ni(ω ) for
the number of vertices of type i in ω , with i = 1, 2, 3, 4, 5A, 5B, 6A, 6B.

The retractable loops of ω which are oriented clockwise have total winding −2π, while those
oriented counterclockwise have winding 2π. Loops which are not retractable have total winding
0. Write W (`) for the winding of a loop ` ∈ ω . Then

w (ω ) = exp ( µ
2π

∑
`∈ω

W (`)),

where the sum is over all loops ` of ω . The winding of each loop may be computed by summing
up the windings of turns along the loop. The compounded winding of the two pieces of paths
appearing in the different configurations in Fig. 24 are

• vertices of type 1, . . . ,4: total winding 0;
• vertices of type 5A and 6A: total winding π;
• vertices of type 5B and 6B: total winding −π.

The total winding of all loops may therefore be expressed as

∑
`∈ω

W (`) = π [n5A(ω ) + n6A(ω ) − n5B(ω ) − n6B(ω )].

We therefore deduce that for any oriented loop configuration ω ,

w (ω ) = e
µ
2
[n5A(ω )+n6A(ω )] e−

µ
2
[n5B(ω )+n6B(ω )]. (5.36)

For the final step of the correspondence, notice that each diagram in Fig. 24 corresponds
to a six-vertex local configuration (as those depicted in Fig. 22). Indeed, configurations 5A
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Figure 23: The different steps in the correspondence between the random-cluster model and the
six-vertex model on a torus. Top-left. A random-cluster configuration and its dual, as well
as the corresponding loop configuration. Top-right. An orientation of the loop configuration
(retractable loops oriented counterclockwise in red, clockwise in orange, in blue and black, the
two non-retractable loops). Bottom-left. The resulting six-vertex configuration. Note that in
the first picture, there exist both a primal and dual component winding vertically around the
torus; this leads to two loops that wind vertically (see second picture); if these loops are oriented
in the same direction (as in the third picture) then the number of up arrows on every row of the
six-vertex configuration is equal to N ± 1. Bottom-right. The intersection of the events E , E ′,
F and F ′ implies the event A.
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1 2 3 4 5A 5B 6A 6B

Figure 24: The 8 different types of vertices encountered in an oriented loop configuration.

and 5B correspond to configuration 5 in Fig. 22 and configurations 6A and 6B correspond to
configuration 6 in Fig. 22. The first four configurations of Fig. 24 correspond to the first four in
Fig. 22, respectively.

Thus, to each oriented loop configuration ω is associated a six vertex configuration ω⃗. Note
that the map associating ω⃗ to ω is not injective since there are 2n5(ω⃗)+n6(ω⃗) oriented loop
configurations corresponding to each ω⃗. In fact, for a six-vertex configuration ω⃗, if N5,6(ω⃗) is
the set of vertices of type 5 and 6 in ω⃗, then the choice of c =

√
2 +√

q = e
µ
2 + e−

µ
2 gives that

w6V(ω⃗) = ∏
u∈N5,6(ω⃗)

(e
µ
2 + e−

µ
2 ) = ∑

ε∈{±1}N5,6(ω⃗)

∏
u∈N5,6(ω⃗)

e
µ
2
ε(u) (5.36)= ∑

ω

w (ω ). (5.37)

We are now in a position to prove the statement of the proposition. First,

c0∑
ω

(4
q
)knc(ω)

q−s(ω)wRC(ω) (5.35)= ∑
ω

w (ω ) (5.37)= ∑
ω⃗

w6V (ω⃗) = Z6V (N,M).

Second, using that s(ω) = 0 and knc(ω) = 1 on the event A, we find

c0 ∑
ω∈A

wRC(ω) = c0
q

4
∑
ω∈A

wRC(ω)(4
q
)knc(ω)

q−s(ω)

= q ∑
∣ω⃗∣=N−1

w6V(ω⃗) = q Z̃6V(N,M).

In the second step, we used that there are four ways of orienting the two loops bordering the
unique non-retractable cluster of ω ∈ A, and that one of them leads to ∣ω ∣ = N − 1. Dividing
by the partition function of the random-cluster model and then taking the ratio of the two last
displayed equations leads to the result. ◻

Theorem 5.18 now follows pretty easily. Indeed, one may show that for all δ > 0, there exists
N large enough that for all M ,

φper
T,pc,q[(

4
q
)knc(ω)] ≤ exp(δM). (5.38)

This corresponds to proving that there is not a density of non-retractable clusters winding around
the torus. This fact follows easily from the fact that φ0

pc,q does not contain any infinite cluster
(Exercise 54).

Thus, (5.38), Proposition 5.20 and Theorem 5.19 give the existence of c0 > 0 such that for
all fixed N large enough and M ≥M0(N),

φper
T,pc,q[A] ≤ exp(−c0M). (5.39)

Now, consider the “rotated rectangles” R = {x ∈ T ∶ x1 ≤ x2} and R′ = {x ∈ T ∶ x1 > x2}.
Assume that P5 is satisfied, one obtains easily by combining crossings that

φ0
R,pc,q[F] ≥ cM/N

0 and φ1
R′,pc,q[F

′] ≥ cM/N
0 , (5.40)

where F is the event that there exists a path in ω ∩R going from the line x1 +x2 = 0 to the line
x1 + x2 =M , and F ′ is the event that there exists a path in ω∗ ∩ (R′)∗ from the line x1 + x2 = 0
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to the line x1 + x2 = M . Now, let E be the event that all the edges in R with one endpoint in
x1+x2 = 0 are open, and E ′ be the event that all the edges in R′ with one endpoint in x1+x2 = 0
are closed. Note that on E ∩F ∩ E ′ ∩F ′, there exists exactly one cluster in ω and one cluster in
ω∗ winding around the torus; see Fig. 23.

The comparison between boundary conditions implies that conditionally on E ∩ V(R), the
boundary conditions in R′ are dominated by wired boundary conditions. We obtain

φper
T,pc,q[A] ≥ φper

T,pc,q[E ∩F ∩ E ′ ∩F ′]

≥ φ0
R,pc,q[E ∩F]φ1

R′,pc,q[E
′ ∩F ′]

(FKG)
≥ φ0

R,pc,q[E]φ
0
R,pc,q[F]φ1

R′,pc,q[E
′]φ1

R′,pc,q[F
′]

≥ cNFE c
2M/N
0 ,

where in the last line, we used (FE) and (5.40). By picking N large enough and then letting
M go to infinity, we obtain a contradiction with (5.39), so that P5 cannot be satisfied and the
phase transition is discontinuous.

Remark 5.21 In fact, one may even prove directly that P4b does not hold (this is of value
for these lectures since we did not formally prove that P4b was equivalent to P5). We refer to
Exercise 55 for details.

Exercise 54 We wish to prove that for all δ > 0, for N and M large enough,

φper
T,pc,q[(

4
q
)knc(ω)] ≤ exp(δM).

1. Show that there exists c0 > 0 depending on q only such that for all M and N , if n = δM −N , then

φT,pc,q(knc(ω) ≥ δM) ≤ cM+N
0 φ0

T,pc,q[∃n disjoint clusters crossing T from north-west to south-east]. (5.41)

2. Consider the event E(x1, . . . , xn) that the points x1, . . . , xn on the north-west side of T are connected to the
bottom-east side by open paths, and x1, . . . , xn are all in different clusters. Conditioning inductively on clusters
crossing T from north-west to south-east, show that

φ0
T,pc,q[E(x1, . . . , xn)] ≤ φ0

pc,q[0←→ ∂ΛN ]n.

3. Conclude.

Exercise 55 We wish to prove that P4b cannot hold if (6.5) is true.

1. Show that if P4b does not hold, then for every δ > 0 there exists an infinite number of n such that

φ0
T,pc,q[(0,0)←→ (n,n)] ≥ exp(−δn).

Hint. One may follow the same strategy as in Exercise 47.

2. Deduce that for N large enough, φ0
T,pc,q[F] ≥ c exp(−δM) for some constant c > 0 depending on N only.

3. Conclude as in the proof that P5 does not hold.

6 Conformal invariance of the Ising model on Z2

We will also adopt an important convention in this section. We now focus on the random-
cluster model with cluster-weight q = 2. Also, we define L to be the rotation by π/4 of the
graph

√
2Z2. Generically, (Ω, a, b) will be a Dobrushin subdomain of L with the additional

assumption that eb ∈ R+ (where eb is seen as a complex number). Note that in this case eb
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is simply equal to 1.

For a discrete Dobrushin domain (Ω, a, b), denote e ∋ v if v is one of the endpoints of e,
and set ∂Ω◇ for the set of vertices of Ω◇ incident to exactly two edges of Ω◇. Define the vertex
fermionic observable on vertices of Ω◇ by the formula

f(v) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1
2 ∑
e∋v
F (e) if v ∈ Ω◇ ∖ ∂Ω◇,

2
2+

√
2
∑
e∋v
F (e) if v ∈ ∂Ω◇,

where F is the (edge) fermionic observable on (Ω, a, b) defined in Definition 5.15.

We are interested in the geometry at large scale of the critical Ising model on L (in particular
the asymptotics of the vertex fermionic observable). A Dobrushin domain (Ωδ, aδ, bδ) will be
a Dobrushin domain defined as a subgraph of the δL, still with the convention that seen as a
complex number, eb ∈ R+. In particular, the length of the edges of Ω◇ is δ. We extend the
notions of Dobrushin domain, edge and vertex fermionic observables to this context.

We will focus on discrete Dobrushin domains (Ωδ, aδ, bδ) approximating in a better and
better way a simply connected domain Ω ⊂ C with two points a and b on the boundary. We
choose the notion of Carathéodory convergence for these approximations, i.e. that ψδ Ð→ ψ
on any compact subset K ⊂ R × (0,∞), where ψ is the unique conformal map from the upper
half-plane R × (0,∞) to Ω sending 0 to a, ∞ to b, and with derivative at infinity equal to 1,
and ψδ is the unique conformal map from H to Ω◇

δ sending 0 to a◇δ , ∞ to b◇δ and with derivative
at infinity equal to 1. Here, we consider Ω◇

δ as a simply connected domain of C by taking the
union of its faces20.

The first result of this section deals with the limit of the parafermionic observable (which we
call fermionic observable in this case).

Theorem 6.1 (Smirnov [118]) Fix q = 2 and p = pc. Let (Ωδ, aδ, bδ) be Dobrushin domains
approximating a simply connected domain Ω with two marked points a and b on its boundary.
If fδ denotes the vertex fermionic observable on (Ωδ, aδ, bδ), then

lim
δ→0

1√
2δ
fδ =

√
φ′,

where φ is a conformal map from Ω to the strip R × (0,1) mapping a to −∞ and b to ∞.

Above, the convergence of functions is the uniform convergence on every compact subset of
Ω. Since functions fδ are defined on the graph Ω◇

δ only, we perform an implicit extension of
the function to the whole graph, for instance by setting fδ(y) = fδ(x) for the whole face above
x ∈ Ω◇. Note that the constraint that eb = δ is not really relevant. We could relax this constraint
by simply renormalizing fδ by 1/

√
2eb where eb is seen as a complex number. One word of

caution here, δ is not the mesh size of the original lattice on which the random-cluster model
is defined, but the mesh size of the medial lattice. Also notice that the map φ is not unique
a priori since one could add any real constant to φ, but this modification does not change its
derivative.

The second result we will prove deals with the limit of the exploration path (we postpone
the discussion to Section 6.2).

Theorem 6.2 (Chelkak, DC, Hongler, Kemppainen, Smirnov [34]) Fix q = 2 and p =
pc. Let (Ωδ, aδ, bδ) be Dobrushin domains approximating a simply connected domain Ω with two
marked points a and b on its boundary. The exploration path γ(Ωδ,aδ,bδ) in (Ωδ, aδ, bδ) converges
weakly to the Schramm-Loewner Evolution with parameter κ = 16/3 as δ tends to 0.

20If it has “pinched” points, we add a tiny ball of size ε ≪ δ. The very precise definition is not relevant here
since the definition is a complicated way of phrasing an intuitive notion of convergence.
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Above, the topology of the weak convergence is given by the metric d on the set X of
continuous parametrized curves defined for γ1 ∶ I → C and γ2 ∶ J → C by

d(γ1, γ2) = min
ϕ1∶[0,1]→I
ϕ2∶[0,1]→J

sup
t∈[0,1]

∣γ1(ϕ1(t)) − γ2(ϕ2(t))∣,

where the minimization is over increasing bijective functions ϕ1 and ϕ2.

A fermionic observable for the Ising model itself (and not of its random-cluster representa-
tion) was proved to be conformally invariant in [37]. Since then, many other quantities of the
model were proved to be conformally invariant21. Let us focus on one important case, namely
the spin-spin correlations.

Theorem 6.3 (Chelkak, Hongler, Izyurov [35]) Let Ωδ be domains approximating a simply
connected domain Ω. Consider also a1

δ , . . . , a
k
δ in Ωδ converging to points a1, . . . ,ak in Ω. Then,

lim
δ→0

δ−n/8µf
Ωδ,βc

[σa1
δ
⋯σak

δ
] = ⟨σa1⋯σak⟩Ω,

where ⟨σa1⋯σak⟩Ω satisfies

⟨σa1⋯σak⟩Ω = ∣φ′(a1)∣1/8⋯ ∣φ′(ak)∣1/8⟨σφ(a1)⋯σφ(ak)⟩φ(Ω)

for any conformal map φ on Ω.

Note that this theorem shows that the critical exponent of the spin-spin correlations is 1/8,
i.e. that

µβc[σ0σx] = ∥x∥−1/4+o(1). (6.1)

In fact, this result is simpler to obtain and goes back to the middle of the 20th century (see [100]
and references therein).

The general form of ⟨−−⟩Ω was predicted by means of Conformal Field Theory in [29]. The
method of [35] gives another formula (which is slightly less explicit). The proof relies on similar
ideas as the proof of Theorem 6.1 (namely s-holomorphicity), but is substantially harder. We
do not include it here and refer to [35] for details.

In the next two sections, we prove Theorems 6.1 and 6.2.

6.1 Conformal invariance of the fermionic observable

In this section, we prove Theorem 6.1. We do so in two steps. We first prove that the vertex
fermionic observable satisfies a certain boundary value problem on Ω◇. Then, we show that
this boundary value problem has a unique solution converging to

√
φ′ when taking Dobrushin

domains (Ωδ, aδ, bδ) converging in the Carathéodory sense to (Ω,a,b).

6.1.1 s-holomorphic functions and connection to a boundary value problem

We will use a very specific property of q = 2, which is that σ = 1
2 in this case. This special value

of σ enables us to prove the following:

Lemma 6.4 Fix a Dobrushin domain (Ω, a, b). For any edge e of Ω◇, the edge fermionic ob-
servable F (e) belongs to

√
eR.

Note that the definition of the square root is irrelevant since we are only interested in its value
up to a ±1 multiplicative factor.

21Let us mention crossing probabilities [16, 88], interfaces with different boundary conditions [34, 79], full family
of interfaces [17, 91], the energy fields [80, 78]. The observable has also been used off criticality, see [13, 47].
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Proof The winding Wγ(ω)(e, eb) at an edge e can only take its value in the set W +2πZ where
W is the winding at e of an arbitrary oriented path going from e to eb. Therefore, the winding
weight involved in the definition of F (e) is always equal to eiW /2 or −eiW /2, ergo F (e) ∈ eiW /2R,
which is the claim by the definition of the square root and the fact that eb = 1. ◻

Together with the relations (5.23), the previous lemma has an important implication: while
there were half the number of relations necessary to determine F in the general q > 0 case,
we now know sufficiently many additional relations to hope to be able to compute F . We will
harvest this new fact by introducing the notion of s-holomorphic functions, which was developed
in [36, 37, 118]. For any edge e (recall that e is oriented and can therefore be seen as a complex
number), define

Pe[x] = 1
2(x + ex),

which is nothing but the projection of x on the line
√
eR.

Definition 6.5 (Smirnov) A function f ∶ Ω◇ → C is s-holomorphic if for any edge e = uv of
Ω◇, we have

Pe[f(u)] = Pe[f(v)].

The notion of s-holomorphicity is related to the classical notion of discrete holomorphic
functions. On Ω◇, f is discrete holomorphic if if satisfies the discrete Cauchy-Riemann equations

f (v1) − if(v2) − f (v3) + if (v4) = 0 (6.2)

for every x ∈ Ω ∪ Ω∗, where the vi are the four vertices around x indexed in counterclockwise
order. Discrete holomorphic functions f distinctively appeared for the first time in the papers
[86, 85] of Isaacs. Note that a s-holomorphic function is discrete holomorphic, since the definition
of s-holomorphicity gives that for every e = uv,

e[f(u) − f(v)] = f(v) − f(u), (6.3)

and that summing this relation for the four edges around x gives (6.2).
The reason why s-holomorphic functions are easier to handle than discrete holomorphic

function will become clear in the next section. In this section, we stick to the proof that
the vertex fermionic observable is s-holomorphic, and that it satisfies some specific boundary
conditions.

For a Dobrushin domain (Ω, a, b), let b◇ be the vertex of Ω◇ at the beginning of the oriented
edge eb. Also, let νv = e + e′ with e and e′ the two edges of Ω◇ incident to v. The vector νv can
be interpreted as a discrete version of the tangent vector along the boundary, when going from
a to b.

Theorem 6.6 Let (Ω, a, b) be a Dobrushin domain. The vertex fermionic observable f is s-
holomorphic and satisfies Peb[f(b◇)] = 1 and νvf(v)2 ∈ R+ for any v ∈ ∂Ω◇.

Proof The key to the proof is the following claim: for any e ∋ v,

Pe[f(v)] = F (e). (6.4)

To prove this claim, consider v with four medial edges e1, e2, e3 and e4 incident to it (we index
them in counterclockwise order). Note that (5.23) reads

e1F (e1) + e3F (e3) = e2F (e2) + e4F (e4).

Furthermore, Lemma 6.4 gives that
F (e) = eF (e). (6.5)
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Plugging this in the previous equality and using the conjugation, we find

F (e1) + F (e2) = F (e3) + F (e4) ( = 1
2 ∑
e∋v
F (e)).

The term under parentheses is nothing else but f(v). Using Lemma 6.4 again, we see that F (e1)
and F (e3) are two orthogonal vectors belonging to

√
e1R and

√
e3R respectively whose sum is

f(v), so that the claim follows readily for e1 and e3. One proves the claim for e2 and e4 in a
similar way.

Let us now treat the case of v ∈ ∂Ω◇ (the normalization 2/(2 +
√

2) will play a role here).
Let e and e′ be the two edges of Ω◇ incident to v. Recalling that the winding on the boundary
is deterministic, and that e ∈ γ if and only if e′ ∈ γ, gives

√
e′F (e′) = φa,bΩ,pc,2

[e′ ∈ γ] = φa,bΩ,pc,2
[e ∈ γ] =

√
eF (e). (6.6)

(Here, we choose the square root so that
√
e′ = ±eiπ/4√e.) This gives

2+
√

2
2 f(v) = F (e) + F (e′) = (

√
e +

√
e′)φa,bΩ,pc,2

[e ∈ γ]. (6.7)

We deduce that f(v) ∈
√
e + e′R. Since e = ±ie′, a quick study of the complex arguments of

f(v), F (e) and F (e′) immediately gives that Pe[f(v)] = F (e) and Pe′[f(v)] = F (e′).

Now that (6.4) is proved, we can conclude. First, observe that the s-holomorphicity is
trivial, since for any edge e = uv, the claim shows that Pe[f(u)] = F (e) = Pe[f(v)]. Second,
Peb[f(b)] = F (eb) = 1. The last property follows from f(v) ∈

√
e + e′R. ◻

Theorem 6.1 therefore follows from the following result, which is a general statement on
s-holomorphic functions.

Theorem 6.7 For a family of Dobrushin domains (Ωδ, aδ, bδ) approximating a simply connected
domain Ω with two points a and b on its boundary, let fδ be a s-holomorphic function satisfying
Peb[fδ(b)] = 1 and νvfδ(v)2 ∈ R+ for any v ∈ ∂Ω◇

δ . Then,

lim
δ→0

1√
2δ
fδ =

√
φ′,

where φ is a conformal map from Ω to the strip R × (0,1) mapping a to −∞ and b to ∞.

We now turn to the proof of this statement, which will not involve the random-cluster
anymore.

Remark 6.8 Let us discuss the general q ≠ 2 case. Equation (6.2) looks similar to (5.23).
Therefore, one may think of the (edge) parafermionic observable as a function defined on vertices
of the medial graph Ω◇◇ of Ω◇ satisfying half of the discrete Cauchy-Riemann equations – namely
those around faces of Ω◇◇ corresponding to vertices of (Ω◇)∗ (for the other faces, we do not know
how to get the corresponding relations, which probably are not even true at the discrete level for
q ≠ 2). Such an interpretation is nonetheless slightly misleading, since the edge parafermionic
observable does not really converge to a function in the scaling limit. Indeed, in the case of
the fermionic observable (q = 2), the edge fermionic observable is the projection of the vertex
fermionic observable, and therefore converges to different limits depending on the orientation of
the edge of Ω◇ associated with the corresponding vertex of Ω◇◇.
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x

x′

e
e′

v

e1

e2

e3

e4

Figure 25: On the left the two paths going through e1 and e2, and e4 and e3. On the right, the
notation for the proof of (6.11).

6.1.2 Proof of Theorem 6.7

The idea of the proof of Theorem 6.7 will be to prove that solutions of this discrete Boundary
value problem (with Riemann-Hilbert type boundary conditions on the boundary, i.e. conditions
on the function being parallel to a certain power of the tangent vector) must converge to the
solution of their analog in the continuum. Unfortunately, treating this discrete boundary value
problem directly is a mess, and we prefer to transport our problem as follows. The function
Im(φ) is the unique harmonic function in Ω equal to 1 on the arc (ab), and 0 on the arc (ba).
Therefore, one may try to prove that a discrete version Hδ of the imaginary part of the primitive
of 1

2δf
2
δ satisfies some approximate Dirichlet boundary value problem in the discrete, and that

therefore this function must converge to Im(φ) as δ tends to 0. This has much more chances to
work, since Dirichlet boundary value problems are easier to handle.

For now, let us start by studying s-holomorphic functions on a domain Ω◇ with eb = 1. For
any such s-holomorphic function f , we associate the function F = Ff defined on edges e = uv of
Ω◇ by

F (e) ∶= Pe[f(v)] = Pe[f(u)]. (6.8)

We also introduce the (unique) function H =Hf ∶ Ω ∪Ω∗ → C such that H(b) = 1 and

H(x) −H(y) = ∣F (e)∣2 (6.9)

for every x ∈ Ω and y ∈ Ω∗, where e is the medial edge bordering both x and y. To justify the
existence of such a function, construct H(x) by summing increments along an arbitrary path
from b to x. The fact that this function satisfies (6.9) for all neighboring x and y comes from
the fact that the definition does not depend on the choice of the path.

This last fact can be justified as follows: the domain is the union of all the faces of the
medial lattice within it. As a consequence, the property that the definition does not depend on
the choice of the path is equivalent to the property that for any vertex v ∈ Ω◇ ∖∂Ω◇, if e1, . . . , e4

denote the four medial edges with endpoint v indexed in counterclockwise order, then the paths
going through e1 and e2, and the one going through e4 and e3 contribute the same (see Fig. 25),
i.e.

∣F (e1)∣2 − ∣F (e2)∣2 = ∣F (e4)∣2 − ∣F (e3)∣2,

Since F (e1) and F (e3) are orthogonal (idem for F (e2) and F (e4)), the previous equality follows
from

∣F (e1)∣2 + ∣F (e3)∣2 = ∣f(v)∣2 = ∣F (e2)∣2 + ∣F (e4)∣2. (6.10)

The existence of H is the main reason why it is more convenient to work with s-holomorphic
functions rather than the less constraining notion of discrete holomorphicity. Also, we hope
that the brief discussion on boundary value problems above provides sufficient motivation for
the introduction of H: as shown in the following theorem, the function H should be interpreted
as the discrete analogue of Im (∫

z 1
2f

2), which satisfies some nice property of sub and super
harmonicity.

86



Below, the discrete Laplacian of H is defined by the formula

∆H(x) ∶=∑
y

[H(y) −H(x)],

where the sum is over neighbors of x in Ω (or Ω∗ if x ∈ Ω∗).

Theorem 6.9 If x,x′ ∈ Ω ∪Ω∗ correspond to two opposite faces of Ω◇ bordered by v ∈ Ω◇,

H(x) −H(x′) = 1
2 Im [f(v)2 ⋅ (x − x′)] . (6.11)

Furthermore, ∆H(x) ≥ 0 for every x ∈ Ω ∖ ∂Ω and ∆H(y) ≤ 0 for every y ∈ Ω∗ ∖ ∂Ω∗.

Proof of (6.11). Assume that x and x′ belong to Ω (the case of x and x′ belonging to Ω∗

is the same). Let e and e′ two edges of Ω◇ incident to v bordering the same white face. We
further assume that e and e′ are respectively bordering the faces of x and x′; see Fig. 25. The
s-holomorphicity implies that

∣F (e)∣2 = 1
4[ef(v)

2 + ef(v)
2
+ 2∣f(v)∣2].

Using a similar relation for ∣F (e′)∣2, we obtain

H(x) −H(x′) = ∣F (e)∣2 − ∣F (e′)∣2

= 1
4[(e − e

′)f(v)2 + (e − e′)f(v)
2
] = 1

2Re[f(v)
2(e − e′)].

The proof follows by observing that e − e′ = i(x − x′).

Proof of sub-harmonicity. Fix x ∈ Ω. Let A, B, C and D be the values of f on the vertices
of Ω◇ north-east, north-west, south-west and south-east of x. Recall that

(a) A −B = A −B by s-holomorphicity at the medial edge north of x (equal to i),
(b) C −D =D −C by s-holomorphicity at the medial edge south of x (equal to 1),
(c) A −C = i(D −B) by discrete holomorphicity (6.2) around x.

Then,

A2 + iB2 −C2 − iD2 = (A −C)(A +C) + i(B −D)(B +D)
(c)= (A −C)(A +C −B −D)
(a,b)= (A −C)(A −B +D −C)
(c)= (1 + i)∣A −C ∣2. (6.12)

Taking the imaginary part of the quantity obtained by multiplying the previous expression by
1+i
2 (which is equal to 1

2(x
′ − x) , where x′ is the vertex of Ω north-east of x), (6.11) gives

∆H(x) = ∣A −C ∣2 ≥ 0.

Similarly, one may check that ∆H(x) = −∣A −C ∣2 ≤ 0 for x ∈ Ω∗. ◻

Until now, we treated general s-holomorphic functions, but from this point we focus on the
implications of boundary conditions. Let us start with the following easy lemma.

Lemma 6.10 Consider a s-holomorphic function f satisfying F (eb) = 1 and νvf(v)2 ∈ R+ for
all v ∈ ∂Ω◇. Then, the function H is equal to 1 on (ba) and 0 on (ab)∗.
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Proof Equation (6.11) and the condition (x−x′)f(v)2 = ±νvf(v)2 ∈ R give that H is constant
on (ba) and (ab)∗ respectively. The fact that H = 1 on (ba) thus follows from the definition
H(b) = 1. The claim that H = 0 on (ab)∗ follows from the fact that for w ∈ (ab)∗ neighboring b,

H(w) (6.9)= H(b) − ∣F (eb)∣2 = 1 − 1 = 0.

◻

On the other part (ab) of the boundary of Ω, we would like to say that H is roughly 0. This
is true but not so simple to prove. In order to circumvent this difficulty, we choose another path:
we add a “layer” or additional vertices, and fix the value of H to be 0 on these new vertices (for
simplicity, we consider all these vertices as one single ghost vertex g). With this definition, H
is not quite super-harmonic on Ω∪ {g} but it almost is: one can define a modified Laplacian on
the boundary for which H is super-harmonic. This procedure is explained formally below (we
do a similar construction for Ω∗).

Introduce two additional ghost vertices g and g∗ to Ω and Ω∗ respectively. Define the
continuous-time random walk Xx starting at x and jumping with rate 1 on edges of Ω and rate

2
1+

√
2
Nx to g, where Nx is the number of vertices of ∂Ω◇ bordering x. Note that Xx jumps to g

with positive rate only when it is on the boundary of Ω. Also, from now on the Laplacian ∆̂ on
Ω denotes the generator of the random walk, which is defined by

∆̂H(x) ∶= ∆H(x) + 2
1+

√
2
Nx[H(g) −H(x)].

Similarly, we denote by Xy the continuous-time random walk starting at y and jumping with
rate 1 on edges of Ω∗ and with rate 2

1+
√

2
Ny to g∗. We extend H to g and g∗ by setting H(g) = 0

and H(g∗) = 1.

Lemma 6.11 Consider a s-holomorphic function f satisfying F (eb) = 1 and νvf(v)2 ∈ R+ for
all v ∈ ∂Ω◇. Then, ∆̂H ≥ 0 on Ω ∖ (ba) and ∆̂H ≤ 0 on Ω∗ ∖ (ab)∗.

Proof Let us prove that ∆̂H(x) ≥ 0 for x ∈ Ω ∖ (ba) (the proof for x ∈ Ω∗ ∖ (ab)∗ follows the
same lines). If x ∉ ∂Ω, one has ∆̂ = ∆ and the result follows from Theorem 6.9. We therefore
focus our attention on x ∈ (ab). We use the same computation as in (6.12), except that for
v ∈ ∂Ω◇, we replace the expression

Im[f(v)2 ⋅ (v − x)] = 1
2 Im[f(v)2 ⋅ (x′ − x)] =H(x′) −H(x)

given by (6.11) by the expression

Im[f(v)2(v − x)] = 2
1+

√
2
[H(g) −H(x)]. (6.13)

In order to prove (6.13), use that v − x = − i
2νv (since x ∈ (ab)) and νvf(v)2 ∈ R+ to get

Im[f(v)2(v − x)] = −
√

2
2 ∣f(v)∣2.

Using the same reasoning as for (6.7) and the fact that νv has length
√

2, we find that

∣f(v)∣2 = 4∣1+eiπ/4∣2
(2+

√
2)2

∣F (e)∣2 = 2
√

2
1+

√
2
∣F (e)∣2.

Therefore, (6.13) follows from the two previous equalities together with H(g) = 0 and H(x) =
∣F (e)∣2 (which is true since there is y ∈ (ab)∗ neighboring x, which satisfies H(y) = 0). ◻

We are now in a position to prove Theorem 6.7.
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Proof of Theorem 6.7 For fδ, let Hδ constructed via the relation (6.9) and the condition
Hδ(bδ) = 1. Note that all the previous properties of H extend to Hδ (with trivial modification
of the definition of ∆ and ∆̃), except (6.11), which becomes

Hδ(x′) −Hδ(x) = 1
2δ Im[fδ(v)2(x′ − x)] (6.14)

since the edge x′ − x does not have length
√

2 anymore but
√

2δ instead.

We start by proving that (Hδ) converges22. We set H●
δ and H○

δ for the restrictions of Hδ to
Ωδ and Ω∗

δ . Define

Hm●
δ(x) ∶= P[Xx hits (bδaδ) before g] and Hm○

δ(y) ∶= P[Xy hits (aδbδ)∗ before g∗].

The function Hm●
δ is the harmonic solution on Ωδ of the discrete Dirichlet problem with bound-

ary conditions 1 on (bδaδ) and 0 on g. Since the random walk jumps on g only when it is on
(aδbδ), one may show that it converges to the harmonic solution of the Dirichlet problem with
boundary conditions 1 on (ba) and 0 on (ab) – i.e. to Im(φ) – as δ tends to 0 (see Exercise 56
for details). Since H●

δ is sub-harmonic by Lemmata 6.10 and 6.11, one has H●
δ ≤ Hm●

δ and
therefore

lim sup
δ→0

H●
δ ≤ Im(φ).

Similarly, Hm○
δ tends to Im(φ). Since H○

δ is super-harmonic, H○
δ ≥ Hm○

δ and

lim inf
δ→0

H○
δ ≥ Im(φ).

Since H●(x) ≥H○(y) for y neighboring x, we deduce that Hδ converges to Im(φ).

Let us now prove that (fδ) converges. Consider a holomorphic sub-sequential limit f (if it
exists) of fδ/

√
2δ. Also set F to be a primitive of f2. By (6.14), Hδ is equal to the imaginary

part of the primitive of 1
2δf

2
δ , so that by passing to the limit and using the first part of the proof,

Im(F ) = Im(φ) + C. Since f is holomorphic, we know that F also is, so that it must be equal
to φ up to an additive (real valued) constant. By differentiating and taking the square root, we
deduce that f =

√
φ′. To conclude, it only remains to prove that (fδ) is pre-compact and that

any sub-sequential limit is holomorphic, which is done in the next lemma. ◻

Lemma 6.12 The family of functions ( 1√
2δ
fδ) is pre-compact for the uniform convergence on

every compact. Furthermore, any sub-sequential limit is holomorphic on Ω.

In the next proof, we postpone three facts to exercises. We want to highlight the fact that we
do not swift any difficulty under the carpet: these statements are very simple and educating to
prove and we therefore prefer to leave them to the reader.

Proof Since the functions fδ is discrete holomorphic, the statement follows (see Exercise 59
for details) from the fact that ( 1√

2δ
fδ) is square integrable, i.e. that for any compact subset K

of Ω, there exists a constant C = C(K) > 0 such that for all δ,

δ ∑
x∈δL∩K

∣fδ(x)∣2 ≤ C. (6.15)

In particular, (6.11) implies that
√

2
2 ∣fδ(v)∣2 = 1

2 Im[fδ(v)2(x′ − x)] + 1
2Re[fδ(v)2(x′ − x)]

=H●(x′) −H●(x) +H○(y′) −H○(y), (6.16)
22Recall that here and below, we consider the convergence on every compact subset of Ω.
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where x,x′ ∈ Ωδ and y, y′ ∈ Ω∗
δ are the four faces bordering v indexed so that x′ − x = i(y′ − y).

Since H●
δ is bounded and sub-harmonic, Exercise 60 implies that

δ ∑
x∈δL∩K

∣H●
δ (x) −H

●
δ (x

′)∣ ≤ C, (6.17)

where the sum is over edges x′ with xx′ an edge of δL. Similarly, one obtains the same bound
for H○

δ . This, together with (6.16), implies (6.15). ◻

Exercise 56 (Dirichlet problem) 1. Prove that there exists α > 0 such that for any 0 < r < 1
2
and any curve γ

inside D ∶= {z ∶ ∣z∣ < 1} from {z ∶ ∣z∣ = 1} to {z ∶ ∣z∣ = r}, the probability that a random walk on D ∩ δL starting at 0
exits D ∩ δL without crossing γ is smaller than rα uniformly in δ > 0.

2. Deduce that Hm●
δ tends to 0 on (ab).

3. Using the convergence of the simple random walk to Brownian motion, prove the convergence of Hm●
δ to the

solution of the Dirichlet problem with 0 boundary conditions on (ab), and 1 on (ba).

Exercise 57 (Regularity of discrete harmonic functions) 1. Consider Λ ∶= [−1,1]2. Show that there exists
C > 0 such that, for each δ > 0, one may couple two lazy random walks X and Y starting from 0 and its neighbor x
in Λ ∩ δL in such a way that P[Xτ ≠ Yτ ] ≤ Cδ, where τ is the hitting time of the box of the boundary of Λ.

2. Deduce that a bounded harmonic function h on Λ satisfies ∣h(x) − h(y)∣ ≤ Cδ.

3. Let HΛ(x, y) be the probability that the random walk starting from x exits Λ by y. Show that HΛ(x, y) ≤ C′δ.

Exercise 58 (Limit of discrete holomorphic functions) Prove that a discrete holomorphic function f on δZ2

is discrete harmonic for the leapfrog Laplacian, i.e. that ∆fδ(x) = 0, where

∆fδ(x) = ∑
ε,ε′∈{±δ}

(fδ(x + (ε, ε′)) − f(x)).

Prove that a convergent family of discrete holomorphic functions fδ on δZ2 converges to a holomorphic function
f . Hint. Observe that all the discrete versions of the partial derivatives with respect to x and y converge using
Exercise 57.

Exercise 59 (Precompactness criteria for discrete harmonic functions) Below, ∥f∥∞ = sup{∣f(x) ∶ x ∈ Ω ∩
δZ2} and ∥f∥2 = δ2∑x∈Ω∩δZ2 f(x).

1. Show that a family of ∥ ⋅ ∥∞-bounded harmonic functions (fδ) on Ω is precompact for the uniform convergence on
compact subsets. Hint. Use the second question of Exercise 57.

2. Show that a family of ∥ ⋅ ∥2-bounded harmonic functions (fδ) on Ω is precompact for the uniform convergence on
compact subsets. Hint. Use the third question of Exercise 57 and the Cauchy-Schwarz inequality.

Exercise 60 (Regularity of sub-harmonic functions) Let H be a sub-harmonic function on Ωδ ∶= Ω∩ δL, with
0 boundary conditions on ∂Ωδ.

1. Show that H(x) = ∑y∈Ωδ GΩδ (x, y)∆H(y), where GΩδ (x, y) is the expected time a random walk starting at x
spends at y before exiting Ωδ.

2. Prove that GΩδ is harmonic in x ≠ y. Deduce that for two neighbors x and x′ on Ωδ,

∣GΩδ (x, y) −GΩδ (x
′, y)∣ ≤ Cδ

∣x − y∣ ∧ d(x, ∂Ω)
.

3. Deduce that for any compact subset K of Ω, there exists C(K) > 0 such that for any δ,

δ ∑
x∈K∩δL

∣H(x) −H(x′)∣ ≤ C,

where x′ is an arbitrary choice of a neighbor of x.

4. What can we say for bounded boundary conditions?

5. Deduce (6.17) for H●
δ .

6.2 Conformal invariance of the exploration path

Conformal field theory leads to the prediction that the exploration path γ(Ωδ,aδ,bδ) in the Do-
brushin domains (Ωδ, aδ, bδ) mentioned before converges as δ → 0 to a random, continuous,
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non-self-crossing curve γ(Ω,a,b) from a to b staying in Ω, and which is expected to be confor-
mally invariant in the following sense.

Definition 6.13 A family of random non-self-crossing continuous curves γ(Ω,a,b), going from
a to b and contained in Ω, indexed by simply connected domains Ω with two marked points
a and b on the boundary is conformally invariant if for any (Ω,a,b) and any conformal map
ψ ∶ Ω→ C,

ψ(γ(Ω,a,b)) has the same law as γ(ψ(Ω),ψ(a),ψ(b)).

In 1999, Schramm proposed a natural candidate for the possible conformally invariant fami-
lies of continuous non-self-crossing curves. He noticed that interfaces of discrete models further
satisfy the domain Markov property which, together with the assumption of conformal invari-
ance, determines a one-parameter family of possible random curves. In [114], he introduced the
Stochastic Loewner evolution (SLE for short) which is now known as the Schramm–Loewner
evolution. Our goal is not to present in details this well-studied model, and we rather refer
the reader to the following expositions and references therein [96]. Here, we wish to prove
Theorem 6.2 and therefore briefly remind the definition of SLEs.

Set H to be the upper half-plane R × (0,∞). Fix a simply connected subdomain H of H
such that H∖H is compact. Riemann’s mapping theorem guarantees23 the existence of a unique
conformal map gH from H onto H such that

gH(z) ∶= z + C
z +O ( 1

z2 ) .

The constant C is called the h-capacity of H.
There is a natural way to parametrize certain continuous non-self-crossing curves Γ ∶ R+ → H

with Γ(0) = 0 and with Γ(s) going to ∞ when s → ∞. For every s, let Hs be the connected
component of H ∖ Γ[0, s] containing ∞, and denote its h-capacity by Cs. The continuity of the
curve guarantees that Cs grows continuously, so that it is possible to parametrize the curve via
a time change s(t) in such a way that Cs(t) = 2t. This parameterization is called the h-capacity
parameterization. Below, we will assume that the parameterization is the h-capacity, and reflect
this by using the letter t for the time parameter.

Let (Wt)t>0 be a continuous real-valued function24. Fix z ∈ H and consider the map t↦ gt(z)
satisfying the following differential equation up to its explosion time:

∂tgt(z) = 2

gt(z) −Wt
. (6.18)

For every fix t, let Ht be the set of z for which the explosion time of the differential equation
above is strictly larger than t. One may verify that Ht is a simply connected open set and that
H ∖Ht is compact. Furthermore, the map z ↦ gt(z) is a conformal map from Ht to H. If there
exists a parametrized curve (Γt)t>0 such that for any t > 0, Ht is the connected component of
H ∖ Γ[0, t] containing ∞, the curve (Γt)t>0 is called (the curve generating) the Loewner chain
with driving process (Wt)t>0.

The Loewner chain in (Ω,a,b) with driving function (Wt)t>0 is simply the image of the
Loewner chain in (H,0,∞) by a conformal from (H,0,∞) to (Ω,a,b).

Definition 6.14 For κ > 0 and (Ω,a,b), SLE(κ) is the random Loewner evolution in (Ω,a,b)
with driving process

√
κBt, where (Bt) is a standard Brownian motion.

The strategy of the proof of Theorem 6.2 is the following. The first step consists in proving
that the family (γ(Ωδ,aδ,bδ)) is tight for the weak convergence and that any sub-sequential limit

23The proof of the existence of this map is not completely obvious and requires Schwarz’s reflection principle.
24Again, one usually requires a few things about this function, but let us omit these technical conditions here.
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γ is a curve generating a Loewner chain for a continuous driving process (Wt) satisfying some
integrability conditions. The proof of this fact is technical and can be found in [92, 34, 57]. It is
based on a Aizenman-Burchard type argument based on crossing estimates obtained in Property
P5 of Theorem 5.5 (see also [33, 48] for a stronger statement in the case of the Ising model).

The second step of the proof is based on the fermionic observable, which can be seen as a
martingale for the exploration process. This fact implies that its limit is a martingale for γ.
This martingale property, together with Itô’s formula, allows to prove that Wt and W 2

t − κt are
martingales (where κ equals 16/3). Lévy’s theorem thus implies thatWt =

√
κBt. This identifies

SLE(κ) as being the only possible sub-sequential limit, which proves that (γ(Ωδ,aδ,bδ)) converges
to SLE(κ). We now provide more detail for this second step.

Below, Ω ∖ γ[0, n] is the slit domain obtained from Ω by removing all the edges crossed by
the exploration path up to time n. Also, γ(n) denotes the vertex of Ω bordered by the last edge
of γ[0, n].

Lemma 6.15 Let δ > 0. The random variable Mn(z) ∶= fΩ∖γ[0,n],γ(n),b(z) is a martingale with
respect to (Fn) where Fn is the σ-algebra generated by γ[0, n].

Proof The random variable Mn(z) is a linear combination of the random variables Mn(e) ∶=
FΩ∖γ[0,n],γ(n),b(e) for e ∋ z so that we only need to treat the later random variables. The fact
that conditionally on γ[0, n], the law in Ω ∖ γ[0, n] is a random-cluster model with Dobrushin
boundary conditions implies thatMn(e) is equal to e

1
2

iWγ(e,eb)1e∈γ conditionally on Fn, therefore
it is automatically a closed martingale. ◻

Proof of Theorem 6.2 We treat the case of the upper half-plane Ω = H with a = 0 and
b =∞. The general case follows by first applying a conformal map from (Ω,a,b) to (H,0,∞).
Consider γ a sub-sequential limit of γ(Ωδ,aδ,bδ) and assume that its driving process is equal to
(Wt). Define gt as above. For z ∈ H and δ > 0, define M δ

n(z) for γ(Ωδ,aδ,bδ) as above too.
The stopping time theorem implies that M δ

τt(z) is a martingale with respect to Fτt , where
τt is the first time at which γ(Ωδ,aδ,bδ) has a h-capacity larger than t. Now, if M δ

τt(z) converges
uniformly as δ tends to 0, then, the limit Mt(z) is a martingale with respect to the σ-algebra
Gt generated by the curve γ up to the first time its h-capacity exceeds t. By definition of the
parameterization, this time is t, and Gt is the σ-algebra generated by γ[0, t].

Since the conformal map from H ∖ γ[0, t] to R × (0,1), normalized to send γt to −∞ and ∞
to ∞ is 1

π ln(gt −Wt), Theorem 6.1 gives that M δ
t (z) converges to

√
πMt(z) =

√
[ln(gt(z) −Wt)]′ = ( g′t(z)

gt(z) −Wt
)

1/2
, (6.19)

which is therefore a martingale for the filtration (Gt). Formally, in order to apply Theorem 6.1,
one needs z and γ[0, τt] to be well apart. For this reason, we only obtain that M z

t∧σ is a
martingale for Gt∧σ, where σ is the hitting time of the boundary of the ball of size R < ∣z∣ by the
curve γ.

Recall that gt(z) = z + 2t
z +O ( 1

z2 ) and g′t(z) = 1 − 2t
z2 +O ( 1

z3 ) so that for t,

√
πzMt(z) = (

1 − 2t
z2 +O( 1

z3 )
1 − Wt

z + 2t
z2 +O( 1

z3 )
)

1/2
= 1 + 1

2zWt + 1
8z2 (3W 2

t − 16t) +O ( 1
z3 ) .

Taking the conditional expectation against Gs∧σ (with s ≤ t) gives
√
πzE[Mt∧σ(z)∣Gs∧σ] = 1 + 1

2zE[Wt∧σ ∣Gs∧σ] + 1
8z2E[3W 2

t∧σ − 16(t ∧ σ)∣Gs∧σ] +O ( 1
z3 ) .
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SinceMt∧σ(z) is a martingale, E[Mt∧σ(z)∣Gs∧σ] =Ms∧σ(z). Therefore, the terms of the previous
asymptotic developments (in 1/z) can be matched together by letting z tend to infinity so that

E[Wt∧σ ∣Gs∧σ] =Ws∧σ and E[W 2
t∧σ − 16

3 (t ∧ σ)∣Gs∧σ] =W 2
s∧σ − 16

3 (s ∧ σ).

One can now let R and thus σ go to infinity to obtain

E[Wt∣Gs] =Ws and E[W 2
t − 16

3 t∣Gs] =W
2
s − 16

3 s.

(Note that some integrability condition on Wt is necessary to justify passing to the limit here.)
The driving process Wt being continuous, Lévy’s theorem implies that Wt =

√
16/3Bt where

Bt is a standard Brownian motion. Since we considered an arbitrary sub-sequential limit, this
directly proves that (γ(Ωδ,aδ,bδ)) converges weakly to SLE(16/3). ◻

Note that despite the fact that the fermionic observable may not seem like a very natural
choice at first sight, it is in fact corresponding to a discretization of a very natural martingale
of SLE(16/3).

7 Where are we standing? And more conjectures...

It is time to conclude these lectures. To summarize, we proved that the Potts model and its
random-cluster representation undergo phase transitions between ordered and disordered phases.
We also showed that the long-range order and the spontaneous magnetization phases of the Potts
model coincide. Then, we proceeded to prove that the phase transition was sharp, meaning that
correlations decay exponentially fast below the critical inverse-temperature.

After this study of the phases β < βc and β > βc, we moved to the study of the β = βc phase.
We determined that the phase transition of the Potts model is continuous in any dimension if
q = 2 (i.e. for the Ising model), and that it is continuous if q ≤ 4 and discontinuous for q > 4 in
two dimensions. This gives us the opportunity of mentioning the first major question left open
by this manuscript:

Conjecture 2 Prove that the phase transition of the nearest-neighbor Potts model on Zd (with
d ≥ 3) is discontinuous for any q ≥ 3.

Let us mention that this conjecture is proved in special cases, namely

• if d is fixed and q ≥ qc(d) ≫ 1 [95],
• if q ≥ 3 is fixed and d ≥ dc(q) ≫ 1 [20],
• if q ≥ 3 and d ≥ 2, but the range of the interactions is sufficiently spread-out [22, 70].

When the phase transition is continuous, there should be some conformally invariant scaling
limit. In two dimensions, this concerns any q ≤ 4, and not only the q = 2 case mentioned
previously in these lectures. One may formulate the conformal invariance conjecture for random-
cluster models with q ≤ 4 in the following way.

Conjecture 3 (Schramm) Fix q ≤ 4 and p = pc. Let (Ωδ, aδ, bδ) be Dobrushin domains ap-
proximating a simply connected domain Ω with two marked points a and b on its boundary. The
exploration path γ(Ωδ,aδ,bδ) in (Ωδ, aδ, bδ) converges weakly to SLE(κ) as δ tends to 0, where

κ = 8
σ+1 = 4π

π−arccos(√q/2) .

The values of κ range from κ = 4 for q = 4 to κ = 8 for q = 0. Also note that κ = 6
corresponds to q = 1, as expected. Following the same strategy as in the previous section, the
previous conjecture would follow from the convergence of vertex parafermionic observables (they
are defined for general q as the vertex fermionic observable).
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Conjecture 4 (Smirnov) Fix q ≤ 4 and p = pc. Let (Ωδ, aδ, bδ) be Dobrushin domains ap-
proximating a simply connected domain Ω with two marked points a and b on its boundary. If
fδ denotes the vertex parafermionic observable on (Ωδ, aδ, bδ) defined as the average of the edge
fermionic observable on neighboring edges, then

lim
δ→0

(2δ)−σfδ = (φ′)σ,

where φ is a conformal map from Ω to the strip R × (0,1) mapping a to −∞ and b to ∞.

For the Ising model in higher dimensions (the other Potts models are predicted to have a
discontinuous phase transition by Conjecture 2), the model still undergoes a continuous phase
transition and it therefore makes sense to study the critical phase in more detail.

We mentioned in Theorem 4.9 that the critical exponent of the spin-spin correlations of the
Ising model in dimension four and higher is the mean-field one, i.e. that

µβc[σxσy] ≈
1

∥x − y∥d−2+δ

with δ = 0. Also, note that in two dimensions this is not the case since by (6.1), δ = 1/4. In
three dimensions, the best known result is Theorem 4.8, which gets rephrased as δ ∈ [0,1]. The
following improvement would be of great value.

Conjecture 5 Consider the three dimensional Ising model. There exists ε > 0 and c0, c1 ∈ (0,∞)
such that for all x, y ∈ Z3,

c0

∥x − y∥2−ε ≤ µβc[σxσy] ≤
c1

∥x − y∥1+ε .

Another question of interest is the question of triviality/non-triviality of the scaling limit
of the spin-field. In other words, the question is to measure whether the spin-spin correlations
factorize like Gaussian field (i.e. whether they satisfy the Wick’s rule or not). One usually defines
the renormalized coupling constant 25

g(β) ∶= ∑
x2,x3,x4∈Zd

U4(0, x2, x3, x4)
χ(β)2ξ(β)d

, (7.1)

where U4(x1, x2, x3, x4) was defined in Exercise 34 and (e1 is a unit vector in Zd)

χ(β) ∶= ∑
x∈Zd

µf
β[σ0σx] and ξ(β) ∶= ( lim

n→∞
− 1
n logµf

β[σ0σne1])
−1
. (7.2)

If g(β) tends to 0 as β ↗ βc, the field is said to be trivial. Otherwise, it is said to be
non-trivial. Aizenman [2] and Fröhlich [65] proved that the Ising model is trivial for d ≥ 5. In
two dimensions, one can use Theorem 6.3 to prove that the Ising model is non-trivial (in fact
one can prove this result in a simpler way, but let us avoid discussing this here). Interestingly
enough, Aizenman’s proof of triviality is one of the first uses of the random current at its full
power and it is therefore fair to say that proving this result was one of the motivations for the
use of such currents. This leaves the following conjecture open.

Conjecture 6 Prove that the three-dimensional Ising model is non-trivial, and that the four-
dimensional Ising model is.

25Since Wick’s rule is equivalent to the fact that U4(x1, x2, x3, x4) vanishes (see the definition in Exercise 34),
this quantity is a measure of how non-Gaussian the field (σx ∶ x ∈ Zd) is.
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Physics predictions go much further. One expects conformal invariance in any dimension (in
fact as soon as the phase transition is continuous). Conformal symmetry brings less information
on the model in dimensions greater than 2, but recent developments in conformal bootstrap
illustrate that still much can be said using these techniques, see [113]. It therefore motivates the
question of proving conformal invariance in dimension three, which looks like a tremendously
difficult problem.

Exercise 61 (Triviality of Ising in dimension d ≥ 5) Consider a graph G and denote by PAG the measure on
currents (here we mean one current, not two) on G with a set of sources equal to A. Set σi for the spin at xi.

1. Show that

U4(x1, . . . , x4) = −2µf
G,β[σ1σ2]µf

G,β[σ3σ4] ⋅P{x1,x2}
G ⊗P

{x3,x4}
G [x1, x2, x3, x4 all connected].

2. Prove that for any y ∈ Zd, P
{x1,x2}
G ⊗P∅

G[x1
n̂1+n2←→ y] =

µf
G,β[σ1σy]µf

G,β[σyσ2]
µf
G,β

[σ1σ2]
.

3. Use two new sourceless currents n3 and n4 and the union bound to prove that

0 ≤ −U4(x1, . . . , x4) ≤ 2 ∑
y∈Zd

µf
G,β[σyσ1]µf

G,β[σyσ2]µf
G,β[σyσ3]µf

G,β[σyσ4].

4. Deduce that 0 ≤ −g(β) ≤ χ(β)2

ξ(β)d
.

5. Show that for every x ∈ Zd, µf
G,β[σ0σx] ≤ exp(−∥x∥∞/ξ(β)).

6. Using (IR), show that χ(β) ≤ Cξ(β)2 log ξ(β)2 and conclude that g(β) tends to 0 when d ≥ 5.
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