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Recently E. Witten [W] defined 3-dimensional field theory with Chern-Simons
action using 2-dimensional conformal gauge theory. Here I give a general construction of
3-D theories from arbitrary rational conformal field theory and describe also the converse
construction.

After a very brief introduction to RCFT in Section 1, I give a series of definitions
of different types of theories in section 2-4. The main constructions are in Sections 5 and
6. In Section 8 there are several remarks about central extensions and in Section 9, other
remarks. The contents of Sections 3 and 7 are not used in the rest.

Convention : in Section 2-8 all manifolds are compact, smooth and oriented. Changing of
orientation is denoted by a bar. Sign L denotes a disjoint sum.

1. Rational Conformal Field Theory (RCFT). (More detailed reviews are
in [MS] and [G]).

Examples of such theories are the scaling limits of exactly solvable 2-dimensional
lattice models at the critical temperature.

RCFT is a field theory on all compact surfaces with a complex structure and with a
finite set A of primary fields. As any field theory it is defined by its Green functions.

Choose some complex coordinates mj,...,m3g.3, on an open domain in the spac
of Riemanian surfaces of genus g. Let some family of nonintersecting disks Dj,
i =1 ...n. in surfaces be given together with a family of identifications Dj -5 (zeCllzl £
1}, analytically depending on m. So, on each surface from our family there are fields
©(zi,zi) , where IzjI<1. Let <@(z1,21) ... ®n(zn,Zn)> be the Green function of the theory,
where @1, ...,@n€ A . The property which defines the RCFT is the assumption that

N
<@1(z1,21) . Pn(zZn,Zn)>=Z1. ,21 fi g
1=

where fj, g; are analytic functions in z., m. and Z is a partition function,

M
Z= .Zle Gj e R4, where
J:

Fj, G;j are analytic functions in m. only. Numbers N, M and functions f., g. depend
on genus g and on @y, ...,Qn.

In invariant terms, there are some finite dimensional vector bundles over domain in



some complex manifold with flat connection, flat pseudohermitean metric and some
holomorphic section &. The numerator and the denominator in the above formula are then
squares of the length (£,£) of the section &. Those bundles are called Friedan-Schenker
bundles. These bundles are not unique. They are defined only up to ®-multiplication by a
1-dimensional flat bundle with flat hermitiai. metric and with any non-zero holomorphic
section. So, really we have canonical flat bundles with fibres = (complex projective
spaces) on the space of modules of the next data : (S-Riemanian surface ; Dy,...,.Dq < S
- coordinate disks ; xje Dj). In other words, we have a system of projective
representations of fundamental groups of such ee-dimensional spaces, which are
Teichmiiller groups.

Caution ! In what follows I suppose, for the sake of simplicity, that all representations
are vectors (not projective). In section 7 there are some explanations for the of validity of
this simplification.

2. Modular functor.

There is a purely topological part of the theory namely representations of the
modular groups. Those representations are satisfied by some glueing properties, which
are summarized in the definition of the modular functor.

I will give some variant of axioms which is equivalent to those in [G]. There are the
following three types of data and conditions :

Datal: 1. Afiniteset A (fields)
2. involutiond:A — A (changing of orientation)
3. celementQe A (vacuum)
4. numbers hg, € A (dimensions of the fields).
Conditions [ :
1. 80 = 0
. hga = hg
3. hy = 0
A preliminary definition :

A coloured surface is an oriented surface S with a set of distinguished points on
each component of boundary, [cdS, [ = ng (9S), and colouring ¢ : [ — A.



Datall. 1. Finite dimensional complex vector spaces V(S,c) depending naturally
on a coloured surface.
This means, that the group mo(Aut(S, orientation, I, c:I—=A)) acts on V.
2. Changing of orientation :
There are fixed isomorphisms V(S,c)* = V(S, 8o ¢)
For any i€ there is a fixed element t; in g (Aut(...))
- twist around the component of boundary containing i in the positive
direction (it is well defined because S is oriented), see fig.1.
Conditions II.
1. see fig.2.
2. tjacts on V(..) by multiplication on exp (21 V1 he(iy)
Daalll, 1. IfS=S;US; andc=cjuUcythenthereis a fixed isomorphism

V(S.c) S V(S1,c1) ® V(S2,¢2).

If 8S=LUL U (rest) and distinguished points on L and on L coincide, then

identifying canonically L and L as manifolds without orientation, we can obtain a new
oriented surface S' = S/L=[ . In this situation there is a fixed isomorphism :

2. V@) 3 @ V(ScuaonLuda on L)
ae A

Conditions ITl, Isomorphisms in 1. and 2. are natural, compatible with all above
isomorphisms in the second group of axioms, and with natural commutativity,
associativity and distributivity axioms (see [DM],[MS]).
This is a full list of axioms.

Any surface of genus g > 1 can be cut in pantalons = S2\ three open disks. Let
Vagydenote the vector space associated with standard pantalons with colours o,B,y (see
fig.3).

If we choose the cutting of surface into pantalons then we can compute V(S) :

V(S) = @ ® V eoe
coloring pantalons
of lines

S 0 V(S) is the partition function of a finite spin system with "vector-space-valued"



weights.

A modular functor is defined by the above number of data (= representations of all
Teichmiiller groups, which satisfied an infinite number of conditions).

G. Moore and N. Seiberg [MS] have shown that the above structure is defined by a
finite number of generators (vector spaces Vgy) and by a finite number of relations.

3. Classical CFT.

There is a very simple analogue to the previous system of axioms - a "limit"
of modular functors when hq -s tends to 0 and surfaces shrink to graphs.

Let I be a finite group. In the situation considered A will be the set of equivalence
classes of irreducible representations of I', which we denote by l[\' For every ae A let us
fix some repr;sentation V from this class.

The involution 6 : A— A is the passing to the dual representation.

Qe A is the trivial representation.

A graph is a finite 1-dimensional CW-complex, G = (V,E), where V is the set of
vertices, E is the set of edges.

Let E denote the set of edges with orientations. Let § be the involution on _E._) ;
which changes the orientation of each edge.

We call a configuration any map, a: E — A with the property Soa=ao &
(they are the analogue of colouring from the above definitions).
The weight of the configuration is given by

W)= ® I ® A%
(a) oy nv (_>e_.v a(e))

where Inv ( ) denotes the subspace of I"-invariants.
In our case the "partition-function" - vector space is

Z(G) = D W(a)
all configurations a
Proposition : Z(G) is homotopy invariant.
Main part of proof :  Let us check that if we apply the surgery to the graph G as

in fig.4, then Z(G) is canonically isomorphic to Z(G'). By locality it is sufficient to
consider the case of parts of graphs, shown in fig.4, with arbitrary boundary conditions.



Let VL= ® Vae) » VR= @ Vye).
ee L ce ?R

ZG,a) = A (Inv(VL ® Vo) @ Inv(Vy" ® VR)) =

= ®_ (Homr (VL") ® Homr Vel VR,

ae
Z(G'\a) = Inv (VL ® VR) = Homr (VL*,VR).

Itis evident that the natural map from Z(G,a) to Z(G',a) is an isomorphism. ¢

So the group Out (free group) acts on Z(G) for a connected graph G, because G is
K (free group,1).

There is a simple formula for Z : Z(G) = CHI(G'F )= the space of functions on
the finite set HI(G,I).

General case : There is 1-1 correspondence between homotopy-invariant vector-
space-valued theories on graphs and the abelian rigid semisimple ®-categories (see [MS],

(DS]. In general, Z(G) is a commutative algebra with the action of Out (Free group).

4. Topological theories (in 3 dimensions).
Suppose the following data are given :

Data: 1. Finite dimensional vector spaces V(S), depending naturally on closed
oriented surfaces S. Again, the group 7q (Aut (S, orientation)) acts on V(S).

2. The isomorphisms V(S) = V(S)*, VY ) S @ V(S) are fixed.

3. For any 3-dimensional manifold M there is a fixed vector Zy € V(OM).

nditions.
1. Usual properties of isomorphisms in Data 2 , naturality under
diffeomorphisms.

2, = .
% oM i?l M
=



IfoM=SuU S U (the rest) , there exists a new manifold M' = M/S=§ , such that

the vector spaces V(dM) and V(dM') are V(S) ® V(S)* ® V (the rest) and V(the rest )
correspondingly, and there exists a natural map p : V(M) = V(dM) .

3. p(Zm)=2ZvMm'.

The definition is complete.
It follows from the axioms that in the case dM = ¢ the partition functions Zy are
complex numbers, which are invariants of diffeomorphism type.

5. From Modular functor to Topological theory.

Suppose that we have a modular functor V(S, colouring). We shall construct
the corresponding topological theory. We take for spaces V(S) the same spaces as in MF.
We must construct only vectors Zy. For the sake of simplicity M is assumed to be
closed.

Let us choose any Morse function f on M (i.e. a function with only quadratic
critical points). We shall construct a family of linear maps V(f-1(t)) = V(f-1(t')) where
t <t' are regular values of f by "induction" in t. If t = £ o= then f-! (t)=9, V(f-1(t)) =C
and the map V(f-1(-e0)) — V(f-! (+<0)) by definition will be the multiplication by Zy.
These maps form a representation of ordered set (R \ {critical values }, <).

When there are no critical values between t and t' then there is a fixed diffeotopy-
type identification f-1(t) = f-! (t') because we can choose a metric on M and identify

fibres of f using the gradient flow. So, by MF axioms we have the identification
V(L) S V().

ing a critical value :

By locality of V(S) it is sufficient to construct a map V(...) = V(...) near each
critical point of any index with any boundary condition (see fig.5).
It is easy to see that in the cases 0,3 V(left picture) = V(right picture) = C. In the case
l,ifo#0Q or = Q then V(left picture) = 0, analogously to the case 2, so the map is
unique.

If in cases 1,2 a =B = Q then V(left picture) = V(right picture) = C and
Hom (V(left picture), V (right picture)) = C.

So, to define the above maps it is sufficient to choose 4 complex numbers Ag, A1,
A2, A3. We want to choose the numbers Ag,...,A3 in such a way that the "partition



function" Zy does not depend on the choice of the Morse function.

If we have two Morse functions fg and f) then there is a family of function in
general position fs, se [0,1] joining fg and fg. For some values s the function fs is not a
Morse function and has a singularity of type Az (by Arnold's classificaton) :

fs (X,Y,Z) = X3 + (s-s¢r) X £ Y2 £ Z2 + const., where X,Y,Z are some local
coordinates on the manifold.

If s > s¢r then there are no critical points near the point x = y =2z =0, so locally the
level sets of the function fg near the value f(0,0,0) look like in fig.6. Boundary
conditions are zero by conditions II.1 in Section 2.

Consider now the case s < s¢r. According to the above formula, three possibilities
for the evolution of the level set of fs are those shown in the movies on fig. 7-9. Each of
them gives an equation on A's. Fig 7 gives an equation A7.A3 = 1, Fig.9 gives an
equation Ag.Ap = 1.

We comment on the third equation, see fig. 8.

Using decomposition of V(...) into direct sum , the modular functor defines the sequence
of maps , the composition of which is just the multiplication by some number which we
call . The equation in questionis A . Ay . L= 1.

Hence the topological theory exists only for those MF, for which p = 0.

So, we have three equations on four variables, and there is a 1-parameter family of
topological theories. It turns out that all these theories are equivalent. Indeed, if (1) is

W : Y,
another solution, then — = (v)(-D* for some ve C* so that Zz((l\hf'li))
i

x(M) is the Euler characteristic of M, which is always zero for three-dimensional
manifolds.

=vxM) = 1, where

This is a well defined construction, except for the condition that p, which will be

Z(S3) is not zero. [ think that the positivity of this number follows from other properties
of RCFT (perhaps unitarity).

6. From topological theory to MF.

Suppose we have a topological theory. Denote by ¥ the vector space V(S2). We
shall define on 9 the structure of a commutative and associative algebra with 1.

Consider the 3-manifold M = B3 \int. ( B:{' U B; ), (see fig.10). The boundary

oM of this manifold is S2 U S2 U $2, 50 Zy is an element of V(S2) @ V (52 ) ®
V(S2) =19 ® 9* ® 9*. The tensor Zy defines a linear operator & ® 89— 9. It is clear
that this operator gives on ¥ a structure of algebra with unit Zg3.

Algebra ¥ acts on V(S) for any connected S : the action is defined through the



manifold M = S x [0,1] - int B3, (see fig.11). Boundary M is equalto S2 U SuU S,
vector Zy defined an operator © ® V(S) — V(S).

3 is a finite dimensional algebra over C so that, if 3 has no nilpotents then 3 = C
@ ... ® C. It is easy to see that our theory is a direct sum of the theories over Spec 9 so,
for simplicity, we can assume that 9 = C.

Let A be the vector space V (standard torus). 4 is also a commutative algebra (it is
a Verlinde algebra). The manifold M, defining multiplication in A is (B2\ int
(B12 U B22))xS!, where B2 are disks (see fig.12).

Again, we suppose additionally that A is semisimple. Let A be Spec. 4. There is an
involution on A, corresponding to the antipodal involution of the torus R%/Z2.

If we have a family of disjoint circles Y, L;i < S then V(S) has a structure of 2®! -

module : the corresponding manifold is S x [0,1] _kEJI Ug (L x {t}), where te (0,1) is an
1

arbitrary point, and by Ug( ) we denote e-neighbourhood, € is sufficiently small (see
fig.13).
Spec a®! is Al -set of colouring of the lines, as in section 2, and we have a

decomposition into the direct sum V(S)= & .  V(S, colouring), where summands
colouring

are fibres V(S) as 22! -module.

The last and the hardest part is to construct the vector spaces corresponding to
surfaces with boundaries and to find a ®-decomposition of V(S, colouring).

Let Pe 2®4 be an element Zy where M = annulus x circle. It is easy to see that

P= ZA Cq - Pa ® pa, Where py are canonical projectors in A4, Cy are non zero
oe

complex numbers.

Suppose that we have two disjoint circles L1, L in S with some identifications L
= Ly =S1. We can construct a new surface S' by cutting S along L and L3 and glueing
again, mixing the borders. Denote by Tg's the operator from V(S) to V(S') obtained by

the manifold pictured on fig. 14. Then Tss'o Ts's = P where P acts on V(S) as the
element of A®47 .

Consider now the case of any number of nonintersecting circles L;, ie I in a surface
S with identifications L;j = S! and choose some colour ae A. We can again cut S and glue
in another way and obtain new surfaces S'. There is a family of identifications between
some V(S',ct on all lines) and V(S", a on all lines) by operators C&”z Tgsrs'. It is easy
to see that any closed sequence of such identifications gives the identity operator.

There are different ways of reconstructing the vector spaces V(surface with
boundary, colouring). e waRis to defipe them in“terms of V(surface with torus
without disk glued to eacil&cxgpism\of the boundary) (see fig. 15). Another way is to
introduce the structure of associative algebra on V(S 3§ T, colouring on 9S) and to

prove that this algebra is a matrix algebra of some vector space which will be V(S,
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colouring). Careful considerations show that this does not give a modular functor but a
super-modular functor : the set of colours is a graded set, A = Agyen W Apdd, and vector
spaces V(S, colouring) are super-vector spaces purely even or odd corresponding to the
parity of colouring. We will change square roots C&l’z by ('C&m ) for ae Agqq in the

definition of idendficatons (see above) and will obtain a modular functor.

7. Homotopical theories.

Here I shall describe a type of field theories which corresponds to the classical CFT
in sect.3 and gives a trivial series of topological theories.

HT is defined over all finite CW-complexes. The list of axioms is obtained from
axioms of TT by changing notions "oriented manifolds with boundary" and
"diffeomorphisms" by "finite CW-pairs (X,Y)" and "homotopy equivalences”. It
follows from the axioms that each V(X) is a vector space with nondegenerate scalar
product.

Some preliminaries : call the space S the homotopy finite if 1) # my(S) < o, 2) Vse S
Vnzl # ma(S,s) < o0, 3) AN Vn>N Vse S my(S,s) = 0. Let us denote by %(S) the
homotopy Euler characteristic : ‘

1= 2 Il ¢ raGs)edm |
ae mo(S) ™=l

for some sqe component o If S is not empty then ¥(S) is a positive rational number.

If F — E —B is a Serre bundle with connected base B then a) if two of the spaces
(F,E,B) are homotopy finite, then the third one also is, b) in this case ¥%(E) = x(B) x(F),
(from the homotopy exact sequence).

Choose some nonempty homotopy finite space S. It is easy to see that for any finite
CW-complex X the space SX of continuous maps from X to S is again homotopy finite.
We can define HT by the next data :

1)  V(X) is a vector space with basis eq, where ae ntg (SX),

2)  the scalar productis (eq,ep) =X (component &)l 8oa

3) for pair Y&X

Zx = Z x(space of maps X — S, which restriction on Y belongs to o). eg.
ae n(SY)

As in the previous section we can introduce a structure of commutative associative
algebra on V(X x S!) for any X. This algebra is exactly represented by symmetric
matrices with real elements (moreover, rational elements), so it is semsimple. Let Ax =

Spec V(X x S!) be the set of colours. This set is a finite set with Gal (Q / Q)-action and
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it is used in computing global spaces V(...) from the local one when we cut along X.

Classical CFT is obtained from any HT with g (S) = + , m1(S) =T.

Of course, any HT gives a topological theory. We cannot obtain knowyMF in this
way, even if we modify the definition of TT considering oriented tangent bundle,
because TT leads to the representations of modular groups with finite images.
Representations in known MF have all infinite images when (genus of S) > 2.

From another point of view HT are good field theories because Zx are positive
numbers and we can go to thermodynamic limit in situations like the one below :

X is a finite CW-complex, H((X,Z) = Zd.

Consider N9-fold Galois cover X of X defined by the map n1(X) — H(X,Z) =24 —

(Z/nz)d. Then Zx, is a partition function for some d-dimensional lattice system anjthere
exists lim (N log Zxy )
N-—yoo )

8. Remarks on central charge and central extensions.

In each CFT there arise certain central extensions of different groups

(diffeomorphism group of circle, modular groups), which are dependent on the number
ce T - central charge. In Rational CFT this c is rational [MA]. If ¢ is an integer, then

projective representations of modular groups are actually linear representations.

I shall now describe a certain universal central extension for topological theories
(T.T.). T.T. is in other words a ®-representation of the ®-category C3, whose objects
are oriented 2-dimensional closed manifolds and whose morphisms Mor¢3 (S1, Sp) are
equivalence classes of 3-dimensional manifolds M with dM = S; U S3, ®-structure in

this category is a disjoint union (analogously to the Segal's definition of conformal
theories).

Let us define a new category 63 with the same objects as in C3 and with new
morphisms.

First, choose (not canonically !) for each surface S a 3-dimensional manifold Mg
with dMg = S. Let Mor'c, (S1, S2) be the set of equivalence classes of pairs (M3 N9,

where OM3 = §; U Sy, N4 = M3 % Ms, ¢ Ms, , see fig. 16.
1 2

Define a function f on pairs (M3,N4) , (M3,N4) with common M3 :

£(N4,N4) = Py (N“allgI4 N 4) -is the first Pontryagin number of a closed

oriented 4-manifold.

Proposition. f(N4,N4) + f(N4,N¢) = f(N4,N%), in other words f( , )is acocycle.
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Proof : It is easy to construct a manifold PS5 (it looks like pantalons) with boundary opP5
equal to
NeU N4 U (N4 U NdyU N4U_ N4,
SRR — w3
The Pontryagin number of a boundary is zero, so we have proven the equality. ¢

Let us identify elements (M3,N%) and (M3 N%) of Mor'cy (S1,S2) when f (N4, N4)

= 0. After this identification we obtain the category 63, whose morphisms MorE
3
(S1,52) are principal Z-bundles over Morc3 (81,592).

It is easy to check that this category 63 is the universal central extension of ®-category
Ca:

In the above construction it is essential that all 2- and 3-dimensional manifolds are
bordant to zero. An interesting problem is to describe universal central extensions of
analogous categories Cy .

It is also possible to give a description of the universal central extension using the
language of modular functors (A. Beilinson). The modification of definition is the
following : instead of the vector spaces V(S,c) one has to consider local systems over
Lagrangian Grassmanians of the real symplectic vector space Ker ( Q{l(S,R) —
HlEsR)

It is known that the fundamental group of any Lagrangian Grassmanian equals Z.
Canonical generator 1 of Z acts by multiplication on exp (21t V-1 c) in the fibres of local
systems arising in RCFT with central charge c.

One can form a tenscr product of two RCFT. The central charge of the resulting
RCFT then equals the sum of central charges of factors. Hence, for any RCFT some
tensor power of it has an integer central charge (because ce Q), and so our projective

representation are actually linear representations of modular groups and category C3.

9. Concluding remarks and further questions.

The presence of an Hermitian scalar product in RCFT means that the local systems

V(...) are defined over R (that is, for closed surfaces with complex structure V(@) =
V(S) , where the bar denotes the complex conjugation).

It seems that V(S) are cohomology groups of some algebraic varieties depending
naturally on the curve S over any field of characteristic 0.

The full definition of RCFT means that the complex structure on the surface is
similar to the 3-dimensional manifold with boundary S, because both structures give a
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vector in V(S).

A. Beilinson proposed a beautiful possibility for giving a rigorous sense to this
analogy : both a 3-dimensional manifold and a complex structure, defines full ®-
subcategory in Repr (71(S)). In 3-dimensional case it is the category of representations
which can be continued on m1(3-manifold), in case of complex structure it is the category
of local systems on S which admits a complex variation of the Hodge structure (see [S]).

I have heard from B. Feigin that N. Reshetikhin and V. Turaev in Leningrad
defined vector spaces V(S) for WZW model in terms of representation theory of quantum

groups with parameter q = root of unity. In fact-they di e 1&&‘(5)’5@3@(-—

alg/ebm’EW
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FIGURES CAPTIONS

A twist around a component of boundary.

Vector space for disk with arbitrary boundary condition.
The pantalons.

Surgery of a graph.

Level sets for 4 possible Morse critical points.

Level sets for fg, s > S¢r.

Level sets for fg, s < ser.

Ball minus two balls, defines multiplication in O.

Ball inside surface x interval, defines action of O on V(S).
Pantalons x circle, defines multiplication in 4.

Surface x interval minus solid torus, action of A.
Three-dimensional picture near L and L3 looks like the product of two-
dimensional picture by the standard circle S!.

Cutting and glueing, using standard surfaces with genus 2.
A representative for morphism in 63.
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