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Foreword

Here is the final version of the e-printDeformation quantization of Poisson manifolds I[33]
posted on the web archive asq-alg/9709040. The changes that have been made are
mostly cosmetic, I have just corrected few mistakes and tried to make clear links between
several lemmas and theorems proven in the paper, and also straightened out some proofs.

Here follows a guide to a short and definitely not complete additional bibliography re-
flecting further development of the subject.

First of all, I have to mention the work of Dmitry Tamarkin (see [44] and a nice exposition
in [22]), which gave a radically new approach to the formality theorem. One of main ideas
is to consider the Lie algebrasTpoly andDpoly not just as dg Lie algebras, but as homotopy
Gerstenhaber algebras, which explains naturally the cup-product on the tangent space. A
very important related issue here is the so called Deligne conjecture which says that on the
Hochschild complex of an arbitrary associative algebra there is a natural action of the dg
operad of chains of the little discs operad. The Deligne conjecture has now several proofs,
see e.g. [36, 37], and a generalization to higher dimensionsin [26]. Unfortunately, up to now,
it is not clear how to extract explicit formulas from Tamarkin’s work, or even how to compare
it with the formality morphism from [33]. Tamarkin’s proof is based on the Etingof-Kazhdan
theorem about quantizations of Lie bialgebras, which is in asense more complicated (and
less explicit) than the Formality theorem itself! It seems that the Etingof-Kazhdan theorem
is a “degree zero” part of a more general not yet established result of the formality of the
differential graded Lie algebra controlling deformationsof the symmetric algebraSym(V) of
a vector space, considered as an associative and coassociative bialgebra. On this Lie algebra
there should be an action of the operad of chains of little 3-dimensional cube operad and
its formality should be considered as a natural generalization of the Formality theorem from
[33]. Up to now there is no explicit complex of a “reasonable size”, controlling deformations
of bialgebras, see [39] for some recent attempts.

In [34] I have tried to perform a shortcut in Tamarkin’s proofavoiding the reference to
Etingof-Kazhdan’s result. Also I proposed a new formality morphism with complex coeffi-
cients, different from the one in [33]. Conjecturally the new morphism behaves in a better
way than the old one with respect to the arithmetic nature of the coefficients (weights of
graphs) and should coincide with Tamarkin’s quasi- isomorphism up to homotopy.

In [45] another generalization of the Formality theorem wasproposed. Namely, one
should consider not only the cohomological Hochschild complex, but also the homological
Hochschild complex which is a module in certain sense over the cohomological one. Related
colored operad here consists of configurations of disjoint discs in a cylinder with two marked
points on both boundary components. This is important for the study of traces in deformation
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quantization, see [15] for an approach to the quantization with traces.
The program of identifying graphs in the formality morphismwith Feynman

diagrams for a topological sigma-model (announced in [33])was performed by
Alberto S. Cattaneo and Giovanni Felder in a series of papers, see [7, 8].

In [4] it is established a formality of the dg Lie algebra which is a global Dolbeault
complex for holomorphic polyvector fields on a given Calabi-Yau manifoldX. Morally,
together with the Formality theorem of [33], this should mean that the extended moduli space
of triangulated categories is smooth in a formal neighborhood of the derived category of
coherent sheaves onX.

In [9] an alternative way for the passage from local to globalcase in the Formality theorem
was described, see also an appendix in [35].

In [35] I proposed a way to use results of [33] in the case of algebraic varieties. It seems
that for rational Poisson varieties deformation quantization is truly canonical in a very strong
sense. For example, I believe that for arbitrary fieldk of characteristic zero there exists cer-
tain canonical isomorphism between the automorphism groupof thek-algebra of polynomial
differential operators on an affinen-dimensional space overk, and the group of polynomial
symplectomorphisms of the standard symplectic 2n-dimensional affine space overk. This is
very surprising because the corresponding Lie algebras of derivations are not at all isomor-
phic.

Finally, repeating myself a bit, I comment on today’s state of the topics listed in Sec-
tion 0.2 in [33]:

1) The comparison with other deformation schemes is not yet performed.
2) This is still a wishful thinking.
3) See conjectures in [34], and also [35].
4) This is not done yet, results from [4] should be used as an intermediate step.
5) Done by Cattaneo and Felder.
6) Not yet completed, see conjectures in [45].
7) In [35] there is a recipe for a canonical quantization for quadratic brackets, see also the

new conjecture from above about an isomorphism between two automorphisms groups.

0 Introduction

In this paper it is proven that any finite-dimensional Poisson manifold can be canonically
quantized (in the sense of deformation quantization). Informally, it means that the set of
equivalence classes of associative algebras close to algebras of functions on manifolds is in
one-to-one correspondence with the set of equivalence classes of Poisson manifolds modulo
diffeomorphisms. This is a corollary of a more general statement, which I proposed around
1993-1994 (theFormality conjecture, see [30, 43]).

For a long time the Formality conjecture resisted all approaches. The solution presented
here uses in a essential way ideas of string theory. Our formulas can be viewed as a perturba-
tion series for a topological two-dimensional quantum fieldtheory coupled with gravity.

0.1 Content of the paper

Section 1: an elementary introduction to the deformation quantization, and precise formula-
tion of the main statement concerning Poisson manifolds.
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Section 2: an explicit formula for the deformation quantization written in coordinates.
Section 3: an introduction to the deformation theory in general, in terms of differential

graded Lie algebras. The material of this section is basically standard.
Section 4: a geometric reformulation of the theory introduced in the previous section, in

terms of odd vector fields on formal supermanifolds. In particular, we introduce convenient
notions of anL∞-morphism and of a quasi-isomorphism, which gives us a tool to identify
deformation theories related with two differential gradedLie algebras. Also in this section we
state our main result, which is an existence of a quasi-isomorphism between the Hochschild
complex of the algebra of polynomials, and the graded Lie algebra of polyvector fields on
affine space.

Section 5: tools for the explicit construction of the quasi-isomorphism mentioned above.
We define compactified configuration spaces related with the Lobachevsky plane, a class
of admissible graphs, differential polynomials on polyvector fields related with graphs, and
integrals over configuration spaces. Technically the same constructions were used in general-
izations of the perturbative Chern-Simons theory several years ago (see [29]). Compactifica-
tions of the configuration spaces are close relatives of Fulton-MacPherson compactifications
of configuration spaces in algebraic geometry (see [16]).

Section 6: it is proven that the machinery introduced in the previous section gives a
quasi-isomorphism and establishes the Formality conjecture for affine spaces. The proof is
essentially an application of the Stokes formula, and a general result of vanishing of certain
integral associated with a collection of rational functions on a complex algebraic variety.

Section 7: results of Section 6 are extended to the case of general manifolds. In order
to do this we recall basic ideas of formal geometry of I. Gelfand and D. Kazhdan, and the
language of superconnections. In order to pass from the affine space to general manifolds we
have to find a non-linear cocycle of the Lie algebra of formal vector fields. It turns out that
such a cocycle can be almost directly constructed from our explicit formulas. In the course
of the proof we calculate several integrals and check their vanishing. Also, we introduce a
general notion of direct image for certain bundles of supermanifolds.

Section 8: we describe an additional structure present in the deformation theory of as-
sociative algebras, the cup-product on the tangent bundle to the super moduli space. The
isomorphism constructed in Sections 6 and 7 is compatible with this structure. One of new
results is the validity of Duflo-Kirillov formulas for Lie algebras in general rigid tensor cat-
egories, in particular for Lie superalgebras. Another application is an equality of two cup-
products in the context of algebraic geometry.

0.2 What is not here

Here is a list of further topics which are not touched in this paper, but are worth to mention.
1) the comparison of the formality with various other known constructions of star-products,

the most notorious one are by De Wilde-Lecomte and by Fedosovfor the case of symplectic
manifolds (see [11, 14]), and by Etingof-Kazhdan for Poisson-Lie groups (see [13]),

2) a reformulation of the Formality conjecture as an existence of a natural construction of
a triangulated category starting from an odd symplectic supermanifold,

3) a study of the arithmetic nature of coefficients in our formulas, and of the possibility
to extend main results for algebraic varieties over arbitrary field of characteristic zero,

4) an application to the Mirror Symmetry, which was the original motivation for the For-
mality conjecture (see [32]),
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5) a reformulation via a Lagrangian for a quantum field theory(from [1]) which seems to
give our formulas as the perturbation expansion,

6) a version of the formality morphism for cyclic homology,
7) a canonical quantization of quadratic brackets, and moregenerally of algebraic Poisson

manifolds.
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I am grateful to G. Dito, Y. Soibelman, and D. Sternheimer formany useful remarks and
comments.

1 Deformation quantization

1.1 Star-products

Let A = Γ(X,OX) be the algebra overR of smooth functions on a finite-dimensionalC∞-
manifoldX. A star-product onA (see [5]) is anassociativeR[[h̄]]-linear product onA[[h̄]]
given by the following formula forf ,g∈ A⊂ A[[h̄]]:

( f ,g) 7→ f ⋆g = f g+ h̄B1( f ,g)+ h̄2B2( f ,g)+ · · · ∈ A[[h̄]] ,

whereh̄ is the formal variable, andBi are bidifferential operators (i.e. bilinear mapsA×
A−→A which are differential operators with respect to each argument of globally bounded
order). The product of arbitrary elements ofA[[h̄]] is defined by the condition of linearity over
R[[h̄]] andh̄-adic continuity:

(

∑
n≥0

fn h̄n

)
⋆

(

∑
n≥0

gn h̄n

)
:= ∑

k,l≥0

fkgl h̄
k+l + ∑

k,l≥0,m≥1

Bm( fk,gl ) h̄k+l+m .

There is a natural gauge group acting on star-products. Thisgroup consists of auto-
morphisms ofA[[h̄]] considered as anR[[h̄]]-module (i.e. linear transformationsA−→A
parametrized bȳh), of the following form:

f 7→ f + h̄D1( f )+ h̄2D2( f )+ . . . , for f ∈ A⊂ A[[h̄]] ,

∑
n≥0

fn h̄n 7→ ∑
n≥0

fn h̄n + ∑
n≥0,m≥1

Dm( fn) h̄n+m, for general elementf (h̄) = ∑
n≥0

fn h̄n ∈ A[[h̄]] ,

whereDi : A−→A are differential operators. IfD(h̄) = 1+ ∑m≥1Dmh̄m is such an automor-
phism, it acts on the set of star- products as

⋆ 7→ ⋆′, f (h̄)⋆′ g(h̄) := D(h̄)
(
D(h̄)−1( f (h̄))⋆D(h̄)−1(g(h̄)

)
, f (h̄),g(h̄) ∈ A[[h̄]] .

We are interested in star-products up to gauge equivalence.
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1.2 First approximation: Poisson structures

It follows from the associativity of⋆ that the bilinear mapB1 : A×A−→A satisfies the equa-
tion

f B1(g,h)−B1( f g,h)+B1( f ,gh)−B1( f ,g)h = 0,

i.e. the linear map̃B1 : A⊗A−→A associated withB1 asB̃1( f ⊗g) := B1( f ,g), is a 2-cocycle
in the cohomological Hochschild complex of algebraA (the definition of this complex is
given in Section 3.4.2).

Let us decomposeB1 into the sum of the symmetric part and of the anti-symmetric part:

B1 = B+
1 +B−1 , B+

1 ( f ,g) = B+
1 (g, f ), B−1 ( f ,g) =−B−1 (g, f ) .

Gauge transformations

B1 7→ B′1, B′1( f ,g) = B1( f ,g)− f D1(g)+D1( f g)−D1( f )g

whereD1 is an arbitrary differential operator, affect only the symmetric part ofB1, i.e. B−1 =
(B′1)

−. One can show that the symmetric partB+
1 can be killed by a gauge transformation

(and it is a coboundary in the Hochschild complex).
Also one can show that the skew-symmetric partB−1 is a derivation with respect to both

functionsf andg. Thus,B−1 comes from a bi-vector fieldα onX:

B−1 ( f ,g) = 〈α,d f ⊗dg〉, α ∈ Γ(X,∧2TX)⊂ Γ(X,TX⊗TX) .

Analogous fact in algebraic geometry is that the second Hochschild cohomology group of the
algebra of functions on a smooth affine algebraic variety is naturally isomorphic to the space
of bi-vector fields (see [25] and also Section 4.6.1.1).

The second termO(h̄2) in the associativity equationf ⋆ (g⋆ h) = ( f ⋆ g) ⋆ h implies that
α gives a Poisson structure onX,

∀ f ,g,h { f ,{g,h}}+{g,{h, f}}+{h,{ f ,g}}= 0,

where { f ,g} :=
f ⋆g−g⋆ f

h̄ |h̄=0
= 2B−1 ( f ,g) = 2〈α,d f⊗dg〉 .

In other words,[α,α] = 0∈ Γ(X,∧3TX), where the bracket is the Schouten-Nijenhuis bracket
on polyvector fields (see Section 4.6.1 for the definition of this bracket).

Thus, gauge equivalence classes of star-products moduloO(h̄2) are classified by Poisson
structures onX. A priori it is not clear whether there exists a star-product with the first
term equal to a given Poisson structure, and whether there exists a preferred choice of an
equivalence class of star-products. We show in this paper that there is a canonical construction
of an equivalence class of star-products for any Poisson manifold.

1.3 Description of quantizations

Theorem 1.1 The set of gauge equivalence classes of star products on a smooth manifold X
can be naturally identified with the set of equivalence classes of Poisson structures depending
formally onh̄:

α = α(h̄) = α1h̄+ α2h̄2 + · · · ∈ Γ(X,∧2TX)[[h̄]], [α,α] = 0∈ Γ(X,∧3TX)[[h̄]]

modulo the action of the group of formal paths in the diffeomorphism group of X, starting at
the identity diffeomorphism.
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Any given Poisson structureα(0) gives a pathα(h̄) := α(0) · h̄ and by the Theorem from
above, a canonical gauge equivalence class of star products. We will not give a proof of this
theorem, as it is an immediate corollary of the Main Theorem of this paper in Section 4.6.2
and a general result from deformation theory (see Section 4.4).

1.4 Examples

1.4.1 Moyal product

The simplest example of a deformation quantization is the Moyal product for the Poisson
structure onRd with constant coefficients:

α = ∑
i, j

α i j ∂i ∧∂ j , α i j =−α ji ∈ R

where∂i = ∂/∂xi is the partial derivative in the direction of coordinatexi , i = 1, . . . ,d. The
formula for the Moyal product is

f ⋆g = f g+ h̄∑
i, j

α i j ∂i( f )∂ j (g)+
h̄2

2 ∑
i, j ,k,l

α i j αkl ∂i∂k( f )∂ j ∂l (g)+ · · ·=

=
∞

∑
n=0

h̄n

n! ∑
i1,...,in; j1,... jn

n

∏
k=1

α ik jk

(
n

∏
k=1

∂ik

)
( f )×

(
n

∏
k=1

∂ jk

)
(g) .

Here and later symbol× denotes the usual product.

1.4.2 Deformation quantization up to the second order

Let α = ∑i, j α i j ∂i ∧ ∂ j be a Poisson bracket with variable coefficients in an open domain of
Rd (i.e. α i j is not a constant, but a function of coordinates), then the following formula gives
an associative product moduloO(h̄3):

f ⋆g = f g+ h̄∑
i, j

α i j ∂i( f )∂ j (g)+
h̄2

2 ∑
i, j ,k,l

α i j αkl ∂i∂k( f )∂ j ∂l (g)+

+
h̄2

3

(

∑
i, j ,k,l

α i j ∂ j(αkl)(∂i∂k( f )∂l (g)− ∂k( f )∂i∂l (g))

)
+O(h̄3)

The associativity up to the second order means that for any 3 functionsf ,g,h one has

( f ⋆g)⋆h= f ⋆ (g⋆h)+O(h̄3) .

1.5 Remarks

In general, one should consider bidifferential operatorsBi with complex coefficients, as we
expect to associate by quantization self-adjoint operators in a Hilbert space to real-valued
classical observables. In this paper we deal with purely formal algebraic properties of the
deformation quantization and work mainly over the fieldR of real numbers.
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Also, it is not clear whether the natural physical counterpart for the “deformation quanti-
zation” for general Poisson brackets is the usual quantum mechanics. Definitely it is true for
the case of non-degenerate brackets, i.e. for symplectic manifolds, but our results show that
in general a topological open string theory is more relevant.

2 Explicit universal formula

Here we propose a formula for the star-product for arbitraryPoisson structureα in an open
domain of the standard coordinate spaceRd. Terms of our formula moduloO(h̄3) are the
same as in the previous section, plus a gauge-trivial term oforderO(h̄2), symmetric inf and
g. Terms of the formula are certain universal polydifferential operators applied to coefficients
of the bi-vector fieldα and to functionsf ,g. All indices corresponding to coordinates in the
formula appear once as lower indices and once as upper indices, i.e. the formula is invariant
under affine transformations ofRd.

In order to describe terms proportional toh̄n for any integern≥ 0, we introduce a special
classGn of oriented labeled graphs.

All graphs considered in this paper are finite,oriented(i.e. every edge carries an orien-
tation), have no multiple edges and no loops. Such objects wewill call here simply graphs
without adding adjectives.

Definition 2.1 A graph Γ is a pair (VΓ,EΓ) of two finite sets such that EΓ is a subset of
(VΓ×VΓ)\VΓ.

Elements ofVΓ are vertices ofΓ, elements ofEΓ are edges ofΓ. If e= (v1,v2) ∈ EΓ ⊆
VΓ×VΓ is an edge then we say thate starts atv1 and ends atv2.

For any integern≥ 0 we define certain setGn of labeled graphs. We say thatΓ (with
some additioanl labels) belongs toGn if

1) Γ hasn+2 vertices and 2n edges,
2) the set verticesVΓ is {1, . . . ,n}⊔{L,R}, whereL,Rare just two symbols (capital roman

letters, mean Left and Right),
3) edges ofΓ are labeled by symbolse1

1,e
2
1,e

1
2,e

2
2, . . . ,e

1
n,e

2
n ,

4) for everyk∈ {1, . . . ,n} edges labeled bye1
k ande2

k start at the vertexk.
Obviously, setGn is finite, it has

(
n(n+1)

)n
elements forn≥ 1 and 1 element forn = 0.

With every labeled graphΓ ∈Gn we associate a bidifferential operator

BΓ,α : A×A−→A, A = C∞(V ), V is an open domain inRd

which depends on bi-vector fieldα ∈ Γ(V ,∧2TV ), not necessarily a Poisson one. We show
one example, from which the general rule should be clear. In Figure 1, one hasn = 3 and the
list of edges is

(
e1

1,e
2
1,e

1
2,e

2
2,e

1
3,e

2
3

)
=
(
(1,L),(1,R),(2,R),(2,3),(3,L),(3,R)

)
.

In the picture ofΓ we put independent indices 1≤ i1, . . . , i6 ≤ d on edges, instead of
labelse∗∗. The operatorBΓ,α corresponding to this graph is

( f ,g) 7→ ∑
i1,...,i6

α i1i2α i3i4∂i4(α
i5i6)∂i1∂i5( f )∂i2∂i3∂i6(g) .
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Figure 1: An example of a graph.
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Figure 2: Angleφh.

The general formula for the operatorBΓ,α is

BΓ,α( f ,g) := ∑
I :EΓ−→{1,...,d}

[
n

∏
k=1

(

∏
e∈EΓ, e=(∗,k)

∂I(e)

)
α I(e1

k)I(e2
k)

]
×

×
(

∏
e∈EΓ, e=(∗,L)

∂I(e)

)
f ×
(

∏
e∈EΓ, e=(∗,R)

∂I(e)

)
g .

In the next step we associate a weightWΓ ∈R with each graphΓ ∈Gn. In order to define
it we need an elementary construction from hyperbolic geometry.

Let p,q, p 6= q be two points in the upper half-planeH = {z∈ C| Im(z) > 0} endowed
with the Lobachevsky metric. We denote byφh(p,q) ∈ R/2πZ the angle atp formed by
two lines,l(p,q) andl(p,∞) passing throughp andq, and throughp and the point∞ on the
absolute. The direction of the measurement of the angle is counterclockwise froml(p,∞) to
l(p,q). In the notationφh(p,q) letterh is for harmonic(see Figure 2).

An easy planimetry shows that one can express angleφh(p,q) in terms of complex num-
bers:

φh(p,q) = Arg((q− p)/(q− p)) =
1
2i

Log

(
(q− p)(q− p)

(q− p)(q− p)

)
.

Superscripth in the notationφh refers to the fact thatφh(p,q) is harmonic function in
both variablesp,q ∈H . Functionφh(p,q) can be defined by continuity also in the case
p,q∈H ⊔R, p 6= q.

8



Denote byHn the space of configurations ofn numbered pairwise distinct points onH :

Hn = {(p1, . . . , pn)|pk ∈H , pk 6= pl for k 6= l} .

Hn ⊂ Cn is a non-compact smooth 2n-dimensional manifold. We introduce orientation on
Hn using the natural complex structure on it.

If Γ ∈Gn is a graph as above, and(p1, . . . , pn) ∈Hn is a configuration of points, then we
draw a copy ofΓ on the planeR2≃C by assigning pointpk ∈H to the vertexk, 1≤ k≤ n,
point 0∈ R ⊂ C to the vertexL, and point 1∈ R ⊂ C to the vertexR. Each edge should
be drawn as a line interval in hyperbolic geometry. Every edge e of the graphΓ defines an
ordered pair(p,q) of points onH ⊔R, thus an angleφh

e := φh(p,q). If points pi move
around, we get a functionφh

e onHn with values inR/2πZ.
We define the weight ofΓ as

wΓ :=
1

n!(2π)2n

∫

Hn

n∧

i=1

(dφh
e1
k
∧dφh

e2
k
) .

Lemma 2.2 The integral in the definition of wΓ is absolutely convergent.

This lemma is a particular case of a more general statement proven in Section 6 (see the
last sentence in Section 6.2).

Theorem 2.3 Let α be a Poisson bi-vector field in a domain ofRd. The formula

f ⋆g :=
∞

∑
n=0

h̄n ∑
Γ∈Gn

wΓBΓ,α( f ,g)

defines an associative product. If we change coordinates, weobtain a gauge equivalent star-
product.

The proof of this theorem is in a sense elementary, it uses only the Stokes formula and
combinatorics of admissible graphs. We will not give here the proof of this theorem as it is a
corollary of a general result proven in Section 6.

3 Deformation theory via differential graded Lie algebras

3.1 Tensor categoriesSuperand Graded

Here we make a comment about the terminology. This comment looks a bit pedantic, but it
could help in the struggle with signs in formulas.

The main idea of algebraic geometry is to replace spaces by commutative associative rings
(at least locally). One can further generalize this considering commutative associative alge-
bras in general tensor categories (see [10]). In this way onecan imitate many constructions
from algebra and differential geometry.

The fundamental example is supermathematics, i.e. mathematics in the tensor category
Superk of super vector spaces over a fieldk of characteristic zero (see Chapter 3 in [38]).
The categorySuperk is the category ofZ/2Z-graded vector spaces overk (representations of
the groupZ/2Z) endowed with the standard tensor product, with the standard associativity
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functor, and with a modified commutativity functor (the Koszul rule of signs). We denote
by Π the usual functorSuperk−→Superk changing the parity. It is given on objects by the
formulaΠV = V⊗k0|1. In the sequel we will consider the standard tensor categoryVectk of
vector spaces overk as the full subcategory ofSuperk consisting of pure even spaces.

The basic tensor category which appears everywhere in topology and homological algebra
is a full subcategory of the tensor category ofZ-graded super vector spaces. Objects of this
category are infinite sumsE = ⊕n∈ZE (n) such thatE (n) is pure even for evenn, and pure
odd for oddn. We will slightly abuse the language calling this category also the category of
graded vector spaces, and denote it simply byGradedk. We denote byE n the usualk-vector
space underlying the graded componentE (n). The super vector space obtained if we forget
aboutZ-grading onE ∈Ob jects(Gradedk) is

⊕
n∈Z Πn(E n).

Analogously, we will speak about graded manifolds. They aredefined as supermanifolds
endowed withZ-grading on the sheaf of functions obeying the same conditions on the parity
as above.

The shift functor[1] : Gradedk−→Gradedk (acting from the right) is defined as the tensor
product with graded spacek[1] wherek[1]−1 ≃ k, k[1]6=−1 = 0. Its powers are denoted by
[n], n∈ Z. Thus, for graded spaceE we have

E =
⊕

n∈Z

E
n[−n] .

Almost all results in the present paper formulated for graded manifolds, graded Lie alge-
bras etc., hold also for supermanifolds, super Lie algebrasetc.

3.2 Maurer-Cartan equation in differential graded Lie algebras

This part is essentially standard (see [21, 23, 41]).
Let g be a differential graded Lie algebra over fieldk of characteristic zero. Below we

recall the list of structures and axioms:

g =
⊕

k∈Z

gk[−k], [ , ] : gk⊗gl−→gk+l , d : gk−→gk+1,

d(d(γ)) = 0, d[γ1,γ2] = [dγ1,γ2]+ (−1)γ1[γ1,dγ2], [γ2,γ1] =−(−1)γ1·γ2[γ1,γ2],

[γ1, [γ2,γ3]]+ (−1)γ3·(γ1+γ2)[γ3, [γ1,γ2]]+ (−1)γ1·(γ2+γ3)[γ2, [γ3,γ1]] = 0 .

In formulas above symbolsγi ∈ Z mean the degrees of homogeneous elementsγi , i.e.
γi ∈ gγi .

In other words,g is a Lie algebra in the tensor category of complexes of vectorspaces
overk. If we forget about the differential and the grading ong, we obtain a Lie superalgebra.

We associate withg a functorDe fg on the category of finite-dimensional commutative
associative algebras overk, with values in the category of sets. First of all, let us assume
that g is a nilpotent Lie superalgebra. We define setMC (g) (the set of solutions of the
Maurer-Cartan equation modulo the gauge equivalence) by the formula

MC (g) :=

{
γ ∈ g1| dγ +

1
2
[γ,γ] = 0

}/
Γ0
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whereΓ0 is the nilpotent group associated with the nilpotent Lie algebrag0. The groupΓ
acts by affine transformations of the vector spaceg1. The action ofΓ0 is defined by the
exponentiation of the infinitesimal action of its Lie algebra:

α ∈ g0 7→ (γ̇ = dα +[α,γ]) .

Now we are ready to introduce functorDe fg. Technically, it is convenient to define
this functor on the category of finite-dimensional nilpotent commutative associative alge-
braswithoutunit. Letm be such an algebra,mdim(m)+1 = 0. The functor is given (on objects)
by the formula

De fg(m) = MC (g⊗m) .

In the conventional approachm is the maximal ideal in a finite-dimensional Artin algebra
with unit

m′ := m⊕k ·1 .

In general, one can think about commutative associative algebras without unit as about objects
dual to spaces with base points. Algebra corresponding to a space with base point is the
algebra of functions vanishing at the base point.

One can extend the definition of the deformation functor to algebras with linear topol-
ogy which are projective limits of nilpotent finite-dimensional algebras. For example, in the
deformation quantization we use the following algebra overR:

m := h̄R[[h̄]] = lim
←

(
h̄R[h̄]/h̄kR[h̄]

)
as k→ ∞ .

3.3 Remark

Several authors, following a suggestion of P. Deligne, stressed that the setDe fg(m) should
be considered as the set of equivalence classes of objects ofcertain groupoid naturally as-
sociated withg(m). Almost always in deformation theory, differential gradedLie algebras
are supported in non-negative degrees,g<0 = 0. Our principal example in the present pa-
per, the shifted Hochschild complex (see the next subsection), has a non-trivial component
in degree−1, when it is considered as a graded Lie algebra. The setDe fg(m) in such a
case has a natural structure of the set of equivalence classes for a 2-groupoid. In general,
if one considers differential graded Lie algebras with components in negative degrees, one
meets immediately polycategories and nilpotent homotopy types. Still, it is only a half of the
story because one can not say anything aboutg≥3 using this language. Maybe, the better way
is to extend the definition of the deformation functor to the category of differential graded
nilpotent commutative associative algebras, see the last remark in Section 4.5.2.

3.4 Examples

There are many standard examples of differential graded Liealgebras and related moduli
problems.

11



3.4.1 Tangent complex

Let X be a complex manifold. Defineg overC as

g =
⊕

k∈Z

gk[−k]; gk = Γ(X,Ω0,k
X ⊗T1,0

X ) for k≥ 0, g<0 = 0

with the differential equal to∂ , and the Lie bracket coming from the cup-product on∂ -forms
and the usual Lie bracket on holomorphic vector fields.

The deformation functor related withg is the usual deformation functor for complex
structures onX. The setDe fg(m) can be naturally identified with the set of equivalence
classes of analytic spacesX̃ endowed with a flat mapp : X̃−→Spec(m′), and an identification
i : X̃×Spec(m′) Spec(C)≃ X of the special fiber ofp with X.

3.4.2 Hochschild complex

Let A be an associative algebra over fieldk of characteristic zero. The graded space of
Hochschild cochains ofA with coefficients inA considered as a bimodule over itself is

C•(A,A) :=
⊕

k≥0

Ck(A,A)[−k], Ck(A,A) := HomVectk (A
⊗k,A) .

We define graded vector spaceg overk by formulag := C•(A,A)[1]. Thus, we have

g =
⊕

k∈Z

gk[−k]; gk := Hom(A⊗(k+1),A) for k≥−1, g<(−1) = 0 .

The differential ing is shifted by 1 the usual differential in the Hochschild complex, and
the Lie bracket is the Gerstenhaber bracket. The explicit formulas for the differential and for
the bracket are:

(dΦ)(a0⊗·· ·⊗ak+1) =a0 ·Φ(a1⊗·· ·⊗ak+1)

−
k

∑
i=0

(−1)iΦ(a0⊗·· ·⊗ (ai ·ai+1)⊗·· ·⊗ak+1)

+ (−1)kΦ(a0⊗·· ·⊗ak) ·ak+1, Φ ∈ gk,

and
[Φ1,Φ2] = Φ1 ◦Φ2− (−1)k1k2Φ2◦Φ1, Φi ∈ gki ,

where the (non-associative) product◦ is defined as

(Φ1 ◦Φ2)(a0⊗·· ·⊗ak1+k2) =

k1

∑
i=0

(−1)ik2Φ1(a0⊗·· ·⊗ai−1⊗ (Φ2(ai⊗·· ·⊗ai+k2))⊗ai+k2+1⊗·· ·⊗ak1+k2) .

We would like to give here also an abstract definition of the differential and of the bracket
on g. Let F denote the free coassociative graded coalgebra with counitcogenerated by the
graded vector spaceA[1]:

F =
⊕

n≥1

⊗n(A[1]) .

12



Graded Lie algebrag is the Lie algebra of coderivations ofF in the tensor category
Gradedk. The associative product onA gives an elementmA ∈ g1, mA : A⊗A−→A satis-
fying the equation[mA,mA] = 0. The differentiald in g is defined asad(mA).

Again, the deformation functor related tog is equivalent to the usual deformation functor
for algebraic structures. Associative products onA correspond to solutions of the Maurer-
Cartan equation ing. The setDe fg(m) is naturally identified with the set of equivalence
classes of pairs(Ã, i) whereÃ is an associative algebra overm′ = m⊕k ·1 such that̃A is free
as anm′-module, andi an isomorphism ofk-algebras̃A⊗m′ k ≃ A.

The cohomology of the Hochschild complex are

HHk(A,A) = ExtkA−mod−A(A,A),

theExt-groups in the abelian category of bimodules overA. The Hochschild complexwithout
shift by 1 also has a meaning in deformation theory, it also has a canonical structure of
differential graded Lie algebra, and it controls deformations ofA as a bimodule.

4 Homotopy Lie algebras and quasi-isomorphisms

In this section we introduce a language convenient for the homotopy theory of differential
graded Lie algebras and for the deformation theory. The ground fieldk for linear algebra in
our discussion is an arbitrary field of characteristic zero,unless specified.

4.1 Formal manifolds

LetV be a vector space. We denote byC(V) the cofree cocommutative coassociative coalge-
bra without counit cogenerated byV:

C(V) =
⊕

n≥1

(
⊗nV

)Σn ⊂
⊕

n≥1

(
⊗nV

)
.

Intuitively, we think aboutC(V) as about an object corresponding to a formal manifold,
possibly infinite-dimensional, with base point:

(
Vf ormal, base point

)
:=
(

Formal neighborhood of zero inV, 0
)

.

The reason for this is that ifV is finite-dimensional thenC(V)∗ (the dual space toC(V)) is
the algebra of formal power series onV vanishing at the origin.

Definition 4.1 A formal pointed manifold M is an object corresponding to a coalgebraC

which is isomorphic to C(V) for some vector space V.

The specific isomorphism betweenC andC(V) is not considered as a part of data. Nev-
ertheless, the vector spaceV can be reconstructed fromM as the space of primitive elements
in coalgebraC . Here for a nonunital coalgebraA = C(V) we define primitive elements as
solutions of the equation∆(a) = 0 where∆ : A−→A⊗A is the coproduct onA.

Speaking geometrically,V is the tangent space toM at the base point. A choice of an
isomorphism betweenC andC(V) can be considered as a choice of an affine structure onM.

13



If V1 andV2 are two vector spaces then a mapf between corresponding formal pointed
manifolds is defined as a homomorphism of coalgebras (a kind of the pushforward map on
distribution-valued densities supported at zero)

f∗ : C(V1)−→C(V2) .

By the universal property of cofree coalgebras any such homomorphism is uniquely specified
by a linear map

C(V1)−→V2

which is the composition off∗ with the canonical projectionC(V2)−→V2. Homogeneous
components of this map,

f (n) :
(
⊗n(V1)

)Σn−→V2, n≥ 1

can be considered as Taylor coefficients off . More precisely, Taylor coefficients are defined
as symmetric polylinear maps

∂ n f :⊗n(V1)−→V2, ∂ n f (v1 · · · · ·vn) :=
∂ n

∂ t1 . . .∂ tn |t1=···=tn=0
( f (t1v1 + · · ·+ tnvn)) .

Map ∂ n f goes through the quotientSymn(V1) :=
(
⊗nV1

)
Σn

. Linear map f (n) coincides

with ∂ n f after the identification of thesubspace
(
⊗nV1

)Σn ⊂ ⊗nV1 with thequotientspace
Symn(V1).

As in the usual calculus, there is the inverse mapping theorem: non-linear mapf is in-
vertible iff its first Taylor coefficientf (1) : V1−→V2 is invertible.

Analogous definitions and statements can be made in other tensor categories, including
Superk andGradedk.

The reader can ask why we speak about base points for formal manifolds, as such mani-
folds have only one geometric point. The reason is that laterwe will consider formal graded
manifolds depending on formal parameters. In such a situation the choice of the base point is
a non-trivial part of the structure.

4.2 Pre-L∞-morphisms

Let g1 andg2 be two graded vector spaces.

Definition 4.2 A pre-L∞-morphismF fromg1 to g2 is a map of formal pointed graded man-
ifolds

F :
(
(g1[1]) f ormal,0

)
−→

(
(g2[1]) f ormal,0

)
.

MapF is defined by its Taylor coefficients which are linear maps∂ nF of graded vector
spaces:

∂ 1
F : g1−→g2

∂ 2
F : ∧2(g1)−→g2[−1]

∂ 3
F : ∧3(g1)−→g2[−2]

. . .
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Here we use the natural isomorphismSymn(g1[1])≃
(
∧n(g1)

)
[n]. In plain terms, we have

a collection of linear maps between ordinary vector spaces

F(k1,...,kn) : gk1
1 ⊗·· ·⊗gkn

1 −→gk1+···+kn+(1−n)
2

with the symmetry property

F(k1,...,kn)(γ1⊗·· ·⊗ γn) =−(−1)kiki+1F(k1,...,ki+1,ki ,...,kn)(γ1⊗·· ·⊗ γi+1⊗ γi⊗·· ·⊗ γn) .

One can write (slightly abusing notations)

∂ n
F (γ1∧·· ·∧ γn) = F(k1,...,kn)(γ1⊗·· ·⊗ γn)

for γi ∈ gki
1 , i = 1, . . . ,n.

In the sequel we will denote∂ nF simply byFn.

4.3 L∞-algebras andL∞-morphisms

Suppose that we have an odd vector fieldQ of degree+1 (with respect toZ-garding) on
formal graded manifold(g[1] f ormal,0) such that the Taylor series for coefficients ofQ has
terms of polynomial degree 1 and 2 only (i.e. linear and quadratic terms). The first Taylor
coefficientQ1 gives a linear mapg−→g of degree+1 (or, better, a mapg−→g[1]). The
second coefficientQ2 : ∧2g−→g gives a skew-symmetric bilinear operation of degree 0 ong.

It is easy to see that if[Q,Q]super= 2Q2 = 0 theng is a differential graded Lie algebra,
with differentialQ1 and the bracketQ2, and vice versa.

In [1], supermanifolds endowed with an odd vector fieldQ such that[Q,Q]super= 0, are
calledQ- manifolds. By analogy, we can speak about formal graded pointedQ-manifolds.

Definition 4.3 An L∞-algebra is a pair(g,Q) whereg is a graded vector space and Q is a
coderivation of degree+1 on the graded coalgebra C(g[1]) such that Q2 = 0.

Other names forL∞-algebras are “(strong) homotopy Lie algebras” and “Sugawara alge-
bras” (see e.g. [24]).

Usually we will denoteL∞-algebra(g,Q) simply byg.
The structure of anL∞-algebra on a graded vector spaceg is given by the infinite sequence

of Taylor coefficientsQi of the odd vector fieldQ (coderivation ofC(g[1])):

Q1 : g−→g[1]

Q2 : ∧2(g)−→g

Q3 : ∧3(g)−→g[−1]

. . .

The conditionQ2 = 0 can be translated into an infinite sequence of quadratic constraints
on polylinear mapsQi . First of these constraints means thatQ1 is the differential of the
graded spaceg. Thus,(g,Q1) is a complex of vector spaces overk. The second constraint
means thatQ2 is a skew-symmetric bilinear operation ong, for whichQ1 satisfies the Leibniz
rule. The third constraint means thatQ2 satisfies the Jacobi identity up to homotopy given by
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Q3, etc. As we have seen, a differential graded Lie algebra is the same as anL∞-algebra with
Q3 = Q4 = · · ·= 0.

Nevertheless, we recommend to return to the geometric pointof view and think in terms
of formal gradedQ-manifolds. This naturally leads to the following

Definition 4.4 An L∞-morphism between two L∞-algebrasg1 andg2 is a pre-L∞-morphism
F such that the associated morphismF∗ : C(g1[1])−→C(g2[1]) of graded cocommutative
coalgebras, is compatible with coderivations.

In geometric terms, anL∞-morphism gives aQ-equivariant map between two formal
graded manifolds with base points.

For the case of differential graded Lie algebras a pre-L∞-morphismF is anL∞-morphism
iff it satisfies the following equation for anyn = 1,2. . . and homogeneous elementsγi ∈ g1:

dFn(γ1∧ γ2∧·· ·∧ γn)−
n

∑
i=1

±Fn(γ1∧·· ·∧dγi ∧·· ·∧ γn)

=
1
2 ∑

k,l≥1, k+l=n

1
k!l ! ∑

σ∈Σn

±[Fk(γσ1 ∧·· ·∧ γσk),Fl (γσk+1 ∧·· ·∧ γσn)]

+∑
i< j
±Fn−1([γi ,γ j ]∧ γ1∧·· ·∧ γ̂i ∧·· ·∧ γ̂ j ∧·· ·∧ γn) .

Here are first two equations in the explicit form:

dF1(γ1) = F1(dγ1) ,

dF2(γ1∧ γ2)−F2(dγ1∧ γ2)− (−1)γ1F2(γ1∧dγ2) = F1([γ1,γ2])− [F1(γ1),F1(γ2)] .

We see thatF1 is a morphism of complexes. The same is true for the case of general
L∞-algebras. The graded spaceg for an L∞-algebra(g,Q) can be considered as the tensor
product ofk[−1] with the tangent space to the corresponding formal graded manifold at the
base point. The differentialQ1 ong comes from the action ofQ on the manifold.

Let us assume thatg1 and g2 are differential graded Lie algebras, andF is an L∞-
morphism fromg1 to g2. Any solutionγ ∈ g1

1⊗m of the Maurer-Cartan equation where
m is a nilpotent non-unital algebra, produces a solution of the Maurer-Cartan equation in
g1

2⊗m:

dγ +
1
2
[γ,γ] = 0 =⇒ dγ̃ +

1
2
[γ̃, γ̃] = 0 where γ̃ =

∞

∑
n=1

1
n!

Fn(γ ∧·· ·∧ γ) ∈ g1
2⊗m .

The same formula is applicable to solutions of the Maurer-Cartan equation depending
formally on parameter̄h:

γ(h̄) = γ1h̄+ γ2h̄2 + · · · ∈ g1
1[[h̄]],

dγ(h̄)+
1
2
[γ(h̄),γ(h̄)] = 0 =⇒ dγ̃(h̄)+

1
2
[γ̃(h̄), γ̃(h̄)] = 0 .
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The reason why it works is that the Maurer-Cartan equation inany differential graded Lie
algebrag can be understood as the collection of equations for the subscheme of zeroes ofQ
in formal manifoldg[1] f ormal:

dγ +
1
2
[γ,γ] = 0⇐⇒Q|γ = 0

L∞-morphisms map zeroes ofQ to zeroes ofQ because they commute withQ. We will see
in Section 4.5.2 thatL∞-morphisms induce natural transformations of deformationfunctors.

4.4 Quasi-isomorphisms

L∞-morphisms generalize usual morphisms of differential graded Lie algebras. In particular,
the first Taylor coefficient of anL∞-morphism fromg1 to g2 is a morphism of complexes

(g1,Q
(g1)
1 )−→(g2,Q

(g2)
1 ) whereQ(gi)

1 are the first Taylor coefficients of vector fieldsQ(gi)

(which we denoted before simply byQ).

Definition 4.5 A quasi-isomorphism between L∞-algebrasg1,g2 is an L∞-morphismF such
that the first componentF1 induces isomorphism between cohomology groups of complexes

(g1,Q
(g1)
1 ) and(g2,Q

(g2)
1 ).

Similarly, we can define quasi-isomorphisms for formal graded pointedQ-manifolds, as
maps inducing isomorphisms of cohomology groups of tangentspaces at base points (en-
dowed with differentials which are linearizations of the vector fieldQ).

The essence of the homotopy/deformation theory is contained in the following

Theorem 4.6 Let g1,g2 be two L∞-algebras andF be an L∞-morphism fromg1 to g2. As-
sume thatF is a quasi-isomorphism. Then there exists an L∞-morphism fromg2 to g1 induc-

ing the inverse isomorphism between cohomology of complexes (gi ,Q
(gi)
1 ) i = 1,2. Also, for

the case of differential graded algebras, L∞-morphismF induces an isomorphism between
deformation functors associated withgi.

The first part of this theorem shows that ifg1 is quasi-isomorphic tog2 theng2 is quasi-
isomorphic tog1, i.e. we get an equivalence relation.

The isomorphism between deformation functors at the secondpart of the theorem is given
by the formula from the last part of Section 4.3.

This theorem is essentially standard (see related results in [21, 23, 41]). Our approach
consists in the translation of all relevant notions to the geometric language of formal graded
pointedQ-manifolds.

4.5 A sketch of the proof of Theorem 4.6

4.5.1 Homotopy classification ofL∞-algebras

Any complex of vector spaces can be decomposed into the direct sum of a complex with
trivial differential and a contractible complex. There is an analogous decomposition in the
non-linear case.
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Definition 4.7 An L∞-algebra(g,Q) is called minimal if the first Taylor coefficient Q1 of the
coderivation Q vanishes.

The property of being minimal is invariant underL∞-isomorphisms. Thus, one can speak
about minimal formal graded pointedQ-manifolds.

Definition 4.8 An L∞-algebra(g,Q) is called linear contractible if higher Taylor coefficients
Q≥2 vanish and the differential Q1 has trivial cohomology.

The property of being linear contractible is notL∞-invariant. One can call formal graded
pointedQ-manifold contractibleiff the corresponding differential graded coalgebra isL∞-
isomorphic to a linear contractible one.

Lemma 4.9 Any L∞-algebra(g,Q) is L∞-isomorphic to the direct sum of a minimal and of a
linear contractible L∞-algebras.

This lemma says that there exists an affine structure on a formal graded pointed manifold
in which the odd vector fieldQ has the form of a direct sum of a minimal and a linear con-
tractible one. This affine structure can be constructed by induction in the degree of the Taylor
expansion. The base of the induction is the decomposition ofthe complex(g,Q1) into the
direct sum of a complex with vanishing differential and a complex with trivial cohomology.
We leave details of the proof of the lemma to the reader.Q.E.D.

As a side remark, we mention analogy between this lemma and a theorem from singularity
theory (see, for example, the beginning of 11.1 in [2]): for every germf of analytic function
at critical point one can find local coordinates(x1, . . . ,xk,y1, . . . ,yl ) such thatf = constant+
Q2(x)+Q≥3(y) whereQ2 is a nondegenerate quadratic form inx andQ≥3(y) is a germ of a
function iny such that its Taylor expansion aty = 0 starts at terms of degree at least 3.

Let g be anL∞-algebra andgmin be a minimalL∞-algebra as in the previous lemma. Then
there are twoL∞-morphisms (projection and inclusion)

(g[1] f ormal,0)−→(gmin[1] f ormal,0), (gmin[1] f ormal,0)−→(g[1] f ormal,0)

which are both quasi-isomorphisms. From this follows that if

(g1[1] f ormal,0)−→(g2[1] f ormal,0)

is a quasi-isomorphism then there exists a quasi-isomorphism

(gmin
1 [1] f ormal,0)−→(gmin

2 [1] f ormal,0) .

Any quasi-isomorphism between minimalL∞-algebras is invertible, because it induces an
isomorphism of spaces of cogenerators (the inverse mappingtheorem mentioned at the end
of Section 4.1). Thus, we proved the first part of the theorem.Also, we see that the set
equivalence classes ofL∞-algebras up to quasi-isomorphisms can be naturally identified with
the set of equivalence classes of minimalL∞-algebras up toL∞-isomorphisms.
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4.5.2 Deformation functors at fixed points ofQ

The deformation functor can be defined in terms of a formal gradedQ-manifoldM with base
point (denoted by 0). The set of solutions of the Maurer-Cartan equation with coefficients in
a finite-dimensional nilpotent non-unital algebram is defined as the set ofm-points of the
formal scheme of zeroes ofQ:

Maps
((

Spec(m⊕k ·1), base point
)
,
(
Zeroes(Q),0

))

⊂Maps
((

Spec(m⊕k ·1), base point
)
,
(
M,0

))
.

In terms of the coalgebraC corresponding toM this set is equal to the set of homomor-
phisms of coalgebrasm∗−→C with the image annihilated byQ. Another way to say this
is to introduce aglobal (i.e. not formal) pointedQ-manifold of maps from

(
Spec(m⊕ k ·

1), base point
)

to (M,0) and consider zeroes of the global vector fieldQ on it.
Two solutionsp0 and p1 of the Maurer-Cartan equation are called gauge equivalent iff

there exists (parametrized bySpec(m⊕k ·1)) polynomial family of odd vector fieldsξ (t) on
M (of degree−1 with respect toZ-grading) and a polynomial solution of the equation

dp(t)
dt

= ([Q,ξ (t)]super)|p(t), p(0) = p0, p(1) = p1,

wherep(t) is a polynomial family ofm-points of formal graded manifoldM with base point.
In terms ofL∞-algebras, the set of polynomial paths{p(t)} is naturally identified with

g1⊗m⊗ k[t]. Vector fieldsξ (t) depending polynomially ont are not necessarily vanishing
at the base point 0.

One can check that the gauge equivalence defined above is indeed an equivalence relation,
i.e. it is transitive. For formal graded pointed manifoldM we define setDe fM(m) as the set of
gauge equivalence classes of solutions of the Maurer-Cartan equation. The correspondence
m 7→ De fM(m) extends naturally to a functor denoted also byDe fM. Analogously, forL∞-
algebrag we denote byDe fg the corresponding deformation functor.

One can easily prove the following properties:
1) for a differential graded Lie algebrag the deformation functor defined as above for

(g[1] f ormal,0), is naturally equivalent to the deformation functor definedin Section 3.2,
2) anyL∞-morphism gives a natural transformation of functors,
3) the functorDe fg1⊕g2 corresponding to the direct sum of twoL∞-algebras, is naturally

equivalent to the product of functorsDe fg1×De fg2,
4) the deformation functor for a linear contractibleL∞-algebrag is trivial, De fg(m) is a

one-element set for everym.
Properties 2)-4) are just trivial, and 1) is easy. It followsfrom properties 1)-4) that if an

L∞-morphism of differential graded Lie algebras is a quasi-isomorphism, then it induces an
isomorphism of deformation functors. Theorem 4.6 is proven. Q.E.D.

We would like to notice here that in the definition of the deformation functor one can
consider just a formal pointedsuper Q-manifold(M,0) (i.e. not a graded one), andm could be
a finite-dimensional nilpotent differential super commutative associative non-unital algebra.
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4.6 Formality

4.6.1 Two differential graded Lie algebras

Let X be a smooth manifold. We associate with it two differential graded Lie algebras over
R. The first differential graded Lie algebraDpoly(X) is a subalgebra of the shifted Hochschild
complex of the algebraA of functions onX (see Section 3.4.2). The spaceDn

poly(X), n≥−1

consists of Hochschild cochainsA⊗(n+1)−→A given by polydifferential operators. In local
coordinates(xi) any element ofDn

poly can be written as

f0⊗·· ·⊗ fn 7→ ∑
(I0,...,In)

CI0,...,In(x) ·∂I0( f0) . . .∂In( fn)

where the sum is finite,Ik denote multi-indices,∂Ik denote corresponding partial derivatives,
and fk andCI0,...,In are functions in(xi).

The second differential graded Lie algebra,Tpoly(X) is the graded Lie algebra of polyvec-
tor fields onX:

Tn
poly(X) = Γ(X,∧n+1TX), n≥−1

endowed with the standard Schouten-Nijenhuis bracket and with the differentiald := 0. We
remind here the formula for this bracket:

for k, l ≥ 0 [ξ0∧·· ·∧ξk,η0∧·· ·∧ηl ] =

=
k

∑
i=0

l

∑
j=0

(−1)i+ j+k[ξi ,η j ]∧ξ0∧·· ·∧ξi−1∧ξi+1∧·· ·∧ξk∧η0∧·· ·∧η j−1∧η j+1∧·· ·∧ηl ,

whereξi ,η j ∈ Γ(X,TX),
for k≥ 0 [ξ0∧·· ·∧ξk,h] =

=
k

∑
i=0

(−1)iξi(h) ·
(
ξ0∧·· ·∧ξi−1∧ξi+1∧·· ·∧ξk

)
, h∈ Γ(X,OX), ξi ∈ Γ(X,TX) .

In local coordinates(x1, . . . ,xd), if one replaces∂/∂xi by odd variablesψi and writes
polyvector fields as functions in(x1, . . . ,xd|ψ1, . . . ,ψd), the bracket is

[γ1,γ2] = γ1 • γ2− (−1)k1k2γ • γ1

where we introduce the following notation:

γ1 • γ2 :=
d

∑
i=1

∂γ1

∂ψi

∂γ2

∂xi , γi ∈ Tki (Rd) .

4.6.1.1.A map from Tpoly(X) to Dpoly(X)

We have an evident mapU (0)
1 : Tpoly(X)−→Dpoly(X). It is defined, forn≥ 0, by:

U
(0)

1 : (ξ0∧·· ·∧ξn) 7→
(

f0⊗·· ·⊗ fn 7→
1

(n+1)! ∑
σ∈Σn+1

sgn(σ)
n

∏
i=0

ξσi ( fi)

)
,

and forh∈ Γ(X,OX) by:
h 7→

(
1 7→ h

)
.
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Theorem 4.10 U
(0)

1 is a quasi-isomorphism of complexes.

This is a version of Hochschild-Kostant-Rosenberg theoremwhich says that for a smooth
affine algebraic varietyY over a fieldk of characteristic zero, the Hochschild cohomology
of algebraO(Y) coincides with the space⊕k≥0Γ(X,∧kTY)[−k] of algebraic polyvector fields
on Y (see [25]). Analogous statement forC∞ manifolds seems to be well known, although
we were not able to find it in the literature (e.g. in [6] a similar statement was proven for
Hochschildcohomology). In any case, we give here a proof.

Proof: First of all, one can immediately check that the image ofU
(0)

1 is annihilated by the

differential inDpoly(X), i.e. thatU (0)
1 is a morphism of complexes.

ComplexDpoly(X) is filtered by the total degree of polydifferential operators. Complex
Tpoly(X) endowed with zero differential also carries a very simple filtration (just by degrees),

such thatU (0)
1 is compatible with filtrations. We claim that

Gr
(
U

(0)
1

)
: Gr

(
Tpoly(X)

)
−→Gr

(
Dpoly(X)

)

is a quasi-isomorphism. In the graded complexGr
(
Dpoly(X)

)
associated with the filtered

complexDpoly(X) all components are sections of some natural vector bundles on X, and the
differential isA-linear,A=C∞(X). The same is true by trivial reasons forTpoly(X). Thus, we

have to check that the mapGr
(
U

(0)
1

)
is a quasi-isomorphism fiberwise.

Let x be a point ofX andT be the tangent space atx. Principal symbols of polydifferential
operators atx lie in vector spaces

Sym(T)⊗·· ·⊗Sym(T) (n times, n≥ 0)

whereSym(T) is the free polynomial algebra generated byT. It is convenient here to identify
Sym(T) with the cofree cocommutative coassociative coalgebrawith counit cogenerated by
T:

C := C(T)⊕ (k ·1)∗ .

Sym(T) is naturally isomorphic to the algebra of differential operators onT with constant
coefficients. IfD is such an operator then it defines a continuous linear functional on the
algebra of formal power series at 0∈ T:

f 7→
(
D( f )

)
(0)

i.e. an element of coalgebraC .
We denote by∆ the coproduct in coalgebraC . It is easy to see that differential in the

complexGr
(
Dpoly(X)

)
in the fiber atx is the following:

d :⊗n+1
C−→⊗n+2

C ,

d = 1∗⊗ id⊗n+1C −
n

∑
i=0

(−1)i id⊗·· ·⊗∆i⊗·· ·⊗ id +(−1)nid⊗n+1C ⊗1∗

where∆i is coproduct∆ applied to thei-th argument.
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Lemma 4.11 LetC be the cofree cocommutative coassociative coalgebra with counit cogen-
erated by a finite-dimensional vector space T. Then the natural homomorphism of complexes

(
∧n+1T, differential= 0

)
−→

(
⊗n+1

C , differential as above
)

is a quasi-isomorphism.

What we consider is one of the standard complexes in homological algebra. One of
possible proofs is the following:
Proof: let us decompose complex

(
⊗n+1C

)
into the infinite direct sum of subcomplexes

consisting of tensors of fixed total degrees (homogeneous components with respect to the
action of the Euler vector field onT). Our statement means in particular that for only finitely
many degrees these subcomplexes have non-trivial cohomology. Thus, the statement of the
lemma is true iff the analogous statement holds when infinitesums are replaced by infinite
products in the decomposition of

(
⊗n+1C

)
. Components of the completed complex are

spacesHom(A⊗(n+1),k) whereA is the algebra of polynomial functions onT. It is easy to see
that the completed complex calculates groupsExtn+1

A−mod(k,k) =∧n+1T, where 1-dimensional
spacek is considered asA-module (via values of polynomial at 0∈ T) and has a resolution

. . .−→A⊗A−→A−→0−→ . . .

by freeA-modules. Q.E.D.
As a side remark, we notice that the statement of the lemma holds also if one replaces

C by C(T) (i.e. the free coalgebra without counit) and removes terms with 1∗ from the
differential. In the language of Hochschild cochains it means that the subcomplex ofreduced
cochains is quasi-isomorphic to the total Hochschild complex.

The lemma implies thatgr
(
U

(0)
1

)
is an isomorphism fiberwise. Applying the standard

argument with spectral sequences we obtain the proof of the theorem. Q.E.D.

4.6.2 Main theorem

Unfortunately, mapU (0)
1 does not commute with Lie brackets, the Schouten-Nijenhuisbracket

does not go to the Gerstenhaber bracket. We claim that this defect can be cured:

MAIN THEOREM There exists an L∞-morphismU from Tpoly(X) to Dpoly(X) such that

U1 = U
(0)

1

In other words, this theorem says thatTpoly(X) andDpoly(X) are quasi-isomorphic differ-
ential graded Lie algebras. In analogous situation in rational homotopy theory (see [42]), a
differential graded commutative algebra is called formal if it is quasi-isomorphic to its coho-
mology algebra endowed with zero differential. This explains the title of Section 4.6.

The quasi-isomorphismU in the theorem is not canonical. We will construct explicitly a
family of quasi-isomorphisms parametrized in certain sense by a contractible space. It means
that our construction is canonical up to (higher) homotopies.

Solutions of the Maurer-Cartan equation inTpoly(X) are exactly Poisson structures onX:

α ∈ T1
poly(X) = Γ(X,∧2TX), [α,α] = 0 .

Any suchα defines also a solution formally depending onh̄,

γ(h̄) := α · h̄∈ T1
poly(X)[[h̄]] , [γ(h̄),γ(h̄)] = 0 .
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The gauge group action is the action of the diffeomorphism group by conjugation. Solutions
of the Maurer-Cartan equation inDpoly(X) formally depending on̄h are star-products. Thus,
we obtain as a corollary that any Poisson structure onX gives a canonical equivalence class
of star-products, and the Theorem 1.1.

The rest of the paper is devoted to the proof of the Main Theorem, and to the discussion of
various applications, corollaries and extensions. In Section 5 we will make some preparations
for the universal formula (Section 6) for anL∞-morphism fromTpoly(X) to Dpoly(X) in the
case of flat spaceX = Rd. In Section 7 we extend our construction to general manifolds.

4.6.3 Non-uniqueness

There are other natural quasi-isomorphisms betweenTpoly(X) andDpoly(X) which differ es-
sentially from the quasi-isomorphismU constructed in Sections 6 and 7, i.e. not even homo-
topic in a natural sense toU . By homotopyhere we mean the following.L∞-morphisms from
oneL∞-algebra to another can be identified with fixed points ofQ on infinite-dimensional su-
permanifold of maps. Mimicking constructions and definitions from Section 4.5.2 one can
define an equivalence relation (homotopy equivalence) on the set ofL∞-morphisms.

Firstly, the multiplicative groupR× acts by automorphisms ofTpoly(X), multiplying el-
ementsγ ∈ Tpoly(X)k by λ k for λ ∈ R×. Composing these automorphisms withU one get
a one-parameter family of quasi-isomorphisms. Secondly, in [30] we constructed an exotic
infinitesimalL∞-automorphism ofTpoly(X) for the caseX = Rd which probably extends to
general manifolds. In particular, this exotic automorphism produces a vector field on the
“space of Poisson structures”. The evolution with respect to time t is described by the fol-
lowing non-linear partial differential equation:

dα
dt

:= ∑
i, j ,k,l ,m,k′ ,l ′,m′

∂ 3α i j

∂xk∂xl ∂xm

∂αkk′

∂xl ′
∂α ll ′

∂xm′
∂αmm′

∂xk′ (∂i ∧∂ j)

whereα = ∑i, j α i j (x)∂i ∧∂ j is a bi-vector field onRd.
A priori we can guarantee the existence of a solution of the evolutiononly for small times

and real-analytic initial data. One can show that:
1) this evolution preserves the class of (real-analytic) Poisson structures,
2) if two Poisson structures are conjugate by a real-analytic diffeomorphism then the same

will hold after the evolution.
Thus, our evolution operator is essentially intrinsic and does not depend on the choice of

coordinates.
Combining it with the action ofR× as above we see that the Lie algebraa f f(1,R) of

infinitesimal affine transformations of the lineR1 acts non-trivially on the space of homo-
topy classes of quasi- isomorphisms betweenTpoly(X) andDpoly(X). Maybe, there are other
exoticL∞-automorphisms, this possibility is not ruled out. It is notclear whether our quasi-
isomorphismU is better than others.
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5 Configuration spaces and their compactifications

5.1 Definitions

Let n,mbe non-negative integers satisfying the inequality 2n+m≥ 2. We denote byCon fn,m

the product of the configuration space of the upper half-plane with the configuration space of
the real line:

Con fn,m= {(p1, . . . , pn;q1, . . . ,qm)|pi ∈H ,q j ∈R, pi1 6= pi2 for i1 6= i2, q j1 6= q j2 for j1 6= j2}.

Con fn,m is a smooth manifold of dimension 2n+ m. The groupG(1) of holomorphic
transformations ofCP1 preserving the upper half-plane and the point∞, acts onCon fn,m.
This group is a 2-dimensional connected Lie group, isomorphic to the group of orientation-
preserving affine transformations of the real line:

G(1) = {z 7→ az+b|a,b∈ R, a > 0} .

It follows from the condition 2n+ m≥ 2 that the action ofG(1) on Con fn,m is free.
The quotient spaceCn,m := Con fn,m/G(1) is a manifold of dimension 2n+ m− 2. If P =
(p1, . . . , pn;q1, . . . ,qm) is a point ofCon fn,m then we denote by[P] the corresponding point
of Cn,m.

Analogously, we introduce simpler spacesCon fn andCn for anyn≥ 2:

Con fn := {(p1, . . . , pn)| pi ∈ C, pi 6= p j for i 6= j},
Cn = Con fn/G(2), dim(Cn) = 2n−3,

whereG(2) is a 3-dimensional Lie group,

G(2) = {z 7→ az+b|a∈R,b∈C, a > 0} .

We will construct compactificationsCn,m of Cn,m ( and compactificationsCn of Cn) which
are smooth manifolds with corners.

We remind that a manifold with corners (of dimensiond) is defined analogously to a usual
manifold with boundary, with the only difference that the manifold with corners looks locally
as an open part of closed simplicial cone(R≥0)

d. For example, the closed hypercube[0,1]d

is a manifold with corners. There is a natural smooth stratification by faces of any manifold
with corners.

First of all, we give one of possible formal definitions of thecompactificationCn where
n≥ 2. With any point[(p1, . . . , pn)] of Cn we associate a collection ofn(n−1) angles with
values inR/2πZ:

(Arg(pi− p j))i 6= j

andn2(n−1)2 ratios of distances:

(|pi− p j |/|pk− pl |)i 6= j ,k6=l

It is easy to see that we obtain an embedding ofCn into the manifold(R/2πZ)n(n−1)×
R

n2(n−1)2

>0 . The spaceCn is defined as the compactification of the image of this embedding in
larger manifold

(R/2πZ)n(n−1)× [0,+∞]n
2(n−1)2
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For the spaceCn,m we use first its embedding toC2n+m which is defined on the level of
configuration spaces as

(p1, . . . , pn;q1, . . . ,qm) 7→ (p1, . . . , pn, p1, . . . , pn,q1, . . . ,qm)

and then compactify the image inC2n+m. The result is by definition the compactified space
Cn,m.

One can show that open strata ofCn,m are naturally isomorphic to products of manifolds
of typeCn′,m′ andCn′ . In the next subsection we will describe explicitlyCn,m as a manifold
with corners.

There is a natural action of the permutation groupΣn onCn, and also ofΣn×Σm onCn,m.
This gives us a possibility to define spacesCA andCA,B for finite setsA,B such that #A≥ 2 or
2#A+ #B≥ 2 respectively. IfA′ →֒A andB′ →֒B are inclusions of sets then there are natural
fibrations (forgetting maps)CA−→CA′ andCA,B−→CA′,B′ .

5.2 Looking through a magnifying glass

From the definition of the compactification given in the previous subsection it is not clear
what is exactly a point of the compactified space. We are goingto explain an intuitive idea
underlying a direct construction of the compactificationCn,m as a manifold with corners. For
more formal treatment of compactifications of configurationspaces we refer the reader to
[16] (for the case of smooth algebraic varieties).

Let us try to look through a magnifying glass, or better through a microscope with arbi-
trary magnification, on different parts of the picture formed by points onH ∪R ⊂ C, and
by the lineR ⊂ C. Here we useEuclideangeometry onC ≃ R2 instead of Lobachevsky
geometry.

Before doing this let us first consider the case of a configuration onR2 ≃ C, i.e. without
the horizontal lineR⊂ C. We say that the configuration(p1, . . . , pn) is in standard position
iff

1) the diameter of the set{p1, . . . , pn} is equal to 1, and,
2) the center of the minimal circle containing{p1, . . . , pn} is 0∈ C.
It is clear that any configuration ofn pairwise distinct points in the casen≥ 2 can be

uniquely put to standard position by a unique element of group G(2). The set of configu-
rations in standard position gives a continuous sectionscont of the natural projection map
Con fn−→Cn.

For a configuration in standard position there could be several domains where we will
need magnification in order to see details. These domains arethose where at least two points
of the configuration come too close to each other.

After an appropriate magnification of any such domain we again get a stable configuration
(i.e.the number of points there is at least 2). Then we can putit again in standard position and
repeat the procedure.

In such a way we get an oriented treeT with one root, and leaves numbered from 1 ton.
For example, the configuration in Figure 3 gives the tree in Figure 4.

For every vertex of treeT except leaves, we denote byStar(v) the set of edges starting
at v. For example, in the figure from above the setStar(root) has three elements, and sets
Star(v) for other three vertices all have two elements.

Points inCn close to one which we consider, can be parametrized by the following data:
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Figure 3: Configuration of points close to the boundary of thecompactified configuration
space.
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Figure 4: Tree corresponding the limiting point in the configuration space.

a) for each vertexv of T except leaves, a stable configurationcv in the standard position
of points labeled by the setStar(v),

b) for each vertexv except leaves and the root of the tree, the scalesv > 0 with which we
should put a copy ofcv instead of the corresponding pointpv ∈ C on stable configurationcu

whereu∈VT is such that(u,v) ∈ ET .
More precisely, we act on the configurationcv by the element(z 7→ svz+ pv) of G(2).
Numberssv are small but positive. The compactificationCn is achieved by formally

permitting some of scalessv to be equal to 0.
In this way we get a compact topological manifold with corners, with strataCT labeled

by treesT (with leaves numbered from 1 ton). Each stratumCT is canonically isomorphic to
the product∏vCStar(v) over all verticesv except leaves. In the description as above points of
CT correspond to collections of configurations withall scalessv equal to zero. Let us repeat:
as a setCn coincides with ⊔

treesT
∏

v∈VT\{leaves}
CStar(v) .

In order to introduce a smooth structure onCn, we should choose aΣn-equivariantsmooth
sectionssmoothof the projection mapCon fn−→Cn instead of the sectionscont given by con-
figurations in standard position. Local coordinates onCn near a given point lying in stra-
tum CT are scalessv ∈ R≥0 close to zero and local coordinates in manifoldsCStar(v) for all
v∈VT \{leaves}. The resulting structure of a smooth manifold with corners does not depend
on the choice of sectionssmooth.

The case of configurations of points onH ∪R is not much harder. First of all, we say
that a finite non-empty setSof points onH ∪R is in standard positioniff

1) the projection of the convex hull ofS to the horizontal lineR ⊂ C ≃ R2 is either the
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Figure 5: SpaceC1,1 homeomorphic to an interval.
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Figure 6: SpaceC2,0.

one-point set{0}, or it is an interval with the center at 0,
2) the maximum of the diameter ofSand of the distance fromS to R is equal to 1.
It is easy to see that for 2n+m≥ 2 (the stable case) any configuration ofn points onH

andm points onR can be put uniquely in standard position by an element ofG(1). In order
to get a smooth structure, we repeat the same arguments as forthe case of manifoldsCn.

Domains where we will need magnification in order to see details, are now of two types.
The first case is when at least two points of the configuration come too close to each other.
We want to know whether what we see is a single point or a collection of several points. The
second possibility is when a point onH comes too close toR. Here we want also to decide
whether what we see is a point (or points) onH or onR.

If the domain which we want to magnify is close toR, then after magnification we get
again a stable configuration which we can put into the standard position. If the domain is
insideH , then after magnification we get a picture without the horizontal line in it, and we
are back in the situation concerningCn′ for n′ ≤ n.

It is instructional to draw low-dimensional spacesCn,m. The simplest one,C1,0 = C1,0 is
just a point. The spaceC0,2 = C0,2 is a two-element set. The spaceC1,1 is an open interval,
and its closureC1,1 is a closed interval (the real lineR⊂ C is dashed in Figure 5).

The spaceC2,0 is diffeomorphic toH \{0+1· i}. The reason is that by action ofG(1) we
can put pointp1 to the positioni =

√
−1∈H . The closureC2,0 can be drawn as in Figure 6

or as in Figure 7.
Forgetting maps (see the end of Section 5.1) extend naturally to smooth maps of com-

pactified spaces.

 

..

Figure 7: The Eye.
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5.2.1 Boundary strata

We give here the list of all strata inCA,B of codimension 1:
S1) pointspi ∈H for i ∈ S⊆ A where #S≥ 2, move close to each other but far fromR,
S2) pointspi ∈H for i ∈ S⊆ A and pointsq j ∈ R for j ∈ S′ ⊆ B where 2#S+ #S′ ≥ 2,

all move close to each other and toR, with at least one point left outsideS and S′, i.e.
#S+#S′≤ #A+#B−1.

The stratum of type S1 is

∂SCA,B≃CS×C(A\S)⊔{pt},B

where{pt} is a one-element set, whose element represents the cluster(pi)i∈S of points inH .
Analogously, the stratum of type S2 is

∂S,S′CA,B≃CS,S′ ×CA\S,(B\S′)⊔{pt} .

6 Universal formula

In this section we propose a formula for anL∞-morphismTpoly(R
d)−→Dpoly(R

d) general-
izing a formula for the star-product in Section 2. In order towrite it we need to make some
preparations.

6.1 Admissible graphs

Definition 6.1 Admissible graphΓ is a graph with labels such that
1) the set of vertices VΓ is {1, . . . ,n}⊔{1, . . . ,m} where n,m∈ Z≥0, 2n+m−2≥ 0; vertices
from the set{1, . . . ,n} are called vertices of the first type, vertices from{1, . . . ,m} are called
vertices of the second type,
2) every edge(v1,v2) ∈ EΓ starts at a vertex of first type, v1 ∈ {1, . . . ,n},
3) for every vertex k∈ {1, . . . ,n} of the first type, the set of edges

Star(k) := {(v1,v2) ∈ EΓ|v1 = k}

starting from k, is labeled by symbols(e1
k, . . . ,e

#Star(k)
k ).

Labeled graphs considered in Section 2 are exactly (after the identificationsL = 1, R= 2)
admissible graphs such thatm is equal to 2, and the number of edges starting at every vertex
of first type is also equal to 2.

6.2 Differential forms on configuration spaces

The spaceC2,0 (the Eye) is homotopy equivalent to the standard circleS1≃ R/2πZ. More-
over, one of its boundary components, the spaceC2 = C2, is naturally identified with the
standard circleS1. The other component of the boundary is the union of two closed intervals
(copies ofC1,1) with identified end points.

Definition 6.2 An angle map is a smooth mapφ : C2,0−→R/2πZ≃ S1 such that the restric-
tion of φ to C2 ≃ S1 is the angle measured in the anti-clockwise direction from the vertical
line, andφ maps the whole upper intervalC1,1≃ [0,1] of the Eye, to a point in S1.
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We will denoteφ([(x,y)]) simply byφ(x,y) wherex,y∈H ⊔R, x 6= y. It follows from
the definition thatdφ(x,y) = 0 if x stays inR.

For example, the special mapφh used in the formula in Section 2, is an angle map. In the
rest of the paper we can use anyφ , not necessarily harmonic.

We are now prepared for the analytic part of the universal formula. LetΓ be an admissible
graph withn vertices of the first type,mvertices of the second type and with 2n+m−2 edges.
We define the weight of graphΓ by the following formula:

WΓ :=
n

∏
k=1

1
(#Star(k))!

1
(2π)2n+m−2

∫

C
+
n,m

∧

e∈EΓ

dφe .

Let us explain what is written here. The domain of integration C
+
n,m is a connected com-

ponent ofCn,m which is the closure of configurations for which pointsq j , 1≤ j ≤m on R

are placed in the increasing order:

q1 < · · ·< qm .

The orientation ofCon fn,m is the product of the standard orientation on the coordinate
spaceRm ⊃ {(q1, . . . ,qm)|q j ∈ R}, with the product of standard orientations on the plane
R2 (for points pi ∈H ⊂ R2). The groupG(1) is even-dimensional and naturally oriented
because it acts freely and transitively on complex manifoldH . Thus, the quotient space
Cn,m = Con fn,m/G(1) carries again a natural orientation.

Every edgee of Γ defines a map fromCn,m to C2,0 or toC1,1⊂C2,0 (the forgetting map).
Here we consider inclusionC1,1 in C2,0 as thelower interval of the Eye. The pullback of the
functionφ by the mapCn,m−→C2,0 corresponding to edgee is denoted byφe.

Finally, the ordering in the wedge product of 1-formsdφe is fixed by enumeration of the
set of sources of edges and by the enumeration of the set of edges with a given source.

The integral givingWΓ is absolutely convergent because it is an integral of a smooth
differential form over a compact manifold with corners.

6.3 Pre-L∞-morphisms associated with graphs

For any admissible graphΓ with n vertices of the first type,mvertices of the second type, and
2n+m−2+ l edges wherel ∈ Z, we define a linear map

UΓ :⊗nTpoly(R
d)−→Dpoly(R

d)[1+ l−n].

This map has only one non-zero graded component(UΓ)(k1,...,kn) whereki = #Star(i)−1, i =
1, . . . ,n. If l = 0 then fromUΓ after anti-symmetrization we obtain a pre-L∞-morphism.

Let γ1, . . . ,γn be polyvector fields onRd of degrees(k1 + 1), . . . ,(kn + 1), and f1, . . . , fm
be functions onRd. We are going to write a formula for functionΦ onRn:

Φ := (UΓ(γ1⊗·· ·⊗ γn)) ( f1⊗·· ·⊗ fm) .

The formula forΦ is the sum over all configurations of indices running from 1 tod,
labeled byEΓ:

Φ = ∑
I :EΓ−→{1,...,d}

ΦI ,
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whereΦI is the product over alln+m vertices ofΓ of certain partial derivatives of functions
f j and of coefficients ofγi .

Namely, with each vertexi, 1≤ i ≤ n of the first type we associate a functionψi on Rd

which is a coefficient of the polyvector fieldγi :

ψi = 〈γi ,dxI(e1
i )⊗·· ·⊗dxI(e

ki+1
i )〉 .

Here we use the identification of polyvector fields with skew-symmetric tensor fields as

ξ1∧·· ·∧ξk+1−→ ∑
σ∈Σk+1

sgn(σ)ξσ1⊗·· ·⊗ ξσk+1 ∈ Γ(Rd,T⊗(k+1)) .

For each vertexj of second type the associated functionψ j is defined asf j .

Now, at each vertex of graphΓ we put a function onRd (i.e. ψi or ψ j ). Also, on edges

of graphΓ there are indicesI(e) which label coordinates inRd. In the next step we put into
each vertexv instead of functionψv its partial derivative

(

∏
e∈EΓ,e=(∗,v)

∂I(e)

)
ψv,

and then take the product over all verticesv of Γ. The result is by definition the summandΦI .
Construction of the functionΦ from the graphΓ, polyvector fieldsγi and functionsf j , is

invariant under the action of the group of affine transformations ofRd because we contract
upper and lower indices.

6.4 Main Theorem for X = Rd, and the proof

We define a pre-L∞-morphismU : Tpoly(R
d)−→Dpoly(R

d) by the formula for itsn-th Taylor
coefficientUn, n≥ 1 considered as a skew- symmetric polylinear map (see Section 4.2) from
⊗nTpoly(R

d) to Dpoly(R
d)[1−n]:

Un := ∑
m≥0

∑
Γ∈Gn,m

WΓ×UΓ .

HereGn,m denotes the set of all admissible graphs withn vertices of the first type,mvertices in
the second group and 2n+m−2 edges, wheren≥ 1, m≥ 0 (and automatically 2n+m−2≥
0).

Theorem 6.3 U is an L∞-morphism, and also a quasi-isomorphism.

Proof: the condition thatU is anL∞-morhism (see Sections 4.3 and 3.4.2) can be written
explicitly as

f1 · (Un(γ1∧·· ·∧ γn))( f2⊗·· ·⊗ fm)± (Un(γ1∧·· ·∧ γn)) ( f1⊗·· ·⊗ fm−1) · fm+

+
m−1

∑
i=1
±(Un(γ1∧·· ·∧ γn)) ( f1⊗·· ·⊗ ( fi fi+1)⊗·· ·⊗ fm)+
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+∑
i 6= j

±(Un−1([γi ,γ j ]∧ γ1∧·· ·∧ γn)) ( f1⊗·· ·⊗ fm)+

+
1
2 ∑

k,l≥1, k+l=n

1
k!l ! ∑

σ∈Σn

±
[
Uk(γσ1 ∧·· ·∧ γσk),Ul (γσk+1 ∧·· ·∧ γσn)

]
( f1⊗·· ·⊗ fm) = 0 .

Hereγi are polyvector fields,fi are functions,Un are homogeneous components ofU

(see Section 4.1). There is a way to rewrite this formula. Namely, we defineU0 as the map
⊗0(Tpoly(R

d))−→Dpoly(R
d)[1] which maps the generator 1 ofR ≃ ⊗0(Tpoly(R

d)) to the
productmA ∈D1

poly(R
d) in the algebraA := C∞(Rd). HeremA : f1⊗ f2 7→ f1 f2 is considered

as a bidifferential operator.
The condition from above forU to be anL∞-morphism is equivalent to the following

one:

∑
i 6= j

±(Un−1((γi • γ j)∧ γ1∧·· ·∧ γn))( f1⊗·· ·⊗ fm)+

+ ∑
k,l≥0, k+l=n

1
k!l ! ∑

σ∈Σn

±
(
Uk(γσ1 ∧·· ·∧ γσk) ◦ Ul (γσk+1 ∧·· ·∧ γσn)

)
( f1⊗·· ·⊗ fm) = 0 .

Here we use all polylinear mapsUn including casen = 0, and definitions of brackets in
Dpoly andTpoly via operations◦ (see Section 3.4.2) and• (see Section 4.6.1). We denote the
l.h.s. of the expression above by(F).

U + U0 is not a pre-L∞-morphism because it maps 0 to a non-zero pointmA. Still the
equation(F) = 0 makes sense and means that the map(U +U0) from formal Q-manifold
Tpoly(R

d)[1]
)

f ormal to the formal neighborhoodof pointmA in the graded vector spaceDpoly(R
d)[1]

is Q-equivariant, where the odd vector fieldQ on the target is purely quadratic and comes
from the bracket onDpoly(R

d), forgetting the differential.
Also, the termU0 comes from the unique graphΓ0 which was missing in the definition

of U . Namely,Γ0 hasn = 0 vertices of the first type,m= 2 vertices of the second type, and
no edges at all. It is easy to see thatWΓ0 = 1 andUΓ0 = U0.

We consider the expression(F) simultaneously for all possible dimensionsd. It is clear
that one can write(F) as a linear combination

∑
Γ

cΓ ·UΓ
(
γ1⊗·· ·⊗ γn

)
( f1⊗·· ·⊗ fm)

of expressionsUΓ for admissible graphsΓ with n vertices of the first type,m vertices of the
second type, and 2n+ m− 3 edges wheren≥ 0, m≥ 0, 2n+ m− 3≥ 0. We assume that
cΓ = ±cΓ′ if graphΓ′ is obtained fromΓ by a renumeration of vertices of first type and by a
relabeling of edges in setsStar(v) (see Section 6.5 where we discuss signs).

CoefficientscΓ of this linear combination are equal to certain sums with signs of weights
WΓ′ associated with some other graphsΓ′, and of products of two such weights. In particular,
numberscΓ do not depend on the dimensiond in our problem. Perhaps it is better to use here
the language of rigid tensor categories, but we will not do it.

We want to check thatcΓ vanishes for eachΓ.
The idea is to identifycΓ with the integral over the boundary∂Cn,m of the closed differen-

tial form constructed fromΓ as in Section 6.2, with the only difference that now we consider
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Figure 8: Term corresponding to the operation•.

graphs with 2n+m−3 edges. The Stokes formula gives the vanishing:

∫

∂Cn,m

∧

e∈EΓ

dφe =
∫

Cn,m

d

(
∧

e∈EΓ

dφe

)
= 0 .

We are going to calculate integrals of the form∧e∈EΓ dφe restricted to all possible bound-
ary strata of∂Cn,m, and prove that the total integral as above is equal tocΓ. In Section 5.2.1
we have listed two groups of boundary strata, denoted by S1 and S2 and labeled by sets or
pairs of sets. Thus,

0 =
∫

∂Cn,m

∧

e∈EΓ

dφe = ∑
S

∫

∂SCn,m

∧

e∈EΓ

dφe+ ∑
S,S′

∫

∂S,S′Cn,m

∧

e∈EΓ

dφe .

6.4.1 Case S1

Points pi ∈H for i from subsetS⊂ {1, . . . ,n} where #S≥ 2, move close to each other.
The integral over the stratum∂SCn,m is equal to the product of an integral overCn1,m with
an integral overCn2 wheren2 := #S, n1 := n−n2+1. The integral vanishes by dimensional
reasons unless the number of edges ofΓ connecting vertices fromS is equal to 2n2−3.

There are several possibilities:

6.4.1.1.First subcase of S1: n2 = 2 (Figure 8)
In this subcase two vertices fromS1 are connected exactly by one edge, which we denote by
e. The integral overC2 here gives number±1 (after division by 2π coming from the formula
for weightsWΓ). The total integral over the boundary stratum is equal to the integral of a new
graphΓ1 obtained fromΓ by the contraction of edgee. It is easy to see (up to a sign) that
this term corresponds to the first line in our expression(F), the one where the operation• on
polyvector fields appears.

6.4.1.2.Second subcase of S1: n2≥ 3 (Figure 9)
This is the most non-trivial case. The integral corresponding to this boundary stratum

vanishes because the integral of any product of 2n2−3 angle forms overCn2 wheren2 ≥ 3
vanishes, as is proven later in Section 6.6.
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Figure 10: Many points collapse onR, no bad edges.

6.4.2 Case S2

Pointspi for i ∈S1⊂{1, . . . ,n} and pointsq j for j ∈S2⊂{1, . . . ,m}move close to each other
and to the horizontal lineR. The condition is that 2n2+m2−2≥ 0 andn2+m2≤ n+m−1
wheren2 := #S1, m2 := #S2. The corresponding stratum is isomorphic toCn1,m1 ×Cn2,m2

wheren1 := n− n2, m1 = m−m2 + 1. The integral of this stratum decomposes into the
product of two integrals. It vanishes if the number of edges of Γ connecting vertices from
S1⊔S2 is not equal to 2n2+m2−2.

6.4.2.1.First subcase of S2: no bad edges (Figure 10)
In this subcase we assume that there is no edge(i, j) in Γ such thati ∈ S1, j ∈ {1, . . . ,n}\S1.

The integral over the boundary stratum is equal to the product WΓ1×WΓ2 whereΓ2 is the
restriction ofΓ to the subsetS1⊔S2 ⊂ {1, . . . ,n}⊔ {1, . . . ,m} = VΓ, andΓ1 is obtained by
the contraction of all vertices in this set to a new vertex of the second type. Our condition
guarantees thatΓ1 is an admissible graph. This corresponds to the second line in (F), where
the product◦ on polydifferential operators appears.

6.4.2.2.Second subcase of S2: there is a bad edge (Figure 11)
Now we assume that there is an edge(i, j) in Γ such thati ∈ S1, j ∈ {1, . . . ,n} \S1. In this
case the integral is zero because of the conditiondφ(x,y) = 0 if x stays on the lineR.

The reader can wonder about what happens if after the collapsing the graph will have
multiple edges. Such terms do not appear in(F). Nevertheless, we ingore them because in
this case the differential form which we integrate vanishesas it contains as a factor the square
of a 1-form.

Thus, we see that we have exhausted all possibilities and getcontributions of all terms in
the formula(F). We just proved thatcΓ = 0 for anyΓ, and thatU is anL∞-morphism.
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Figure 11: Many points collapse onR, with a bad edge.
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Figure 12: A tree with one vertex inH .

6.4.3 We finish the proof of Theorem 6.3

In order to check thatU it is a quasi-isomorphism, we should show that its componentU1

coincides withU (0)
1 introduced in 4.6.1.1. It follows from definitions that every admissible

graph withn= 1 vertex of first type andm≥ 0 vertices of the second type, and withmedges,
is the tree in Figure 12.

The integral corresponding to this graph is(2π)m/m!. The mapŨΓ from polyvector fields
to polydifferential operators is the one which appears in paragraph 4.6.1.1:

ξ1∧·· ·∧ξm−→
1
m! ∑

σ∈Σm

sgn(σ) ·ξσ1⊗·· ·⊗ ξσm, ξi ∈ Γ(Rd,T) .

Theorem 6.3 is proven. Q.E.D.

6.4.4 Comparison with the formula from Section 2

The weightwΓ defined in Section 2 differ fromWΓ defined in Section 6.2 by the factor 2n/n!.
On the other hand, the bidifferential operatorBΓ,α( f ,g) is 2−n timesUΓ(α ∧·· ·∧α)( f ⊗g).
The inverse factorial 1/n! appears in the Taylor series (see the end of Section 4.3). Thus, we
obtain the formula from Section 2.

6.5 Grading, orientations, factorials, signs

Taylor coefficients ofU +U0 are maps of graded spaces

Symn((
⊕

k≥0

Γ(Rd,∧kT)[−k])[2])−→(Hom(A[1]⊗m,A[1]))[1]

whereHom denotes the internalHom in the tensor categoryGradedk . We denote the ex-
pression from above by(E). First of all, in the expression(E) each polyvector fieldγi ∈
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Γ(Rd,∧ki T) appears with the shift 2− ki . In our formula forU the sameγi giveski edges
of the graph, and thuski 1-forms which we have to integrate. Also, it gives 2 dimensions for
the integration domainCn,m. Secondly, every functionf j ∈ A appears with shift 1 in(E) and
gives 1 dimension to the integration domain. We are left withtwo shifts by 1 in(E) which
are accounted for 2 dimensions of the groupG(1). From this it is clear that our formula for
U is compatible withZ-grading.

Moreover, it is also clear that things responsible for various signs in our formulas:
1) the orientation ofCn,m,
2) the order in which we multiply 1-formsdφe,
3) Z-gradings of vector spaces in(E),
are naturally decomposed into pairs. This implies that the enumeration of the set of vertices
of Γ, and also the enumeration of edges in setsStar(v) for verticesv of the first type are not
really used. Thus, we see thatUn is skew-symmetric.

Inverse factorials 1/(#Star(v)!) kill the summation over enumerations of setsStar(v).
The inverse factorial 1/n! in the final formula does not appear because we consider higher
derivatives which are already multiplied byn!.

The last thing to check is that in our derivation of the fact that U is anL∞-morphism
using the Stokes formula we did not loose anywhere a sign. This is a bit hard to explain.
How, for example, can one compare the standard orientation on C with shifts by 2 in(E)? As
a hint to the reader we would like to mention that it is very convenient to “place” the resulting
expression

Φ := (UΓ(γ1⊗·· ·⊗ γn))( f1⊗·· ·⊗ fm)

at the point∞ on the absolute.

6.6 Vanishing of integrals overCn, n≥ 3

In this subsection we consider the spaceCn of G(2)- equivalence classes of configurations of
points on the Euclidean plane. Every two indicesi, j, i 6= j, 1≤ i, j ≤ n give a forgetting
mapCn−→C2 ≃ S1. We denote bydφi, j the closed 1-form onCn which is the pullback of
the standard 1-formd(angle) on the circle. We use the same notation for the pullback of this
form toCon fn.

Lemma 6.4 Let n≥ 3 be an integer. The integral over Cn of the product of any2n−3 =
dim(Cn) closed1-forms dφiα , jα , α = 1, . . . ,2n−3, is equal to zero.

Proof: First of all, we identifyCn with the subsetC′n of Con fn consisting of configurations
such that the pointpi1 is 0∈C andp j1 is on the unit circleS1⊂C. Also, we rewrite the form
which we integrate as

2n−3∧

α=1

dφiα , jα = dφi1, j1 ∧
2n−3∧

α=2

d(φiα , jα −φi1, j1) .

Let us map the spaceC′n onto the spaceC′′n ⊂ Con fn consisting of configurations with
pi1 = 0 andp j1 = 1, applying rotations with the center at 0. Differential forms d(φiα , jα −
φi1, j1) onC′n are pullbacks of differential formsdφiα , jα onC′′n . The integral of a product of
2n−3 closed 1-formsdφiα , jα , α = 1, . . . ,2n−3 overC′n is equal to±2π times the integral
of the product 2n−4 closed 1-formsdφiα , jα , α = 2, . . . ,2n−3 overC′′n .
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The spaceC′′n is a complex manifold. We are calculating an absolutely converging integral
of the type ∫

C′′n

∏
α

dArg(Zα)

whereZα are holomorphic invertible functions onC′′n (differences between complex coordi-
nates of points of the configuration). We claim that it is zero, because of the general result
proven in Section 6.6.1. Q.E.D.

6.6.1 A trick using logarithms

Theorem 6.5 Let X be a complex algebraic variety of dimension N≥ 1, and Z1, . . . ,Z2N be
rational functions on X, not equal identically to zero. Let Ube any Zariski open subset of X
such that functions Zα are defined and non-vanishing on U, and U consists of smooth points.
Then the integral ∫

U(C)

∧2N
α=1d(ArgZα)

is absolutely convergent, and equal to zero.

This result seems to be new, although the main trick used in the proof is well-known.
A. Goncharov told me that he also came to the same result in hisstudy of mixed Tate motives.
Proof: First of all, we claim that the differential form∧2N

α=1dArg(Zα) onU(C) coincides with
the form∧2N

α=1dLog|Zα | (this is the trick).
We can replacedArg(Zα) by the linear combination of a holomorphic and an anti-holomorphic

form
1
2i

(
d(LogZα)−d(LogZα)

)
.

Thus, the form which we integrate overU(C) is a sum of products of holomorphic and of
anti-holomorphic forms. The summand corresponding to a product of a non-equal number of
holomorphic and of anti-holomorphic forms, vanishes identically becauseU(C) is a complex
manifold. The conclusion is that the number of anti-holomorphic factors in non-vanishing
summands is the same for all of them, it coincides with the complex dimensionN of U(C).
The same products of holomorphic and of anti-holomorphic forms survive in the product

2N∧

α=1

d Log|Zα |=
2N∧

α=1

1
2

(
d(LogZα)+d(LogZα)

)
.

Let us choose a compactificationU ofU such thatU \U is a divisor with normal crossings.
If φ is a smooth differential form onU(C) such that coefficients ofφ are locally integrable on
U(C), then we denote byI (φ) corresponding differential form onU(C) with coefficients in
the space of distributions.

Lemma 6.6 Let ω be a form on U(C) which is a linear combination of products of func-
tions Log|Zα | and of 1-forms d Log|Zα | where Zα ∈ O×(U) are regular invertible func-
tions on U. Then coefficients ofω and of dω are locally L1 functions onU(C). Moreover,
I (dω) = d(I (ω)). Also, the integral

∫

U(C)

ω is absolutely convergent and equal to the

integral
∫

U(C)

I (ω).
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The lemma is an elementary exercise in the theory of distributions, after passing to local
coordinates onU(C). We leave details of the proof to the reader. Also, the statement of
the lemma remains true without the condition thatU \U is a divisor with normal crossings.
Q.E.D.

The vanishing of the integral in the theorem is clear now by the Stokes formula:

∫

U(C)

2N∧

α=1

d Arg(Zα) =

∫

U(C)

2N∧

α=1

d Log|Zα |=
∫

U(C)

I

(
d

(
Log|Z1|

2N∧

α=2

d Log|Zα |
))

=

=

∫

U(C)

d

(
I

(
Log|Z1|

2N∧

α=2

d Log|Zα |
))

= 0 . Q.E.D.

In fact, the convergence and the vanishing of the integral
∫

U(C)

∧2N
α=1d Log|Zα | is a purely

geometric fact. Namely, the image ofU(C) in R2N under the mapx 7→ (Log|Z1(x)|, . . . ,Log|Z2N(x)|)
has finite volume and every non-critical point in this image appears zero times, when points
in the pre-image are counted with signs arising from the comparison of canonical orientations
onU(C) andR2N.

6.6.2 Remark

The vanishing of the integral in Lemma 6.4 has higher-dimensional analogue which is cru-
cial in the perturbative Chern-Simons theory in the dimension 3, and its generalizations to
dimensions≥ 4 (see [29]). However, the vanishing of integrals in dimensions≥ 3 follows
from a much simpler fact which is the existence of a geometricinvolution making the integral
to be equal to minus itself. In the present paper we will use several times similar arguments
involving involutions.

7 Formality conjecture for general manifolds

In this section we establish the formality conjecture for general manifolds, not only for open
domains inRd. It turns out that that essentially all the work has been donealready. The only
new analytic result is vanishing of certain integrals over configuration spaces, analogous to
Lemma 6.4.

One can treatRd
f ormal, the formal completion of vector spaceRd at zero, in many respects

as usual manifold. In particular, we can define differentialgraded Lie algebrasDpoly(R
d
f ormal)

andTpoly(R
d
f ormal). The Lie algebraWd :=Vect(Rd

f ormal) is the standard Lie algebra of formal
vector fields. We considerWd as a differential graded Lie algebra (with the trivial grading
and the differential equal to 0). There are natural homomorphisms of differential graded Lie
algebras:

mT : Wd−→Tpoly(R
d
f ormal), mD : Wd−→Dpoly(R

d
f ormal) ,

because vector fields can be considered as polyvector fields and as differential operators.
We will use the following properties of the quasi-isomorphismU from Section 6.4:
P1)U can be defined forRd

f ormal as well,
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P2) for anyξ ∈Wd we have the equality

U1(mT(ξ )) = mD(U1(ξ )) ,

P3)U is GL(d,R)-equivariant,
P4) for anyk≥ 2, ξ1, . . . ,ξk ∈Wd we have the equality

Uk(mT(ξ1)⊗·· ·⊗mT(ξk)) = 0,

P5) for anyk≥ 2, ξ ∈ gl(d,R)⊂Wd, and for anyη2, . . . ,ηk ∈ Tpoly(R
d
f ormal) we have

Uk(mT(ξ )⊗η2⊗·· ·⊗ηk) = 0 .

We will construct quasi-isomorphisms fromTpoly(X) toDpoly(X) for arbitraryd-dimensional
manifoldX using only properties P1–P5 of the mapU . Properties P1, P2 and P3 are evident,
and the properties P4, P5 will be established later in paragraphs 7.3.1.1 and 7.3.3.1.

It will be convenient to use in this section the geometric language of formal graded man-
ifolds, instead of the algebraic language ofL∞-algebras. Let us fix the dimensiond ∈ N. We
introduce three formal gradedQ-manifoldswithoutbase points:

T ,D ,W .

These formal gradedQ-manifolds are obtained in the usual way from differential graded Lie
algebrasTpoly(Rd

f ormal), Dpoly(Rd
f ormal) andWd forgetting base points.

In Sections 7.1 and 7.2, we present two general geometric constructions, which will used
in Section 7.3 for the proof of formality ofDpoly(X).

7.1 Formal geometry (in the sense of I. Gelfand and D. Kazhdan)

Let X be a smooth manifold of dimensiond. We associate withX two infinite-dimensional
manifolds,Xcoor andXa f f . The manifoldXcoor consists of pairs(x, f ) wherex is a point of
X and f is an infinite germ of a coordinate system onX at x,

f : (Rd
f ormal,0) →֒ (X,x) .

We considerXcoor as a projective limit of finite-dimensional manifolds (spaces of finite germs
of coordinate systems). There is an action onXcoor of the (pro-Lie) groupGd of formal
diffeomorphisms ofRd preserving base point 0. The natural projection mapXcoor−→X is a
principalGd-bundle.

The manifoldXa f f is defined as the quotient spaceXcoor/GL(d,R). It can be thought as
the space of formal affine structures at points ofX. The main reason to introduceXa f f is that
fibers of the natural projection mapXa f f−→X are contractible.

The Lie algebra of the groupGd is a subalgebra of codimensiond in Wd. It consists of
formal vector fields vanishing at zero. Thus,Lie(Gd) acts onXcoor. It is easy to see that in fact
the whole Lie algebraWd acts onXcoor and is isomorphic to the tangent space toXcoor at each
point. Formally, the infinite-dimensional manifoldXcoor looks as a principal homogeneous
space of the non-existent group with the Lie algebraWd.

The main idea of formal geometry (se [17]) is to replaced-dimensional manifolds by
“principal homogeneous spaces” ofWd. Differential-geometric constructions onXcoor can be
obtained from Lie-algebraic constructions forWd. For a while we will work only withXcoor,
and then at the end return toXa f f . In terms of Lie algebras it corresponds to the difference
between absolute and relative cohomology.
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7.2 Flat connections andQ-equivariant maps

Let M be aC∞-manifold (or a complex analytic manifold, or an algebraic manifold, or a
projective limit of manifolds,...). Denote byΠTM the supermanifold which is the total space
of the tangent bundle ofM endowed with the reversed parity. Functions on theΠTM are
differential forms onM. The de Rham differentialdM on forms can be considered as an odd
vector field onΠTM with the square equal to 0. Thus,ΠTM is aQ-manifold. It seems that
the accurate notation forΠTM considered as a graded manifold should beT[1]M (the total
space of the graded vector bundleTM[1] considered as a graded manifold).

Let N−→M be a bundle over a manifoldM whose fibers are manifolds, or vector spaces,
etc., endowed with a flat connection∇. Denote byE the pullback of this bundle toB :=
ΠTM. The connection∇ gives a lift of the vector fieldQB := dM on B to the vector field
QE onE. This can be done for arbitrary connection, and only for flat connection the identity
[QE,QE] = 0 holds.

A generalization of a (non-linear) bundle with a flat connection is aQ-equivariant bundle
whose total space and the base areQ-manifolds. In the case of graded vector bundles over
T[1]M this notion was introduced Quillen under the name of a superconnection (see [40]). A
generalization of the notion of a covariantly flat morphism from one bundle to another is the
notion of aQ-equivariant map.

Definition 7.1 A flat family over Q-manifold B is a pair(p : E−→B,σ) where p: E−→B is a
Q-equivariant bundle whose fibers are formal manifolds, anda σ : B−→E is a Q-equivariant
section of this bundle.

In the caseB = {point} a flat family overB is the same a formalQ-manifold with base
point. It is clear that flat families over a givenQ-manifold form a category.

We apologize for the terminology. More precise name for “flatfamilies” would be “flat
families of pointed formal manifolds”, but it is too long.

One can define analogously flat graded families over gradedQ-manifolds.
We refer the reader to a discussion of further examples ofQ-manifolds in [31].

7.3 Flat families in deformation quantization

Let us return to our concrete situation. We construct in thissection two flat families over
ΠTX (whereX is ad-dimensional manifold), and a morphism between them. This will be
done in several steps.

7.3.1 Flat families overW

The first bundle overW is trivial as aQ-equivariant bundle,

T ×W −→W

but with a non-trivial sectionσT . This section is not the zero section, but the graph of the
Q-equivariant mapW −→T coming from the homomorphism of differential graded Lie al-
gebrasmT :Wd−→Tpoly(R

d
f ormal). Analogously, the second bundle is the trivialQ-equivariant

bundle
D×W −→W

39



p

p

1

2.
.

Figure 13: The only graph for property P4.

with the sectionσD coming from the homomorphismmD : Wd−→Dpoly(R
d
f ormal).

Formulas from Section 6.4 give aQ-equivariant mapU : T −→D .

Lemma 7.2 The morphism(U × idW ) : T ×W −→D ×W is a morphism of flat families
overW .

Proof: We have to check that(U × idW ) maps one section to another, i.e. that

(U × idW )◦σT = σD ∈Maps(W ,D×W ) .

We compare Taylor coefficients. The linear partU1 of U maps a vector field (considered
as a polyvector field) to itself, considered as a differential operator (property P2). Compo-
nentsUk(ξ1, . . . ,ξk) for k ≥ 2, ξi ∈ T0(Rd) = Γ(Rd,T) vanish, which is the property P4.
Q.E.D.

7.3.1.1.Proof of the property P4
Graphs appearing in the calculation ofUk(ξ1, . . . ,ξk) havek edges,k vertices of the first type,
andm vertices of the second type, where

2k+m−2= k .

Thus, there are no such graphs fork≥ 3 asm is non-negative. The only interesting case is
k = 2,m= 0 which is represented in Figure 13.

By our construction,U2 restricted to vector fields is equal to the non-trivial quadratic map

ξ 7−→
d

∑
i, j=1

∂i(ξ j)∂ j(ξ i) ∈ Γ(Rd,O), ξ = ∑
i

ξ i∂i ∈ Γ(Rd,T)

with the weight ∫

C2,0

dφ(12)dφ(21) =

∫

H \{z0}

dφ(z,z0)∧dφ(z0,z)

wherez0 is an arbitrary point ofH .

Lemma 7.3 For arbitrary angle map the integral
∫

H \{z0}
dφ(z,z0)∧dφ(z0,z) is equal to zero.

Proof: We have a mapC2,0−→S1×S1, [(x,y)] 7→ (φ(x,y),φ(y,x)). We calculate the integral
of the pullback of the standard volume element on two-dimensional torus. It is easy to see
that the integral does not depend on the choice of mapφ : C2,0−→S1. The reason is that the
image of the boundary of the integration domain∂C2,0 in S1×S1 cancels with the reflected
copy of itself under the involution(φ1,φ2) 7→ (φ2,φ1) of the torusS1×S1. Let us assume that
φ = φh andz0 = 0+ 1 · i. The integral vanishes because the involutionz 7→ −z reverses the
orientation ofH and preserves the formdφ(z,z0)∧dφ(z0,z). Q.E.D.
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7.3.2 Flat families overΠT(Xcoor)

If X is a d-dimensional manifold, then there is a natural map ofQ-manifolds (the Maurer-
Cartan form)

ΠT(Xcoor)−→W .

It follows from following general reasons. IfG is a Lie group, then it acts freely by left
translations on itself, and also onΠTG. The quotientQ-manifold ΠTG/G is equal toΠg
whereg = Lie(G). Thus, we have aQ-equivariant map

ΠTG−→Πg .

Analogous construction works for any principal homogeneous space overG. We apply it
to Xcoor considered as a principal homogeneous space for a non-existent group with the Lie
algebrag = Wd.

The pullbacks of flat families of formal manifolds overW constructed in Section 7.3.1,
are two flat families overΠT(Xcoor). As Q-equivariant bundles these families are trivial
bundles

T ×ΠT(Xcoor)−→ΠT(Xcoor), D ×ΠT(Xcoor)−→ΠT(Xcoor) .

Pullbacks of sectionsσT andσD gives sections in the bundles above. These sections we
denote again byσT andσD . The pullback of the morphismU × idW is also a morphism of
flat families.

7.3.3 Flat families overΠT(Xa f f)

Recall thatXa f f is the quotient space ofXcoor by the action ofGL(d,R). Thus, from
functorial properties of operationΠT (= Maps(R0|1, ·)) follows thatΠT(Xa f f) is the quo-
tient of Q-manifold ΠT(Xcoor) by the action ofQ-group ΠT(GL(d,R)). We will con-
struct an action ofΠT(GL(d,R)) on flat familiesT ×ΠT(Xcoor) andD ×ΠT(Xcoor) over
ΠT(Xcoor). We claim that the morphism between these families is invariant under the action
of ΠT(GL(d,R)). Flat families overΠT(Xa f f) will be defined as quotient families. The
morphism between them will be the quotient morphism.

The action ofΠT(GL(d,R)) on T and onW is defined as follows. First of all, ifG is
a Lie group with the Lie algebrag, thenΠTG actsQ-equivariantly onQ-manifoldΠg, via
the identificationΠg = ΠTG/G. Analogously, ifg is a subalgebra of a larger Lie algebrag1,
and an action ofG on g1 is given in a way compatible with the inclusiong→֒g1, thenΠTG
acts onΠg1. We apply this construction to the caseG = GL(n,R) andg1 = Tpoly(R

d
f ormal) or

g1 = Dpoly(R
d
f ormal).

One can check easily that sectionsσT andσD overΠT(Xcoor) areΠT(GL(d,R))-equivariant.
Thus, we get two flat families overΠT(Xa f f).

The last thing we have to check is that the morphismU × idΠT(Xcoor) of flat families

T ×ΠT(Xcoor)−→D ×ΠT(Xcoor)

is ΠT(GL(d,R))-equivariant. After the translation of the problem to the language of Lie
algebras, we see that we should check thatU is GL(d,R)-invariant (property P3, that is clear
by our construction), and that if we substitute an element ofgl(d,R) ⊂Wd in U≥2, we get
zero (property P5, see 7.3.3.1).
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Figure 15: Two graphs for property P5.

CONCLUSION We constructed two flat families overΠT(Xa f f) and a morphism between
them. Fibers of these families are isomorphic toT and toD .

7.3.3.1. Property P5
This is again reduces to the calculation of an integral. Letv be a vertex ofΓ to which we
put an element ofgl(d,R). There is exactly one edge starting atv because we put a vector
field here. If there are no edges ending atv, then the integral is zero because the domain of
integration is foliated by lines along which all forms vanish. These lines are level sets of the
functionφ(z,w) wherew∈H ⊔R is fixed andz is the point onH corresponding tov (see
Figure 14).

If there are at least 2 edges ending atv, then the corresponding polydifferential operator
is equal to zero, because second derivatives of coefficientsof a linear vector field vanish.

The only relevant case is when there is only one edge startingat v, and only one edge
ending there. If these two edges connect our vertex with the same vertex ofΓ, then the
vanishing follows from Lemma 7.3. If our vertex is connectedwith two different vertices as
in Figure. 15 then we apply the following two lemmas:

Lemma 7.4 Let z1 6= z2 ∈H be two distinct points onH . Then the integral
∫

z∈H \{z1,z2}

dφ(z1,z)∧dφ(z,z2)

vanishes.

Lemma 7.5 Let z1 ∈H , z2 ∈ R be two points onH ⊔R. Then the integral
∫

z∈H \{z1,z2}

dφ(z1,z)∧dφ(z,z2)
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vanishes.

Proof: One can prove analogously to Lemma 7.3 that the integral doesnot depend on the
choice of an angle map, and also on pointsz1, z2. In the case ofφ = φh and both pointsz1,z2

are pure imaginary, the vanishing follows from the anti-symmetry of the integral under the
involutionz 7→ −z. Q.E.D.

7.3.4 Flat families overX

Let us choose a sectionsa f f of the bundleXa f f−→X. Such section always exists because
fibers of this bundle are contractible. For example, any torsion-free connection∇ on the
tangent bundle toX gives a sectionX−→Xa f f . Namely, the exponential map for∇ gives
an identification of a neighborhood of each pointx∈ X with a neighborhood of zero in the
vector spaceTxX, i.e. an affine structure onX nearx, and a point ofXa f f overx∈ X.

The sectionsa f f defines a map of formal gradedQ-manifoldsΠTX−→ΠT(Xa f f). After
taking the pullback we get two flat familiesTsa f f andDsa f f overΠTX and an morphismmsa f f

from one to another.
We claim that these two flat families admit definitions independent ofsa f f . Only the

morphismmsa f f depends onsa f f .
Namely, let us consider infinite-dimensional bundles of differential graded Lie algebras

jets∞Tpoly and jets∞Dpoly overX whose fibers atx∈X are spaces of infinite jets of polyvector
fields or polydifferential operators atx respectively. These two bundles carry natural flat
connections (in the usual sense, not as in Section 7.2) as anybundle of infinite jets. Thus, we
have two flat families (in generalized sense) overΠTX.

Lemma 7.6 Flat familiesTsa f f and Dsa f f are canonically isomorphic to flat families de-
scribed just above.

Proof: it follows from definitions that pullbacks of bundlesjets∞Tpoly and jets∞Dpoly from
X to Xcoor are canonically trivialized. The Maurer-Cartan 1-forms onXcoor with values in
graded Lie algebrasTpoly(R

d
f ormal) or Dpoly(R

d
f ormal) come from pullbacks of flat connec-

tions on bundles of infinite jets. Thus, we identified our flat families overΠT(Xcoor) with
pullbacks. The same is true forXa f f . Q.E.D.

7.3.5 Passing to global sections

If in general(p : E−→B,σ) is a flat family, then one can make a new formal pointedQ-
manifold: (

Γ(E−→B) f ormal,σ
)

.

This is an infinite-dimensional formal super manifold, the formal completion of the space of
sections of the bundleE−→B at the pointσ . The structure ofQ-manifold onΓ(E−→B) is
evident because the Lie supergroupR0|1 acts onE−→B.

Lemma 7.7 Formally completed spaces of global sections of flat familiesTsa f f andDsa f f a
naturally quasi-isomorphic to Tpoly(X) and Dpoly(X) respectively.
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Proof: It is well-known that if E−→X is a vector bundle then de Rham cohomology of
X with coefficients in formally flat infinite-dimensional bundle jets∞E are concentrated in
degree 0 and canonically isomorphic to the vector spaceΓ(X,E). Moreover, the natural
homomorphism of complexes

(
Γ(X,E)[0], differential= 0

)
−→

(
Ω∗(X, jets∞(E)), de Rham differential

)

is quasi-isomorphism.
Using this fact, the lemma from the previous subsection, andappropriate filtrations (for

spectral sequences) one sees that that the naturalQ-equivariant map from the formalQ-
manifold (Tpoly(X) f ormal[1],0) to (Γ(Tsa f f−→T[1]X) f ormal,σT ) (and analogous map for
Dpoly) is a quasi-isomorphism. Q.E.D.

It follows from the lemma above and the result of paragraph 4.6.1.1 that we have a chain
of quasi-isomorphisms

Tpoly(X)[1] f ormal−→Γ(Tsa f f−→T[1]X) f ormal−→·· ·
· · ·−→Γ(Dsa f f−→T[1]X) f ormal←− Tpoly(X)[1] f ormal .

Thus, differential graded Lie algebrasTpoly(X) andDpoly(X) are quasi-isomorphic. The Main
Theorem stated in Section 4.6.2. is proven.Q.E.D.

The space of sections of the bundleXa f f−→X is contractible. From this fact one can
conclude that the quasi-isomorphism constructed above is well-defined homotopically.

8 Cup-products

8.1 Cup-products on tangent cohomology

The differential graded Lie algebrasTpoly, Dpoly and (more generally) shifted by[1] Hochschild
complexes of arbitrary associative algebras, all carry an additional structure. We do not know
at the moment a definition, it should be something close to so called homotopy Gerstenhaber
algebras (see [18, 19]), although definitely not precisely this. At least, a visible part of this
structure is a commutative associative product of degree+2 on cohomology of the tangent
space to any solution of the Maurer-Cartan equation. Namely, if g is one of differential
graded Lie algebras listed above andγ ∈ (g⊗m)1 satisfiesdγ + 1

2[γ,γ] = 0 wherem is a
finite- dimensional nilpotent non-unital differential graded commutative associative algebra,
the tangent spaceTγ is defined as complexg⊗m[1] endowed with the differentiald+ [γ, ·].
Cohomology spaceHγ of this differential is a graded module over graded algebraH(m) (the
cohomology space ofm as a complex). Ifγ1 andγ2 are two gauge equivalent solutions, then
Hγ1 andHγ2 are (non-canonically) isomorphicm-modules.

We define now cup-products for all three differential gradedLie algebras listed at the be-
ginning of this section. ForTpoly(X) the cup-product is defined as the usual cup-product of
polyvector fields (see Section 4.6.1). One can check directly that this cup-product is compat-
ible with the differentiald+[γ, ·], and is a graded commutative associative product. For the
Hochschild complex of an associative algebraA the cup-product onHγ is defined in a more
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tricky way. It is defined on the complex by the formula

(t1∪ t2)(a0⊗·· ·⊗an) :=

∑
0≤k1≤k2≤k3≤k4≤n

±γn−(k2−k1+k4−k3)(a0⊗ . . .⊗ t1(ak1⊗ . . .)⊗ak2⊗·· ·

· · ·⊗ t2(ak3⊗ . . .)⊗ak4⊗ . . .),

whereγ l ∈Hom(A⊗(l+1),A)⊗ (k[0] ·1⊕m)1−l is homogeneous component of(γ +mA⊗1).
It is not a trivial check that the cup-product on the Hochschild complex is compatible with

differentials, and also is commutative, associative and gauge-equivariant on the level of coho-
mology. Formally, we will not use this fact. The proof is a direct calculation with Hochschild
cochains. Even if one replaces formulas by appropriate pictures the calculation is still quite
long, about 4-5 pages of tiny drawings. Alternatively, there is a simple abstract explanation
using the interpretation of the deformation theory relatedwith the shifted Hochschild com-
plex as a deformation theory of triangulated categories (or, better,A∞-categories, see [32]).

We define the cup-product forDpoly(X) by the restriction of formulas for the cup-product
in C•(A,A).

8.2 Compatibility of U with cup-products

Theorem 8.1 The quasi-isomorphismU constructed in Section 6 maps the cup-product for
Tpoly(X) to the cup-product for Dpoly(X).

Sketch of the proof:we translate the statement of the theorem to the language of graphs and
integrals. The tangent map is given by integrals where one ofvertices of the first type is
marked. This is the vertex where we put a representativet for the tangent element[t] ∈ Hγ .
We put copies ofγ (which is a polyvector field with values inm) into all other vertices of the
first type. The rule which we just described follows directlyfrom the Leibniz formula applied
to the Taylor series forU .

Now we are interested in the behavior of the tangent map with respect to a bilinear op-
eration on the tangent space. It means that we have nowtwo marked vertices of the first
type.

The statement of the theorem is an identity between two expressions, corresponding to
cup products forTpoly(X) andDpoly(X) respectively.

8.2.1 Pictures for the cup-product in polyvector fields

We claim that the side of identity with the cup-product for the caseTpoly(X), corresponds to
pictures where two points (say,p1, p2) where we put representatives of elements ofHγ which
we want to multiply, are infinitely close points onH . Precisely, this means that we integrate
products of copies of formdφ over preimagesPα of some pointα in R/2πZ ≃C2 ⊂C2,0

with respect to the forgetting map
Cn,m−→C2,0 .

It is easy to see thatPα has codimension 2 inCn,m and contains no strataCT of codimension
2. It implies that as a singular chainPα is equal to the sum of closures of non-compact
hypersurfaces

Pα ∩∂S(Cn,m), Pα ∩∂S1,S2(Cn,m)
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Figure 17: Non-zero terms for the cup-product inTpoly.

in boundary strata ofCn,m. It is easy to see that intersectionsPα ∩ ∂S1,S2(Cn,m) are empty,
and intersectionPα ∩ ∂S(Cn,m) is non-empty iffS⊇ {1,2}. In general pictures which can
contribute potentially with a non-zero weight are something like the one in Figure 16.

In other words, we have a collision of several points inH including both pointsp1

andp2. Pointsp1 andp2 should not be connected by an edge because otherwise the integral
vanishes (remember that the direction fromp1 to p2 is fixed). Also, if #S≥ 3 then the integral
vanishes by lemma from 6.6. The only non-trivial case which is left is whenS= {1,2} and
pointsp1, p2 are not connected. Figure 17 represents a non-vanishing terms corresponding
to the cup- product inTpoly(X).

8.2.2 Pictures for the cup-product in the Hochschild complex

The cup-product forDpoly(X) is given by pictures where these two points are separated and
infinitely close toR. Again, the precise definition is that we integrate productsof copies of
dφ over the preimageP0,1 of the point[(0,1)] ∈C0,2 ⊂C2,0. Analysis analogous to the one
from the previous subsection shows thatP0,1 does not intersect any boundary stratum ofCn,m.
Thus, as a chain of codimension 2 this preimageP0,1 coincides with the union of closures
of strataCT of codimension 2 such thatCT ⊆ P0,1. It is easy to see that any such stratum
gives pictures like the one in Figure 18 where there is no arrow going from circled regions
outside (as in Figure 11), and we get exactly the cup-productin the tangent cohomology of
the Hochschild complex as was described above.
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Figure 19: Path in the configuration space of two points inH . Dashed lines are trajectories
of two points.

8.2.3 Homotopy between two pictures

Choosing a path from one (limiting) configuration of two points onH to another configura-
tion (see Figure 19), we see that two products coincide on thelevel of cohomology. Q.E.D.

8.3 First application: Duflo-Kirillov isomorphism

8.3.1 Quantization of the Kirillov-Poisson bracket

Let g be afinite-dimensionalLie algebra overR. The dual space tog endowed with the
Kirillov-Poisson bracket is naturally a Poisson manifold (see [28]). We remind here the
formula for this bracket: ifp ∈ g∗ is a point andf ,g are two functions ong then the value
{ f ,g}|p is defined as〈p, [d f|p,dg|p]〉 where differentials of functionsf ,g at p are considered
as elements ofg≃ (g∗)∗. One can considerg∗ as an algebraic Poisson manifold because
coefficients of the Kirillov-Poisson bracket are linear functions ong∗.

Theorem 8.2 The canonical quantization of the Poisson manifoldg∗ is isomorphic to the
family of algebrasUh̄(g) defined as universal enveloping algebras ofg endowed with the
bracketh̄[ , ].

Proof: in Section 6.4 we have constructed a canonical star-producton the algebra of functions
on arbitrary finite-dimensional affine space endowed with a Poisson structure. Therefore we
obtain a canonical star-product onC∞(g∗). We claim that the product of any twopolynomials
on g∗ is a polynomial inh̄ with coefficients which are polynomials ong∗. The reason is
that the star-product is constructed in invariant way, using the contraction of indices. Let
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us denote byβ ∈ g∗⊗ g∗⊗ g the tensor giving the Lie bracket ong. All non-zero natural
operationsSymk(g)⊗Syml(g)−→Symm(g) which can be defined by contractions of indices
with the tensor product of several copies ofβ , exist only form≤ k+ l , and for every givenm
there are only finitely many ways to contract indices. Thus, it makes sense to put̄h equal to 1
and obtain a product onSym(g) =⊕k≥0Symk(g). We denote this product also by⋆.

It is easy to see that forγ1,γ2 ∈ g the following identity holds:

γ1 ⋆ γ2− γ2⋆ γ1 = [γ1,γ2] .

Moreover, the top component of⋆-product which mapsSymk(g)⊗Syml (g) to Symk+l(g), co-
incides with the standard commutative product onSym(g). From this two facts one concludes
that there exists a unique isomorphism of algebras

Ialg : (U g, ·)−→(Sym(g),⋆)

such thatIalg(γ) = γ for γ ∈ g, where· denotes the universal enveloping algebra ofg with the
standard product.

One can easily recover variablēh in this description and get the statement of the theorem.
Q.E.D.

Corollary 8.3 The center of the universal enveloping algebra is canonically isomorphic as
an algebra to the algebra

(
Sym(g)

)g
of g-invariant polynomials ong∗.

Proof: The center ofU g is 0-th cohomology for the (local) Hochschild complex ofU g
endowed with the standard cup-product. The algebra

(
Sym(g)

)g is the 0-th cohomology of
the algebra of polyvector fields ong∗ endowed with the differential[α, ·] whereα is the
Kirillov-Poisson bracket. From Theorem 8.1, we conclude that applying the tangent map to
U we get an isomorphism of algebras.

8.3.2 Three isomorphisms

In the proof of Theorem 8.2 we introduced an isomorphismIalg of algebras.
We denote byIPBW the isomorphism of vector spaces

Sym(g)−→U g

(subscript from the Poincaré-Birkhoff-Witt theorem), which is defined as

γ1γ2 . . .γn−→
1
n! ∑

σ∈Σn

γσ1 · γσ2 · · · · · γσn .

Analogously to arguments from above, one can see that the tangent map from polyvector
fields ong∗ to the Hochschild complex of the quantized algebra can be defined forh̄ = 1 and
for polynomial coefficients. We denote byIT its component which maps polynomial 0-vector
fields ong∗ (i.e. elements ofSym(g)) to 0-cochains of the Hochschild complex of the algebra
(Sym(g),⋆). Thus,IT is an isomorphism of vector spaces

IT : Sym(g)−→Sym(g)
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and the restriction ofIT to the algebra ofad(g)∗-invariant polynomials ong∗ is an isomor-
phism of algebras

Sym(g)g−→Center((Sym(g),⋆)) .

Combining all facts from above we get a sequence of isomorphisms of vector spaces:

Sym(g)
IT−−−→Sym(g)

Ialg←−−−U g
IPBW←−−−Sym(g) .

These isomorphisms aread(g)-invariant. Thus, one get isomorphisms

(Sym(g))g IT |...−−−→Center(Sym(g),⋆)
Ialg|...←−−−Center(U g)

IPBW|...←−−− (Sym(g))g ,

where the subscript| . . . denotes the restriction to subspaces ofad(g)-invariants. Moreover,
first two arrows are isomorphism of algebras. Thus, we have proved the following

Theorem 8.4 The restriction of the map

(
Ialg
)−1◦ IT : Sym(g)−→U g

to (Sym(g))g is an isomorphism of algebras(Sym(g))g−→Center(U g).

8.3.3 Automorphisms ofSym(g)

Let us calculate automorphismsIT and Ialg ◦ IPBW of the vector spaceSym(g). We claim
that both these automorphisms are translation invariant operators on the spaceSym(g) of
polynomials ong∗.

The algebra of translation invariant operators on the spaceof polynomials on a vector
spaceV is canonically isomorphic to the algebra of formal power series generated byV.
Generators of this algebra acts as derivations along constant vector fields inV. Thus, any
such operator can be seen as a formal power series at zero on the dual vector spaceV∗. We
apply this formalism to the caseV = g∗.

Theorem 8.5 Operators IT and Ialg ◦ IPBW respectively are translation invariant operators
associated with formal power series S1(γ) and S2(γ) at zero ing of the form

S1(γ) = exp

(

∑
k≥1

c(1)
2k Trace(ad(γ)2k)

)
, S2(γ) = exp

(

∑
k≥1

c(2)
2k Trace(ad(γ)2k)

)

where c(1)
2 ,c(1)

4 , . . . and c(2)
2 ,c(2)

4 , . . . are two infinite sequences of real numbers indexed by
even natural numbers.

Proof: we will study separately two cases.

8.3.3.1. Isomorphism IT
The isomorphismIT is given by the sum over terms corresponding to admissible graphs

Γ with no vertices of the second type, one special vertexv of the first type such that no edge
start atv, and such that at any other vertex start two edges and ends no more than one edge.
Vertexv is the marked vertex where we put an element ofSym(g) considered as an element
of tangent cohomology. At other vertices we put the Poisson-Kirillov bi-vector field ong∗,
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Figure 21: A union of wheels.

i.e. the tensor of commutator operation ing. As the result we get 0-differential operator, i.e.
an element of algebraSym(g).

It is easy to see that any such graph is isomorphic to a union ofcopies of “wheels”
Whn, n ≥ 2 represented in Figure 20 with identified central vertexv. Figure 21 shows a
typical graph of the union.

In the integration we may assume that the point corresponding to v is fixed, say that it is
i · 1+ 0∈H , because groupG(1) acts simply transitively onH . First of all, the operator
Sym(g)−→Sym(g) corresponding to the individual wheelWhn is the differential operator
on g∗ with constant coefficients, and it corresponds to the polynomial γ 7→ Trace(ad(γ)n)
on g. The operator corresponding to the joint of several wheels is the product of operators
associated with individual wheels. Also, the integral corresponding to the joint is the product
of integrals. Thus, with the help of symmetry factors, we conclude that the total operator
is equal to the exponent of the sum of operators associated with wheelsWhn, n≥ 2 with
weights equal to corresponding integrals. By the symmetry argument used several times
before (z 7→ −z), we see that integrals corresponding to wheels with oddn vanish. The first
statement of Theorem 8.5 is proven.Q.E.D.

8.3.3.2. Isomorphism Ialg◦ IPBW

The second case, for the operatorIalg ◦ IPBW, is a bit more tricky. Let us write a formula
for this map:

Ialg◦ IPBW : γn 7→ γ ⋆ γ ⋆ γ · · ·⋆ γ (n copies ofγ) .

This formula defines the map unambiguously because elementsγn, γ ∈ g, n≥ 0 generate
Sym(g) as a vector space.

In order to multiply several (say,m, wherem≥ 2) elements of the quantized algebra
we should put these elements atm fixedpoints in increasing order onR and take the sum
over all possible graphs withm vertices of the second type of corresponding expressions
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Figure 22: One of basic elements in the formula forγ ⋆ · · ·⋆ γ.
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Figure 23: Another potential basic element, it vanishes forsymmetry reasons.

with appropriate weights. The result does not depend on the position of fixed points onR
because the star-product is associative. Moreover, if we calculate a power of a given element
with respect to the⋆-product, we can put all these points in arbitrary order. It follows that
we can take an average over configurations ofm points onR where each point is random,
distributed independently from other points, with certainprobability density onR. We choose
a probability distribution onR with a smooth symmetric (under transformationx 7→ −x)
densityρ(x). We assume also thatρ(x)dx is the restriction toR≃C1,1 of a smooth 1-form on
C1,1≃ {−∞}⊔R⊔{+∞}. With probability 1 ourmpoints will be pairwise distinct. One can
check easily that the interchanging of order of integration(i.e. for the taking mean value from
the probability theory side, and for the integration of differential forms over configuration
spaces) is valid operation in our case.

The conclusion is that them-th power of an element of quantized algebra can be calculated
as a sum over all graphs withm vertices of the second type, with weights equal to integrals
over configuration spaces where we integrate products of forms dφ and 1-formsρ(xi)dxi

wherexi are points moving alongR.
The basic element of pictures in our case are “wheels withoutaxles” (Figure 22) and

the Λ-graph (Figure 23) which gives 0 for symmetry reasons. The typical total picture is
something like (withm= 10) the one drawn in Figure 24.

Again, it is clear from all this that the operatorIalg ◦ IPBW is a differential operator with
constant coefficients onSym(g), equal to the exponent of the sum of operators corresponding
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Figure 24: A term in the formula forγ ⋆ · · ·⋆ γ.

to individual wheels. These operators are again proportional to operators associated with
power series ong

γ−→Trace(ad(γ)n) .

By the same symmetry reasons as above we see that integrals corresponding to oddn vanish.
The second part of Theorem 8.5 is proven.Q.E.D.

8.3.4 Comparison with the Duflo-Kirillov isomorphism

For the case of semi-simpleg there is so called Harish-Chandra isomorphism between al-
gebras

(
Sym(g)

)g andCenter(U g). A. Kirillov realized that there is a way to rewrite the
Harish-Chandra isomorphism in a form which makes sense for arbitrary finite-dimensional
Lie algebra, i.e. without using the Cartan and Borel subalgebras, the Weyl group etc. Later
M. Duflo (see [12]) proved that the map proposed by Kirillov isan isomorphism for all finite-
dimensional Lie algebras.

The explicit formula for the Duflo-Kirillov isomorphism is the following:

IDK :
(
Sym(g)

)g≃ Center(U (g)), IDK = IPBW|(Sym(g))g ◦ Istrange|(Sym(g))g,

whereIstrange is an invertible translation invariant operator onSym(g) associated with the
following formal power series ong at zero, reminiscent of the square root of the Todd class:

γ 7→ exp

(

∑
k≥1

B2k

4k(2k)!
Trace(ad(γ)2k)

)

whereB2,B4, . . . are Bernoulli numbers. Formally, one can write the right-hand side as
det(q(ad(γ))) where

q(x) :=

√
ex/2−e−x/2

x
.

The fact that the Duflo-Kirillov isomorphism is an isomorphism of algebras is highly non-
trivial. All proofs known before (see [12, 20]) used certainfacts about finite-dimensional Lie
algebras which follow only from the classification theory. In particular, the fact that the
analogous isomorphism for Lie superalgebras is compatiblewith products, was not known.
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We claim that our isomorphism coincides with the Duflo-Kirillov isomorphism. Let us
sketch the argument. In fact, we claim that

I−1
alg ◦ IT = IPBW◦ Istrange .

If it is not true then we get a non-zero seriesErr ∈ t2R[[t2]] such that the translation in-
variant operator onSym(g) associated withγ 7→ Idet(exp(adγ))) gives anautomorphismof al-
gebra(Sym(g))g. Let 2k > 0 be the degree of first non-vanishing term in the expansion
of Err. Then it is easy to see that the operator onSym(g) associated with the polynomial
γ 7→ Trace(ad(γ)2k is aderivationwhen restricted to(Sym(g))g. One can show that it is not
true using Lie algebrasg = gl(n) for largen. Thus, we get a contradiction and proved that
Err = 0. Q.E.D.

As a remark we would like to mention that if one replaces series q(x) above just by the
inverse to the square root of the series related to the Todd class

(
x

1−e−x

)− 1
2

then one still get an isomorphism of algebras. The reason is that the one-parameter group of
automorphisms ofSym(g) associated with series

γ−→exp(const·Trace(ad(γ)))

preserves the structure of Poisson algebra ong∗. This one-parameter group also acts by
automorphisms ofU g. It is analogous to the Tomita-Takesaki modular automorphism group
for von Neumann algebras.

8.3.5 Results in rigid tensor categories

Many proofs from this paper can be transported to a more general context of rigidQ-linear
tensor categories (i.e. abelian symmetric monoidal categories with the duality functor imitat-
ing the behavior of finite-dimensional vector spaces). We will be very brief here.

First of all, one can formulate and prove the Poincaré-Birkhoff-Witt theorem in a great
generality, inQ-linear additive symmetric monoidal categories with infinite sums and kernels
of projectors. For example, it holds in the category ofA-modules whereA is arbitrary com-
mutative associative algebra overQ. Thus, we can speak about universal enveloping algebras
and the isomorphismIPBW.

One can define Duflo-Kirillov morphism for a Lie algebra in ak-linear rigid tensor cat-
egory wherek is a field of characteristic zero, because Bernoulli numbersare rational. Our
result from 8.3.4 saying that it is a morphism of algebras, holds in this generality as well.
It does nothold for infinite-dimensional Lie algebras because we use traces of products of
operators in the adjoint representation.

In [27] a conjecture was made in the attempt to prove that thatDuflo-Kirillov formulas
give a morphism of algebras. It seems plausible our results can help one to prove this con-
jecture. Also, there is another related conjecture concerning two products in the algebra of
chord diagrams (see [3]) which seems to be a corollary of our results.
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8.4 Second application: algebras ofExt-s.

Let X be complex manifold, or a smooth algebraic variety of fieldk of characteristic zero.
We associate with it two graded vector spaces. The first spaceHT•(X) is the direct sum⊕

k,l Hk(X,∧l TX)[−k− l ]. The second spaceHH•(X) is the space
⊕

k ExtkCoh(X×X)(Odiag,Odiag)[−k]
of Ext-groups in the category of coherent sheaves onX×X from the sheaf of functions on the
diagonal to itself. The spaceHH•(X) can be thought as the Hochschild cohomology of the
spaceX. The reason is that the Hochschild cohomology of any algebraA can be also defined
asExt•A−mod−A(A,A) in the category of bimodules.

Both spaces,HH•(X) andHT•(X) carry natural products. ForHH•(X) it is the Yoneda
composition, and forHT•(X) it is the cup-product of cohomology and of polyvector fields.

CLAIM Graded algebras HH•(X) and HT•(X) are canonically isomorphic. The isomor-
phism between them is functorial with respect toétale maps.

This statement (important for the Mirror Symmetry, see [32]) is again a corollary of The-
orem 8.1. Here we will not give the proof.
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