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Foreword

Here is the final version of the e-priBteformation quantization of Poisson manifold88]
posted on the web archive gs al g/ 9709040. The changes that have been made are
mostly cosmetic, | have just corrected few mistakes and tiiemake clear links between
several lemmas and theorems proven in the paper, and adéghdtned out some proofs.

Here follows a guide to a short and definitely not completeitaaidhl bibliography re-
flecting further development of the subject.

First of all, | have to mention the work of Dmitry Tamarkin ésft4] and a nice exposition
in [22]), which gave a radically new approach to the fornyaliteorem. One of main ideas
is to consider the Lie algebrd$oy andD oy Not just as dg Lie algebras, but as homotopy
Gerstenhaber algebras, which explains naturally the ecogyzt on the tangent space. A
very important related issue here is the so called Deligmgenture which says that on the
Hochschild complex of an arbitrary associative algebraehe a natural action of the dg
operad of chains of the little discs operad. The Deligne ectoye has now several proofs,
see e.g. [36, 37], and a generalization to higher dimenéiof26]. Unfortunately, up to now,
it is not clear how to extract explicit formulas from Tamarkiwork, or even how to compare
it with the formality morphism from [33]. Tamarkin's proo$ based on the Etingof-Kazhdan
theorem about quantizations of Lie bialgebras, which is sease more complicated (and
less explicit) than the Formality theorem itself! It seemattthe Etingof-Kazhdan theorem
is a “degree zero” part of a more general not yet establiskedltr of the formality of the
differential graded Lie algebra controlling deformatiamfshe symmetric algebr8yn{V) of
a vector space, considered as an associative and coassobialgebra. On this Lie algebra
there should be an action of the operad of chains of littlar3etsisional cube operad and
its formality should be considered as a natural generaizaif the Formality theorem from
[33]. Up to now there is no explicit complex of a “reasonabiey controlling deformations
of bialgebras, see [39] for some recent attempts.

In [34] | have tried to perform a shortcut in Tamarkin's pranfoiding the reference to
Etingof-Kazhdan’s result. Also | proposed a new formalitgrmphism with complex coeffi-
cients, different from the one in [33]. Conjecturally theanmorphism behaves in a better
way than the old one with respect to the arithmetic naturehefdoefficients (weights of
graphs) and should coincide with Tamarkin’s quasi- isorhim up to homotopy.

In [45] another generalization of the Formality theorem vpagposed. Namely, one
should consider not only the cohomological Hochschild clexpbut also the homological
Hochschild complex which is a module in certain sense ovectthomological one. Related
colored operad here consists of configurations of disjastglin a cylinder with two marked
points on both boundary components. This is important fesstiady of traces in deformation



quantization, see [15] for an approach to the quantizatidim traces.

The program of identifying graphs in the formality morphismith Feynman
diagrams for a topological sigma-model (announced in [3@Rs performed by
Alberto S. Cattaneo and Giovanni Felder in a series of papees[7, 8].

In [4] it is established a formality of the dg Lie algebra whits a global Dolbeault
complex for holomorphic polyvector fields on a given Calahid manifoldX. Morally,
together with the Formality theorem of [33], this should mézat the extended moduli space
of triangulated categories is smooth in a formal neighbochof the derived category of
coherent sheaves of

In[9] an alternative way for the passage from local to glafzesle in the Formality theorem
was described, see also an appendix in [35].

In [35] | proposed a way to use results of [33] in the case oflatgic varieties. It seems
that for rational Poisson varieties deformation quaniizais truly canonical in a very strong
sense. For example, | believe that for arbitrary fikeldf characteristic zero there exists cer-
tain canonical isomorphism between the automorphism gobthek-algebra of polynomial
differential operators on an affimedimensional space ovér, and the group of polynomial
symplectomorphisms of the standard symplecticdimensional affine space ovier This is
very surprising because the corresponding Lie algebrag¥ations are not at all isomor-
phic.

Finally, repeating myself a bit, | comment on today’s state¢he topics listed in Sec-
tion 0.2 in [33]:

1) The comparison with other deformation schemes is not gdbpmed.

2) This is still a wishful thinking.

3) See conjectures in [34], and also [35].

4) This is not done yet, results from [4] should be used as tenrirediate step.

5) Done by Cattaneo and Felder.

6) Not yet completed, see conjectures in [45].

7) In [35] there is a recipe for a canonical quantization foadratic brackets, see also the
new conjecture from above about an isomorphism between tdanerphisms groups.

O Introduction

In this paper it is proven that any finite-dimensional Paissmanifold can be canonically
guantized (in the sense of deformation quantization). rimédly, it means that the set of
equivalence classes of associative algebras close torakyebfunctions on manifolds is in
one-to-one correspondence with the set of equivalenceadasf Poisson manifolds modulo
diffeomorphisms. This is a corollary of a more general stast, which | proposed around
1993-1994 (théormality conjecturesee [30, 43]).

For a long time the Formality conjecture resisted all apphes. The solution presented
here uses in a essential way ideas of string theory. Our flmsmaan be viewed as a perturba-
tion series for a topological two-dimensional quantum fiblelory coupled with gravity.

0.1 Content of the paper

Section 1: an elementary introduction to the deformatioangization, and precise formula-
tion of the main statement concerning Poisson manifolds.



Section 2: an explicit formula for the deformation quantii@a written in coordinates.

Section 3:; an introduction to the deformation theory in gahen terms of differential
graded Lie algebras. The material of this section is bdgisgdndard.

Section 4: a geometric reformulation of the theory introgllin the previous section, in
terms of odd vector fields on formal supermanifolds. In gaittr, we introduce convenient
notions of anL.-morphism and of a quasi-isomorphism, which gives us a todadi¢ntify
deformation theories related with two differential gradéelalgebras. Also in this section we
state our main result, which is an existence of a quasi-isphism between the Hochschild
complex of the algebra of polynomials, and the graded Lielalg of polyvector fields on
affine space.

Section 5: tools for the explicit construction of the quasdmorphism mentioned above.
We define compactified configuration spaces related with thigathevsky plane, a class
of admissible graphs, differential polynomials on polytegdields related with graphs, and
integrals over configuration spaces. Technically the saonsteuctions were used in general-
izations of the perturbative Chern-Simons theory sevezaly ago (see [29]). Compactifica-
tions of the configuration spaces are close relatives obRei\lacPherson compactifications
of configuration spaces in algebraic geometry (see [16]).

Section 6: it is proven that the machinery introduced in thevipus section gives a
guasi-isomorphism and establishes the Formality conjedtr affine spaces. The proof is
essentially an application of the Stokes formula, and a g¢nesult of vanishing of certain
integral associated with a collection of rational funciam a complex algebraic variety.

Section 7: results of Section 6 are extended to the case @rglemanifolds. In order
to do this we recall basic ideas of formal geometry of I. Galfand D. Kazhdan, and the
language of superconnections. In order to pass from theeadfiace to general manifolds we
have to find a non-linear cocycle of the Lie algebra of formadter fields. It turns out that
such a cocycle can be almost directly constructed from opli@kformulas. In the course
of the proof we calculate several integrals and check thegiishing. Also, we introduce a
general notion of direct image for certain bundles of sugerifolds.

Section 8: we describe an additional structure presentardgformation theory of as-
sociative algebras, the cup-product on the tangent budiket super moduli space. The
isomorphism constructed in Sections 6 and 7 is compatibile thiis structure. One of new
results is the validity of Duflo-Kirillov formulas for Lie gkbras in general rigid tensor cat-
egories, in particular for Lie superalgebras. Another aaion is an equality of two cup-
products in the context of algebraic geometry.

0.2 Whatis not here

Here is a list of further topics which are not touched in thaper, but are worth to mention.

1) the comparison of the formality with various other knovemstructions of star-products,
the most notorious one are by De Wilde-Lecomte and by Fedfmsdlie case of symplectic
manifolds (see [11, 14]), and by Etingof-Kazhdan for Paisk@ groups (see [13]),

2) a reformulation of the Formality conjecture as an exiseof a natural construction of
a triangulated category starting from an odd symplectiesmanifold,

3) a study of the arithmetic nature of coefficients in our fatas, and of the possibility
to extend main results for algebraic varieties over arbjtfeeld of characteristic zero,

4) an application to the Mirror Symmetry, which was the an@imotivation for the For-
mality conjecture (see [32]),



5) a reformulation via a Lagrangian for a quantum field thegym [1]) which seems to
give our formulas as the perturbation expansion,

6) a version of the formality morphism for cyclic homology,

7) a canonical quantization of quadratic brackets, and menerally of algebraic Poisson
manifolds.
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1 Deformation quantization

1.1 Star-products

Let A=T(X,0x) be the algebra oveR of smooth functions on a finite-dimensiorGf-
manifold X. A star-product orA (see [5]) is amassociativeR|[[h]]-linear product orA[[h]]
given by the following formula forf,g € A C A[[R]]:

(f.9)— fxg= fg+hBy(f,g)+PBy(f,9)+ - € A[A]],

whereh is the formal variable, an&; are bidifferential operators (i.e. bilinear mapsx
A—A which are differential operators with respect to each argnihof globally bounded
order). The product of arbitrary elementsAifh]] is defined by the condition of linearity over
R[[R]] andh-adic continuity:

<z fnﬁ"> * (z gnﬁ”> =Y fig A+ Bin( fi, g ) AEH+™ |
n>0 n>0 k>0 k1 >0,m>1

There is a natural gauge group acting on star-products. gtuep consists of auto-
morphisms ofA[[f]] considered as afR[[h]]-module (i.e. linear transformatio’s—A
parametrized b¥), of the following form:

f s f+RADy(f) +R?Dy(f) +..., for f € AC A[A]],
Zofnﬁ” — Zofnﬁ”+ Dm(fa) A™™, for general element (h) = Zofnﬁ” € A[[A]],
n> n> n>0,m>1 n>

whereD; : A—A are differential operators. D(h) =143 51 Dmh™ is such an automor-
phism, it acts on the set of star- products as

x ', £(R)+ g(R) := D(R) (D(A)*(f(R) xD(R)*(g(M)), f(R), () € A[[A]] .

We are interested in star-products up to gauge equivalence.



1.2 First approximation: Poisson structures

It follows from the associativity ok that the bilinear maB; : A x A—A satisfies the equa-
tion
fB1(g,h) — Ba(fg,h) + By (f,gh) —B1(f,g)h =0,
i.e. the linear maﬁl : A® A— A associated witiB, asl§1(f ®49) :=By(f,Q), is a2-cocycle
in the cohomological Hochschild complex of algel#&the definition of this complex is
given in Section 3.4.2).
Let us decomposB; into the sum of the symmetric part and of the anti-symmetaic:p

B1 =By +B;, B{(f.9) =B{(g.f). B{(f.9) =B (g f) .
Gauge transformations
By — By, By(f,9) =Bi(f,g) — fD1(9) +D1(fg) —Di(f)g

whereD; is an arbitrary differential operator, affect only the syetnc part ofBy, i.e.B; =
(B})~. One can show that the symmetric pBit can be killed by a gauge transformation
(and it is a coboundary in the Hochschild complex).

Also one can show that the skew-symmetric (@jrtis a derivation with respect to both
functionsf andg. Thus,B; comes from a bi-vector field onX:

By (f,0) = (a,df®dg), a el(X,A*Tx) T (X, Tx®@Tx) .

Analogous fact in algebraic geometry is that the second sicttld cohomology group of the
algebra of functions on a smooth affine algebraic varietyaisirally isomorphic to the space
of bi-vector fields (see [25] and also Section 4.6.1.1).

The second terr®(R?) in the associativity equatiohx (g h) = (f xg) xhimplies that
o gives a Poisson structure oh

vi,gh {f.{g,h}}+{g,{h.f}} +{h {f.g}} =0,
fxg—gxf

h IA=0
In other words[a, a] = 0€ ' (X, A3Tx), where the bracket is the Schouten-Nijenhuis bracket
on polyvector fields (see Section 4.6.1 for the definitionhid bracket).

Thus, gauge equivalence classes of star-products m@jfifg are classified by Poisson
structures orX. A priori it is not clear whether there exists a star-product with thet fi
term equal to a given Poisson structure, and whether thestsex preferred choice of an
equivalence class of star-products. We show in this pajptltere is a canonical construction
of an equivalence class of star-products for any Poissorifaidn

where {f,g} := =2B; (f,g9) =2(a,df®dg) .

1.3 Description of quantizations

Theorem 1.1 The set of gauge equivalence classes of star products on etsmanifold X
can be naturally identified with the set of equivalence dasd Poisson structures depending
formally onh:

a = a(R) = ath+ a2+ - € T(X, A2T)[[A]], [a,a] =0 (X, A3Tx)[[A]]

modulo the action of the group of formal paths in the diffegshtsm group of X, starting at
the identity diffeomorphism.



Any given Poisson structure o, gives a patha (h) := a(g) - h and by the Theorem from
above, a canonical gauge equivalence class of star prodietsvill not give a proof of this
theorem, as it is an immediate corollary of the Main Theorérhis paper in Section 4.6.2
and a general result from deformation theory (see Sectibhn 4.

1.4 Examples
1.4.1 Moyal product

The simplest example of a deformation quantization is theggdllproduct for the Poisson
structure orRY with constant coefficients:

a:ZO{”ﬁi/\dJ, al = —all e R
Ny

whered = d/dx is the partial derivative in the direction of coordinatei = 1,...,d. The
formula for the Moyal product is

- R2 -
fxg=fg+ny o' 0i(f)dj(g)+7 % ala¥ ao(f)d;a(g) +--- =
1) i),k

_< T : ik : L
! il,.4.,i%1,..4jn l!:lla (kl_llalk> (1) <ﬂ01k> 9

Here and later symbot denotes the usual product.

1.4.2 Deformation quantization up to the second order

Leta =73, ; allé A dj be a Poisson bracket with variable coefficients in an openaiiowf
RY (i.e. a'l is not a constant, but a function of coordinates), then theviing formula gives
an associative product modulh®):

- R2 -
fxg="fg+hy a’a(f)oj(0) + % allaM aay(f) ;6 (g)+
[N] ],k

h2 .
+3 ( % a'l 9j(a") (adk(f)ai(9) - (f) aa (@D)) +O(R%)
i),k
The associativity up to the second order means that for aop&ibnsf, g, h one has

(fxg)«h=fx(gxh)+O(F®) .

1.5 Remarks

In general, one should consider bidifferential operafravith complex coefficients, as we
expect to associate by quantization self-adjoint opesatol Hilbert space to real-valued
classical observables. In this paper we deal with purelyn&dralgebraic properties of the
deformation quantization and work mainly over the fillaf real numbers.



Also, it is not clear whether the natural physical counterfm the “deformation quanti-
zation” for general Poisson brackets is the usual quantuohargcs. Definitely it is true for
the case of non-degenerate brackets, i.e. for symplectiéfolds, but our results show that
in general a topological open string theory is more relevant

2 Explicit universal formula

Here we propose a formula for the star-product for arbitfaoysson structure in an open
domain of the standard coordinate sp&%® Terms of our formula modul®(R®) are the
same as in the previous section, plus a gauge-trivial termdérO(ﬁz), symmetric inf and
g. Terms of the formula are certain universal polydifferahtiperators applied to coefficients
of the bi-vector fieldo and to functiond,g. All indices corresponding to coordinates in the
formula appear once as lower indices and once as upper g)dieethe formula is invariant
under affine transformations &,

In order to describe terms proportionalfidfor any integein > 0, we introduce a special
classG,, of oriented labeled graphs.

All graphs considered in this paper are finiteiented(i.e. every edge carries an orien-
tation), have no multiple edges and no loops. Such objectailleall here simply graphs
without adding adjectives.

Definition 2.1 A graphT is a pair (Vr,Er) of two finite sets such that-Hs a subset of
(Vr X Vr) \Vr.

Elements ol are vertices of", elements oEr are edges of . If e= (vq,vp) € Er C
Vr x Vr is an edge then we say thastarts av; and ends at,.

For any integen > 0 we define certain sd&b, of labeled graphs. We say tht(with
some additioanl labels) belongs@® if

1) I hasn—+ 2 vertices and 2 edges,

2) the set verticegr is {1,...,n}U{L,R}, whereL, Rare just two symbols (capital roman
letters, mean Left and Right),

3) edges of are labeled by symboks,e?,e}.€3,... et e,

4) for everyk € {1,...,n} edges labeled bg. ande? start at the vertek.

Obviously, seG, is finite, it has(n(n+1))" elements fon > 1 and 1 element fon = 0.

With every labeled graph € G, we associate a bidifferential operator

Bra:AxA—A A=C(¥), ¥ is an open domain ifR¢

which depends on bi-vector field € I (7', A>Ty ), not necessarily a Poisson one. We show
one example, from which the general rule should be clearigarg 1, one has = 3 and the
list of edges is

(el].’ ez].’ %7 %7 %7 %) = ((17 L)’ (17 R)’ (27 R)7 (27 3)7 (37 L)7 (37 R)) °

In the picture ofl we put independent indices <i,...,ig < d on edges, instead of
labelse;. The operatoBr o corresponding to this graph is

(f,g)— 5 a™2a'4a,(a'%)a,d;()d,0,0(9) -
S

i1,--,l6



Figure 1: An example of a graph.

©

Figure 2: Angleg".

The general formula for the operatBf 4 is

n

Bra(f,g) = Z lﬂ( 1 0|<e>>“'(eb'(eﬁ)]x
I:Er—{1,...,d} | k=1 \ecEr, e=(x,k)

X ( I_l dl(e)) f x ( I_l dl(e)) g.
ecEr, e=(x,L) ecEr, e=(x,R)

In the next step we associate a weighite R with each grapli € G,. In order to define
it we need an elementary construction from hyperbolic gegome

Let p,q, p # q be two points in the upper half-plang = {z € C| Im(z) > 0} endowed
with the Lobachevsky metric. We denote Bj(p,q) € R/2nZ the angle atp formed by
two lines,l(p,q) andl(p, ) passing througlp andg, and througtp and the pointo on the
absolute. The direction of the measurement of the angleunteoclockwise from (p, ) to
I(p,q). In the notationp”(p, q) letterh is for harmonic(see Figure 2).

An easy planimetry shows that one can express apilp,q) in terms of complex num-
bers:

hp o) — 1 (Q—p)(q—p))
¢'(p.0) =Arg((Q—p)/([@-P) = 5 Log<(q_b)(q__p) :

Superscriph in the notationg” refers to the fact thap"(p,q) is harmonic function in
both variablesp,q € 2. Functiong"(p,q) can be defined by continuity also in the case
p,ge ZUR, p#Q.



Denote bys#, the space of configurations ninumbered pairwise distinct points o#:

0 ={(P1,-.-,Pn)|Pk € K, pc# P for k#1} .

% c C"is a non-compact smootmalimensional manifold. We introduce orientation on
% using the natural complex structure onit.

If I € Gy is a graph as above, afifs, ..., pn) € %4 is a configuration of points, then we
draw a copy of” on the plan&k? ~ C by assigning poinpy € .77 to the vertexx, 1 <k <n,
point 0 R C C to the vertexL, and point 1€ R C C to the vertexR. Each edge should
be drawn as a line interval in hyperbolic geometry. Everyeeelgf the graph” defines an
ordered pair(p,q) of points on.Z LR, thus an angley := ¢"(p,q). If points p; move
around, we get a functiog! on ./, with values inR /27Z.

We define the weight df as

1 n
Wr = 7n!(2n)2“j£ i/:\lwcpg&mcp%) .

Lemma 2.2 The integral in the definition of wis absolutely convergent.

This lemma is a particular case of a more general statemeweprin Section 6 (see the
last sentence in Section 6.2).

Theorem 2.3 Let o be a Poisson bi-vector field in a domain®¥. The formula

fxg:= ik wWrBr. (f,g)
Zo e, .

n

defines an associative product. If we change coordinatesbiain a gauge equivalent star-
product.

The proof of this theorem is in a sense elementary, it usegtbel Stokes formula and
combinatorics of admissible graphs. We will not give herehoof of this theorem as it is a
corollary of a general result proven in Section 6.

3 Deformation theory via differential graded Lie algebras

3.1 Tensor categorieSuperand Graded

Here we make a comment about the terminology. This commeksla bit pedantic, but it
could help in the struggle with signs in formulas.

The main idea of algebraic geometry is to replace spacesmymgative associative rings
(at least locally). One can further generalize this comaigecommutative associative alge-
bras in general tensor categories (see [10]). In this waycameimitate many constructions
from algebra and differential geometry.

The fundamental example is supermathematics, i.e. matie=niia the tensor category
Supek of super vector spaces over a fiddcbf characteristic zero (see Chapter 3 in [38]).
The categongupek is the category of./2Z-graded vector spaces ovefrepresentations of
the groupZ/27) endowed with the standard tensor product, with the stahdasociativity



functor, and with a modified commutativity functor (the Kabkzule of signs). We denote
by N the usual functoBupefk—Supek changing the parity. It is given on objects by the
formulanV =V @ k. In the sequel we will consider the standard tensor categecy of
vector spaces ovéras the full subcategory @upek consisting of pure even spaces.

The basic tensor category which appears everywhere inagg@nd homological algebra
is a full subcategory of the tensor categoryZefiraded super vector spaces. Objects of this
category are infinite sumé = @,cz&" such that&™ is pure even for even, and pure
odd for oddn. We will slightly abuse the language calling this categdspahe category of
graded vector spaces, and denote it simply@gded. We denote by the usuak-vector
space underlying the graded componéfi!. The super vector space obtained if we forget
aboutZ-grading ons’ € ObjectgGraded) is Py, M"(EM).

Analogously, we will speak about graded manifolds. Theydafined as supermanifolds
endowed withZ-grading on the sheaf of functions obeying the same conditim the parity
as above.

The shift functof1] : Graded—Graded (acting from the right) is defined as the tensor
product with graded spadg1] wherek[1]~1 ~ k, k[1]*~% = 0. Its powers are denoted by
[n], n € Z. Thus, for graded spacg we have

E=PEN-n|.

nez

Almost all results in the present paper formulated for gchehanifolds, graded Lie alge-
bras etc., hold also for supermanifolds, super Lie algebtas

3.2 Maurer-Cartan equation in differential graded Lie algebras

This part is essentially standard (see [21, 23, 41]).
Let g be a differential graded Lie algebra over fildbf characteristic zero. Below we
recall the list of structures and axioms:

9=Pd-K, [.]:d*ed—d" d:g-—g
keZ

d(d(y)) =0, dly1, o] = [dy1, 18] + (— D)% [y1.dye], [y, 1u] = —(—)" %[, ],

s v yell 4+ (= 1) %) s, [y, ol + (1) 02 08 [y, [y, 1)) = 0.

In formulas above symbolg € Z mean the degrees of homogeneous elemgnise.
yegh.

In other words g is a Lie algebra in the tensor category of complexes of vegpaces
overk. If we forget about the differential and the gradinggmwe obtain a Lie superalgebra.

We associate witly a functorDe fy on the category of finite-dimensional commutative
associative algebras ovkr with values in the category of sets. First of all, let us assu
thatg is a nilpotent Lie superalgebra. We define s¢t¢’(g) (the set of solutions of the
Maurer-Cartan equation modulo the gauge equivalence)diotimula

w619~ {yeday+ 3=} r°

10



wherel? is the nilpotent group associated with the nilpotent Lieshigg®. The groupl
acts by affine transformations of the vector spgée The action off 0 is defined by the
exponentiation of the infinitesimal action of its Lie algabr

aeg— (y=da+[a,y) .

Now we are ready to introduce funct@refy. Technically, it is convenient to define
this functor on the category of finite-dimensional nilpdteommutative associative alge-
braswithoutunit. Letm be such an algebrap®™™+1 — 0. The functor is given (on objects)
by the formula

Defy(m) = .Z¢(gem) .

In the conventional approach is the maximal ideal in a finite-dimensional Artin algebra
with unit
m:=maok-1.

In general, one can think about commutative associativebadgs without unit as about objects
dual to spaces with base points. Algebra corresponding {gaaeswith base point is the
algebra of functions vanishing at the base point.

One can extend the definition of the deformation functor gehtas with linear topol-
ogy which are projective limits of nilpotent finite-dimensil algebras. For example, in the
deformation quantization we use the following algebra d@®er

m := AR[[R] = lim (H]R[ﬁ]/ﬁkR[m) as ko o .

3.3 Remark

Several authors, following a suggestion of P. Deligne ssted that the sée f;(m) should
be considered as the set of equivalence classes of objectstafn groupoid naturally as-
sociated withg(m). Almost always in deformation theory, differential graded algebras
are supported in non-negative degregs) = 0. Our principal example in the present pa-
per, the shifted Hochschild complex (see the next subsgctims a non-trivial component
in degree—1, when it is considered as a graded Lie algebra. Thésd§(m) in such a
case has a natural structure of the set of equivalence sléssa 2-groupoid. In general,
if one considers differential graded Lie algebras with comgnts in negative degrees, one
meets immediately polycategories and nilpotent homotgpgg. Still, it is only a half of the
story because one can not say anything algg@iusing this language. Maybe, the better way
is to extend the definition of the deformation functor to tlaegory of differential graded
nilpotent commutative associative algebras, see thedasrnk in Section 4.5.2.

3.4 Examples

There are many standard examples of differential gradedalgebras and related moduli
problems.

11



3.4.1 Tangent complex

Let X be a complex manifold. DefingoverC as

9=EPdK; ¢=rX,% a1 for k>0, g<®=0
keZ

with the differential equal t@, and the Lie bracket coming from the cup-producidforms
and the usual Lie bracket on holomorphic vector fields.

The deformation functor related witg is the usual deformation functor for complex
structures orX. The setDefy(m) can be naturally identified with the set of equivalence
classes of analytic spac¥endowed with a flat map: X—S pe¢m’), and an identification
it X X gpe¢mr) SPeEC) ~ X of the special fiber op with X.

3.4.2 Hochschild complex

Let A be an associative algebra over fidddof characteristic zero. The graded space of
Hochschild cochains o& with coefficients inA considered as a bimodule over itself is

C*(AA) = PCHAA)-K, CKAA) :=Hom (AKA) .
k>0

We define graded vector spageverk by formulag := C*(A,A)[1]. Thus, we have

9=Pd[-K; g*:=HomA* 1V A)fork> -1, g="Y=0.
keZ

The differential ing is shifted by 1 the usual differential in the Hochschild cdexpand
the Lie bracket is the Gerstenhaber bracket. The explioihédas for the differential and for
the bracket are:

(dP)(a0® - ®ak1) =ao Py ® - ®at1)
k .
_.;(—1)'49(60@---@ (8 8i41) ® - @ 8s1)

+(—D*(ag@---®ay) a1, Peds,

and
(@1, ®p] = Dy oDy — (—1)Ked0d;, B gl

where the (non-associative) produds defined as

(Pro®2) (R ®ay +k,) =

k1 )
Z}(—l)'khbl(ao @ Ra-10 (PAY R @ 8j1k,)) @Qithp+1 @+ @ Ay rky) -
=

We would like to give here also an abstract definition of tHeedéntial and of the bracket
ong. LetF denote the free coassociative graded coalgebra with coagénerated by the

graded vector spac¥1]:
F=EPa"AQL) .

n>1
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Graded Lie algebra is the Lie algebra of coderivations &f in the tensor category
Graded. The associative product ohgives an elementa € g, ma : A® A—A satis-
fying the equatiorima, ma] = 0. The differentiall in g is defined agd(ma).

Again, the deformation functor related ¢gas equivalent to the usual deformation functor
for algebraic structures. Associative productsfnorrespond to solutions of the Maurer-
Cartan equation ig. The setDefy(m) is naturally identified with the set of equivalence
classes of pair6A, i) whereA is an associative algebra ovef = m @k - 1 such thafi is free
as anm’-module, and an isomorphism ok-algebrasA @y k ~ A

The cohomology of the Hochschild complex are

HH k(Aa A) = Exﬂ&fmocFA(Av A)v

theExt-groups in the abelian category of bimodules o&efhe Hochschild complewithout
shift by 1 also has a meaning in deformation theory, it alse &aanonical structure of
differential graded Lie algebra, and it controls deforroasi ofA as a bimodule.

4 Homotopy Lie algebras and quasi-isomorphisms

In this section we introduce a language convenient for thadtopy theory of differential
graded Lie algebras and for the deformation theory. Thempidieldk for linear algebra in
our discussion is an arbitrary field of characteristic zeress specified.

4.1 Formal manifolds

LetV be a vector space. We denote®§V ) the cofree cocommutative coassociative coalge-
bra without counit cogenerated by

V) =P (V)" c P(a"V) .

n>1 n>1

Intuitively, we think abouC(V) as about an object corresponding to a formal manifold,
possibly infinite-dimensional, with base point;

(Vformal, base poin} := ( Formal neighborhood of zero i, 0) .

The reason for this is that ¥ is finite-dimensional the@(V)* (the dual space t€(V)) is
the algebra of formal power series ¥rvanishing at the origin.

Definition 4.1 A formal pointed manifold M is an object corresponding to algebra®
which is isomorphic to ¢/) for some vector space V.

The specific isomorphism betwegnhandC(V) is notconsidered as a part of data. Nev-
ertheless, the vector spaZecan be reconstructed fromM as the space of primitive elements
in coalgebras’. Here for a nonunital coalgeba= C(V) we define primitive elements as
solutions of the equatiofi(a) = 0 whereA : A—A® Alis the coproduct o.

Speaking geometrically/ is the tangent space td at the base point. A choice of an
isomorphism betwee# andC(V) can be considered as a choice of an affine structuid.on

13



If V1 andV, are two vector spaces then a mhpetween corresponding formal pointed
manifolds is defined as a homomorphism of coalgebras (a Kildeopushforward map on
distribution-valued densities supported at zero)

i :C(V1)—C(V2) .

By the universal property of cofree coalgebras any such hoarphism is uniquely specified
by a linear map
C(V1)—V>

which is the composition of, with the canonical projectio@(V,)—V,. Homogeneous
components of this map,

£ (@"(V1)) ™ —Vo, n>1

can be considered as Taylor coefficientd oMore precisely, Taylor coefficients are defined
as symmetric polylinear maps

0“

0" f @ (V) — Vo, " f(vg----- Vp) = ———
( 1) 2 ( ! n) oty...0t, [ty=+=t,=0

(f(tavai+ -+ +1tavn)) -

Map d"f goes through the quotier8yn(Vy) := (®”V1)zn. Linear mapf(™ coincides

with d"f after the identification of theubspace®"V;) > — @™V, with the guotientspace
Symi(V1).

As in the usual calculus, there is the inverse mapping teoreon-linear magf is in-
vertible iff its first Taylor coefficient (V) : V;—V5 is invertible.

Analogous definitions and statements can be made in othsorteategories, including
Supek andGraded.

The reader can ask why we speak about base points for fornrafotas, as such mani-
folds have only one geometric point. The reason is that la&ewill consider formal graded
manifolds depending on formal parameters. In such a sitndtie choice of the base pointis
a non-trivial part of the structure.

4.2 Predl,-morphisms

Let g1 andg, be two graded vector spaces.

Definition 4.2 A pre-Lo.-morphism#% fromg; to g» is a map of formal pointed graded man-
ifolds

F . ((gl[l])formalao)_’((92[1])f0rma|’o) :

Map .Z is defined by its Taylor coefficients which are linear mafis# of graded vector
spaces:
ONF 11—

0%F : N3(g1) — 02— 1]
3F : A3(g1) —G2[—2]

14



Here we use the natural isomorphi§yn?(g:[1]) ~ (A"(g1))[n]. In plain terms, we have

a collection of linear maps between ordinary vector spaces
kg 1-
g(kl o glil Q- ®glin_>gzl+ +kn+(1-n)

.....

.....

One can write (slightly abusing notations)

O"F (VA AYh) = Fliq. ) LD D V)
for y eg'f, i=1...,n
In the sequel we will denot@".# simply by.Z,.

4.3 Le-algebras andL,-morphisms

Suppose that we have an odd vector fi€ldf degree+1 (with respect tdZ-garding) on
formal graded manifoldg[1]tormal, 0) such that the Taylor series for coefficients@thas
terms of polynomial degree 1 and 2 only (i.e. linear and gatidterms). The first Taylor
coefficientQ; gives a linear mag—g of degree+1 (or, better, a mag—g[1]). The
second coefficier®, : A2’g—q gives a skew-symmetric bilinear operation of degree @.on

It is easy to see that {Q, Qlsuper= 2Q? = 0 theng is a differential graded Lie algebra,
with differentialQ; and the bracke®,, and vice versa.

In [1], supermanifolds endowed with an odd vector fi@duch thaiQ, Q]super= 0, are
calledQ- manifolds. By analogy, we can speak about formal gradeadtpdQ-manifolds.

Definition 4.3 An Le-algebra is a pair(g,Q) whereg is a graded vector space and Q is a
coderivation of degree-1 on the graded coalgebra(@[1]) such that @ = 0.

Other names fok-algebras are “(strong) homotopy Lie algebras” and “Sugawige-
bras” (see e.g. [24]).

Usually we will denotd_.-algebra(g, Q) simply byg.

The structure of ah.-algebra on a graded vector spays given by the infinite sequence
of Taylor coefficient); of the odd vector field (coderivation ofC(g[1])):

Q1:9—9[1]

Q2: A%(9)—0
Qs: A% (g)—g[-1]

The conditionQ? = 0 can be translated into an infinite sequence of quadratistaints
on polylinear mapg);. First of these constraints means ti@at is the differential of the
graded spacg. Thus,(g,Qs) is a complex of vector spaces ouer The second constraint
means tha®; is a skew-symmetric bilinear operation gnfor which Q satisfies the Leibniz
rule. The third constraint means th@s satisfies the Jacobi identity up to homotopy given by

15



Qs, etc. As we have seen, a differential graded Lie algebrasiséime as ah,-algebra with
Qe=Q=---=0

Nevertheless, we recommend to return to the geometric pbwiew and think in terms
of formal gradedQ-manifolds. This naturally leads to the following

Definition 4.4 An L,-morphism between two.kalgebrasg; andg, is a pre-L.-morphism
Z such that the associated morphis#. : C(g1[1])—C(gz[1]) of graded cocommutative
coalgebras, is compatible with coderivations.

In geometric terms, aih.-morphism gives &-equivariant map between two formal
graded manifolds with base points.

For the case of differential graded Lie algebras alpgemorphism% is anL.-morphism
iff it satisfies the following equation forany=1,2... and homogeneous elemempts g::

n
dZn(YLAY2 A AYh) — Ziiﬁn(yl/\---/\dw\---/\yn)
i=

1 1
Y o 2 EL Yo A AYa) A Vo A A Vo)
2|<|>1Z+| n K z a %k Oy 1 o

g€2n

+3 01 VIIARA AN AN Ah) -

i<]

Here are first two equations in the explicit form:
d7(n) = Fa(dny),

dZ2( A ) = Z2(dvi A ve) — ()R F2( Adye) = Za((n, el) — [Fa(n), F1(y2)] -

We see that#; is a morphism of complexes. The same is true for the case adrgkn
L.-algebras. The graded spagéor an L.-algebra(g,Q) can be considered as the tensor
product ofk[—1] with the tangent space to the corresponding formal gradedfoid at the
base point. The differenti&), ong comes from the action @ on the manifold.

Let us assume thaj; and g, are differential graded Lie algebras, adé is an L.-
morphism fromg; to g». Any solutiony € g%@ m of the Maurer-Cartan equation where
m is a nilpotent non-unital algebra, produces a solution ef Maurer-Cartan equation in

g@m:
dy+ 3 [y,y] O0=dy+ [y,"] 0 wherey= z Jny/\ AY)EgERM .

The same formula is applicable to solutions of the Mauret&@aequation depending
formally on parameteh:

y(R) = i+ yoh? + - € g1 [[A],

Y1)+ 5 V() V()] = 0= dy{F) + S [y(R), y()] =0

16



The reason why it works is that the Maurer-Cartan equati@nindifferential graded Lie
algebrag can be understood as the collection of equations for thechginse of zeroes aP
in formal manifoldg[1]tormal:

1
dy+§[y,y]=0<:>QW=0

L.-morphisms map zeroes @fto zeroes of) because they commute with We will see
in Section 4.5.2 thdt..-morphisms induce natural transformations of deformaftimctors.

4.4 Quasi-isomorphisms

L..-morphisms generalize usual morphisms of differentiatigthlie algebras. In particular,
the first Taylor coefficient of at..-morphism fromg; to g is a morphism of complexes
(gl,Q<191>)—>(gz,Q(192>) whereQ(lg” are the first Taylor coefficients of vector fiel@¥9%)
(which we denoted before simply 6y).

Definition 4.5 A quasi-isomorphism betweegalgebrasgi, g is an L,-morphism% such
that the first componen#; induces isomorphism between cohomology groups of consplexe

(91, Q%) and (g2, Q®)).

Similarly, we can define quasi-isomorphisms for formal grgointedQ-manifolds, as
maps inducing isomorphisms of cohomology groups of tangpates at base points (en-
dowed with differentials which are linearizations of thecta field Q).

The essence of the homotopy/deformation theory is cordamthe following

Theorem 4.6 Let g;,9, be two L.-algebras and# be an L.,-morphism fromg; to g,. As-
sume that# is a quasi-isomorphism. Then there exists aprhorphism frong, to g; induc-
ing the inverse isomorphism between cohomology of cor‘rm(lgpgé)gg‘)) i =12 Also, for
the case of differential graded algebras,-morphism% induces an isomorphism between
deformation functors associated wigh

The first part of this theorem shows thagif is quasi-isomorphic tg, theng, is quasi-
isomorphic togs, i.e. we get an equivalence relation.

The isomorphism between deformation functors at the separtaf the theorem is given
by the formula from the last part of Section 4.3.

This theorem is essentially standard (see related resu[®lj, 23, 41]). Our approach
consists in the translation of all relevant notions to thergetric language of formal graded
pointedQ-manifolds.

4.5 A sketch of the proof of Theorem 4.6

4.5.1 Homotopy classification of..,-algebras

Any complex of vector spaces can be decomposed into thetditee of a complex with
trivial differential and a contractible complex. There is @analogous decomposition in the
non-linear case.
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Definition 4.7 An L.-algebra(g, Q) is called minimal if the first Taylor coefficient@f the
coderivation Q vanishes.

The property of being minimal is invariant undes-isomorphisms. Thus, one can speak
about minimal formal graded point&dmanifolds.

Definition 4.8 An L.-algebra(g, Q) is called linear contractible if higher Taylor coefficients
Q-2 vanish and the differential {has trivial cohomology.

The property of being linear contractible is rigf-invariant. One can call formal graded
pointed Q-manifold contractibleiff the corresponding differential graded coalgebrd.is
isomorphic to a linear contractible one.

Lemma 4.9 Any L.-algebra(g, Q) is Ln-isomorphic to the direct sum of a minimal and of a
linear contractible L.-algebras.

This lemma says that there exists an affine structure on aalayraded pointed manifold
in which the odd vector fiel@ has the form of a direct sum of a minimal and a linear con-
tractible one. This affine structure can be constructed tydtion in the degree of the Taylor
expansion. The base of the induction is the decompositidheotomplex(g,Q;) into the
direct sum of a complex with vanishing differential and a g@bex with trivial cohnomology.
We leave details of the proof of the lemma to the reade@.E.D.

As a side remark, we mention analogy between this lemma drebagm from singularity
theory (see, for example, the beginning of 11.1 in [2]): feery germf of analytic function
at critical point one can find local coordinates, . .. Xyt ,y') such thatf = constantt
Q2(x) + Q=3(y) whereQ; is a nondegenerate quadratic formxiandQ-3z(y) is a germ of a
function iny such that its Taylor expansionyat= 0 starts at terms of degree at least 3.

Let g be anlL.-algebra ang™" be a minimal.,-algebra as in the previous lemma. Then
there are twd_..-morphisms (projection and inclusion)

(9[1] formal, O) — (gmin[l] formal, 0) , (gmin[l] formal, 0) — (9[1] formal, 0)

which are both quasi-isomorphisms. From this follows that i

(91[1] formal, 0)—>(92[1] formals 0)

is a quasi-isomorphism then there exists a quasi-isomsmphi

(g?in[l] formal,0) — (g?in[l] formal,0) -

Any quasi-isomorphism between minimial-algebras is invertible, because it induces an
isomorphism of spaces of cogenerators (the inverse mappeaazem mentioned at the end
of Section 4.1). Thus, we proved the first part of the theorékso, we see that the set
equivalence classes bf.-algebras up to quasi-isomorphisms can be naturally ifiedtivith

the set of equivalence classes of minirhatalgebras up td..-isomorphisms.
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4.5.2 Deformation functors at fixed points ofQ

The deformation functor can be defined in terms of a formadlgd®Q-manifoldM with base
point (denoted by 0). The set of solutions of the Maurer-&agquation with coefficients in
a finite-dimensional nilpotent non-unital algebrais defined as the set ofi-points of the
formal scheme of zeroes &

Maps((Spe¢m &k - 1), base poin, (ZeroesQ),0))

C Maps((Spe¢m@k - 1), base point, (M,0)) .

In terms of the coalgebrd corresponding tdv this set is equal to the set of homomor-
phisms of coalgebras*—% with the image annihilated b). Another way to say this
is to introduce global (i.e. not formal) pointed)-manifold of maps fron‘(Spetﬁm k-

1), base poin} to (M,0) and consider zeroes of the global vector fi€ldn it.

Two solutionspg and p; of the Maurer-Cartan equation are called gauge equivatent i
there exists (parametrized Bpe¢m @k - 1)) polynomial family of odd vector field§ (t) on
M (of degree—1 with respect tdZ-grading) and a polynomial solution of the equation

dg—it) = (1Q.&(®)]supedjp)» P(O) = Po, P(1) = Py,

wherep(t) is a polynomial family oim-points of formal graded manifolsl with base point.

In terms ofL.-algebras, the set of polynomial pathg(t)} is naturally identified with
gt®@ m®Kk]t]. Vector fieldsé (t) depending polynomially ohare not necessarily vanishing
at the base point 0.

One can check that the gauge equivalence defined above &liade2quivalence relation,
i.e. itis transitive. For formal graded pointed manifddve define seDe fy1(m) as the set of
gauge equivalence classes of solutions of the Maurer-€adaation. The correspondence
m — Defu(m) extends naturally to a functor denoted alsoligfy. Analogously, fore-
algebrag we denote byDe f; the corresponding deformation functor.

One can easily prove the following properties:

1) for a differential graded Lie algebgthe deformation functor defined as above for
(9[1] tormat, 0), is naturally equivalent to the deformation functor defifme&ection 3.2,

2) anyL«-morphism gives a natural transformation of functors,

3) the functoDe fy, g, corresponding to the direct sum of twig -algebras, is naturally
equivalent to the product of functoe fy, x Defy,,

4) the deformation functor for a linear contractitilg-algebrag is trivial, De fy(m) is a
one-element set for every.

Properties 2)-4) are just trivial, and 1) is easy. It follofnam properties 1)-4) that if an
L.-morphism of differential graded Lie algebras is a quasisrphism, then it induces an
isomorphism of deformation functors. Theorem 4.6 is prove®.E.D.

We would like to notice here that in the definition of the defiation functor one can
consider just a formal pointesiper Qmanifold(M, 0) (i.e. not a graded one), analcould be
a finite-dimensional nilpotent differential super comntiviassociative non-unital algebra.
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4.6 Formality
4.6.1 Two differential graded Lie algebras

Let X be a smooth manifold. We associate with it two differentiadgd Lie algebras over
R. The first differential graded Lie algebis,qy(X) is a subalgebra of the shifted Hochschild
complex of the algebraA of functions onX (see Section 3.4.2). The spd‘ﬂ%oly(X), n>-1

consists of Hochschild cochairé’ ("1 —A given by polydifferential operators. In local

. | n .
coordinategx') any element oD}, can be written as

fo@- @ 3 COIN(x)- 8y (fo)... A1, (fn)
)

(|0 ~~~~~ In

where the sum is finitdy, denote multi-indicesg), denote corresponding partial derivatives,
andf, andC'o-n are functions in(x').

The second differential graded Lie algebTgey(X) is the graded Lie algebra of polyvec-
tor fields onX:

Thoy(X) =T (X, A" Tx), n> -1

endowed with the standard Schouten-Nijenhuis bracket atidtie differentiald := 0. We
remind here the formula for this bracket:

fork,| >0 [SoA-- A&, oA Am] =
| L
:20%(_1)I+J+k[fia’7]]/\EO/\"'/\Ei—l/\EHl/\'"/\Ek/\no/\"'/\njfl/\nHl/\”'/\m’
i=0]=

whereéj, n; € I' (X, Tx),
fork>0 [EoA-- A&, =

k .
= _ZO(—l)'fi(h)- (Son---NE&1N&GiaA---A&), heT(X,0x), & eT(X,Tx) .

In local coordinategx?,...,xd), if one replaces)/dx by odd variablegy and writes
polyvector fields as functions ix!, ..., 4|y, ..., q), the bracket is

i, 1ol = yieyo— (—1)k2ye

where we introduce the following notation:

d gy ay

Zrnrr ki (pd
2 d(,uidxi’V'ET (R%) .

YieY, =

4.6.1.1. A map from Fjy(X) t0 Dpoly(X)

We have an evident ma@rl(o) - Tooly(X) —Dpoly(X). It is defined, fom > 0, by:

%O (Eoh N E) <f0®---® fo (nTln, s sgr(o)_rLan(fi)) ,

and forh € (X, &x) by:
h— (1»—> h) .
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Theorem 4.10 %lw) is a quasi-isomorphism of complexes.

This is a version of Hochschild-Kostant-Rosenberg theomich says that for a smooth
affine algebraic variet) over a fieldk of characteristic zero, the Hochschild cohomology
of algebrag(Y) coincides with the spacey-ol (X, ATy ) [—K] of algebraic polyvector fields
onY (see [25]). Analogous statement 16 manifolds seems to be well known, although
we were not able to find it in the literature (e.g. in [6] a sianiktatement was proven for
Hochschildcohomology. In any case, we give here a proof.

Proof: First of all, one can immediately check that the imag@Q(P) is annihilated by the
differential inDpoiy(X), i.€. that%l(0> is a morphism of complexes.

ComplexDpoiy(X) is filtered by the total degree of polydifferential operato€Complex
Tooly(X) endowed with zero differential also carries a very simpleilon (just by degrees),

such tha?Z/fO) is compatible with filtrations. We claim that
Gr(2,”) : Gr(Tpoiy(X))— Gr (Dpoty(X))

is a quasi-isomorphism. In the graded comp@(Dpow(X)) associated with the filtered
complexDpay(X) all components are sections of some natural vector bundiés and the
differential isA-linear,A = C*(X). The same is true by trivial reasons My (X). Thus, we
have to check that the m&ﬁr(%l(o)) is a quasi-isomorphism fiberwise.

Letx be a point oiX andT be the tangent spacexatPrincipal symbols of polydifferential
operators ax lie in vector spaces

SymT)®---®@Sym{T) (ntimes n>0)

whereSyn{T) is the free polynomial algebra generatedlbyit is convenient here to identify
Syn{T) with the cofree cocommutative coassociative coalgebtla counit cogenerated by
T:

¢ =C(T)a(k-1)*.

Syn{T) is naturally isomorphic to the algebra of differential opirs onT with constant
coefficients. IfD is such an operator then it defines a continuous linear fanation the
algebra of formal power series at0T:

f— (D(1))(0)

i.e. an element of coalgebta.
We denote by the coproduct in coalgebrd. It is easy to see that differential in the
complexGr(Dpoiy(X)) in the fiber atx is the following:

d: ®n+1cg_> ®n+2<g

n .
d=1"® id®n+1<5f - %(—1)' d®-- A®---Qid+ (—1)nid®n+lcg® 1

wherel; is coproduct applied to the-th argument.
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Lemma 4.11 Let% be the cofree cocommutative coassociative coalgebra withitcogen-
erated by a finite-dimensional vector space T. Then the abfiamomorphism of complexes

(A™AT, differential = 0) — (@"1%, differential as abovp
is a quasi-isomorphism.

What we consider is one of the standard complexes in homdbgigebra. One of
possible proofs is the following:
Proof: let us decompose compl€(>®”+1<5) into the infinite direct sum of subcomplexes
consisting of tensors of fixed total degrees (homogeneongponents with respect to the
action of the Euler vector field on). Our statement means in particular that for only finitely
many degrees these subcomplexes have non-trivial cohgyoltus, the statement of the
lemma is true iff the analogous statement holds when infsiras are replaced by infinite
products in the decomposition cﬁf@““%). Components of the completed complex are
space#d orT‘(A®(”+1), k) whereAis the algebra of polynomial functions @n Itis easy to see
that the completed complex calculates groprﬁfl (k,k) = A™1T, where 1-dimensional

mod
spacek is considered a8-module (via values of polynomial at®T) and has a resolution

. —AA—A—0— ...

by freeA-modules. Q.E.D.

As a side remark, we notice that the statement of the lemmdstadso if one replaces
% by C(T) (i.e. the free coalgebra without counit) and removes territe & from the
differential. In the language of Hochschild cochains it methat the subcomplex edduced
cochains is quasi-isomorphic to the total Hochschild campl

The lemma implies thagr(%l(())) is an isomorphism fiberwise. Applying the standard
argument with spectral sequences we obtain the proof ohtth&rém. Q.E.D.

4.6.2 Main theorem

Unfortunately, maﬂ/fo) does not commute with Lie brackets, the Schouten-Nijertinaisket
does not go to the Gerstenhaber bracket. We claim that tféstdean be cured:

MAIN THEOREM There exists an &-morphism% from Tyo)y(X) to Dpory(X) such that
= 2,°

In other words, this theorem says tfigh,(X) andDo1y(X) are quasi-isomorphic differ-
ential graded Lie algebras. In analogous situation in naitnomotopy theory (see [42]), a
differential graded commutative algebra is called formlis quasi-isomorphic to its coho-
mology algebra endowed with zero differential. This expéathe title of Section 4.6.

The quasi-isomorphisi# in the theorem is not canonical. We will construct explicil
family of quasi-isomorphisms parametrized in certain sdmsa contractible space. It means
that our construction is canonical up to (higher) homotspie

Solutions of the Maurer-Cartan equationTigyy(X) are exactly Poisson structures Xn

ae Tplo,y(x) =T (X,A?Tx), [a,a] =0.

Any sucha defines also a solution formally dependingfgn

y(R) = a-Re T, ()[R, [v(R).y(M]=0.
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The gauge group action is the action of the diffeomorphisoughy conjugation. Solutions
of the Maurer-Cartan equation Dy y(X) formally depending offv are star-products. Thus,
we obtain as a corollary that any Poisson structuré&Xagives a canonical equivalence class
of star-products, and the Theorem 1.1.

The rest of the paper is devoted to the proof of the Main Thaoead to the discussion of
various applications, corollaries and extensions. Ini8eé& we will make some preparations
for the universal formula (Section 6) for dn,-morphism fromTpeyy(X) to Dpoiy(X) in the
case of flat spack¥ = RY. In Section 7 we extend our construction to general marsfold

4.6.3 Non-uniqueness

There are other natural quasi-isomorphisms betwiggi(X) andD oy (X) which differ es-
sentially from the quasi-isomorphis# constructed in Sections 6 and 7, i.e. not even homo-
topic in a natural sense & . By homotopyhere we mean the followingd...-morphisms from
oneL«-algebra to another can be identified with fixed point®afn infinite-dimensional su-
permanifold of maps. Mimicking constructions and defimsdrom Section 4.5.2 one can
define an equivalence relation (homotopy equivalence) es¢t ofl..-morphisms.

Firstly, the multiplicative groufR* acts by automorphisms @t,1y(X), multiplying el-
ementsy € Tpo|y(x)k by A for A € R*. Composing these automorphisms with one get
a one-parameter family of quasi-isomorphisms. Secondl{30] we constructed an exotic
infinitesimal L,-automorphism offye,(X) for the caseX = RY which probably extends to
general manifolds. In particular, this exotic automorptigroduces a vector field on the
“space of Poisson structures”. The evolution with respedinbet is described by the fol-
lowing non-linear partial differential equation:

da 3all  da* gal gam

T Koy T Gynt K
dt i7j,k7l,r%<’7l’,rﬂ OX<OX oxM gx" gxm g

(G AG))

wherea = ¥; ; a'l (x)d; A 9; is a bi-vector field orRY.

A priori we can guarantee the existence of a solution of the evolotibnfor small times
and real-analytic initial data. One can show that:

1) this evolution preserves the class of (real-analytig3&m structures,

2) if two Poisson structures are conjugate by a real-arcadiffieomorphismthen the same
will hold after the evolution.

Thus, our evolution operator is essentially intrinsic angsinot depend on the choice of
coordinates.

Combining it with the action oR* as above we see that the Lie algebraf (1,R) of
infinitesimal affine transformations of the life! acts non-trivially on the space of homo-
topy classes of quasi- isomorphisms betw&gg,(X) andDpqy(X). Maybe, there are other
exotic Lo-automorphisms, this possibility is not ruled out. It is w#ar whether our quasi-
isomorphisntZ is better than others.
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5 Configuration spaces and their compactifications

5.1 Definitions

Letn,mbe non-negative integers satisfying the inequality-2n> 2. We denote bZon f, m
the product of the configuration space of the upper half-@laith the configuration space of
the real line:

Conﬁxm: {(p17 ) pnina---an”pi 6%7qj GR, pi]_ 7& piz foril#iZa q]l #qu for 1:1.7é JZ}

Conf,m is @ smooth manifold of dimensiom2-m. The groupG®Y) of holomorphic
transformations ofCPP! preserving the upper half-plane and the peintacts onConf,m.
This group is a 2-dimensional connected Lie group, isomirfththe group of orientation-
preserving affine transformations of the real line:

GWY = {z az+bja,beR,a>0} .
It follows from the condition 2+ m > 2 that the action oGV on Contym is free.
The quotient spac€nm := Cont,m/GY is a manifold of dimensioni2+ m—2. If P =
(P1,---,Pn;d1,---,0m) is a point ofCon f,m then we denote byP] the corresponding point

of Cym.
Analogously, we introduce simpler spac¢gsn f, andC, for anyn > 2:

Cont i={(pa,...,pn)|pi € C, pi # pj for i # j},
Ch=Conf,/G?, dim(C,) = 2n— 3,
whereG®? is a 3-dimensional Lie group,
G? = {z—az+blacR,beC,a>0} .

We will construct compactificatiorn m of Com (and compactificationS, of C,) which
are smooth manifolds with corners.

We remind that a manifold with corners (of dimensins defined analogously to a usual
manifold with boundary, with the only difference that themifald with corners looks locally
as an open part of closed simplicial coff®.()?. For example, the closed hypercubel]®
is a manifold with corners. There is a natural smooth stratifon by faces of any manifold
with corners.

First of all, we give one of possible formal definitions of th@mpactificatiorC,, where
n> 2. With any point[(pa, ..., pn)] of C, we associate a collection afn— 1) angles with
values inR /21Z:

(Arg(pi = Pj))isj
andn?(n— 1)? ratios of distances:
(IPi = Pil/ 1Pk = Pt e

It is easy to see that we obtain an embeddingCefinto the manifold(R/2mrZ)""Y x

Rfé"_l)z. The spac€, is defined as the compactification of the image of this emepidi
larger manifold

(R/an)n(n—l) X [07+00]n2(n—1)2
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For the spac&, m we use first its embedding G2n+m Which is defined on the level of
configuration spaces as

(plw--apn;%a--me)’—’ (pla"'apna_pla"'a_pnaqla"'aqm)

and then compactify the image @pn . m. The result is by definition the compactified space
Cn,m-

One can show that open strata@fn, are naturally isomorphic to products of manifolds
of typeCy ny andCy. In the next subsection we will describe explici@), as a manifold
with corners.

There is a natural action of the permutation gra@iymn C,, and also o0&y x Zy onChm.
This gives us a possibility to define spasandCa g for finite setsA, B such that # > 2 or
2#A+ #B > 2 respectively. IfA'—A andB'—B are inclusions of sets then there are natural
fibrations (forgetting mapsJa—Cuy andCap—Cp g'-

5.2 Looking through a magnifying glass

From the definition of the compactification given in the poais subsection it is not clear
what is exactly a point of the compactified space. We are gwirexplain an intuitive idea
underlying a direct construction of the compactificat@ym as a manifold with corners. For
more formal treatment of compactifications of configuratspaces we refer the reader to
[16] (for the case of smooth algebraic varieties).

Let us try to look through a magnifying glass, or better ttglh@a microscope with arbi-
trary magnification, on different parts of the picture fomngy points on# UR C C, and
by the lineR ¢ C. Here we useéuclideangeometry onC ~ R? instead of Lobachevsky
geometry.

Before doing this let us first consider the case of a configamainR? ~ C, i.e. without
the horizontal lineR C C. We say that the configuratiqips, ..., pn) iS in standard position
iff

1) the diameter of the s€ip1,..., pn} is equal to 1, and,

2) the center of the minimal circle containii@s,...,pn}is 0€ C.

It is clear that any configuration af pairwise distinct points in the case> 2 can be
uniquely put to standard position by a unique element of gi&(#). The set of configu-
rations in standard position gives a continuous sec#f8ff of the natural projection map
Conf,—C,.

For a configuration in standard position there could be sf\dmains where we will
need magnification in order to see details. These domairthase where at least two points
of the configuration come too close to each other.

After an appropriate magnification of any such domain weragat a stable configuration
(i.e.the number of points there is at least 2). Then we cait pgain in standard position and
repeat the procedure.

In such a way we get an oriented tré€awvith one root, and leaves numbered from Into
For example, the configuration in Figure 3 gives the tree guFe 4.

For every vertex of tre§ except leaves, we denote Byar(v) the set of edges starting
atv. For example, in the figure from above the Star(root) has three elements, and sets
Star(v) for other three vertices all have two elements.

Points inC, close to one which we consider, can be parametrized by thenfivlg data:

25



1 L ]
Figure 3: Configuration of points close to the boundary of ¢benpactified configuration
space.

Figure 4: Tree corresponding the limiting point in the coaofation space.

a) for each vertex of T except leaves, a stable configuratigrin the standard position
of points labeled by the s&tar(v),

b) for each vertex except leaves and the root of the tree, the ssate 0 with which we
should put a copy ofy instead of the corresponding point € C on stable configuratioq,
whereu € Vr is such thafu,v) € Ey.

More precisely, we act on the configuratinby the elementz — s,z+ py) of G@.

Numberss, are small but positive. The compactificati@q is achieved by formally
permitting some of scales to be equal to 0.

In this way we get a compact topological manifold with comerith strataCy labeled
by treesT (with leaves numbered from 1 t9. Each stratunCr is canonically isomorphic to
the product], Cstary) OVer all verticess except leaves. In the description as above points of
Cy correspond to collections of configurations with scaless, equal to zero. Let us repeat:
as a se€, coincides with

CStar(v) .

treesT veVr\{leaveg

In order to introduce a smooth structure@# we should choose®,-equivariansmooth
sections™°tof the projection maConf,—C, instead of the sectiogf°™ given by con-
figurations in standard position. Local coordinates@nnear a given point lying in stra-
tum Cr are scales, € R close to zero and local coordinates in manifd@:ga,(w for all
v e V7 \ {leaveg. The resulting structure of a smooth manifold with corneveginot depend
on the choice of sectiogf™°t"

The case of configurations of points ¢#f UR is not much harder. First of all, we say
that a finite non-empty s&of points onsZ UR is in standard positioriff

1) the projection of the convex hull &to the horizontal linéR c C ~ R? is either the
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Figure 5: Spac€; 1 homeomorphic to an interval.

i:p1

Figure 6: Spac€, 0.

one-point se{0}, or it is an interval with the center at 0,

2) the maximum of the diameter &fand of the distance fror8to R is equal to 1.

It is easy to see that for2+ m> 2 (the stable case) any configuratiomgoints on.s#
andm points onR can be put uniquely in standard position by an elemer@@f. In order
to get a smooth structure, we repeat the same argumentsthg foase of manifolds,.

Domains where we will need magnification in order to see tgtare now of two types.
The first case is when at least two points of the configuratammectoo close to each other.
We want to know whether what we see is a single point or a didleof several points. The
second possibility is when a point o comes too close t&. Here we want also to decide
whether what we see is a point (or points).zfior onR.

If the domain which we want to magnify is close &y then after magnification we get
again a stable configuration which we can put into the stahgasition. If the domain is
inside sZ, then after magnification we get a picture without the hartabline in it, and we
are back in the situation concerni@gy for n’ < n.

It is instructional to draw low-dimensional spad&syw. The simplest oneZy g = Clyo is
just a point. The spadgy, = Coz is a two-element set. The spaCe; is an open interval,
and its closurém is a closed interval (the real lirie C C is dashed in Figure 5).

The spac€;, is diffeomorphic to#’\ {0+ 1-i}. The reason is that by action 6f% we
can put pointp; to the positiori = /—1 € 2. The closure€C; o can be drawn as in Figure 6
or as in Figure 7.

Forgetting maps (see the end of Section 5.1) extend natumBmooth maps of com-
pactified spaces.

Figure 7: The Eye.
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5.2.1 Boundary strata

We give here the list of all strata EA,B of codimension 1:

S1) pointsp; € 27 fori € SC Awhere #5> 2, move close to each other but far frdn

S2) pointsp; € 7 fori € SC Aand points); € R for j € S C Bwhere 26+ #S > 2,
all move close to each other and & with at least one point left outsidg@ and S, i.e.
HS+#S <#HA+#B—1.

The stratum of type Sl is

9sCaB ~ Cs X Ca\5i{pt}B

where{pt} is a one-element set, whose element represents the dlpsteg of points ins7".
Analogously, the stratum of type S2 is

0s5Cag =~ Csg % Cais(B\9){pt} -

6 Universal formula

In this section we propose a formula for Ba-morphismTyoiy(R?)—Dpaiy(RY) general-
izing a formula for the star-product in Section 2. In ordemtagte it we need to make some
preparations.

6.1 Admissible graphs

Definition 6.1 Admissible grapli is a graph with labels such that

1) the set of verticesMs {1,...,n} U{1,...,m} where nme Zg, 2n+m— 2> 0; vertices
from the sef1,...,n} are called vertices of the first type, vertices fréf. .., m} are called
vertices of the second type,

2) every edgévy, Vo) € Er starts at a vertex of first type; & {1,...,n},

3) for every vertex ke {1,...,n} of the first type, the set of edges

Star(k) := {(v1,v2) € Er[vi =k}

starting from k, is labeled by symbc(lq}, . ,e{fs‘a'(k)).

Labeled graphs considered in Section 2 are exactly (afésidimtifications. = 1, R=2)
admissible graphs such thatis equal to 2, and the number of edges starting at every vertex
of first type is also equal to 2.

6.2 Differential forms on configuration spaces

The spac€, (the Eye) is homotopy equivalent to the standard cigtler R/2mZ. More-
over, one of its boundary components, the sp@ge-= C,, is naturally identified with the
standard circl&S'. The other component of the boundary is the union of two dastervals
(copies ofC; 1) with identified end points.

Definition 6.2 An angle map is a smooth mag C,o—R/2nZ ~ S such that the restric-
tion of @ to G, ~ St is the angle measured in the anti-clockwise direction frbm ertical
line, andg maps the whole upper interv@l ; ~ [0,1] of the Eye, to a point in's
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We will denote@([(x,y)]) simply by ¢(x,y) wherex,y € 77 UR, x#y. It follows from
the definition thatlg(x,y) = 0 if x stays inR.

For example, the special mgP used in the formula in Section 2, is an angle map. In the
rest of the paper we can use apynot necessarily harmonic.

We are now prepared for the analytic part of the universahida. Letl” be an admissible
graph withn vertices of the first typenvertices of the second type and with-2m— 2 edges.
We define the weight of graghby the following formula:

r 1 1
W= k|:|1 (#Stark))! (2m)2n+m-2 / /\ de .

_%  ecEr
Cnm

Let us explain what is written here. The domain of integmﬁm is a connected com-
ponent ofCy, m Which is the closure of configurations for which points 1 < j < monR
are placed in the increasing order:

qQu<---<Qm-

The orientation oCont,  is the product of the standard orientation on the coordinate
spaceR™ > {(qi,...,0qm)|qj € R}, with the product of standard orientations on the plane
R? (for points p; € 2 C R?). The groupGV is even-dimensional and naturally oriented
because it acts freely and transitively on complex manif#fd Thus, the quotient space
Cnm = Conf,m/GWY carries again a natural orientation.

Every edgee of I defines a map fror@,m to C2 0 or toCq 1 C Cy (the forgetting map).
Here we consider inclusio@ ; in Cy o as thelowerinterval of the Eye. The pullback of the
function g by the mapCn m——Cj 0 corresponding to edgeis denoted byg.

Finally, the ordering in the wedge product of 1-forohg is fixed by enumeration of the
set of sources of edges and by the enumeration of the set eadth a given source.

The integral givingW is absolutely convergent because it is an integral of a simoot
differential form over a compact manifold with corners.

6.3 Prel,-morphisms associated with graphs

For any admissible graghwith n vertices of the first typen vertices of the second type, and
2n+m—2+1| edges wheré € Z, we define a linear map

U @ Tpoly(RY) —D pory(RY)[1+1 — n.

This map has only one non-zero graded compo(@fl y, . k,) whereki = #Star(i) -1, i =
1,...,n. If | =0 then from%; after anti-symmetrization we obtain a pte-morphism.

Let y,...,V» be polyvector fields ofR? of degreesk; +1),...,(kn+1), andfy,..., fm
be functions oRY. We are going to write a formula for functioh on R":

O=(U%UNne W) (10 @ f) .

The formula for® is the sum over all configurations of indices running from 1dto

labeled byEr:
o= Z (o1
:Er—>11,...,d}
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where®, is the product over alh+ mvertices ofl” of certain partial derivatives of functions
f; and of coefficients ofj.

Namely, with each vertek 1 <i < n of the first type we associate a functign on R
which is a coefficient of the polyvector fielgt

ki +1
&

G =y, dX @ ... @dE )

Here we use the identification of polyvector fields with skeywametric tensor fields as

E N NEg1— sgn(0) &g, @ -+ @ &g, € T(RY, TOKD) |

O€2kt1

For each vertex of second type the associated functipnis defined ad;.
Now, at each vertex of gragh we put a function oR¢ (i.e. 4 or ([Jj—). Also, on edges

of graphr” there are indices(e) which label coordinates iRY. In the next step we put into
each vertex instead of function)y, its partial derivative

< |_| dl(e)) wV7
ecEr,e=(*,v)

and then take the product over all verticesf I'. The result is by definition the summasyl.

Construction of the functio® from the grapH™, polyvector fieldsy and functionsfj, is
invariant under the action of the group of affine transfoiora of RY because we contract
upper and lower indices.

6.4 Main Theorem for X = RY, and the proof

We define a pré=,-morphism : Tpoly(R?)—Dpory(R?) by the formula for its-th Taylor
coefficientZ,, n> 1 considered as a skew- symmetric polylinear map (see $eti®) from
®nTpon(Rd) to Dpoly(Rd) [1—nl:

%n::z \M’X%r.

m>0 FeGnm

HereG, m denotes the set of all admissible graphs witkertices of the first typemvertices in
the second group anah2-m— 2 edges, whera > 1, m> 0 (and automatically@+m—2 >
0).

Theorem 6.3 % is an L»,-morphism, and also a quasi-isomorphism.

Proof: the condition thatZ is anL.-morhism (see Sections 4.3 and 3.4.2) can be written
explicitly as

fL- (YN Awm) (20 @ fm) £ (Z(iA - AW) (F1@- @ fn-1) - Tt

m-1

+ Zli(%n(yl/\"'/\yn))(f1®"'®(fifi+1)®"-®fm)+
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+;i(%71([w,w]/\vl/\---Avn))(f1®---® fm)+
i)

1 1
3 K + | UYo, N NYor ), U (Yo, N ANYoy) | (L@@ fm) =0
2k,|21;+|:nk!”ae%n [ . 0 k1 O ] m

Herey are polyvector fieldsf; are functionsZ4, are homogeneous componentsf
(see Section 4.1). There is a way to rewrite this formula. Bignwe defineZg as the map
®°(Tpoty(RY)) —Dpoy(RY)[1] which maps the generator 1 & ~ @°(Tpoy(RY)) to the
productma € Dilmw(Rd) in the algebra := C*(RY). Heremy : f; ® f, — f1f, is considered
as a bidifferential operator.

The condition from above fo#/ to be anL.-morphism is equivalent to the following
one:

Y E(ha((ey) AnA-Aw) (L@ @ fm)+
i#]
1
tS i 3 A AV © UV A A Ya)) (193 ) <O
k1>0,k+l=n """ o€2n

Here we use all polylinear ma, including casen = 0, and definitions of brackets in
Dpoly andTpory Via operations (see Section 3.4.2) and(see Section 4.6.1). We denote the
I.h.s. of the expression above bfy).

U + % is not a preko-morphism because it maps 0 to a non-zero poipt Still the
equation(F) = 0 makes sense and means that the ifip+ %) from formal Q-manifold
Tooly(R9)[1)) torma 10 the formal neighborhood of points in the graded vector spaBgoy(RY)[1]
is Q-equivariant, where the odd vector fie@@on the target is purely quadratic and comes
from the bracket oD poiy(RY), forgetting the differential.

Also, the term?4 comes from the unique graghy which was missing in the definition
of 7. Namely,l'o hasn = 0 vertices of the first typan = 2 vertices of the second type, and
no edges at all. It is easy to see tiét, = 1 and%r, = %.

We consider the expressi@R ) simultaneously for all possible dimensiotislt is clear
that one can writéF ) as a linear combination

ZCF'%F(Vl®"'®yn)(fl®"'®fm)

of expressiong for admissible graphB with n vertices of the first typem vertices of the
second type, andr2+ m— 3 edges whera > 0,m> 0,2n+m— 3 > 0. We assume that
cr = +cp if graphl™’ is obtained fronT™ by a renumeration of vertices of first type and by a
relabeling of edges in se&tarv) (see Section 6.5 where we discuss signs).

Coefficientscr of this linear combination are equal to certain sums witmsigf weights
#r associated with some other graghsand of products of two such weights. In particular,
numbersr do not depend on the dimensidrin our problem. Perhaps it is better to use here
the language of rigid tensor categories, but we will not do it

We want to check that- vanishes for each.

The idea is to identifgr with the integral over the boundadCn m, of the closed differen-
tial form constructed fronfii as in Section 6.2, with the only difference that now we coasid
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Figure 8: Term corresponding to the operatsoon

graphs with 2+ m— 3 edges. The Stokes formula gives the vanishing:

/ /\d(pazé/md</\ dq@):o.

Com ecEr ecEr
We are going to calculate integrals of the forg:g, dg: restricted to all possible bound-
ary strata obC,, m, and prove that the total integral as above is equattdn Section 5.2.1
we have listed two groups of boundary strata, denoted by 81S2nand labeled by sets or
pairs of sets. Thus,

0= N de= / /\d(pe+z / N da .
Cm 7 9sCom S 59 Cam &

6.4.1 CaseSl1

Pointsp; € s for i from subsetSC {1,...,n} where # > 2, move close to each other.
The integral over the stratu@Cnm is equal to the product of an integral ov@#, m with
an integral oveC,, wheren, :=#S, n; ;== n—ny+ 1. The integral vanishes by dimensional
reasons unless the number of edgeE abnnecting vertices frorBis equal to 2, — 3.

There are several possibilities:

6.4.1.1. First subcase of S1:n= 2 (Figure 8)
In this subcase two vertices froBj are connected exactly by one edge, which we denote by
e. The integral ove€, here gives numbet1 (after division by 2r coming from the formula
for weightsWt). The total integral over the boundary stratum is equal éditbegral of a new
graphl'; obtained from™ by the contraction of edge It is easy to see (up to a sign) that
this term corresponds to the first line in our expresgieh the one where the operatieron
polyvector fields appears.
6.4.1.2. Second subcase of S1i » 3 (Figure 9)

This is the most non-trivial case. The integral correspogdo this boundary stratum
vanishes because the integral of any productrgf-23 angle forms ove€,, wheren, > 3
vanishes, as is proven later in Section 6.6.
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Figure 9: Many points collapse together insid€.

Figure 10: Many points collapse @ no bad edges.

6.4.2 Case S2

Pointsp fori € S C {1,...,n} and pointsy; for j € S, C {1,...,mM} move close to each other
and to the horizontal lin®. The conditionis that@ +nm,—2>0andn,+m <n+m-1
wheren, := #S;, mp := #S. The corresponding stratum is isomorphicGg m, %< Cn,.m,
wheren; :=n—ny, m = m—mp + 1. The integral of this stratum decomposes into the
product of two integrals. It vanishes if the number of edgef aonnecting vertices from

S US is notequal to By +np — 2.

6.4.2.1. First subcase of S2: no bad edges (Figure 10)

In this subcase we assume that there is no édggin I suchthai € S;,j € {1,...,n}\ S.
The integral over the boundary stratum is equal to the prodicx Wr, whererl , is the

restriction ofl" to the subse§ US, C {1,...,n}U{1,...,m} =V, andl'; is obtained by

the contraction of all vertices in this set to a new vertextaf second type. Our condition

guarantees thdt; is an admissible graph. This corresponds to the secondri(fe)i where

the product on polydifferential operators appears.

6.4.2.2. Second subcase of S2: there is a bad edge (Figure 11)
Now we assume that there is an edgg) in I such thai € S, j € {1,...,n}\ . In this
case the integral is zero because of the condip(x,y) = 0 if x stays on the lin&.

The reader can wonder about what happens if after the caligyise graph will have
multiple edges. Such terms do not appeatfin. Nevertheless, we ingore them because in
this case the differential form which we integrate vanish&# contains as a factor the square
of a 1-form.

Thus, we see that we have exhausted all possibilities ancbgétibutions of all terms in
the formula(F). We just proved thatr = 0 for anyl", and thatZ is anL..-morphism.
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Figure 12: A tree with one vertex ig?.

6.4.3 We finish the proof of Theorem 6.3

In order to check tha?/ it is a quasi-isomorphism, we should show that its comporignt

coincides With?/l(o> introduced in 4.6.1.1. It follows from definitions that eyexdmissible
graph withn = 1 vertex of first type andh > 0 vertices of the second type, and wittedges,
is the tree in Figure 12. B

The integral corresponding to this grapt{2st)™/m!. The mapJr from polyvector fields
to polydifferential operators is the one which appears irageaph 4.6.1.1:

El/\"'/\fm_>$ Z sgr(o—)'501®"'®50m7 Eier(RdaT) .

T 0€E2m

Theorem 6.3 is proven. Q.E.D.

6.4.4 Comparison with the formula from Section 2

The weightw defined in Section 2 differ frodf- defined in Section 6.2 by the factot /2.

On the other hand, the bidifferential operaBpty (f,g) is 27 "timesZt (a A---Aa)(f ®0Q).

The inverse factorial An! appears in the Taylor series (see the end of Section 4.3)s, e
obtain the formula from Section 2.

6.5 Grading, orientations, factorials, signs

Taylor coefficients ofZ + %4 are maps of graded spaces

Sym((EDT (R, AMT)[-K)[2]) — (Hom(A[1]*™, A[1]))[1]
k>0

whereHom denotes the internalomin the tensor categor@raded. We denote the ex-
pression from above byE). First of all, in the expressiofE) each polyvector fields €
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[(RY,AST) appears with the shift 2 k;. In our formula for% the samey; givesk; edges
of the graph, and thug 1-forms which we have to integrate. Also, it gives 2 dimensiéor
the integration domai, m. Secondly, every functiofi € A appears with shift 1 ifE) and
gives 1 dimension to the integration domain. We are left with shifts by 1 in(E) which
are accounted for 2 dimensions of the gras®). From this it is clear that our formula for
7 is compatible withZ-grading.

Moreover, it is also clear that things responsible for vasisigns in our formulas:

1) the orientation 0€p m,

2) the order in which we multiply 1-formdas,

3) Z-gradings of vector spaces (&),

are naturally decomposed into pairs. This implies that thengeration of the set of vertices
of ', and also the enumeration of edges in Stt(v) for verticesv of the first type are not
really used. Thus, we see thag is skew-symmetric.

Inverse factorials L(#Star(v)!) kill the summation over enumerations of s&srv).
The inverse factorial An! in the final formula does not appear because we consideehigh
derivatives which are already multiplied oy

The last thing to check is that in our derivation of the fa@tt# is anL.-morphism
using the Stokes formula we did not loose anywhere a signs iBha bit hard to explain.
How, for example, can one compare the standard orientatidhwith shifts by 2 in(E)? As
a hint to the reader we would like to mention that it is verywamient to “place” the resulting
expression

Q= (%N W) (Lo @ fn)

at the pointo on the absolute.

6.6 Vanishing of integrals overC,, n> 3

In this subsection we consider the sp&8ef G?- equivalence classes of configurations of
points on the Euclidean plane. Every two indiéeg i # j, 1 <i,j < n give a forgetting
mapC,—C, ~ S'. We denote byd@ ; the closed 1-form o€, which is the pullback of
the standard 1-forrd(angle) on the circle. We use the same notation for the pullback sf thi
form toConf,.

Lemma 6.4 Let n> 3 be an integer. The integral over,®f the product of angn—3 =
dim(Cy) closedl-forms dp a=1,...,2n—3,is equal to zero.

mja'

Proof: First of all, we identifyC,, with the subse€/, of Conf, consisting of configurations
such that the poing;, is 0< C andpj, is on the unit circleSt ¢ C. Also, we rewrite the form
which we integrate as

2n-3 2n-3
/\ dqqa-,Ja = d(nl-,jl/\ /\ d(qqa-,l'a _qql-,jl) :
a=1 a=2

Let us map the spad®, onto the spac€]] c Conf, consisting of configurations with
pi, = 0 andp;, = 1, applying rotations with the center at 0. Differentialrfesd(q, j, —
@,.j;) onC/, are pullbacks of differential formdq, j, onC;;. The integral of a product of
2n— 3 closed 1-formsiq, j,, a = 1,...,2n— 3 overC,, is equal to+2r times the integral
of the product 2 — 4 closed 1-formslq,, j,, 0 = 2,...,2n— 3 overC,,.
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The spac€/ is a complex manifold. We are calculating an absolutely eoging integral

of the type
 MdAgza)
a

i
whereZ, are holomorphic invertible functions df; (differences between complex coordi-

nates of points of the configuration). We claim that it is zdrecause of the general result
proven in Section 6.6.1. Q.E.D.

6.6.1 Atrick using logarithms

Theorem 6.5 Let X be a complex algebraic variety of dimensio>N, and Z,...,Z,\ be
rational functions on X, not equal identically to zero. Lebe any Zariski open subset of X
such that functions Zare defined and non-vanishing on U, and U consists of smoattigpo
Then the integral

| n2ldiargZe)
u(c)
is absolutely convergent, and equal to zero.

This result seems to be new, although the main trick usedamptbof is well-known.
A. Goncharov told me that he also came to the same result stdniy of mixed Tate motives.
Proof: First of all, we claim that the differential form2" ,dArg(Zq) onU (C) coincides with
the forma2Y  dLog|Zq| (this is the trick).

We can replacdArg(Z,) by the linear combination of a holomorphic and an anti-haigohic
form 1

5 (d(LogZy) —d(LogZa)) -

Thus, the form which we integrate ove(C) is a sum of products of holomorphic and of
anti-holomorphic forms. The summand corresponding to dycbof a non-equal number of
holomorphic and of anti-holomorphic forms, vanishes idsaily becaus® (C) is a complex
manifold. The conclusion is that the number of anti-holopiic factors in non-vanishing
summands is the same for all of them, it coincides with thegermdimensiorN of U (C).
The same products of holomorphic and of anti-holomorphicfsurvive in the product

2N N 4 B
/\ dLog|Zs| = A\ E(d(LogZG,H—d(LogZO,)) .
a=1 a=1

Let us choose a compactificationof U such thatd \ U is a divisor with normal crossings.
If @ is a smooth differential form od (C) such that coefficients ap are locally integrable on
U(C), then we denote by’ (@) corresponding differential form od (C) with coefficients in
the space of distributions.

Lemma 6.6 Let w be a form on YC) which is a linear combination of products of func-
tions LogZy| and of 1-forms d LodZ,| where Z € ¢*(U) are regular invertible func-
tions on U. Then coefficients af and of cw are locally L* functions orlJ(C). Moreover,
4 (dw) = d(4(w)). Also, the integral [ w is absolutely convergent and equal to the
u(©)
integral [ 7 (w).
u(©)
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The lemma is an elementary exercise in the theory of digtohs, after passing to local
coordinates otJ (C). We leave details of the proof to the reader. Also, the staterof
the lemma remains true without the condition thiat U is a divisor with normal crossings.
Q.E.D.

The vanishing of the integral in the theorem is clear now ley$tokes formula:

2N 2N 2N
/ A dArg(Zg) = / A dLog|Z| = / 7 (d <Log|Zl| A d Log|Za|>> —

a=2

u(c) a=1 u(c) 2=t u(c)

2N
_ / d (f <L09|Zl| A dLog|Za|>> —0. QED.

U(c) a=2

In fact, the convergence and the vanishing of the integfal/\g’ild Log|Zy| is a purely
u(c)

geometric fact. Namely, the imageldfC) in R?N under the map— (Log|Zy(X)|,. .., Log|Zan (X))
has finite volume and every non-critical point in this imag@ears zero times, when points

in the pre-image are counted with signs arising from the canispn of canonical orientations
onU(C) andR,

6.6.2 Remark

The vanishing of the integral in Lemma 6.4 has higher-dirmmrad analogue which is cru-
cial in the perturbative Chern-Simons theory in the dimens3, and its generalizations to
dimensions> 4 (see [29]). However, the vanishing of integrals in dimensi> 3 follows
from a much simpler fact which is the existence of a geometviclution making the integral
to be equal to minus itself. In the present paper we will usersd times similar arguments
involving involutions.

7 Formality conjecture for general manifolds

In this section we establish the formality conjecture fong®l manifolds, not only for open
domains inRY. It turns out that that essentially all the work has been ddready. The only
new analytic result is vanishing of certain integrals ovenfiguration spaces, analogous to
Lemma 6.4.

One can treaR? .., the formal completion of vector spa¥ at zero, in many respects

as usual manifold. In particular, we can define differergiaded Lie algebraB pory(R% o mar)
andTpoly(RY,,mar)- The Lie algebray :=VectRY ) is the standard Lie algebra of formal

formal
vector fields. We considéfy as a differential graded Lie algebra (with the trivial gragli
and the differential equal to 0). There are natural homorhnisrps of differential graded Lie
algebras:

my :Wd—>Tp0|y(Rcfjormal)v Mp :Wd—>Dp0|y(Rcfjormal)v

because vector fields can be considered as polyvector fietHasadifferential operators.
We will use the following properties of the quasi-isomogphiZ from Section 6.4:
P1)% can be defined faR{,,,, as well,
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P2) for anyé € Wy we have the equality

2(mr(§)) =mp(74(8)),

P3)% is GL(d,R)-equivariant,
P4) foranyk > 2, &1,..., & € Wy we have the equality

U(mr (&) @ ---@mr (&) =0,
P5) for anyk > 2, & € gl(d,R) C Wy, and for anynz, ..., Nk € Tpoly(R%y;ma)) We have

U(mr(E)@N2@---@nk) =0.

We will construct quasi-isomorphisms frofgoy(X) to Dpoiy(X) for arbitraryd-dimensional
manifoldX using only properties P1-P5 of the m@p Properties P1, P2 and P3 are evident,
and the properties P4, P5 will be established later in pagg 7.3.1.1 and 7.3.3.1.

It will be convenient to use in this section the geometriglasage of formal graded man-
ifolds, instead of the algebraic languagd. afalgebras. Let us fix the dimensidne N. We
introduce three formal gradeg@-manifoldswithoutbase points:

T, 9, .

These formal grade®-manifolds are obtained in the usual way from differenti@dgd Lie
algebrasTpoly (R mal)» Dpoly(Riormar) @ndWg forgetting base points.
In Sections 7.1 and 7.2, we present two general geometrigtieations, which will used

in Section 7.3 for the proof of formality dD yo1y(X).

7.1 Formal geometry (in the sense of I. Gelfand and D. Kazhdgn

Let X be a smooth manifold of dimensiah We associate witlX two infinite-dimensional
manifolds, X" andX2'f. The manifoldX°°°" consists of pairgx, f) wherex is a point of
X andf is an infinite germ of a coordinate systemXratXx,

f: (R?ormalao) — (X,X) .

We consideX®°" as a projective limit of finite-dimensional manifolds (spaof finite germs
of coordinate systems). There is an actionXfi?°" of the (pro-Lie) groupGq of formal
diffeomorphisms ofRY preserving base point 0. The natural projection H&§P"—X is a
principal Gg4-bundle.

The manifoldx2' is defined as the quotient spaX&*° /GL(d,R). It can be thought as
the space of formal affine structures at pointXofThe main reason to introdu¢éf is that
fibers of the natural projection mag?ff—X are contractible.

The Lie algebra of the grou@y is a subalgebra of codimensiann W. It consists of
formal vector fields vanishing at zero. Thlisg(Gy) acts onX®°Y". Itis easy to see that in fact
the whole Lie algebr#y acts onX©°°" and is isomorphic to the tangent spacXf§°" at each
point. Formally, the infinite-dimensional manifokfF°°" looks as a principal homogeneous
space of the non-existent group with the Lie algahja

The main idea of formal geometry (se [17]) is to replatdimensional manifolds by
“principal homogeneous spaces™\f. Differential-geometric constructions off°°" can be
obtained from Lie-algebraic constructions ¥j. For a while we will work only withX©°°",
and then at the end return ¥, In terms of Lie algebras it corresponds to the difference
between absolute and relative cohomology.
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7.2 Flat connections andQ-equivariant maps

Let M be aC*-manifold (or a complex analytic manifold, or an algebraiamiold, or a
projective limit of manifolds,...). Denote YT M the supermanifold which is the total space
of the tangent bundle d¥1 endowed with the reversed parity. Functions on FREM are
differential forms onM. The de Rham differentiay on forms can be considered as an odd
vector field onMTM with the square equal to 0. Thu3T M is aQ-manifold. It seems that
the accurate notation fdn T M considered as a graded manifold shouldThgM (the total
space of the graded vector bundig[1] considered as a graded manifold).

Let N—M be a bundle over a manifol whose fibers are manifolds, or vector spaces,
etc., endowed with a flat connectiah Denote byE the pullback of this bundle t8 :=
MTM. The connectior] gives a lift of the vector fieldQg := dy on B to the vector field
Qe onE. This can be done for arbitrary connection, and only for flatreection the identity
[QE,QE] =0 holds.

A generalization of a (non-linear) bundle with a flat conf@tis aQ-equivariant bundle
whose total space and the base @reanifolds. In the case of graded vector bundles over
T[1]M this notion was introduced Quillen under the name of a sugrerection (see [40]). A
generalization of the notion of a covariantly flat morphisunfi one bundle to another is the
notion of aQ-equivariant map.

Definition 7.1 A flat family over Q-manifold B is a paip : E—B, o) where p E—Bis a
Q-equivariant bundle whose fibers are formal manifolds, amdt B—E is a Q-equivariant
section of this bundle.

In the caseB = { point} a flat family overB is the same a forma)-manifold with base
point. Itis clear that flat families over a givé&rmanifold form a category.

We apologize for the terminology. More precise name for “fianilies” would be “flat
families of pointed formal manifolds”, but it is too long.

One can define analogously flat graded families over gr&iethnifolds.

We refer the reader to a discussion of further examplé3-ofanifolds in [31].

7.3 Flat families in deformation quantization

Let us return to our concrete situation. We construct in #astion two flat families over
MTX (whereX is ad-dimensional manifold), and a morphism between them. Tlilisbe
done in several steps.

7.3.1 Flat families over®?’

The first bundle ove¥ is trivial as aQ-equivariant bundle,
T XW—W

but with a non-trivial sectioros. This section is not the zero section, but the graph of the
Q-equivariant map#” — .7 coming from the homomorphism of differential graded Lie al-
gebrasnr :Wy— Tpoly(RY,;mar)- Analogously, the second bundle is the tri@equivariant
bundle

DXW —W
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Figure 13: The only graph for property P4.

with the sectioro, coming from the homomorphismp : Wy —>DP0|V(R?ormal)'
Formulas from Section 6.4 give@equivariantmay” : 7 —2.

Lemma 7.2 The morphism{% x idy ) : 7 x # —2 x # is a morphism of flat families
overy .

Proof: We have to check thg% x id, ) maps one section to another, i.e. that
(% xidy)ooz =0p eMaps# ,2x¥) .

We compare Taylor coefficients. The linear péftof 7 maps a vector field (considered
as a polyvector field) to itself, considered as a differdmfgerator (property P2). Compo-
nents%(é1,...,&) for k> 2, & € TO(RY) = I'(RY, T) vanish, which is the property P4.
Q.E.D.
7.3.1.1. Proof of the property P4
Graphs appearing in the calculation& (&1, .. ., &) havek edgesk vertices of the first type,
andm vertices of the second type, where

2k+m—-2=Kk.

Thus, there are no such graphs kor 3 asmis non-negative. The only interesting case is
k=2,m=0 which is represented in Figure 13.
By our construction7 restricted to vector fields is equal to the non-trivial queidrmap

d . ) .
§r— 5 a(8N9(E) MR 0), £~y &a el (RLT)

i,]=1
with the weight
/d(p(lz)d(p(Zl): / do(z,20) Ndo(20,2)

G0 H\{2}
wherez, is an arbitrary point of7.

Lemma 7.3 For arbitrary angle map the integral [ d(z 2) Ad@(2p,2) is equal to zero.
H\{20}

Proof: We have a ma@z0—S' x St [(x,y)] — (@(X,Y), @(y,x)). We calculate the integral
of the pullback of the standard volume element on two-diriterad torus. It is easy to see
that the integral does not depend on the choice of ma62,0—>81. The reason is that the
image of the boundary of the integration domai@, o in St x St cancels with the reflected
copy of itself under the involutiot@r, @) — (g, @) of the torusS! x S'. Let us assume that
@ = ¢" andzg = 0+ 1-i. The integral vanishes because the involutier —z reverses the

orientation of.7” and preserves the forohp(z zp) Ad@(Z,z). Q.E.D.
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7.3.2 Flat families overlT (X®°°")

If X is ad-dimensional manifold, then there is a natural maefanifolds (the Maurer-
Cartan form)
NT (X" —w .

It follows from following general reasons. [& is a Lie group, then it acts freely by left
translations on itself, and also éhT G. The gquotienQ-manifoldMTG/G is equal tollg
whereg = Lie(G). Thus, we have -equivariant map

NTG—Mg.

Analogous construction works for any principal homogersespace ove6. We apply it
to X®°°" considered as a principal homogeneous space for a noreeixggoup with the Lie
algebrag = W.

The pullbacks of flat families of formal manifolds ovéf constructed in Section 7.3.1,
are two flat families ovef1T (X%°°"). As Q-equivariant bundles these families are trivial
bundles

T x T (XSO — T (XN, 2 x MT (XN — T (X .

Pullbacks of sectiong s+ and gy gives sections in the bundles above. These sections we
denote again bg s andgy. The pullback of the morphis# x idy is also a morphism of
flat families.

7.3.3 Flat families overlT (X2ff)

Recall thatXa'f is the quotient space 0f°°" by the action ofGL(d,R). Thus, from
functorial properties of operatiol T (= MapgRY1,.)) follows thatMT(X2ff) is the quo-
tient of Q-manifold MT(X®°") by the action ofQ-group NT(GL(d,R)). We will con-
struct an action of1T(GL(d,R)) on flat families.7 x MT (X°") and 2 x MT (X°°") over
MT (X®°°). We claim that the morphism between these families is iavaninder the action
of MT(GL(d,R)). Flat families over1T (X2f") will be defined as quotient families. The
morphism between them will be the quotient morphism.

The action of1T(GL(d,R)) on & and on# is defined as follows. First of all, i is
a Lie group with the Lie algebrg, thenMT G actsQ-equivariantly onQ-manifold Mg, via
the identificatio1lg = NT G/G. Analogously, ifg is a subalgebra of a larger Lie algeloa
and an action of5 on g; is given in a way compatible with the inclusign—g;, thenlT G
acts ong;. We apply this construction to the caGe= GL(n,R) andg: = Tyoly(R%y;mar) OF
1= DPOW(R?ormal)'

One can check easily that sectiang andoy overlT (X©°°") areMT (GL(d, R))-equivariant.
Thus, we get two flat families ov&rT (X27f),

The last thing we have to check is that the morphignx idn (xcoory of flat families

T x MT (X — 2 x AT (X

is MT(GL(d,R))-equivariant. After the translation of the problem to thedaage of Lie
algebras, we see that we should check #fas GL(d, R)-invariant (property P3, that is clear
by our construction), and that if we substitute an elemergl(d,R) C Wy in %2, we get
zero (property P5, see 7.3.3.1).
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Figure 14: Level sets for functiog(z,w) for fixed w (dashed lines).

1 /
z or z

Z IZl

Z

Figure 15: Two graphs for property P5.

CONCLUSION We constructed two flat families ovaiT (X2ff) and a morphism between
them. Fibers of these families are isomorphicioand to 2.

7.3.3.1. Property P5

This is again reduces to the calculation of an integral. \Lbe a vertex of” to which we
put an element ofl(d,R). There is exactly one edge startingvabecause we put a vector
field here. If there are no edges ending/athen the integral is zero because the domain of
integration is foliated by lines along which all forms vami§hese lines are level sets of the
function ¢(z,w) wherew € s LR is fixed andz is the point ons# corresponding tw (see
Figure 14).

If there are at least 2 edges ending/athen the corresponding polydifferential operator
is equal to zero, because second derivatives of coefficidratdinear vector field vanish.

The only relevant case is when there is only one edge staatimgand only one edge
ending there. If these two edges connect our vertex with &meesvertex ofl, then the
vanishing follows from Lemma 7.3. If our vertex is connectdgth two different vertices as
in Figure. 15 then we apply the following two lemmas:

Lemma 7.4 Let 2 £ z, € s be two distinct points o7’. Then the integral

do(z1,2) Ndo(z,22)
ze\{21, 2}

vanishes.

Lemma 7.5 Let z € 2#, 2, € R be two points o7 LIR. Then the integral

| dez.2ndezz)
ze\{21,22}
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vanishes.

Proof: One can prove analogously to Lemma 7.3 that the integral doedepend on the
choice of an angle map, and also on ponts,. In the case ofp = ¢" and both pointg;, z»
are pure imaginary, the vanishing follows from the anti-syetry of the integral under the
involutionz— —z.  Q.E.D.

7.3.4 Flat families overX

Let us choose a sectiag® of the bundlex@ff—X. Such section always exists because
fibers of this bundle are contractible. For example, anyidorfree connectiori] on the
tangent bundle t&X gives a sectioX—X2ff. Namely, the exponential map far gives

an identification of a neighborhood of each poirg X with a neighborhood of zero in the
vector spacdyX, i.e. an affine structure o nearx, and a point o2 overx e X.

The sectiors*’f defines a map of formal grad€@manifoldsnT X—MT(X27). After
taking the pullback we get two flat familie&arr andZarr overMT X and an morphismgars
from one to another.

We claim that these two flat families admit definitions indegent ofs'f. Only the
morphismmgrr depends o?'f.

Namely, let us consider infinite-dimensional bundles ofedéntial graded Lie algebras
jetss Tpoly andjets, Dpory OverX whose fibers at € X are spaces of infinite jets of polyvector
fields or polydifferential operators atrespectively. These two bundles carry natural flat
connections (in the usual sense, not as in Section 7.2) dsuardle of infinite jets. Thus, we
have two flat families (in generalized sense) duarX.

Lemma 7.6 Flat families ¢+ and Zgqs¢ are canonically isomorphic to flat families de-
scribed just above.

Proof: it follows from definitions that pullbacks of bundlgets, Tyely and jets.D oy from

X to X9 are canonically trivialized. The Maurer-Cartan 1-formsX¥°" with values in
graded Lie algebraZpory (R, man) OF Dpoly(RYomar) COme from pullbacks of flat connec-
tions on bundles of infinite jets. Thus, we identified our feainflies over1T (X©°°T) with
pullbacks. The same is true fs2f.  Q.E.D.

7.3.5 Passing to global sections

If in general(p: E—B, 0) is a flat family, then one can make a new formal pointgd
manifold:
(F(E_’B)formalao) .

This is an infinite-dimensional formal super manifold, tbemial completion of the space of
sections of the bundlE—B at the pointg. The structure of-manifold onl (E—B) is
evident because the Lie supergrd@i! acts onE—B.

Lemma 7.7 Formally completed spaces of global sections of flat famifigsr and Zarr a
naturally quasi-isomorphic togby(X) and Dyaiy(X) respectively.
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Proof: It is well-known that ifE—X is a vector bundle then de Rham cohomology of
X with coefficients in formally flat infinite-dimensional bulledjets.E are concentrated in
degree 0 and canonically isomorphic to the vector sgaeg E). Moreover, the natural
homomorphism of complexes

(T(X,E)[0], differential = 0) — (Q*(X, jets.(E)), de Rham differential

is quasi-isomorphism.

Using this fact, the lemma from the previous subsection,apyutopriate filtrations (for
spectral sequences) one sees that that the naiemjuivariant map from the formaD-
manifold (Tpoly(X) formal[1],0) to (I'(Jart —T[1]X)tormal, 07) (and analogous map for
Dpory) is a quasi-isomorphism. Q.E.D.

It follows from the lemma above and the result of paragraphl4l that we have a chain
of quasi-isomorphisms

Tpoly(x) [1] formal_’r(gsaff —T [1]X)forma|—> e
_’r(@saff —>T[1]X)formal — Tpoly(x)[l] formal -

Thus, differential graded Lie algebrdig,y(X) andDpoy(X) are quasi-isomorphic. The Main
Theorem stated in Section 4.6.2. is provenQ.E.D.

The space of sections of the bunéé’f—X is contractible. From this fact one can
conclude that the quasi-isomorphism constructed abovelisdefined homotopically.

8 Cup-products

8.1 Cup-products on tangent cohomology

The differential graded Lie algebrag,iy, Dpoyand (more generally) shifted §§ Hochschild
complexes of arbitrary associative algebras, all carrydaitenal structure. We do not know
at the moment a definition, it should be something close t@fiedchomotopy Gerstenhaber
algebras (see [18, 19]), although definitely not preciskiy. tAt least, a visible part of this
structure is a commutative associative product of degi2en cohomology of the tangent
space to any solution of the Maurer-Cartan equation. Nanikly is one of differential
graded Lie algebras listed above apd (g m)?! satisfiesdy + %[y, y] = 0 wherem is a
finite- dimensional nilpotent non-unital differential gied commutative associative algebra,
the tangent spach, is defined as compleg® m[1] endowed with the differential + [y, -|.
Cohomology spackl, of this differential is a graded module over graded algébfen) (the
cohomology space af as a complex). If4 andy, are two gauge equivalent solutions, then
Hy, andH,, are (non-canonically) isomorphin-modules.

We define now cup-products for all three differential gratledlalgebras listed at the be-
ginning of this section. Fof,ey(X) the cup-product is defined as the usual cup-product of
polyvector fields (see Section 4.6.1). One can check djréwdit this cup-product is compat-
ible with the differentiald + [y, -], and is a graded commutative associative product. For the
Hochschild complex of an associative algeBrthe cup-product oty is defined in a more

44



tricky way. Itis defined on the complex by the formula

(t1Ut) (a0 ® -+ ®an) ==
iynf(k27k1+k47k3)(a0® Lt (g ®... ) Qa,®- -

(A ®...) Qo @...),

wherey' € Hom(A®(+1 A) @ (k[0]- 1@ m)*~" is homogeneous component(@f+ ma® 1).

Itis not a trivial check that the cup-product on the Hochktbdomplex is compatible with
differentials, and also is commutative, associative an@jgeequivariant on the level of coho-
mology. Formally, we will not use this fact. The proof is aedit calculation with Hochschild
cochains. Even if one replaces formulas by appropriateipistthe calculation is still quite
long, about 4-5 pages of tiny drawings. Alternatively, thex a simple abstract explanation
using the interpretation of the deformation theory relatéith the shifted Hochschild com-
plex as a deformation theory of triangulated categorieshetter,A.-categories, see [32]).

We define the cup-product f@,qy(X) by the restriction of formulas for the cup-product
inC*(AA).

8.2 Compatibility of % with cup-products

Theorem 8.1 The quasi-isomorphis#¥ constructed in Section 6 maps the cup-product for
Tooly(X) to the cup-product for By (X).

Sketch of the proofwe translate the statement of the theorem to the languagephg and
integrals. The tangent map is given by integrals where oneedfces of the first type is
marked. This is the vertex where we put a representative the tangent elemerjt] € H,,.
We put copies of/ (which is a polyvector field with values im) into all other vertices of the
first type. The rule which we just described follows diredttym the Leibniz formula applied
to the Taylor series fot/ .

Now we are interested in the behavior of the tangent map weisipect to a bilinear op-
eration on the tangent space. It means that we havetwownarked vertices of the first
type.

The statement of the theorem is an identity between two egjwes, corresponding to
cup products foifpoy(X) andDpery(X) respectively.

8.2.1 Pictures for the cup-product in polyvector fields

We claim that the side of identity with the cup-product foe ttas€eT o (X ), corresponds to
pictures where two points (sag, p2) where we put representatives of elementblpfvhich
we want to multiply, are infinitely close points oif’. Precisely, this means that we integrate
products of copies of formdg over preimage®, of some pointa in R/2nZ ~ C, C Cy
with respect to the forgetting map

Cn,m—’CZ,O .

It is easy to see thd®,; has codimension 2 i€, , and contains no stra@r of codimension
2. It implies that as a singular chafy is equal to the sum of closures of non-compact
hypersurfaces

Pan ﬁs(cmm), Pan [931’32 (Cn,m)
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Figure 16: A priori picture for terms for the cup-productipoyy.

50

Figure 17: Non-zero terms for the cup-produciigy.

in boundary strata o€, m. It is easy to see that intersectioRgN dsl,sz(én,m) are empty,
and intersectio?, N 0S(Cn’m) is non-empty iffSD {1,2}. In general pictures which can
contribute potentially with a non-zero weight are somegHike the one in Figure 16.

In other words, we have a collision of several points#i including both pointspy
andp,. Pointsp; andp, should not be connected by an edge because otherwise theainte
vanishes (remember that the direction frpato p; is fixed). Also, if 55> 3 then the integral
vanishes by lemma from 6.6. The only non-trivial case whicteft is whenS= {1,2} and
points p1, p2 are not connected. Figure 17 represents a non-vanishing teorresponding
to the cup- product i1y (X).

8.2.2 Pictures for the cup-product in the Hochschild comple

The cup-product foDy(X) is given by pictures where these two points are separated and
infinitely close toR. Again, the precise definition is that we integrate prodeétsopies of

dg over the preimagé 1 of the point[(0,1)] € Co» C Cp0. Analysis analogous to the one
from the previous subsection shows tRgi does not intersect any boundary stratunCef.
Thus, as a chain of codimension 2 this preim&ge coincides with the union of closures

of strataCr of codimension 2 such th&lr C By;. It is easy to see that any such stratum
gives pictures like the one in Figure 18 where there is novagoing from circled regions
outside (as in Figure 11), and we get exactly the cup-proiduitie tangent conomology of
the Hochschild complex as was described above.
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Figure 18: Cup-product in the Hochschild complex.

Figure 19: Path in the configuration space of two points4h Dashed lines are trajectories
of two points.

8.2.3 Homotopy between two pictures

Choosing a path from one (limiting) configuration of two psion.# to another configura-
tion (see Figure 19), we see that two products coincide otettet of cohomology. Q.E.D.

8.3 First application: Duflo-Kirillov isomorphism
8.3.1 Quantization of the Kirillov-Poisson bracket

Let g be afinite-dimensionaLie algebra oveiR. The dual space tg endowed with the
Kirillov-Poisson bracket is naturally a Poisson manifokié [28]). We remind here the
formula for this bracket: ifp € g* is a point andf, g are two functions omg then the value
{f,9}p is defined agp, [d f|,,dg]) where differentials of function$, g at p are considered
as elements of ~ (g*)*. One can considay* as an algebraic Poisson manifold because
coefficients of the Kirillov-Poisson bracket are linear ¢tions ong*.

Theorem 8.2 The canonical quantization of the Poisson manifgidis isomorphic to the
family of algebrasZ#(g) defined as universal enveloping algebrasgogéndowed with the
bracketh] , ].

Proof: in Section 6.4 we have constructed a canonical star-praguite algebra of functions
on arbitrary finite-dimensional affine space endowed witlos$dn structure. Therefore we
obtain a canonical star-product 6 (g*). We claim that the product of any twamlynomials
on g* is a polynomial inh with coefficients which are polynomials ayi. The reason is
that the star-product is constructed in invariant way, ggime contraction of indices. Let
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us denote by € g* ® g* ® g the tensor giving the Lie bracket an All non-zero natural
operationsSynf(g) ® Sym(g)— Syn¥(g) which can be defined by contractions of indices
with the tensor product of several copiegfexist only form < k+1, and for every givem
there are only finitely many ways to contract indices. Thusyakes sense to phtequal to 1
and obtain a product oBynig) = ®y-0Synf(g). We denote this product also by

It is easy to see that fos, y» € g the following identity holds:

yixYe— Yok i =1, ¥o] -

Moreover, the top component efproduct which mapSyn¥(g) ® Sym(g) to Synf*! (g), co-
incides with the standard commutative producBymig). From this two facts one concludes
that there exists a unique isomorphism of algebras

laig : (% 9,)—(Symg), *)

such thatyg(y) = yfor y € g, where- denotes the universal enveloping algebrg ufith the
standard product.

One can easily recover varialfién this description and get the statement of the theorem.
Q.E.D.

Corollary 8.3 The center of the universal enveloping algebra is canohigabmorphic as
an algebra to the algebréSynig))® of g-invariant polynomials ony*.

Proof: The center ofZg is 0-th cohomology for the (local) Hochschild complex %fg
endowed with the standard cup-product. The aIge(lSMﬂg))g is the 0-th cohomology of
the algebra of polyvector fields ogit endowed with the differentidla, -] wherea is the
Kirillov-Poisson bracket. From Theorem 8.1, we concluds tpplying the tangent map to
% we get an isomorphism of algebras.

8.3.2 Three isomorphisms

In the proof of Theorem 8.2 we introduced an isomorphiggof algebras.
We denote bypgyw the isomorphism of vector spaces

Symg)—«g

(subscript from the Poincaré-Birkhoff-Witt theorem), ish is defined as

1
V1V2Vn—’ﬁ VO']_'VO'Z """ Van .
o

Analogously to arguments from above, one can see that tigetdmap from polyvector
fields ong* to the Hochschild complex of the quantized algebra can beegforh = 1 and
for polynomial coefficients. We denote by its component which maps polynomial 0-vector
fields ong* (i.e. elements 08ynig)) to 0-cochains of the Hochschild complex of the algebra
(Symtg),*). Thus,It is an isomorphism of vector spaces

It : Syn{g)—Synig)
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and the restriction ofr to the algebra ofd(g)*-invariant polynomials omg* is an isomor-
phism of algebras

Synig)?—Centex(Synig),)) .
Combining all facts from above we get a sequence of isomemébf vector spaces:

| lal |
Synig)——Synig)—% g2 Synig) .
These isomorphisms agel(g)-invariant. Thus, one get isomorphisms

IpBw|...

(Synig))? IT_'» Cente(Syn{g), ) <Iali Cente% g) «——— (Synig))?,

where the subscrift .. denotes the restriction to subspacesdfg)-invariants. Moreover,
first two arrows are isomorphism of algebras. Thus, we haveqat the following

Theorem 8.4 The restriction of the map

(lag) oIt : Synig)—2g

to (Syn{g))9 is an isomorphism of algebrdSyn{g))?— Center(% g).

8.3.3 Automorphisms ofSyn{g)

Let us calculate automorphisnits and lqg o Ippw Of the vector spac&ynig). We claim
that both these automorphisms are translation invariaatadprs on the spacgynig) of
polynomials org*.

The algebra of translation invariant operators on the smdqmlynomials on a vector
spaceV is canonically isomorphic to the algebra of formal powerieigenerated by'.
Generators of this algebra acts as derivations along aanegator fields inv. Thus, any
such operator can be seen as a formal power series at zere dudhvector spacé*. We
apply this formalism to the casé= g*.

Theorem 8.5 Operators + and kg o Ipew respectively are translation invariant operators
associated with formal power serieg($) and $(y) at zero ing of the form

Si(y) = exp< Y o Trace(ad(y)2k)> , S(y) = exp< Y o Trace(ad(y)2k)>

K1 K1

where é”,cil), ... and (éz),cf), ... are two infinite sequences of real numbers indexed by
even natural numbers.

Proof: we will study separately two cases.

8.3.3.1.Isomorphism+

The isomorphisniy is given by the sum over terms corresponding to admissitdehp
I" with no vertices of the second type, one special vevtekthe first type such that no edge
start atv, and such that at any other vertex start two edges and endsrethan one edge.
Vertexv is the marked vertex where we put an elemen$gifi{g) considered as an element
of tangent cohomology. At other vertices we put the Poidsoitlov bi-vector field ong*,
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Figure 20: Wheel graph.

®

Figure 21: A union of wheels.

i.e. the tensor of commutator operationgnAs the result we get O-differential operator, i.e.
an element of algebr@ynig).

It is easy to see that any such graph is isomorphic to a uniotopfes of “wheels”
Wh,, n> 2 represented in Figure 20 with identified central vertexFigure 21 shows a
typical graph of the union.

In the integration we may assume that the point correspardiu is fixed, say that it is
i-14+0e 7, because group!) acts simply transitively om#. First of all, the operator
Synig)—Synig) corresponding to the individual whe®lh, is the differential operator
on g* with constant coefficients, and it corresponds to the patyiaby — Trace(ad(y)")
ong. The operator corresponding to the joint of several wheethé product of operators
associated with individual wheels. Also, the integral esponding to the joint is the product
of integrals. Thus, with the help of symmetry factors, we cdade that the total operator
is equal to the exponent of the sum of operators associatédwhieelswh,, n > 2 with
weights equal to corresponding integrals. By the symmetgument used several times
before g— —2), we see that integrals corresponding to wheels with mgdnish. The first
statement of Theorem 8.5 is provenQ.E.D.

8.3.3.2.Isomorphismyig o Ippw
The second case, for the operaltgg o Ipew, is a bit more tricky. Let us write a formula
for this map:
lagolpaw: Y — yxy*y---xy (n copies ofy) .

This formula defines the map unambiguously because elemg®nisc g, n > 0 generate
Synig) as a vector space.

In order to multiply several (sayn, wherem > 2) elements of the quantized algebra
we should put these elementsmatfixedpoints in increasing order oR and take the sum
over all possible graphs wit vertices of the second type of corresponding expressions

50



Figure 22: One of basic elements in the formulayar- - - x y.

Figure 23: Another potential basic element, it vanishesjonmetry reasons.

with appropriate weights. The result does not depend on diséipn of fixed points orR
because the star-product is associative. Moreover, if Walzde a power of a given element
with respect to the-product, we can put all these points in arbitrary order.oltdws that
we can take an average over configurationsngboints onR where each point is random,
distributed independently from other points, with cerfaiabability density oiR. We choose
a probability distribution orR with a smooth symmetric (under transformatinm- —X)
densityp(x). We assume also thatx)dxis the restriction t® ~ C; 1 of a smooth 1-form on
Cp1~ {—o}URU{+o}. With probability 1 ourm points will be pairwise distinct. One can
check easily that the interchanging of order of integrafian for the taking mean value from
the probability theory side, and for the integration of eifintial forms over configuration
spaces) is valid operation in our case.

The conclusion is that the-th power of an element of quantized algebra can be calaulate
as a sum over all graphs with vertices of the second type, with weights equal to integrals
over configuration spaces where we integrate products ofisalp and 1-formsp(x;)dx
wherex; are points moving along.

The basic element of pictures in our case are “wheels withalgs” (Figure 22) and
the A-graph (Figure 23) which gives 0 for symmetry reasons. Thwcsl total picture is
something like (withm= 10) the one drawn in Figure 24.

Again, it is clear from all this that the operathyg o Ippw is a differential operator with
constant coefficients oBynig), equal to the exponent of the sum of operators corresponding
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Figure 24: A term in the formula fogx - - - x y.

to individual wheels. These operators are again propaatitm operators associated with
power series og
y— Trace(ad(y)") .

By the same symmetry reasons as above we see that integnaspmanding to odd vanish.
The second part of Theorem 8.5 is provenQ.E.D.

8.3.4 Comparison with the Duflo-Kirillov isomorphism

For the case of semi-simptgthere is so called Harish-Chandra isomorphism between al-
gebras(Symig))g andCentef g). A. Kirillov realized that there is a way to rewrite the
Harish-Chandra isomorphism in a form which makes senserfotrary finite-dimensional
Lie algebra, i.e. without using the Cartan and Borel sulaige the Weyl group etc. Later
M. Duflo (see [12]) proved that the map proposed by Kirilloamsisomorphism for all finite-
dimensional Lie algebras.

The explicit formula for the Duflo-Kirillov isomorphism i following:

lok : (Symig))® ~ CenteX% (g)), ok = Ipew|(synig))s © Istrange(synig))o-

wherelstrange iS an invertible translation invariant operator &yn{g) associated with the
following formal power series og at zero, reminiscent of the square root of the Todd class:

yi— exp < S 4k?;kk)! Trace(ad(y)2k)>

k>1

whereB,,By,... are Bernoulli numbers. Formally, one can write the rightthaide as
det(q(ad(y))) where
eX/2 _a@X/2
q(x) == —

The fact that the Duflo-Kirillovisomorphism is an isomorgim of algebras is highly non-
trivial. All proofs known before (see [12, 20]) used certéants about finite-dimensional Lie
algebras which follow only from the classification theoryn particular, the fact that the
analogous isomorphism for Lie superalgebras is compatifiteproducts, was not known.
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We claim that our isomorphism coincides with the Duflo-Ha¥l isomorphism. Let us
sketch the argument. In fact, we claim that

-1
Ialg olt =lpgwo |strange~

If it is not true then we get a non-zero seriésr € t?R[[t?]] such that the translation in-
variant operator orsyntg) associated witly — lyeqexpyady))) 9ives anautomorphisnof al-
gebra(Syn{g))9. Let Z& > 0 be the degree of first non-vanishing term in the expansion
of Err. Then it is easy to see that the operator@ymig) associated with the polynomial
y — Tracgad(y)% is aderivationwhen restricted t¢Synig))9. One can show that it is not
true using Lie algebrag = gl(n) for largen. Thus, we get a contradiction and proved that
Err=0. Q.E.D.

As a remark we would like to mention that if one replaces sag{@) above just by the
inverse to the square root of the series related to the Taakscl

()

then one still get an isomorphism of algebras. The reasdraishe one-parameter group of
automorphisms o8ynig) associated with series

NI

y—exp(const Tracgad(y)))

preserves the structure of Poisson algebragan This one-parameter group also acts by
automorphisms o/ g. It is analogous to the Tomita-Takesaki modular automaptgroup
for von Neumann algebras.

8.3.5 Resultsinrigid tensor categories

Many proofs from this paper can be transported to a more génentext of rigidQ-linear
tensor categories (i.e. abelian symmetric monoidal categavith the duality functor imitat-
ing the behavior of finite-dimensional vector spaces). Welwe very brief here.

First of all, one can formulate and prove the PoincaréIsfk-Witt theorem in a great
generality, inQ-linear additive symmetric monoidal categories with irtirsums and kernels
of projectors. For example, it holds in the categoryAaiodules wherd\ is arbitrary com-
mutative associative algebra ov@r Thus, we can speak about universal enveloping algebras
and the isomorphisrpgy.

One can define Duflo-Kirillov morphism for a Lie algebra ikdinear rigid tensor cat-
egory wherek is a field of characteristic zero, because Bernoulli numbeggrational. Our
result from 8.3.4 saying that it is a morphism of algebradd$ian this generality as well.
It does nothold for infinite-dimensional Lie algebras because we uaees of products of
operators in the adjoint representation.

In [27] a conjecture was made in the attempt to prove thatDhdio-Kirillov formulas
give a morphism of algebras. It seems plausible our resatishelp one to prove this con-
jecture. Also, there is another related conjecture conogrtwo products in the algebra of
chord diagrams (see [3]) which seems to be a corollary of esults.
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8.4 Second application: algebras oE xt-s.

Let X be complex manifold, or a smooth algebraic variety of fikldf characteristic zero.
We associate with it two graded vector spaces. The first spacdX) is the direct sum
@it HX(X, A'Tx)[—k—1]. The second spat¢tH*(X) is the spaceD, EXtéoh(XxX) (Oldiag, Odiag)[— K]
of Ext-groups in the category of coherent sheaveXonX from the sheaf of functions on the
diagonal to itself. The spade¢H*(X) can be thought as the Hochschild cohomology of the
spaceX. The reason is that the Hochschild cohomology of any algalman be also defined
asExt} .4 a(AA) in the category of bimodules.

Both spacesdH*(X) andHT*(X) carry natural products. Fa#H*(X) it is the Yoneda
composition, and foHT*(X) it is the cup-product of cohomology and of polyvector fields.

CLAIM Graded algebras H#(X) and HT*(X) are canonically isomorphic. The isomor-
phism between them is functorial with respecttale maps.

This statement (important for the Mirror Symmetry, see }32pgain a corollary of The-
orem 8.1. Here we will not give the proof.
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