STATISTICS OF KLEIN POLYHEDRA AND
MULTI-DIMENSIONAL CONTINUED FRACTIONS

M.L. Kontsevich*") and Yu.M. Suhov'*

Abstract. A (generalized) Klein polyhedron (KP) is defined as the convex hull of
a set of lattice points inside a (convex) domain I C R™. We focus on two cases where D
is the interior (i) of a simplicial cone or (ii) of a paraboloid. We introduce a dynamical
system, with a group action and an invariant measure, which is naturally associated
with the KP, and discuss statistical properties of the boundary of a (random) KP, with
respect to the invariant measure. The boundary of a KP is called a veil; it is formed
by ‘faces’ that are convex polyhedra of dimension < n — 1. In the case of a simplicial
cone, the dynamical systems constructed are multi-dimensional generalizations of the
well-known Gauss automorphism (related to the continued fraction representation of a
number z € (0,1)). The case of a paraboloid is important as it emerges as the limiting
case for the domains in R™ of the form A\DD, as A\ — 400, where D is a given convex domain
with a smooth boundary. In particular, we are interested in the distribution of various
parameters characterising local combinatorial and geometric properties of a veil, such
as the number of lattice points lying on a single face, the number of vertices of a face,
etc. We find that the two cases under consideration (simplicial and parabolic) are quite
different from this point of view. A by-product of our approach is that in the simplicial
case it allows us to propose algorithms for searching a ‘good’ rational approximation for
the components of a given vector 6; a particular algorithm of this kind was proposed
earlier in [La].

1. INTRODUCTION: THE GAUSS AUTOMORPHISM

This paper was conceived as an attempt to generalize certain aspects of the theory of
continued fractions to the multi-dimensional case; an initial motivation was to provide
an answer to a question proposed by V.I. Arnol’d at his seminar at Ecole
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Normale Superieure, Paris, in the Spring of 1997. However, in the process of writing
it, we decided to extend our considerations in other directions offered by the emerging
approach. This approach may in particular be applied to the problem of asymptotical
distribution of the number of integer points along the boundary of a domain 8()\]])) as
A — 00.

The continued fraction theory which was our original incentive is indeed a popular
subject, both theoretically and with regard to numerous applications. Attempts to
develop a multi—-dimensional analogue were inspired in particular by the need to design
algorithms that could find rational approximations for vectors, and integer ones for linear
manifolds, in R™. See, e.g., [Br], [La] and references therein.

The continued fraction representation of a number y € (0,1):

—1

Yy = (ao—I— (a1+(ag—f—(ag—i—..,)_l)_l)_l) , a; €24 :=11,2,...,}, (1.1)

associates with y a sequence of positive integers (ag, aq, ...) (accordingly, we will write
y ~ (ap, a1, ...)). An important role in the ‘one-dimensional’ theory of continued
fractions is played by the Gauss automorphism

7;(x1,x2)e@H({wil},m), (1.2)

with the invariant probability measure

dxldxg 1

plda > daz) = (14+ z122)%In 2

(1.3)

on the unit square Q = (0,1) x (0, 1); see, e.g., [CFS]. Here, and below, [z] and {z} =
x — [z] denote, respectively, the integer and fractional parts of a positive real number z.
More precisely, if z; ~ (ag, a1, ...), and xo ~ (a_1, a_a, ...), then y(x1,22) = (2], z})
where 2] ~ (a1, az, ...) and 25, ~ (ag, a_1, ...). In particular, the distribution of an
entry a; in the continued fraction representation of numbers x; € (0,1), j = 1,2, is given

by
+1
szﬂ(aizs):k’gz ma S € Ly, (1.4)

whereas the expected value of a; is
E° = ZSPS = / p(dzy x dao)[z] = / p(dzy x dzy)[zs '] = oo (1.5)
s Q Q

(the meaning of the superscript 0 will become clear later).

Recently, following [Ar 1,2], beautiful results were obtained in a series of papers
starting with [K]| (see also [L] and references therein), based on a geometric approach
to the multi-dimensional continued fraction theory. A basic notion here is that of a



Klein polyhedron (KP) inside a simplicial cone in R™, n > 2, with the corner at the
origin. A KP is defined as the convex hull of the set of the lattice points inside the cone
(excluding the origin). The boundary of such polyhedron may be considered as an (n—1)—
dimensional continued fraction; for d = 2 the standard theory is recovered. Following
popular terminology, we call this boundary a simplicial veil (or simply a veil'). So far,
the main attention in this approach has been focused on the analysis of an individual
veil, rather than that of its ‘statistical’ properties. In contrast, this paper (together with
subsequent ones) aims to establish basic facts about statistical behaviour of the veil;
we believe that such an approach may be of use in several applications, including the
above-mentioned continued fraction algorithms and a popular problem of evaluating the
number of integer points in a geometric locus (see, e.g., [CdV 1,2], [DRS] and references
therein).

More precisely, the space of veils is endowed with a natural measure that is invariant
under a group action. This leads us to a dynamical system (a veil flow) where the role of
time is played by an appropriate subgroup of SL (2, R). One of the results of this paper,
Theorem 1 (see Section 3 below), asserts that, with respect to the invariant probability
measure, the expected number of lattice points on a ‘typical’, or ‘average’, face of a
simplicial veil is infinite. (A face of a veil is itself a compact convex polyhedron of
dimension n — 1.) The above result is a direct generalisation of the statement that the
expected value of a ‘typical’ entry of a continued fraction is infinite. In contrast, the
expected number of lattice points lying on the boundary of a face (which is a union of
compact convex polyhedra of dimension n — 2) is finite. In general, the distribution of
the number of lattice points on the lower-dimensional parts of the boundary of a face has
several finite moments. Moreover, the distribution of the number of vertices of a face has
a rapidly decaying tail: the probability that a face has s vertices is ~ exp (—s'/("=2));
see Theorem 3 in Section 3. The next problem is to identify the distribution of these
random variables. So far we have not been able to find concise formulas, but that does
not mean that they do not exist.

In principle, the same approach may be used to study any local combinatorial pa-
rameter of a veil: degrees of vertices of a face, the integer lengths of the edges, etc.

A similar dynamical system may be defined when a simplicial cone is replaced by
a paraboloid in R™. Here, as before, a notion of a veil can be introduced (we use the
term parabolic veils, to distinguish them from the simplicial ones). Properties of the
dynamical system related to parabolic veils differ from those of the simplicial veil flow;
in particular, the expected number of integer points on a face of a parabolic veil is finite;
see Theorem 5 in Section 4. The particular role of parabolic veils is that they emerge as
limits for veils associated with a general convex domain ID , in the course of ‘inflating’,
or scaling, domain D by factor A and letting A — oco. See Theorems 9-11 in Section 4.

The rest of the paper is organised as follows. We begin with a revision of the Gauss
automorphism (Section 2) and continue with results about simplicial veils (Section 3).

IThe veil, besides its original meaning, is a synonym for sail in French, one of the working languages
in this area.



Section 4 contains results on parabolic veils. In Section 5 we discuss main constructions
of the proof. It should be said that technical details of the proofs are systematically
omitted, especially when they are not essentially new.

2. THE GAUSS AUTOMORPHISM:
A GEOMETRIC REPRESENTATION

As is well-known, Gauss automorphism (Q, v, ) (see (1.1)—(1.3)) is an Anosov map
isomorphic to a Bernoulli shift with a finite entropy. A natural geometric representation
of the Gauss automorphism is given in proposition 2.1 and obtained on the basis of
the following construction. Associated with a point (z1,z2) € Q is a broken line V
defined as the boundary OC of the convex hull C of the set of two-dimensional integer
vectors inside a straight angle © (= ©(x1,z2)), on the half-plane {(X;, Xs2) : X; > 0}
(X1 and X5 are the plane co-ordinates). Angle O is formed by the half-lines L, =

<(X1,X2): X1 >0, Xo/X; = 1/95) and L_ = <(X1,X2): X1 >0, Xo/X; = —x). Here

x1 ~ (ag, a1, ...), o~ (a_1, a_a, ...),and = ~ (ag, a_1, a1, a_s, ...). More precisely,
V (which, bearing in mind a high-dimensional generalisation, is called a veil), is formed
by two broken ‘half-lines’, V4, with the breaking points in Z?, which approach one of
the above straight lines (say Vy lies in the quarter-plane X7, X5 > 0 and approaches
L4, and V_ lies in the quarter-plane X; > 0, X5 < 0 and approaches L_). Furthermore,
a;, © > 0, give the integer lengths of the sequence of the segments forming V,, and a;,
i < —1, the integer lengths of the sequence of the segments forming V_. (The integer
length of a segment (or a vector) with the footpoints in Z? is defined as the number of
the points from Z? lying in the interior of the segment plus one.) The convex polygon C
is called a Klein polygon.

A standard way to represent the Gauss automorphism is to construct a ‘natural’
suspension flow whose base automorphism coincides with (Q,~, ). This question was
discussed in detail in [AF 1-3] (see also [S]). Our construction seems simpler that in these
papers and is carried as follows. The above construction of the veil V as the boundary
of the convex hull of a part of Z? can be repeated for any cone formed by a pair of lines
on R? through the origin. That is, the veil is geometrically determined by a unit frame e
= (e1,e2). Here, e1, e5 are 2-vectors with det (ej,es) = 1. An important remark is that
the integer lengths of the segments constituting the veil do not change when this frame
(or pair of lines) is transformed by an element from the discrete group I' = SL (2, Z), i.e.,
by a 2 x 2 integer unimodular matrix. As the unit frames are associated with the group
SL (2, R) of the 2 x 2 real unimodular matrices, we conclude that the phase space &€ of
the flow is the three-dimensional manifold G/I" where group G = SL (2,R). That is, an
element of £ is an equivalence class, Y, composed by the unit frames e’ of the form ez,
where z € I and e is a fixed unit frame representing Y. It is convenient to write e(Y)
and €;(Y), j =1, 2. By V(Y) we denote the veil associated with coset Y.

The flow transformations are defined via the left action of the subgroup DT (2,R)
C G consisting of the diagonal 2 x 2 unimodular matrices with non-negative entries,
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A0
0 A1
corresponding transformation o,: & — £ is given by 0,Y = ¢gY. The invariant measure
v is the Haar measure of G restricted to €. As v(€) < oo (although £ is not compact),
we can assume that v is a probability distribution (i.e., ¥(€) = 1).

i.e. matrices of the form A(\) = ( ), A > 0. Namely, if g € D" (2,R) then the

The dimension of the manifold D*(2,R) equals one; in other words, {o,} is a one-
parameter family of maps & — £. It is convenient to fix an isomorphism «: D¥(2,R) —
R by passing to the logarithmic co-ordinates. Here,

tA(N) =1n A (2.1)

With such an isomorphism, we can talk about the one-parameter group 7' of trans-
formations 7 = o0,-1;,, t € R, of £, with the invariant measure v. The function :
Y — R, establishing the suspension flow structure of {ag, g € D+(2,R)} may be
defined by

®(Y) = inf [t >0: the vector e;(Y)exp t —e2(Y)exp (—t) is
(2.2)
parallel to a segment of the veil determined by frame e(Y)].

Note that vector e1(Y)(exp t) — e2(Y)(exp (—t)) is parallel to the line through the
endpoints of the frame A(e!)e(Y).

Thus, define: (i) M C & as the zero set of function @, (ii) the value p(Y), Y € M,
by
e(Y)=min [t: t>0, Y € M], (2.3a)

and (iii) the map 7% M — M by
Y — T@(Y) (Y) (23b)

M is a countable union of manifolds of dimension < 2. Also, define the probability
measure v on M by using the fact that DT(2,R) acts in a locally free fashion in a
neighbourhood of M. Formally, we (a) write v(dY), where Y € £ is of the form 7;Y?,
with Y? € M and t € R close to 0, as d?°(dY) x dt, obtaining a measure 2 on M,
and then (b) normalise 7° to get a probability distribution v°. From the construction it
follows that v/ is invariant under 7°.

Pictorially, a point Y € M is associated with a veil where the segments are labelled
by the integers, and the label 0 is attached to the segment parallel to vector e (exp t) —
ea(exp (—t)). We call it a ground segment and denote it by P(Y). The map 7° is
represented as the shift of all labels by one. The result of the above construction is the
following

Proposition 2.1. The flow (£,T,v) is a suspension flow, with the base automor-
phism (M, 7°,1°). Furthermore, the latter automorphism is isomorphic to the Gauss
automorphism (Q,~, u).



The logarithmic co-ordinates allow us to define the logarithmic projection II of
the veil V(Y), Y € &, to the time-axis R!. Geometrically, we (i) perform the central
projection Il.., about the origin, of the segments of V(Y) (with marked lattice points
on them) to the hyperbola U(Y) given by the equation X; yXov =1, X1 v, Xovy >
0, in the co-ordinates X; v, i = 1,2, related to frame e(Y), and then (ii) pass to the
coordinate t = In z1y on U(Y). As a result, we obtain a partition of R! into disjoint
intervals (the endpoints of these intervals are the images, under projection Il., of the
vertices of V(Y), with marked points on them (which are the images of the lattice points
lying inside the segments of V(Y)). The intervals constituting the partition are called
cells (again in view of future multi-dimensional generalisations). The image of a vertex
of V(Y) is also called a vertex (of a cell partition).

It is convenient to label the cells forming a partition by the integers. If Y € M, there
exists a distinguished cell which is the projection, under II, of the ground segment P(Y)
of V; such a cell is labelled by 0. Otherwise, i.e., when Y & M, there is a distinguished
pair of adjacent cells (or, if one prefers, a vertex of the partition). This vertex (also
called ground) is the image, under II, of the vertex of V(Y) which is the first one to be
reached by the translations, towards the veil, of the line G(Y) given by the equation
(x,e1(Y)) + (z,e2(Y)) = 0. Note that G(Y) is a line through the origin, parallel to
vector e1(Y) — e2(Y). One of two cells adjacent to the ground vertex, say the furthest
to the right (in the sense of the direction of co-ordinate t) is labelled by 0.

Once the 0-th label is attached, we assign the numbers j € Z! observing the following
principle: two adjacent cells receive labels that differ by one, and the furthest right cell
of the adjacent pair receives the greater label.

As a result, a point Y € M is identified with a sequence a = (a;, i € Z') where
a; is the number of the marked points inside the ith cell plus one. We also can define
a function ¢, on M, whose value ¢(a) > 0 is determined by the condition that vector
e1(Y)exp (¢(a)) + e2(Y)exp(—¢(a)) is parallel to the next-to-the-ground segment of
the veil, namely the one projected to cell one. On the other hand, a point Y € £\ M is
identified with a pair (a,t’) where a is as above, and 0 < tY < ¢(a) is determined by the
condition that vector e; (Y)(exp t°) + e2(Y)(exp(—t°)) is again parallel to the segment
of the veil which is projected to cell one.

Proposition 2.2. Given above identification, flow (£,T,v) is isomorphic to the
suspension flow with the base automorphism (Q,~, ;1) and the function ¢.

The proof of Proposition 2.2 follows the arguments developed in [AF 1-3] and is
omitted.

A straightforward calculation with probability distribution (1.3), (1.4) leads to the
following asymptotical formulas. Let N4(Y, R), s € Z, denote the number of edges of
veil Y containing s 4 1 lattice points and lying within a circle in R? of radius R > 0
centered at the origin, and N(Y, R) the total number of edges within this circle. Then



for v-a.s. Y € &,

2l R (s+ 1)
Ns(Y,R) ~ 0 In G2 (2.4)
and
2In R
N(Y,R) ~1n 2 o) (2.5)

Our approach may be extended to the case of ‘larger’ groups, where G = SL(2, R) x

R? (the group of the affine transformations of R?) and I' = SL(2,Z) x Z?, with the

same group 1" as before. Pictorially, it means that the corner point of an angle is not

necessarily at zero. Similar calculations show that if the corner is distributed with a
density on unit square QQ then

NS(Y, R) N In R . (S _ 1)5—1(8 + 1)3(3—}—1),

¢(2) $35(s + 2)5+2

whereas N (Y, R) has the same asymptotic (2.5). If the corner is fixed at a rational point,

the limit of Ns(Y, R)/In R may be calculated explicitly. The resulting formula is quite

cumbersome, but the total number Ns(Y, R) again behaves as in (2.5). We conjecture

that N,(Y, R) has the same asymptotic as before for any position of the corner on R2.

(2.7)

3. SIMPLICIAL VEILS IN HIGHER DIMENSIONS

We begin with a dynamical system that is a natural generalisation of flow (£,T, v)
(it is convenient to use the system of notation from the preceding section). A veil in
the n-dimensional space R™ is constructed in a similar fashion. Given a simplicial cone,
we take the convex hull C of the set of integer points lying inside the cone; the veil
V is the boundary of C. It is an (n — 1)-dimensional polyhedral surface ‘approaching’
the boundary of the simplicial cone. The plane pieces of this surface are called faces;
each face is in turn a convex polyhedron; its boundary is decomposed into plain faces of
dimension n — 2, etc. As before, we consider veils modulo the action of the group I' =
SL (n,Z). For simplicity, the corresponding equivalence classes are again called veils; we
also use for such a class the previous notation V. The simplicial cone is determined by
the unit frame e = (ey, ..., €,) (with det (eq, ..., e,) = 1); thus the phase space of our
dynamical system is the (n2 — 1)—dimensional fundamental domain & = G/I" where G =
SL (n,R). A point of € is denoted by Y, and is a coset ez, z € I', where e = (e, ..., €,)
is a unit frame representing e. As before, we use the notation Y ~ (e), e(Y) and ¢,(Y),
j =1, ..., n. Furthermore, we again denote by V(Y ) the veil associated with coset Y.

The flow transformations on £ are defined, as before, via the left action of the group
D*(n,R) of the real n x n unimodular diagonal matrices with non-negative entries i.e.
the matrices of the form

A 0 0 ... 0
A = 0 2 0 T A A A0, Ar A, = 1,
0 0 0 ... A,

(3.1)
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namely, ox(y): Y € € +— A(A)Y. The invariant measure v is again the Haar measure of
G restricted to €. As before, v(€) < oo (see [B]); we again assume that v is a probability
distribution.

The dimension of the manifold D" (n,R) equals n—1. The logarithmic co-ordinates
on DT (n,R) may be introduced via an isomorphism ¢: DT (2, R) — R"~! where

tA(Q) = (ln Al,...,In )\n_l) . (3.2)

With such an isomorphism, we can talk about the group of transformations 7y = 7,14,
t=(t1,...,thn_1) € R" 1 on &, with the invariant measure v. It is well-known (see [M
1], [Z]) that flow (£,T,v) is ergodic. However, it is not difficult to check that its (n —1)-
dimensional entropy equals zero. The same is true of the k-dimensional entropy (i.e., the
entropy of the action of a k-parameter subgroup 7, t € H*, where HF is a k-dimensional
subspace in R"1, 1 < k < n—1). On the other hand, the one-dimensional entropy (i.e.,
the entropy of the action of a one-parameter subgroup 74, t € H', where H' is a straight
line in R"~1) is positive.

Flow (&€,T,v) admits a kind of a suspension flow representation. Namely, let G(Y)
be the (n —1)-dimensional hyperplane consisting of vectors of the form Y p;e;(Y) where
> ui = 0. Denote by M the following subset of &:

M={Y € &: one of the (n — 1) — dimensional faces

of the veil V(Y) is parallel to the hyperplane G(Y)}. (3.3)

Let P(Y), Y € M, denote the convex (n — 1)-dimensional polyhedron that is the
part of veil V(Y) lying on the face figuring in the definition of M (more precisely, the
whole class of the polyhedra obtained by the action of SL(n —1,7Z) x Z"~!, the group of
the affine integer transforms of R"~1). P(Y) is called the ground polyhedron, or ground
face (of veil V(Y), Y € M). M is a countable union of submanifolds of £ of dimension
n(n — 1). The probability measure 1° on M is again constructed from measure v by
using the fact that M is transversal to the orbits {v;, £t € R"71}.

However, instead of a single basic map 7°: M — M we now have, for v°-almost all
Y € M, a collection of maps

7?,Y7 ce ”yl?(Y),Y : M- M, (34)

preserving measure 1. Here, the numbers 1, ..., b(Y) label the (n — 2)-dimensional faces
forming the boundary OP. Pictorially speaking, each map 72Y, j=1, .., b(Y), takes
the veil V(Y) to a veil where the ground polyhedron is the one adjacent to P(Y) via the
jth face of OP(Y), and the ‘combinatorial structure’ of V(Y) is preserved.

The combinatorial structure of the veil may be described, as before, in terms of a
logarithmic projection II. Namely, we again take (i) the central projection Il.., about
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the origin, of the (n —1)-dimensional faces of V(Y) (with marked lattice points on them)
to the hyperboloid U(Y) given by the equation X; vy ... X, v =1, X1 v, ..., X ¥y > 0,
in the co-ordinates X; vy, ¢ = 1, ..., n, related to frame e(Y), and then (ii) pass to the co-
ordinates t = (ln X1y, .. 1In anlyy) on U(Y). As in Section 2, we obtain a partition
of the linear time-manifold R™~! into disjoint domains, with marked points on them
(which are the images of the lattice points lying on the faces of V(Y)). The boundaries
of these domains are the images, under II, of the faces of V(Y) of lower dimension (down
to the vertices). The domains constituting the partition (together with the collections of
lattice points in them) are called cells, and the images of the vertices of V(Y) are again
called vertices.

Unlike the two-dimensional case, for n > 3 there is in general no lattice-like labelling
of the cells of the given partition. However, for a point Y € M we can pick a particular
cell, and for a generic point Y € £\ M a particular vertex. Namely, if Y € M then
the distinguished cell is the image, under II, of the ground polyhedron P(Y) (we call
it a ground cell). On the other hand, if Y & M, then the distinguished vertex (also
called ground) is the one we first meet by translating the (n — 1)-dimensional hyperplane
G(Y) in the direction of V(Y). Natural parameters here are the area of the ground cell
for Y € M and the total area of the cells incident to the ground vertex for a generic

Y eE\M.

One of the first questions about flow (€, T, v) which one can try to address is about
the ‘statistical’ properties of ground polyhedron P(Y), Y € M, with respect to measure
Y. Denote by M, the subset of M where P(Y) contains s lattice points, and set
P = 19(M,), s € Z, . In this paper we establish the following assertion.

Theorem 1. The expected value

E%= )" spd=occ. (3.5)

S€Z+

Pictorially, the assertion of Theorem 1 may be interpreted as the statement that
‘on average’ the number of the lattice points on a face (or in a cell), of a v0-‘typical’
veil V(Y), Y € M, is infinite. The precise form of such a statement may vary with
the choice of the concept of averaging. We comment here on two (from our point of
view, most natural) concepts: the sample average and the log-volume-weighted average.
Here, one takes a ‘large’ domain, in R"~! (say a ball of a big radius R centred at the
origin), and counts the numbers of the integer points within the cells of the veil which
are entirely inside the domain. In the case of the sample average the total number of the
integer points is divided by the number of cells. In the case of the log-volume-weighted
average it is divided by the volume of the domain. One then passes to the limit as the
domain is inflated to cover eventually all R™~!.

Theorem 2. Set N5(Y) = MR((z)) and N3(Y) =
mg

total number of lattice points in cells that are entirely inside ball Br C R"~! of radius R

Mp(Y
Ll ), where Mg(Y) is the
UR
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centred at the origin, and mpg(Y) is the number of such cells, and vg is the (Euclidean)
volume of Br. Then, with v-probability one,

E':= lim Nx(Y)=o00, and E?:= lim Ni(Y) = co. (3.6)

R—o0 R—o0

For the proof of Theorems 1 and 2, see Section 5. Formulas (3.5) and (3.6) extend
relation (1.3) to the multidimensional case. It is a challenging problem to determine
the distribution of the random variable N on M (cf. (1.2)): at the moment this seems
beyond our reach. Numerical results approximating this distribution will be published
separately.

A similar problem arises with other parameters of the (random) polygon P(Y): the
total number of lattice points on the boundary OP(Y), the number of lattice points
lying on the faces of OP(Y) of dimension n — 3, etc., and finally the number of vertices
in P(Y). Similarly, one can consider the distribution of the number of vertices of P(Y)
of a given degree r (including or excluding the edges of faces adjacent to P(Y)), the
number of edges with vertices of given degrees (r,r’), etc. In general, one may speak of
the distribution of any ‘local’ combinatorial structure of veil V(Y). In this paper, we will
comment on the distribution of the number of vertices of P(Y). The following assertion
is proved in Section 5.

Lemma 3.1. There exists a constant, 6 (= §(d)) > 0, such that for any two distinct
vertices v, v’ of veil V(Y) the log-distance distg.—1 (Ilv,IIv’) := ||IIv — IIv'|| > 4.

Lemma 3.1, combined with a thorough case-by-case analysis of a number of geo-
metric situations, leads to

Theorem 3. Let V (= V(Y)) denote the number of vertices in P(Y), Y € M.
Then, for positive constants ¢ and c*,

¢ <Y <V(Y) = s) exp (csl/(”’2)> <ct. (3.7)

We conclude this section with a brief discussion of possible algorithms, for finding a
rational (or integer) approximations, which can be designed on the basis of the approach
proposed in this paper. Let K C R™ be a linear subspace, of dimension [ < n; we
consider first the problem of finding a point m € Z" close to K. Fix a ‘nice’ set, e.g. a
d-dimensional ball B centred at the origin and of a sufficiently large radius. The basic
idea is simple: given € > 0, we apply a linear transformation Acx € G to B and get
a ‘tube-like’ domain (e.g. an ellipsoid) T = A.xB C R" ‘stretched’ along K so that
the width of T in the directions orthogonal to K is < e. The transformation A can
be specified to have K as the eigenspace with the eigenvalue of size ~ ¢~ "7 and the
orthogonal complement K» as the eigenspace with the eigenvalue of size ~ e. If the
volume of B (which is equal to the volume of T) is sufficiently large, then by Minkowski’s
convex body theorem (see, e.g., [C] and [GL]), T will contain a non-zero integer point.
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This is be a point which we look for. One can also formulate the question other way
around: find a point in the unimodular lattice A;ﬁ(Z”) inside the body B.

Observe that transformations Ak form a one-parameter subgroup of G. Thus,
our problem is reduced to that of calculating the action of a ‘large’ element of such a
subgroup at a point of £. This can be implemented numerically by using a partition of
£ into disjoint semi-algebraic sets.

If we want to find a rational approximation for a given vector = (61, ..., 6,), we
form a (n+ 1)-dimensional vector § = (64, ... , 6,, 1) and repeat the above construction
for the one-dimensional space K C R"*! along . Then an integer ¢/2-approximation
for K will straightforwardly lead to an e- approximation for #. It is not hard to assess
the accuracy of such an algorithm: its speed will be similar to that of the algorithm
proposed in [La].

4. PARABOLIC VEILS

We now take G = SL (n,R) x R”, I' = SL (n,R) x Z™. Group T will be of the form
SO(n — 1,R) x R™™! and identified with a subgroup of G generated by the following
transformations 7.: R” — R:

Tt - (xly---axn—laxn)'_) (xl +t17---xn—1 +tn—17xn+ Z (2t1$1+tz2))7
1<i<n—1 (4.1a)

t=(t1,...ty_1) €R" 1,

TA: (T1,... ,Tpo1,Tp) — ( E a jxj,..., g anijj,mn)

1<j<n—1 1<j<n—1

A= (aij) € SO(?’L — 1,R)

(4.1b)

These transformations preserve the paraboloid {z, = Y7 <, ; *7}. As before, £ =
G/I'. Pictorially, a point Y € £ is associated with a lattice of the unit volume in R,
not necessarily containing the origin.

As before, let v be the probability measure on £ generated by the Haar measure
on GG. We are interested in the flow (5 , T 1/) (with the left action of group T'). As
follows from Theorem 4 below, this flow is ergodic (see also [M 2] where a more general
assertion is established). However, for n > 2 its restriction to any 1-parameter subgroup
R C R"~! C T is not Bernoulli (it has zero entropy).

Theorem 4. Any non-compact closed subgroup T" C T acts ergodically on (G /T, v)
(including T itself).

As before, we consider the lattice points in the domain X, > Zlgjgn—l X? (i.e.,
inside the paraboloid) and denote by C(Y) the convex hull of these; the boundary 9C(Y)
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is again called a (parabolic) veil and denoted V(Y). Set
M ={Y € &: veil V(Y) contains a horizontal face, where z,, is constant }.  (4.2)

Such a face is denoted P(Y) and again called the ground polyhedron, or ground face (of
veil V(Y), Y € M). Furthermore, it is convenient to consider a subset My C M where
the ground face contains s lattice points.

In the same fashion as before we introduce a probability measure v on M. The
probabilities
Pl =10(M,), s=1,2,..., (4.3a)

may be considered as a ‘parabolic’ analogue of ‘simplicial’ probabilities (1.4) and the
expected value
E°= )" sp (4.3b)

S€Z+

as the analogue of (1.5). However, in contrast to the simplicial case, the expected values
are finite.

Theorem 5. For parabolic veils, in any dimension n > 2,

E° < 0. (4.4)

The proof of Theorem 5 is based on a version of Minkowski’s convex body theorem:
apart from some ‘degenerate’ cases, the number of lattice points on a face is < ¢y times
the (n — 1)-dimensional volume of the face, where c¢o(= ¢o(n)) is a constant. By direct
calculation, both the expected value of the (n — 1)-volume of P(Y) and the contribution
from the degenerate cases are finite, which leads to (4.4).

Theorem 6. Consider the projection R* — R"™! given by (X1, ..., Xn_1, X»n)
Mgr(Y
— (X1, ..., Xn_1). As in the simplicial case, set NL(Y) = r(Y) and N3(Y) =
mp(Y)
Mpr(Y)

, where Mpr(Y) is the total number of the integer points in the cells that are
UR

projected entirely inside the ball Br C R™™! of radius R centred at the origin, mgr(Y)
is the number of such cells, and vg is the FEuclidean volume of Br. Then, for parabolic
veils, in any dimension n > 2, with v-probability one, the limits

E' = Jim N#(Y) and E* = Jim N3(Y) (4.5)
are finite constants. The ratio r = r(n) := E?/E! is the average number of cells per

unit volume in the othogonal projection of the veil to the horizontal hyperplane R"~1.

The proof of Theorem 6 combines arguments from that of Theorem 5, Theorem 4
and Theorem 2 (see Section 5).
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In the case n = 2, flow (£,7,v) is a suspension flow, with the base automorphism
(M, ¢°,1°) where ¢° is the Poincare return flow map M — M. Following the anal-
ogy with the simplicial case, we call (M, ¢" %) a parabolic Gauss automorphism. It
would be interesting to find a ‘natural’ realisation of this automorphism on a ‘nice’
four-dimensional manifold. In this paper we give ‘more explicit’ formulas for parabolic
probabilities pg:

Theorem 7. Forn = 2,
pd o~ esTT/3 (4.6)

where c is a positive constant.

One can calculate numerically appropriate integrals and obtain that, for example,
the average density 7(2) of cells in Theorem 6 for n = 2 is ~ 0.69254....

There are several alternative approaches to studying statistical properties of the
parabolic veil. For example, given Y € £, we can specify a face of V(Y) which is closest
to the origin O = (0,...,0) € R™; apart from the set of v-measure zero, this is a well-
defined object which we denote by P*¢(Y'). Furthermore, denote by N"°(Y) the number
of the lattice points inside P*¢(Y'). Finally, denote by 3(Y) the (n — 1)-dimensional
Euclidean area of the set {t = (t1, ... ,t,—1) € R"71: P*(Y) = P*(m.Y) }.

Theorem 8. The expected values
B = / dv(Y)N™(Y) (4.7)
£

and

gme — /S dv(Y)5™ () (4.8)

are both finite.

We conclude this section with a theorem emphasising the significance of parabolic
veils. First, note that the above construction can be repeated for any paraboloid z,, =
Q(z1, ..., xn—1) where Q is a positive definite quadratic form. The corresponding ex-
pected values (4.7), (4.8) will be denoted by E™(Q) and S™°(Q), respectively. Consider
a convex domain D C R", with a C%-smooth boundary 0D, such that the origin O € D.
Denote by Q(x) the second quadratic form of OD at point x € 9D and by v the volume
element on 0D induced by the Riemannian metric of the ambient space R”. We assume
that the form Q(x) is strictly positive at each point x € 0D. Given A > 0, consider a
rescaled domain AD = {x € R": A~!x € D}. Now, given Y € &, consider the boundary
V(A Y) of the convex hull C(\,Y) of the set of lattice points inside A\ID. Furthermore,
given x € JD, let N™¢(x, A, Y) denote the number of lattice points lying on the face of
]7()\,Y) which is closest to point A\x € 3()\]]])) (if there are two or more such faces, we

sum over them). Finally, N(),Y) will denote the total number of faces of ]7()\, Y).
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Theorem 9.

(i) For v-a.a. Y € £

lim A~ UD/HD NN YY) = r(n) /8 ) dv(y)+/det Q(y). (4.9)

A—00

(ii) There exists a positive constant ¢(= c¢(n)) such that for any x € 9D, and for

v-a.a. Y € £
lim A~/ N (x A YY) = ey/det Q(y). (4.10)

A—00

The proof of Theorem 9 is based on the ergodicity property stated in Theorem 4
and additional straightforward (although tedious) estimates. The main idea is that after
applying affine transformations preserving the volume element, one can approximate
large pieces of J(AD) by standard paraboloids.

A ‘dual’ point of view is also possible: given A > 0 and Y € &, pick up points
x € 0D such that the tangent hyperplane T(A,x) through Ax to 9(AD) is parallel to
a face of V(\,Y). This gives a (finite) set X = {x} C 9D; the face associated with
x is denoted by Fj(x,Y). We can also consider functions & x € X — £(x) € Z4
describing the number of lattice points on Fy(x,Y), the number of vertices in Fy(x,Y),
etc.; in principle, any ‘local’ combinatorial characteristic of the veil may be considered.
For definiteness, assume that {(x) equals the number of lattice points in Fy(x,Y). As
Y varies along probability space (€,v), this defines a random ‘marked’ point field =y
on JD, with marks from Z,; a sample of such a random field is a pair (X, ). The
distribution of =) is determined by a sequence of its moment measures k,,, m € Z,.
Here K, is a Borel measure on (0D)™ x Z7' defined by

Em(B) = / v(dY)Np(Y), (4.11)
&
where B C 0D™ x Z7', and Np(Y) is the number of pairs of ‘vectors’ <(x1, cey X)),
(nq, ... ,nm)> € B such that x; € X, n; = ¢¥(x;), 1 <i <m.

It is not hard to check that the projection of k,, to the first component OD"" of the
Cartesian product (0D)™ x Z1' is absolutely continuous with respect to dv(x;) x ... x
dv(X,,) where v is the Riemannian volume on 0D. Taking the corresponding Radon—
Nicodym derivative leads to a non-negative function

<(x1, ey X)), (R, . ,nm)> € (OD)™ x ZI' — & ((x1,m1) -+, (X, o))
‘Physically speaking’, the sum

b (X1, ..., X)) = Z tn((x1,n1) -0y (Xmym))

ny,... ,TlmEZJ,_
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describes the joint m-fold density of points x € X (at (x1,...,X;,)), and the ratio
{%m((x_l,nl) coesy (X))
(X1, Xim)

the ‘conditional probability’ of the event that i (x;) = n;, ¢ = 1,...,m, ‘given’ that
points X1, ..., X,, € X.

Theorem 10. As \ — oo,

n(n—1)/(n+1)

(i) the measure A\~ K1 converges in variation to the measure k°(dx) =

v(dx)y/Q(x);

(ii) for ¥ m > 1, the measure A~™"n=D/(+D g converges in variation to (k%)™

the Cartesian power of k°.

Y

5. ABOUT THE PROOF

This section contains an outline of the proof of the results stated in the paper. The
omitted technicalities are, as a rule, straightforward and do not contain any essential
novelty.

Proof of Theorems 1, 2. The proof of these theorems is very similar. To verify the
assertion of Theorem 1, it suffices to check that the integral over MY is infinite. Here,
MY is the component of M where ground polyhedron P(Y) is an (n — 1)-dimensional
simplex (i.e., a convex polyhedron with n vertices), and the integer distance from the
origin to the ground face of veil V(Y) equals one. Measure v°(dY) on M"Y is proportional

to
[T dui /(v (5.1)

1<j<n

Here, Y, (= y;(Y)), j =1, ..., n, are co-ordinates of n vertices of simplex P(Y); each
Y is an (n — 1)-dimensional vector (yj, ... ,y;?_l). Furthermore, V(Y) is the (n — 1)-
dimensional volume of P(Y).

Pictorially, by changing y = (y;, 1 < j < n), we vary the ‘location’ of the simplex,
its ‘shape’ and a ‘homothetic’ factor ¢ > 0 (the latter is just a scaling factor). Both the
location and shape variables run over compact domains; the only unrestricted quantity
is £. It is convenient to perform a change of variables and separate variable ¢ from the
rest. After such change, the LHS of (5.1) can be written as

dylocdyshdé J/Vn. (5.2)
Here yjoc is the collection of variables responsible for the location of the simplex, and

¥sh is that determining its shape. Furthermore, J = J(yioc, Ysh, £) is the Jacobian and
V =V (¥ioc, Ysh, £), as before, the volume of the simplex.
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The next key point of the proof of Theorem 1 is an observation, based on Minkovski’s
convex body theorem: the number of integer points inside a convex polyhedron grows
proportionally to its (Euclidean) volume, where the proportionality coefficient is bounded
below and above provided that the ratio of the radii of the inscribed and circumscribed
spheres of the polyhedron (which in our case is a simplex) is kept within an interval
(Ko, k1), where kg, k1 > 0 are fixed numbers. As the last condition extracts a subset of
positive measure, we can replace, in the RHS of (2.5), quantity N(Y) by volume V(Y).

Thus we have to analyse the integrability, in variable ¢ > 0, of the expression

JV J
A — =dl ——. 5.3
Vn n—1 ( )
Now observe that the determinant J ~ ¢("=D°~1 (in fact, (n—1)2—1 =n(n—1)—(n—1)—1
is the number of scalar variables, among Y;, 1 < j < n, tied to £). On the other hand,
vVl ¢=1* Therefore (5.3) behaves like d¢/¢, which gives the divergence.

Remarks. (1) The expression d¢.J/V™ gives a convergent integral: this reflects the
fact that 10 is a probability measure on M.

(2) Observe that the order of divergence d¢/¢ emerging from the above argument
does not depend on dimension n (and is the same as for n = 2).

Now let us turn to the proof of Theorem 2. The fact that the limit Rlim N&(Y)

= oo is a direct consequence of Theorem 1 and the ergodicity of flow (£,T,v). After
this, to check that Rlim N2(Y) = oo, it suffices to check that mg(Y)/vg is separated

from 0 with v-probability one as R — oo. This essentially means that a majority of the
cells lying inside ball Br are of a ‘moderate’ volume. A sufficient conditions is that the

integral
dy
I(Y) = \/VA/ - 5.4
P(Y) H1§k§n dist (y, 0rA) (5:4)

is uniformly bounded below as a function of Y € MY, provided that the radii of the
inscribed and circumscribed spheres of the ground polyhedron P(Y) (which is a simplex
for Y € M) are confined to a fixed interval (R, R1), with Ry, Ry > 0. Here, A
(= A(Y)) is the (n—1)-dimensional simplex obtained as the intersection of the translated
hyperplane G(Y), when it reaches the ground face of V(Y), with the interior of the
positive orthant (or the positive simplicial cone) generated by vectors e1(Y), ..., e,(Y).
(Recall that G(Y) = {z € R": = = Y p;e;(Y), where > p; = 0}.) Thus, A D P(Y).
As above, V(A) denotes the (Euclidean) volume of simplex A. Furthermore, 0;A is an
(n — 2)-dimensional face of the boundary OA (symbol k is simply a label for such a face;
altogether there are n of them). Finally, dist (y,0xA) is the (Euclidean) distance from
point y € P(Y) to OrA.

The factor /V (A) is bounded from below by the square root of the volume of the
(n — 1)-dimensional ball of radius Ry. The volume of this ball also provides a lower
bound for the volume of simplex P(Y). Thus, it remains to produce an upper bound
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for the product H dist (y, 0xA). We present a corresponding argument in the case
1<k<n

n = 3, where simplex A is a plane triangle (and so is P(Y)). The modifications needed

for the general case are purely technical and left to the reader.

Recall, that P(Y) is a triangle with integer vertices, say z(!), 2(2), 23 and that
there should be no integer points in A \ P(Y). Thus, V 4,7, with 1 < i <4’ < 3, there
must be a side of P(Y) that crosses the segment with the endpoints z(*) — (z(i/) — z(i))
= 22 — 2() From this fact it is easy to deduce that two sides of triangle A cross a
circle of radius 3R; which contains P(Y), and thus the distance from Y € P(Y) to any

of them is < 3R; (recall that R is a bound for the radius of the circumscribed circle for
P(Y)).

Now observe that each of the sides (2(1') —2(?) of ground triangle P(Y) forms, with
any of the two aforementioned sides of A, an angle that is > 6° where 0°(= 0°(Ry, R;)) >
0. Take one of the sides, say z() — 2(2), and draw, on the translated plane G(Y) + s,
the lines parallel z(!) — 2(2) through integer points. The distance between two such
subsequent lines is < 2R;, and the spacing (i.e. the distance between two neighbour
integer points) on each line is < Hz(l) — 2 H It is then easy to see that the third side
of A should be at distance < Ry = Ry(Ro, R;1) from y € P(Y). This leads to the desired
bound for H dist (y, OxA). O

1<k<3

Proof of Lemma 3.1. We will check that if 5 > 0 is small enough then for any two
vertices v, v’ of the veil the inequality distgn—1 (HU,HU’ ) < ¢ is impossible. In fact,
assume the opposite. Without loss of generality, we can think that one of the points Ilv,

ITv" is at the origin. Then, for the inverse images in R™, we have that v is of the form
(A, ..., A) and v’ of the form (N + ¥4, ..., N +1,) where

- A -
|9;] < ¢d, and ’Y - 1' < ¢d, (5.5)

and c is a positive constant (depending on dimension n only). Then, for § small enough,
w = 2v — v is an integer point with positive co-ordinates, i.e. w € C(Y), the Klein

1
polyhedron. Thus, v = §(w + v') cannot be a vertex. O

Proof of Theorem 4. The quotient projections G — Gy =SL(n,R) and T' —
'y =SL(n,Z) determine a fibre bundle

VI G/F — Go/ro,

with the (natural) action of group G. The fibre 7= 1(z), z € Go/Ty, of 7 is a torus
~ R™/Z™. Thus, points X € G/I' may be written as pairs X = (z,0), z € Go/Ty,
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0 € 7 1(z). On the base Go/Ty we have a probability measure vy generated by the
Haar measure on SL(n,R); measure v is generated by vy and the (normalised) Lebesgue
measures A, on 7 1(x). Let U C G/T be a T'-invariant set with v(U) < 1 and xy its
indicator function. We want to prove that v(U) = 0. The action of group G (and hence
that of T') preserves the affine structure on tori; this enables us to define a function
Fy > 0 on the dual fibre bundle

%2 D — Go/ro,

where the fibre 771(z), € Gy /T, is the first cohomology group H!(r~1(z),Z) ~ Z™.
Function Fy is simply the square of the modulus of the Fourier transform of xy in the
fibre variable 6 (unlike the Fourier transform itself, its modulus is correctly defined). By
Parcevale’s identity, iy obeys » 7-1(a) Fy(z,9) < 1. Furthermore, there is a (natural)

action of G on D, through projection G — Gy =SL(n,R), and hence an action of group
T’, through the induced projection 7" — T} where T C G is a non-compact subgroup,
and Fy is Tj-invariant.

It suffices to prove that the support supp Fy is not concentrated in the zero section
) = {(z,92): © € Go/To} of bundle D, with ¥ being the nil-cohomology class from
( Yx),Z). In fact, if supp Fy C D then xy is Ag-a.s. constant on 7~ '(x) for

v-a.a. © € Go/Ty. Thus, U is a union of fibres, modulo a set of v-measure 0. That is,
V(UA(ﬁfl(Uo))) = 0 where Uy C G/To; set Uy must have v4(Up) > 0 and be invariant
under the action of group T{. Therefore, by Moore’s ergodic theorem [M 1], [Z], Uy =
Go/To which implies that v(U) = 1.

Write
D\ D) = Ui<k<oo Dy, (5.6)
where
Dy = {(z,9): x € Go/To, ¥ € H (v~ (), Z), ¥ = ki, (5.7)
where ¥o(= o(z)) is a primitive element of Z?}. '
Note that D), D(1), ..., are connected components of D. Furthermore, it is easy to see

that Dy ~ Go/I'g. Finally, as we show below, Dy ~ Go/I'1, k= 1,2..., where I'; is
the subgroup of I'y preserving the first co-ordinate in Z".

In fact, observe that D is ~ to the set of pairs (A, ), where A is a lattice in R™, with
0 € Aand vol (R"/A) = 1, and v is a homomorphism A — Z; in this language, D)
~ {(A,7): v(A) = kZ}, and, clearly, D) ~ D), k > 1. So it is enough to check that
D@y ~ Go/T'1, which is clear from the fact that Go/T'g is ~ the set of lattices A C R"
with 0 € A and vol (R™/A) = 1 and hence G/I'y itself is ~ the set of pairs (A, ) where
A is as before and + is an epimorphism A — Z (the set of such epimorphisms is denoted
by Ep (4,7Z)).

So, we assume that Fyy [p, # 0 for some k£ > 1. Hence we obtain a function on
Go/T'1 which we again denote by Fy such that (i) Fy > 0 and Fyy > 0 on a set of
positive measure, (i) > cpp(a,2) F(4,7) <1, (ili) Fy is invariant under the action of a
non-compact subgroup T) C Gy. As follows from (i), (ii), Fy is integrable on G /Tg.
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We will use the following geometric fact concerning the left quotient space T\ Go:

Lemma 5.1. The double coset T)\Go/I'1 contains a subset V such that the inverse
image W of V, under the projection T)\Go — T[\Go/I'1, has the following property. W
is an open subset of full measure of the manifold T)\Gy, it is invariant under the right
action of I'y, and I'1 acts on W discontinuously and freely. That is, Vv € W there exists
an open neighbourhood YWW(v) C W such that the map (5,u) € I'1 x W(v) — [(u) € W
is an injection.

Proof of Lemma 5.1. It suffices to check the property stated in Lemma 1 for 77 = T.
Observe that the image Tj of group 1" under projection G — Gy is the stabiliser of
cylinder Vo = {(z1,...,7,) € R™ Z;:ll x5 = 1}. Left quotient space Tp\Gy is the set
of such cylinders V, i.e., the set of non-negative quadratic forms gy in n variables of rank
n — 1. Together with the above description of right quotient space G /I'1, this leads to
the following description of the double quotient space To\Go/T'1: it is ~ to the set of
equivalence classes, under the action of Gy, of triples (A,~, gv). Here pair (A,+) is as in
the case of Go/T'1, and ¢y is a quadratic form in n variables of rank n—1 (i.e., a cylinder
Vin R™).

Given a representative (A, vy, V) of a double coset from T\ G /I'1, consider the linear
continuation 7 (= (7)) of map «y from A to the whole R™. Call the triple (4,, V) good
if linear form 7 does not vanish along the axis of cylinder V. The set V of good triples
forms an SO(n—1,R)-orbifold, and in particular is a Hausdorff space. Namely, the non-
degenerate quadratic form ¢ = 72 + gy determines a Riemannian volume on R"; in some
co-ordinates this volume has the form dx; - - - dz,, whereas q(z1, ... ,x,) = Z;:ll x? and
Y(x1,... ,2n) = nr, where n > 0. As such co-ordinates are defined only up to the
action of SO(n — 1, R), this results in the structure of an orbifold, not a manifold, on V.
However, after removal from V of a suitable set of lesser dimension, the remaining set,

V), forms a manifold, and the action of Ty on its inverse image W is discontinuous and
free. 0

We continue with the proof of Theorem 4. Owing to Lemma 5.1, we can take the
inverse image Vp of V under the projection Go/Ty — T{\Go/T'1. Set Vp is again of
full measure, and we can pass from Fy; to its restriction to Vj for which we retain the
previous notation Fy; clearly properties (i)—(iii) above hold true for the new Fy;. Then
Fy must be integrable on Gg/I';. However, this function arises from a function Fj: on
V; by Fubini’s theorem, the integral of Fi; equals that of F[} times the volume of group
T3. The latter is infinite as T} is non-compact. The contradiction obtained completes
the proof of Theorem 4. O
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