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Abstract

We study integrality of instanton numbers (genus zero Gopakumar—Vafa invariants) for quintic and other Calabi—Yau manifolds. We start with
the analysis of the case when the moduli space of complex structures is one-dimensional; later we show that our methods can be used to prove
integrality in general case. We give an expression of instanton numbers in terms of Frobenius map on p-adic cohomology; the proof of integrality

is based on this expression.
© 2006 Elsevier B.V. All rights reserved.

1. Introduction

The basic example of mirror symmetry was constructed
in [1]. In this example one starts with holomorphic curves on
the quintic .4 given by the equation

x]S + xg + xg + xi + x55 + Yrx1x2x3x4%x5 =0

in projective space. (In other words, one considers A-model
on this quintic.) Mirror symmetry relates this A-model to
the B-model on B (on the quintic factorized with respect to
the finite symmetry group (Zs)?). Instanton numbers are de-
fined mathematically in terms of Gromov—Witten invariants,
i.e., by means of integration over the moduli space of curves.
The moduli space is an orbifold, therefore it is not clear that
this construction gives integer numbers. The mirror conjec-
ture proved by Givental [2] permits us to express the instanton
numbers in terms of solutions of Picard—Fuchs equations on
mirror quintic 3; however, integrality is not clear from this
expression. Gopakumar and Vafa [3] introduced BPS invari-
ants that are integer numbers by definition; it should be pos-
sible to prove that instanton numbers can be considered as
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a particular case of GV-invariants. However, such a proof is
unknown; moreover, there exists no rigorous definition of GV-
invariants.

The goal of present Letter is to prove the integrality of
instanton numbers. However, we will be able to check only
a weaker statement: the instanton numbers become integral af-
ter multiplication by some fixed number. We work in the frame-
work of B-model definition. In Section 2 we consider the case
when the moduli space of deformations of complex structure
on a Calabi—Yau threefold is one-dimensional. The proof can
be generalized to the case when the moduli space is multidi-
mensional (Section 3). The considerations of the Letter are not
rigorous. To make the Letter accessible to physicists we have
hidden mathematical difficulties in the exposition below. The
paper [5] will contain a rigorous mathematical proof of the re-
sults of present Letter.

We will use freely the well-known mathematical results
about sigma-models on Calabi—Yau threefolds; see, for exam-
ple, [6] or [7]. We will follow the notations of [7].

The proof of integrality of instanton numbers is based on
an important statement that these numbers can be expressed in
terms of arithmetic geometry. May be, the fact that physical
quantities can be studied in terms of number theory is more
significant than the proof itself.

Instanton numbers we consider can be identified with
genus 0 Gopakumar—Vafa (GV) invariants. GV-invariants can
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be expressed in terms of Gromov—Witten invariants, but their
integrality is not clear from this expression. One can give
a condition of integrality of GV-invariants in terms of Frobe-
nius map generalizing Lemma 2 of present Letter. It seems
that GV-invariants also can be expressed in terms of p-adic
B-model.

The relation between topological sigma-models and num-
ber theory was anticipated long ago. The existence of such
a relation is strongly supported by the fact that Picard—Fuchs
equations that play important role in B-model appear also in
Dwork’s theory of zeta-functions of manifolds over finite fields.

Calabi—Yau manifolds over finite fields and arithmetic ana-
log of mirror conjecture where considered in very interesting
papers by Candelas, de la Ossa and Rodriguez-Villegas [8], see
also [9]. We go in different direction: our main goal is to obtain
the information about sigma-models over complex numbers us-
ing methods of number theory.

Notice that p-adic methods were used in [13] to prove inte-
grality of mirror map for quintic and in [4] to prove integrality
in general case. The idea to use the Frobenius map on p-adic co-
homology to prove some integrality statements related to mirror
symmetry appeared in [15].

In arithmetic geometry one can consider Hodge structure on
cohomology; this means that one can define the main notions
of B-model theory in p-adic framework [11,12]. Our computa-
tions are based on the fact that in the situation we consider one
can obtain the information about the conventional sigma-model
from analysis of its p-adic analog. This is a nontrivial mathe-
matical fact; however, in this Letter we will skip the justification
of this statement referring to [5].

2. Integrality of instanton numbers: the simplest case

Instead of working with A-model we consider mirror B-
model.

Our starting point is the well-known formula relating the
Yukawa coupling Y in canonical coordinates (normalized
Yukawa coupling) to instanton numbers 7y :

o
Y (g) = const + and3
d=1

l—qd'

(This formula is valid in the case when the moduli space
of complex structures is one-dimensional; for the quintic
const=1>5.)

Lemma 1. Let us assume that

00 qd 0
Sonad L= Y mig 0
d=1 q k=1

If the numbers ny are integers then for every prime number p
the difference my, — my is divisible by p@tD \ohere « is
defined as the number of factors equal to p in the prime de-
composition of k. Conversely, if

PP myy, — my 2

for every prime p and every k, the numbers ny. are integers.

To prove the statement we notice that the following expres-
sion for my in terms of ny can be derived from (1):

mp =Y ngd’. 3)
dlk
Let us suppose that k = p“r where r is not divisible by p.
Then

Mip —mk=ana+|S(p°‘+‘s)3. )

s|r

(We are summing over all divisors of kp that are not divisors
of k, i.e., over all p**ls, where s|r.)
We see immediately that my, — my is divisible by p
To derive integrality of nj from this property one can use the
Moebius inversion formula

nek® = Z,u(d)ms, ()
dlk

3(atl)

where 1 (d) stands for Moebius function. Recall, that Moebius
function can be defined by means of the following properties
u(ab) = u(a) - u(b) if a and b are relatively prime, u(p) = —1
if p is a prime number, u(p*) =0 if @ > 1. Again we rep-
resent k as p*r where p does not divide r and a divisor d
of k as pPs where s|r and 8 < «. Taking into account that
w(pPs)=0if B> 1 we obtain

nek® =) p(mi + Y plspym &

s|r

=2 ) me —mp). (©)

s|r

It follows from our assumption that the left-hand side of (5) is
divisible by p3*, hence ny does not contain p in the denomina-
tor (in other words, n; can be considered as an integer p-adic
number). In the above calculation we assumed that o > 1; the
case o = 0 is trivial. If the condition (2) is satisfied for every
prime p we obtain that the numbers nj are integers.

Lemma 2. The numbers ny defined in terms of Y (q) by the for-
mula (1) are integers if and only if for every prime p there exists
such a series Y (q) = skq® having p-adic integer coefficients
that

Y(q) - Y(g") =8 (q). 7

Here § stands for the logarithmic derivative q %.

It is easy to check that this lemma is a reformulation
of Lemma 1. The kth coefficient of the decomposition of
Y(q) — Y(g?) into g-series is equal to
my —m% =Mpas — M pa-1g
if k = p“s and « > 1, and to my if k is not divisible by p. From
the other side, the coefficients of 831 (¢) are equal to k3sy.

Notice, that Lemma 2 can be formulated in terms of the
Frobenius map ¢. This map transforms ¢ into g?; correspond-
ing map ¢* on functions of variable ¢ transforms f(g) into
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f(g?). The formula (7) can be rewritten in the form
Y — Y =8y,

The above statements show that it is natural to apply p-adic
methods attempting to prove integrality of instanton numbers.

Recall that B-model is formulated in terms of Hodge fil-
tration on the middle-dimensional cohomology of Calabi—Yau
manifold; one should consider deformation of complex struc-
ture of Calabi—Yau manifold and corresponding variations of
Hodge filtration. Analogous problems can be considered in
p-adic setting.

If we work with mirror quintic B (and more general if the
moduli space M of complex structures on a Calabi—Yau three-
fold is one-dimensional) then one can find a local coordinate
g in a neighborhood of maximally unipotent boundary point
of M (canonical coordinate) and a basis ¢°(¢), e'(q), e1(q),
eo(g) in three-dimensional cohomology that satisfy the follow-
ing conditions:

(1) The basis 0, el e, ep is symplectic: (eo,eo) = -1,
(e1, el) = 1, all other inner products vanish.
(2) Gauss—Manin connection acts in the following way:

Vse? =0, )
Vgel = eO, 9
Vser =Y(q)e', (10)
Vseg =ej. (11)

Here § stands for logarithmic derivative g % and V; for corre-
sponding Gauss—Manin covariant derivative

3

e FOnwy,
e! EflﬂWQ,
el szﬂW4,
6067301/\/6.

Here FP stands for the Hodge filtration and W for the weight
filtration (the covariantly constant filtration associated with
monodromy around maximally unipotent boundary point).

(4) Y(q) =const+ Y myq* is a g-series with integer coef-
ficients my.
We assume that ¢ = 0 corresponds to maximally unipotent
boundary point of the space M and that we are working in
a neighborhood of this point.

The conditions we imposed specify the canonical coordi-
nate ¢ and the vectors of the basis only up to a constant factor.
One can fix the canonical coordinate and the vectors ¢%(q),
el (), e1(q), eo(q) up to a sign requiring that the vectors e2(0),
e!(0) form a Z-basis of Ws. (Recall, that the bundle of coho-
mology groups can be extended to the point g = 0; one denotes
by Wy the weight filtration on the fiber over this point. One can
talk about Z-basis because the fiber over ¢ = 0 is equipped by
an integral structure that depends on the choice of coordinate
on the moduli space.)

All of the statements above are well known; see, for exam-
ple, [7], Chapters 5 and 6.

We considered quintic as a Calabi—Yau complex threefold.
However, it is possible to consider it and M over Z or over
the ring Z,, of integer p-adic numbers and to study its coho-
mology over Zj. It is well known that the Hodge filtration and
weight filtration on cohomology can be defined also in this case
[10-12]. It is natural to assume that in p-adic setting all of the
statements (1)—(4) remain valid. This can be proven under cer-
tain conditions, however, the proof is not simple. A rigorous
proof for general Calabi—Yau threefolds is given in [5]. (For
quintic one can derive these statements from known integrality
of mirror map [13] and integrality of one of periods.) Notice,
that the Yukawa coupling in p-adic situation remains the same,
but the coefficients my are considered as p-adic integers.

It is important to emphasize that in our consideration we
should assume that the manifold at hand remains nonsingular
after reduction with respect to prime number p. This require-
ment can be violated for finite number of primes. (For example,
the mirror quintic 5 becomes singular after reduction mod 5.)

In the p-adic theory there exists an additional symmetry: the
so-called Frobenius map. (In the situation we need the Frobe-
nius map was analyzed in [10,12].") Namely, the map ¢ — ¢”
of the moduli space of quintics into itself can be lifted to a ho-
momorphism Fr of cohomology groups of corresponding quin-
tics. Here ¢ is considered as a formal parameter or as a p-adic
integer; cohomology are taken with coefficients in Z,. We will
express instanton numbers in terms of this map, assuming that
p > 3.

Notice first of all that the Frobenius map Fr preserves the
weight filtration Wj. It does not preserve the Hodge filtra-
tion F7, but it has the following property:

FrF* c p* F. (12)

Notice that to prove (12) one should assume that p > 3 (the
proof is based on the inequality s < p).

The Frobenius map is compatible with symplectic structure
on 3-dimensional cohomology; more precisely,

(Fra, Frb) =p3Fr(a,b), (13)

where (a,b) stands for the inner product of cohomology
classes.
It is compatible with Gauss—Manin connection V; namely,

VsFra = pFrV;a. (14)

The matrix of Frobenius map is triangular; this follows from
the fact that Fr preserves the weight filtration. Using (14) one
can check that the diagonal elements ¢; of this matrix obey
d¢; = 0; hence they do not depend on ¢. In the same way one
can prove that two neighboring diagonal elements are equal up
to a factor of p; in other words Fre® = ee? and all other diag-
onal elements have the form p‘e. From (13) we conclude that

LN transparent explanation of the origin of Frobenius map based on the ideas
of supergeometry will be given in [14]. We are using the Frobenius map in
canonical coordinates, but one can define this map in any coordinate system.
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€ = £1. In what follows we assume that € = 1; the modifica-
tions necessary in the case € = —1 are obvious.
Taking into account (12) and (13) we can write

Fre? =¢°, (15)
Fre! = pe' + pmisé®, (16)
Fre; = p261 —l—pzngel +p2m13eo, (17)
Freg = p’eo + p*maaer + p’mase’ + p’mise, (18)

where m;; € Zp[q] are g-series with integer p-adic coefficients.
(The powers of p in RHS come from (12).) Using (13) we can
obtain also that

—m34 +mip =0, —mo3m34 +mos +my3 =0.
Applying Fr to (9) and using (14) we obtain
peo + p8m1280 = peo. (19)

This means that my is a constant. One can prove [5] that

m12 = 0. We see that
m3g =mp =0, maq +my3=0. (20)

Similarly, from (10) we obtain

Y(q) —Y(q") = dmas, ma3 +8mi3 =0 21
hence

Y(q?) = Y(q) =8"ms. (22)
From (11) we see that

m34Y +0mos =mo3, dm3s =0,

ma4 +0mig =my3. (23)

We know that m34 = 0, hence mo3 = dmy4. Using the last equa-
tion in (23) and (20) we conclude that

2mi3 =dmig. 24)

Combining this equation with (22) we obtain

Lemma 3.
1

Y(g”)—Y(g) = Ea3ml4. (25)

Theorem. Instanton numbers are p-adic integers if p > 3.

This statement follows immediately from Lemmas 2 and 3.
Eq. (25) together with (5) leads to the representation of in-
stanton numbers in terms of Frobenius map:

r a3
nparZZ/,L g Mpadr—3, (26)

dlr

where we assume that r is not divisible by p and use the
notation Mj for the coefficients of power series expansion
f 1 .
O —§m14.

1 k
oM = Zqu .

Conversely, one can express the Frobenius map in terms of in-
stanton numbers using Lemma 3 and (20)—(24). (Notice, that
we are talking about Frobenius map in canonical coordinates.)
One should notice that we assumed that diagonal entries of the
matrix of the Frobenius map are positive; the assumption that
they are negative leads to the change of sign of all entries of this
matrix. One should mention also that our considerations do not
fix the value of m4 at the point g = 0; it seems, however, that
one can prove that this value is equal to zero.

3. Integrality of instanton numbers: general case

In the considerations of Section 2 we restricted ourselves
to the case of quintic or, more generally, to the case when the
moduli space of complex structures is one-dimensional.

Let us analyze the case when the dimension of moduli
space M of complex structures is equal to r > 1.

Under certain conditions one can find a basis in three-
dimensional cohomology consisting of vectors ep € I3,
el,...,ereIx2 el .. e eIl &0 e 190 where IP:P stands
for P N'W;,. In appropriate coordinate system g1, ..., g
on M (in canonical coordinates) Gauss—Manin connection acts
in the following way:

V(gieO:O,
V(sl.ek =ire0, k=1,...,r,

Vs ej ZZYijk(q)ek, j=1,...,r
X

Vs eo =ej.

Here V;; denotes the covariant derivative that corresponds to
the logarithmic derivative §; = ¢;9/9q;.

We are working in the neighborhood of maximally unipo-
tent boundary point ¢ = 0. We assume that the B-model at hand
can be obtained as a mirror of A-model. Then one can say that
the so-called integrality conjecture of [6] (see also [7], Sec-
tion 5.2.2) is satisfied; this is sufficient to derive the above rep-
resentation for Gauss—Manin connection. As in the case r =1
the conditions we imposed leave some freedom in the choice of
canonical coordinates and of the basis. We will require that the
vectors €%(0), ! (0), ..., " (0) constitute a Z-basis of Ws.

The Yukawa couplings Y;jx(¢g) can be considered as power
series with respect to canonical coordinates ¢y, ..., g,; these
series have integral coefficients. (The integrality of these coef-
ficients will not be used in the proof; it can be derived from the
integrality of Frobenius map and the formula (27).)

Again one can prove [5] that the Gauss—Manin connection
has the same form in p-adic situation; the Yukawa couplings
should be considered as elements of Q,[q1, . .., ¢, in this case.

The Frobenius map has the form

Fre® = eo,

Fret = pe* + p(min)*e’,
Fre; = p*ej + p*(ma3) jue* + p*(mi3) e,

Freg = peo + p>(mss)ej + p*(maa)ie’ + p>mise®,
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where (m34)) + (mp2)! = 0, (my3)x(mz)* + (mi3); +
(m24); +0.
We can repeat the considerations of the case r = 1 to obtain

(m34)! = (m12)! =0,
Yiik(q”) = Yijk(q) = 8i(m23) jx = 88 (m13)x,
2(my3)j = 8jm4.
We come to a conclusion that
1
Yiik(q”) = Yijk(q) = 5i5j5k<5m14)- (27

This equation permits us to prove integrality of instanton num-
bers in the case at hand.

Recall that the Yukawa couplings can be represented in the
form

N

q
Yijk(q) = const + Xs:ns 1_—qxsl~sjsk
qS
= const + Z En%sisjsk. (28)
s,d|s
Here s is a multiindex: s = (s1,...,s,) and ¢* =¢q;" ---¢;". In

the second sum d runs over all positive integers dividing the
integer vector s.

The numbers n; can be identified with instanton numbers of
the mirror A-model. The formula (28) remains correct in p-adic
setting if we consider n; as p-adic numbers.

Comparing the above formula with (27) we see that

7 pts
D =M, (29)

dls

where M, are coefficients of the power expansion of —%mm
and the vector s in (29) is not divisible by p. Using Moebius
inversion formula we obtain from (29) an expression of instan-
ton numbers n; in terms of M,; this expression has the form

Rpay = Zd*m(d)M#, (30)
d|r

where r is an integer vector that is not divisible by p and the
sum runs over all positive divisors of r.

It is clear from this formula that instanton numbers are
p-adic integers for p > 3. (We use the fact that matrix elements
of Frobenius map, in particular, m4 are power series having
p-adic integers as coefficients.) Notice, that the appearance of
negative power of d in (30) does not contradict p-adic integral-
ity, because d is not divisible by p.
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