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Between Two Worlds.

Positive scalar curvature mediates between the world of rigidity one finds
around converity theory and the realm of softness charactersitic of topology
such as the cobordism theory.

The overall picture of the domain Sc¢ > 0 is reminiscent of what one sees in
the symplectic geometry but the former has not reached the level of maturity
achieved by the latter. The main results and problems about Sc > 0 still rotate
around a few simple minded questions.

[71] o What are possible topologies of manifolds which admit Riemannin
metrics with scalar curvatures Sc> 07

[72] o What are topologies of spaces of metrics g with Sc(g)>0?

[73] o What are geometries of individual manifolds with Se¢ > o?

[74] o What are effect of lower bounds Sc > o on the topology and geometry
of maps between manifolds?

Although these questions are rather naive, as compared, for instance, with

what is pursued in the symplectic field theory, the answers which have been

already achieved points to intersting new structure(s) behind Sc > 0.

For instance:

* All closed simply connected manifolds of dimensions n = 3,5,6,7 mod 8
admit metrics with S¢> 0 by a 1992 theorem of Stolz [119].

But according to [68]-Hitchin Harmonic Spinors 1974| there are smooth man-
ifolds homeomorphic (but not diffeomorphic!) to the spheres of dimensions 9
and 10 which admit no such metrics. (See section 4)

* If m is much greater than k then the kth homotopy group of the space
of metrics with Sc > 0 on the sphere S*™ =1 js infinite. (See [63]-Hanke+ The
space of metrics 2014] and section 31.)

* If the scalar curvature of a Riemannin metric g in the torical band (cylin-
der) T ! x [-1,+1] satisfies
Se(g) 2n(n-1) = Se(S™),

*A final version of an extract from this paper can be found on http://www.ihes.fr/
~gromov/PDF/dozen_problems_Sept_2017.pdf.




then the distance between the two boundary components in this band is bounded
by

(T.] dist,(9_,0,) < °~.
n

(See [51]-Gromov Metric Inequalities 2017] and section 21, while the justification
of the normalisation Sc¢(S™) = n(n — 1) is given in section 1 along with the
definition of the scalar curvature.)

[75] An optimist would expect similar inequalities
disty(0-,0,)<6=0(Y) <00

(ideally with ¢ = W) for metrics g on Y x [-1,+1] with Sc(g) > n(n-1)
for all closed manifolds Y of dimensions # 4, which themselves admit no metrics
with Sc > 0. ! This is proven for certain non-torical Y in [51] but no present day
technics is applicable to simply connected manifolds Y. (The existence of such Y
follows from Lichnerowicz’ and Hitchin’s results which rely on the Atiyah-Singer
index theorem, see sections 3 and 4.)

On the other hand, it is not hard to see that

0(Y) 2 gty forall Y,

which implies that [T,] is sharp for Y = T""! and also shows that

[T.] implies non-existence of metrics with Sc>0 on tori® .

* Let X be a closed orientable Riemannian n-manifold X with Sc(X) >
n(n—1) = S™, which satisfies the following topological condition.

[S] The restrictions of the tangent bundle T(X) to all closed surfaces S ¢ X

are trivial.®

Then X is no larger area-wise than the unit sphere S™.

Namely,

X admits N0 smooth map to S™ with non-zero degree, which strictly de-
creases the areas of the surfaces S in X. Moreover, if a C'-smooth map
f: X - 8" satisfies

area(f(S)) < area(S) for all S ¢ X and deg(f) + 0,

then f is an isometry, (see [81]-Llarull Sharp estimates 1998] and sections 17, 18).
Notice that [S] is satisfied, for instance, if H?(X;Zs) = 0, while the basic
examples where [S] is violated are complex projective spaces of even complex
dimensions.
[76] Congecturally, [S] is redundant anyway.

About the Methods. There is a intriguing interplay between two techniques
involved in the study of manifolds X with Sc(X) > 0, which are unlike to what

Mf Y admits a metric go with Sc(go) > 0, then the metric go + dt? on the cylinder Y x R
satisfies Sc(go + dt?) = Sc(go) > 0, which makes §(Y) = co.

2This is not how non-existence of metrics with Sc > 0 on tori was originally proved, see
sections 5,6,7

3For those who knows this implies that X is spin; in fact, if dim(X) > 3 this is equivalent
to X being spin.



is commonly practiced for manifolds with positive sectional and positive Ricci
curvatures.

The first (historically the second) class of techniques introduced in 1979 by
Schoen and Yau (see sections 5, 6) depends on descending chains of minimal
hypersurfaces in X, while the second method, originated in the 1963 paper by
Lichnerowicz relies on linear elliptic PDE, namely on the index and vanishing
theorems for the Dirac operators on X, see sections 3, 7, 9.

Notice that the original Lichnerowicz and Hitchin non-existence theorems of
metric with Sc¢ > 0 apply to spin manifolds X, on which the Dirac operators
D have ind(D) # 0 for all metrics on X, where this "non-equality" is derived
from non-vanishing of certain topological invariants of X via the index theorem,
where

these invariants (for n>4) essentially depend on the differential structure of X.

On the other hand, minimal hypersurfaces provide homotopy theoretic ob-
struction to Sc > 0 and, as far as topological non-existence theorems are con-
cerned, they apply only to manifolds with large fundamental groups.

Interestingly enough, twisting Dirac operators with suitable vector bundles
over X also shifts their essential topological applications to highly non-simply
connected manifolds (see [54]-Gromov-Lawson, Positive scalar curvature 1983] and
sections 4,16).

Thus, the "tree" of Sc > 0 has three distinct branches where II and III have
a common Dirac operator origin, while I and III partly share their habitats.

[77] But deeper structures (if they exist at all) that lie at the roots of Dirac
operators and of minimal hypersurfaces are yet to be revealed.

In what follows, we explain the basic results and techniques concerning
spaces with Sc > ¢ and compile a list of open, many of them long standing,
questions on geometry and, up to a lesser extent, on topology of these spaces.
We formulate some questions as conjectures to direct one’s thought in a fruitful
direction, rather than to champion a particular yes/no outcome.

Contents

1 Definition of Scalar Curvature via Volumes of Balls, Examples,
Formulas and the Central Problem. 3

2 Symmetric Spaces, Fibrations and Surgeries with Sc > o. 6

3 Topological Obstructions to Sc >0 Implied by Vanishing The-
orems for Harmonic Spinors on Compact Manifolds. 10

4 Simply Connected and non-Simply Connected Manifolds with
Positive Scalar and Ricci Curvatures. 12

5 Asymptotically Flat and Periodic metrics on R?® with Sc>0. 15

6 Conformal Laplacian and Codimension 1 Descent with Positive
Scalar Curvature. 17



7 Flatly Twisted Spinors over Tori and their Precursors in Alge-
braic Topology.

8 Harmonic Stability of Parallel Spinors and the Positive Mass
Theorem.

9 Twisting Dirac with Moderately Curved Bundles.

10 Dirac Twisted with %-Spin Bundles.

11 Twisted Dirac Operators versus Minimal Hypersurfaces.
12 Coarea, K-Area, K-Area*: Definitions and Applications.
13 K-Area and K-Area™: Examples and Properties.

14 Spin-Area. and K%-Area.

15 Waist, Width, Filling Radius, Macroscopic Dimension and Uni-
form Contractibility.

16 Standard Geometric and Topological Conjectures on Complete
Manifolds with Positive Scalar Curvatures.

17 Extremal Metrics with Sc> 0.

18 Logic of the Dirac Operator Proofs of Area Extremality Theo-
rems.

19 Extremality of Open Manifolds.

20 Lengths, Widths and Areas of Non-Complete Manifolds with
Se> 0.

21 Width of Bands with Sc > n(n-1) and Curvature of Submani-
folds in S™.

22 Convex Polyhedra, Manifolds with Corners and Patterns of
Concentration of Positivity of Scalar Curvature on Curves, Sur-
faces and Spaces.

23 Symmetrization by Reflection with Sc > o.

24 Scalar Curvature and Mean Curvature.

25 Collapse of Hypersurfaces with Scalar Curvature Blow-up.
26 Manifolds with Small Balls.

27 Fredholm Coarea and Stable K-Area.

28 Manifolds with Scalar Curvature bounded from below by a neg-
ative constant: their Volumes, Spectra and Soap Bubbles.

20

22

23

25

27

29

31

35

37

42

44

47

51

54

57

59

61

64

76

78

83

86



29 Spectra of Dirac Operators, C*-Algebras, Asymptotics of Infi-

nite Groups, etc. 87
30 Foliations with Sc>0 88
31 Spaces of Metrics and Spaces of Spaces with Sc>0 88
32 Non-smooth Spaces and Geometric Functors with Sc>o. 88
33 Bibliography. 88

1 Definition of Scalar Curvature via Volumes of
Balls, Examples, Formulas and the Central Prob-
lem.

The scalar curvature of a C?-smooth Riemannian manifold X = (X, g), denoted
Sc=8c¢(X) =Sc¢(X,g) =Sc(g) is a continuous function on X, which is uniquely
characterised by the following four properties.

oy Additivity under Cartesian-Riemannian Products .

Se(X1 x X2,091 @ g2) = Sc(X1,91) + Se(Xz, g2).
e Quadratic Scaling.
Se(A-X) =A"28¢(X), for all A >0,
where
XX =X (X, distx) =gey (X, disty.x) for disty.x = X-dist(X)

for all metric spaces X = (X,distx) and where dist - X\ - dist(X) corresponds
to g = A2 - ¢ for the Riemannian quadratic form g¢.
(This makes the Euclidean spaces scalar-flat: Sc(R™) = 0.)

o3 Volume Comparison. If the scalar curvatures of n-dimensional manifolds
X and X’ at some points x € X and 2’ € X’ are related by the strict inequality

Se(X)(z) < Se(X')(2),
then the Riemannian volumes of small balls around these points satisfy
vol(By(X,€)) > vol(By (X', ¢))

for all sufficiently small € > 0.
Observe that this volume inequality is additive under Riemannian products:
if
vol(By, (X, ¢€)) > vol(By: (X, ¢€)), for € < ep,
and for all points x; € X; and z; € X/, i=1,2, then

00ly (B(g, 2,) (X1 x X2,€0)) > voln(B(xflvré)(X{ x X35, €0)



for all (x1,22) € X; x X5 and (2, 24) € X| x XJ).
This follows from the Pythagorean formula

distx,x, = \/dist}, +dist%, .

and the Fubini theorem applied to the "fibrations" of balls over balls:
Bla, e0) (X1 % X2,80)) = Bz, (X1,60) and Ber o) (X1 x X3,0)) = Ba, (X1,20),

where the fibers are balls of radii € € [0,g¢] in X2 and X3.

o, Normalisation/Convention for Surfaces with Constant Sectional Curva-
tures. The unit spheres S?(1) have constant scalar curvature 2 and the hy-
perbolic plane H?(-1) with the sectional curvature —1 has scaler curvature —2

It is an elementary exercise. to prove the following.
% The function Sc(X, g)(x) which satisfies e1-e, exists and unique;

* 5 The unit spheres and the hyperbolic spaces with sect.curv = —1 satisfy
Sc(S"(1)) =n(n-1) and Sc(H"(-1)) = -n(n-1).
Thus,
Se(S™(1) x H"(-1)) = 0= Sc(R™),

which implies that the volumes of the small balls in S™(1) x (H™(-1) are "very
close" to the volumes of the Euclidean 2n-balls.

*3 The scalar curvature of a Riemannin manifold X is equal to the sum of
the values of the sectional curvatures at the bivectors of an orthonormal frame
in X,

Se(X)(z) = ¢ij, i, =1,...,n.
i

(This agrees with Sc=n(n-1) for X = 8™.)

%4 The scalar curvature of a smooth hypersurface X ¢ R™" with the prin-
cipal curvatures ¢;, i =1,2,..,n, is

Se(X) =i = (20)2 Tt

i*j
*5. The warped product metrics
g =dy*+ f2ds?

on the product of Riemannian manifolds Y x S and smooth functions f >0 on
Y satisfy

1 m(m-1)

f? D)

where m = dim(S) and A =Y.V, ; is the Laplace operator on Y.
For instance, if S = S is the unit circle, then

Se(9)(y,s) = Se(Y)(y) + 5 5¢(5)(s) - IV f I - QTmAf(y),

Sec(g) = Se(Y) - ;Af.



*. The values of the Ricci curvature on the unit vectors v = v, € Ty(X),
normal to a smooth hypersurface Y c X satisty. .

Ricci(v) = % (SC(X) -Sce(Y)-> ¢ cj) .

i#]

where ¢; = ¢;(y), yeY,i=1,...,n -1, are the principal curvatures of Y in X.

(However simple, the last two formulae plays play a key role in the study
of the scalar curvature of n-dimensional manifolds X via minimal (n - 1)-
dimensional submanifolds Y c X.)

Lower Bounds on Sc¢(X). We are not so much concerned with the scalar
curvature Sc(X) per se, but rather with the effect of lower scalar curvature
bounds on the geometry of X, where, for instance, the inequality "Sec(X) > 0"
can be defined by saying that

all sufficiently small balls B, (g) ¢ X, € <eg(x) > 0, have the volumes smaller
than the volumes of the equividimensional Euclidean e-balls.

Then "Sec(X) > 0" is defined as
Se(X)>—e" for all e > 0.
Similarly
"Se(X) 20" 0>0, is equivalent the volumes of By(e) in X being smaller
than the volumes of the e-balls in the Euclidean spheres S™(R) of radii R >
V(n(n-1)/o),
and Sc(X) > -0 is expressed by

the bound on the volumes of B, (g) by those of the e-balls in the hyperbolic
spaces with constant the sectional curvatures < —o[n(n—1).

Also "S¢(X) > —o" can be defined with no reference to hyperbolic spaces by
the reduction to the case o =0

Sc(X x S™(R)) 20 for R=+/(m(m-1)/o,

where one may use any m > 2 one likes.

[78] Question A. What is Scalar Curvature? The above definition via the
volumes of balls masks the true nature of the scalar curvature — it has proven
useless (so far) for proving anything "global" about Sc > o.

The vanishing Dirac operator techniques turns your mind toward spectral in-
variants of small balls instead of their volumes, where such an invariant should
integrate from the local to the global scale similarly to how it works in the
(Borel)-Garland combinatorial cohomology vanishing theorems. extension Al-
ternatively — this may lead to a different class of objects — one may look for a
definition of Sc > ¢ based on a localisation of the method of minimal hyper-
surfaces (see section 32 for a version of this approach.) Such a definition could
be better adapted for an extension of the concept Sc > 0 to singular spaces:
calculus of variations, unlike Dirac operators, does not shy away from "bad
singularities". *

4Minimal varieties make perfect sense, for instance, in manifolds with continuous Rieman-
nian metric g, where the definition of the Dirac operator is problematic.



A local geometric definition of Sc > o, if successful, will bring us a step closer
to resolving the following.

[79] Problem A. Identify the most general class (classes?) of "geometric
objects" with the properties similar to those of C?-Riemannian manifold with
Sc>o.

To make sense of this problem look at the available examples.

2 Symmetric Spaces, Fibrations and Surgeries with
Sc>o.

Compact Symmetric Spaces are the main representatives of manifolds with Sc >
0, where, all of them, except for flat tori, have Sc> 0.

The most prominent among these, besides spheres and product of spheres,
are complex projective spaces CP* of real dimensions n = 2k and quaternionic
HP* of dimensions n = 4k.

Positivity of the scalar curvature is inherited by fibered spaces from the fibers.

Namely,

if the fibers X, = f~'(z) ¢ X of a smooth fibration f : X - X between
compact manifolds carry smooth Riemannian metrics which continuously depend
on x € X and which all have Sc > 0, then X also supports a metric with Sc > 0.

Proof. Start with an arbitrary smooth metric g on X with Se(X,) > 0 for
all z € X, orthogonally split the tangent bundle as

T(X)=T,T, for T, =ker(Df) and T,, = ker(Df)*,
accordingly split g = g, +g, and observe that the scalar curvatures of the metrics
ge=c-gr+gu=(gr+'q), >0,
for small positive € are dominated by the scalar curvatures the fibers
Sc(ge) x Se(e-X,) =72 for e - 0.

Thus, for instance, the (total spaces of)

fibrations with compact simply connected Riemannian symmetric fibers carry
metrics with Sc > 0.

Similarly, according to Lawson-Yau,

manifolds X with non-trivial actions of compact connected non-Abelian Lie
groups, e.g. compact homogeneous spaces different from tori, carry (fairly nat-
ural) metrics with Sc> 0.

(See [125]-Wiemeler Circle actions 2015] and references therein.)

Also such metrics exist on

manifolds with circle actions where the fized point sets have codimensions
two [125].



Calabi- Yau-Fano® Kdihler manifolds provide yet another remarkable source
of manifolds with Sc > 0, where the most beautiful among them carry Kdhler-
Einstein metrics. For instance — this follows from Yau’s solution of Calabi
conjecture,

smooth complex hypersurfaces in CP™ (of real dimension n = 2m) of de-
grees d <m+1 carry Kahler Riemannian metrics with Ricci > 0, which is much
stronger than Sc> 0.

Moreover,
smooth hypersurfaces in CP™! given by equations of the form
2 4 (21,0 Zman) = 0,
where [ is a homogeneous polynomial of degree m + 1, support Kdhler-FEinstein
metrics with Sc¢> 0. (See [27]-Dervan On K-stability 2015] and references therein.)

[710] Problem Extend the concept of Sc >0 to singular Fano Varieties.

For example, work out a definition of Sc(X) along the lines suggested in
Question 1 of the previous section, such that the non-strict positivity Sc(X) >0
of generalised scalar curvature would be stable under deformations of smooth
Fano varieties, e.g. of hypersurfaces X,..4 c CP™*! of low degrees, to singular
ones.

Notice that the volumes of small balls at singular points in algebraic varieties,
especially where they are not normal (locally reducible) are significantly greater
than the volumes of balls at the regular points which indicate of non-applicability
of the definition of scalar curvature via volumes of balls to singular spaces.
(Compare with [11]-Basilio+ Sewing Riemannian Manifolds 2017].)

Further example of manifolds with Sc > 0 are obtained with codimension
2 surgery on n-dimensional manifolds, i.e. surgery based on submanifolds (e.g
embedded spheres) of dimensions < n - 3, since

codimension 2 surgery can be (rather naturally) performed in the Riemannian
category of manifolds with Sc> o.
(See [122]-Walsh Metrics of positive scalar 2008] and references therein.)

For instance, connected sums of n-manifolds with Sc > 0 carry metrics with
Sc > 0 for all n > 3 and all orientable manifolds with Sc¢ > 0 of dimension > 4
can made simply connected by attaching 2-handles, while keeping Sc > 0.

To see geometrically how this works, look at a small e-neighbourhood X, =
U.(P) of a compact smooth submanifold P in a Riemannin manifold W.5

If codim(P) > 3 then the boundary U, (P) is fibered by e-spheres of dimen-
sions k > 2 the scalar curvatures of which are approximately @ which blows
up to +oo for € - 0 and

Sce(X.)xe? - +o0

as well.

5A complex manifold X is Fano if the anticanonical line bundle Lqc(X), i.e. the top exte-
rior power of the tangent bundle T'(X), is ample: some power Lévc is generated by holomorphic
sections.

6Topologically, a surgery over a manifold X results in a manifold W with two boundary
components where the the first one is X and the second one is the result of the surgery. The
geometric construction we describe may be performed in this W with a cylindrical Riemannian
metric near X ¢ W.



Now, more generally, let P ¢ W be a piecewise smooth polyhedral subset,
which is the union, P = Pyn Pipin, where Py — the "thick part" of P —is a domain
with smooth boundary Xy = 9P, and let o(w) be a continuous function on W.

[@<]. If codim(Pinin) = 3, and if o(p) < Sc(Xo)(p) for the induced Rie-
mannian metric in Xo and all p e Xo = 0Py, then P admits a reqular neighbour-
hood” V ¢ W with smooth boundary X = OV, such that the scalar curvature of
X with the induced Riemannian metric satisfies

Se(X)(x) 20(x), xeX,

where, moreover, one may take V equal to Py outside a given neighbourhood of
Pipin 8

Observe that such manifolds X = X. = U, converge or collapse to P if
we take U, inside smaller and smaller neighbourhoods W, ¢ W of P. This
collapse X, ~ P generalises the above (X, g.) ~ X in the case where the fibers
fY(z) are round spheres. (Later, we shall indicated a general construction
which incorporates both examples.)

On the Proof of |[@<]. The above estimates Sc(X.) x 72 holds for the
g-neighbourhoods of non-compact submanifolds P, where ¢ = ¢(p) > 0 is a small
positive function on P, such which tends to — 0 for p - oo the first and the
second derivatives of which are dominated by £72. (One gets a fair idea of what
happens by looking at such neighbourhoods of a straight line P in R*%.)

If P is non-smooth, one needs to properly regularise such neighbourhoods at
the corners. This is done by the standard induction by skeletons which reduces
the problem to the case where Pip;n is a smooth coorientable submanifold with
boundary (a smooth ball if you wish) such that this boundary is contained in
Xo and Py, is transversal to Xj.

If Py is the unit ball in R?* and Pyp;n, is a straight ray normal to the boundary
of this Py, then the construction of the required rotationally symmetric V is
straightforward and it equally applies to rays normal to umbilical hypersurfaces
Xy in hyperbolic spaces which is needed for Sec(Xy) < 0.

Then the general case follows by the weak flexibility argument on p.111 in
[42]-Gromov Partial differential 1986]

On Geometry Versus Topology. The diffeomorphism class of X = X, does
not depend on the specifics of the above construction, but the geometry of X
depends on how and in which order surgeries are performed.

In fact, in oder to keep Sc > o, e.g in the case of o0 = 0, one needs wvery
thin handles, where this "thinness" depends on "thinness" of the handles which
were attached earlier; thus, each consecutive handle comes much thinner than
all preceding ones.

Conceivably, metrics obtained in this manner by interchanging the order of
surgeries may be non-homotopic in the space of all metrics with Se(g) > 0 on
X. (Compare [123]-Walsh The Space of Positive 2014|.)

No Surgery for Sc > o. Tt is fundamental that there is no surgery for Sc > 0;
for instance

7Such a V 5 P is an equidimensional submanifold with boundary which admits a continuous
family of diffeomorphic embeddings I+ : V — V, 0 <t < 1, such that the I;|P = Id for all ¢t and
such that I; uniformly converge to a piecewise smooth map V — P for ¢t — 1.

80ur "regular neighbourhoods" are not strictly speaking "neighbourhoods". For instance,
Py is regarded as a regular neighbourhood of itself.

10



the connected sums of n-tori, for all n >2 admit no metrics with Sc > 0.

This is amazing! Two tori of dimension n > 3 can be connected by an
arbitrarily long tube (1-handle), which harbours vast amount of huge scalar
curvature except for two tiny regions where the scalar curvature, albeit negative,
is > —e.

Yet there is no way to redistribute this curvature and to make it everywhere
>0.

There are two different approaches of this: the first one, due to Schoen and
Yau, is based on the inductive use of minimal hypersurfaces (see section 6) and
another one depends on the Atiyah-Singer index theorem for a "twisted" Dirac
operator (see sections 7, 9.)

Similarly the union P of a half-space R} c R™ and a ray normal to it admits
no small neighbourhood V' with Sc(dV) > 0.

Albeit non-existence of these V, which are O(n — 1)-rotationally symmetric
and equal to R? away from P follows by a simple computation, the only proof
in the general case available at the present day relies on the Dirac operator.

[711] Question. What could be a, possibly non-geometric, extension of the
concept of Sc > 0, where one would be able perform symmetrization and reduce
the case of general neighbourhoods V' to that of O(n — 1)-symmetric ones?

(Such symmetrization, albeit imperfect, is possible for hypersurfaces with
positive mean , rather than scalar, curvatures, see section 24.)

3  Topological Obstructions to Sc > 0 Implied by
Vanishing Theorems for Harmonic Spinors on
Compact Manifolds.

The techniques based on geometry of geodesics, which provide strong bounds
on the size of manifolds with positive sectional and positive Ricci curvatures
and on their fundamental groups.

For example, according to Myers’ theorem [1941]

Ricci(X) > 0 implies that w1 (X) is finite

and

if Ricci >0 and if, for instance, the universal covering of X is contractible,
than X is Riemannian flat by the Cheeger-Gromoll splitting theorem [1971].

But geodesics do not tell you much about Sc > o > 0. In fact, the only
available result here is the following.

Green-Berger Integral Scalar Curvature Inequality [1958], [1963],
[1965]. Among all manifolds X with given vol(X) and [ Sc(z)dxz > 0 round
spheres maximize the average distance between conjugate points® on geodesics
in X [12]-Berger Lectures on geodesics|.

(If dim/(X) = 2 this follows from the Gauss-Bonnet formula for infinitesimally
narrow geodesic triangles and the general case reduces to this by applying the
Fubini theorem to the the space of the 2-frames in X moved by the geodesic
flow.)

9The points of a geodesic segment are conjugate if the geodesic is not even locally distance
minimising, not even locally, beyond these points.

11



The following two theorems came as a quite a surprise to differential geome-
ters of that period.

Lichnerowicz’ A-Vanishing Theorem [1963]. Compact Riemannian ori-
entable spin manifolds X of dimension n =4k with Sc(X) >0 have A[X]=0.

Let us recall relevant definitions.

Spin. Since the fundamental group of the special (i.e. orientation preserv-
ing) orthogonal group SO(n) for n > 3 is Z/27Z, there are exactly two different
orientable bundles of rank n > 3 over closed connected surfaces. The trivial
bundle is, by definition, spin and the non-trivial one is non-spin.

An orientable manifold X is called spin if the restrictions of the tangent
bundle T'(X) to all surfaces S ¢ X are spin (i.e trivial).'°

For instance, all orientable hypersurfaces X™ c R™*! are spin, all 3-manifolds
are spin, all simply connected n-manifolds with trivial second homotopy groups
are spin. The simplest non-spin manifolds are the complex projective spaces
CP™ of even complex dimensions 7.

A[X ]—Gen us. is a certain combination of Pontryagin numbers of X which

satisfy X X R
A[Xl X X2:| = A[Xl] . A[XQ]
and which may be, a priori, non zero for n = 4k.

For instance, if n = 4 then A[X] is proportional to the rational Pontryagin
number p1[ X] (or to the signature of X if you wish).

This A[X*] vanishes if and only if a multiple of X bounds an oriented 5-
manifold or if a multiple of the tangent bundle, T(X) o T(X) ® ... @ T(X), is
the trivial bundle.

If n = 8, then A(X) is proportional to (7p? — 4ps)[X].

The existence of manifolds X where the Lichnerowicz theorem applies is not
fully trivial. For instance. all compact homogeneous spaces, except for tori,
admit, as we know, invariant metrics with Sc¢ > 0.

The simplest example of a spin manifold with A %0 is the Kummer surface
X c CP? given by the equation

4,4, 4, 4
T+ Ty +x3+xy =0.

More generally, all smooth complex hypersurfaces X ¢ CP™*! (of real di-
mension 2m) of degrees > m + 2 also have A # 0 for even m [19]-Brooks The
A-genus of complex hypersurfaces].

These X are simply connected and there is no hint of a "geodesic argument"
ruling out positive Ricci or positive sectional curvature on them. Yet, if the
degree of such an X satisfies deg(X) = m mod 2, then X is X is spin and it
admits no metric with Sc¢ > 0 by Lichnerowicz’ theorem.

Remarkably, Lichnerowicz’ theorem is sharp for some of these X:
Yau's solution of the Calabi conjecture implies that

smooth complex hypersurfaces X ¢ CP™*! of degrees d = m + 2, such as the
Kummer surface, carry metrics with Sc = 0, in fact, with Ricci = 0.

10nSpin" makes sense also for non-orientable bundles and manifolds but we do not need
them at this point.

12



But if deg(X) > m + 3, then |A(X)| > 2 and, unlike the case of deg = m +2,
these X, if they are spin, admit no metrics with Sc =0 if m is even. (We shall
explain this later on.)

Hitchin’s 4-Vanishing Theorem [1974]. There is a smooth topological
mod 2 invariant of spin manifolds denoted &[X ], such that

Se(X)>0=a&((X) =0.

This &, defined on p. 147 in [?]-Atiyah-Singer The Index IV 1971] and on p.41
in [68]-Hitchin Harmonic Spinors 1974], may be non-zero for n = 8k + 1,8k + 2.
For instance, if X is homeomorphic (but not necessarily diffeomorphic) to the
n-sphere, then & vanishes if and only if X bounds a spin (n + 1)-manifold.!!

Thus, combined with results by Milnor and Adams, Hitchin’s theorem im-
plies that there are

manifolds ¥ homeomorphic to S™ for n = 8k + 1,8k + 2, k=1,2,5,..., which
admit no metrics with Sc(X) > 0.

Moreover,

every spin manifold X of dimension n=8k+1 or n=8k+2 either admits no
metric with Sc(X) > 0 itself or the connected sum X' of X with ¥ admits no
such metric, where observe, X and X' are piecewise smoothly homeomorphic.

Discussion. No geodesic kind of geometry is present either in the statements
or in the proofs of these theorems, where the two key ingredients are as follows.

Atiyah-Singer index theorem for the Dirac operator D [1963-1971].
This D is a distinguished first order elliptic differential operator associated to
the Levi Civita connection which acts on certain spinor vector bundles over X.
These bundles and D are locally defined for all X but in order to be defined
globally on X, the manifold X must be spin.

If n = dim(X) is even, the spin bundle where D acts splits: S =S" @ S™.
Accordingly, D = D*@® D™, where the operators D* and D~ are mutually adjoint
for D* : C=(S*) - C*°(S™) and D™ : C*(S™) - C*(S") and where ind(D) =
dim(kerD*) - dim(kerD™).

The Atiyah-Singer index theorem implies, in particular, that if either A[X ]+
0 or &(X) # 0 then ind(D) # 0; therefore,

X must support non-zero harmonic spinors s,
where "harmonic" means D(s) = 0.

Schroedinger-Lichnerowicz-Weitzenboeck algebraic identity [1932],
[1963]. [117]-Schroedinger Diracsches Elektron im Schwerefeld 1932], [76]-Lichnerowicz
Spineurs harmoniques 1963].

1
D?=vV,Vi+ ZSc,

where V,VZ in this formula is a (non-strictly) positive operator (coarse Lapla-
cian on spinors) which make D? strictly positive for Sc(X) > 0. Thus,

(a) if Se(X) >0, then there is no non-zero harmonic spinors on X,

(b) if Se(X) >0 and X carries a non-zero harmonic spinor, then Sc(X) =0
and all harmonic spinors on X are parallel. 2

M There is much more in [68] than the G-vanishing theorem.
12X is assumed connected.
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This implies the theorems of Lichnerowicz and Hitchin, where Lichnerowicz
uses the 1963 version of the index theorem for 4k-dimensional manifolds [7]-
Atiyah-Singer The Index 1963], while Hitchin needs a more sophisticated mod 2
index formula in the dimensions n = 8% + 1,8k + 2 from the 1971-Atiyah-Singer

paper [8].)

4 Simply Connected and non-Simply Connected
Manifolds with Positive Scalar and Ricci Cur-
vatures.

By looking closer at what can be obtained by codimension 2 surgery of compact
symmetric spaces and fibrations with symmetric fibers one finds out that

(1) all simply connected non-spin manifolds of dimensions n >5 admit met-
rics with Sc> 0 [53].

And — this is more difficult— [119]-Stolz, Simply connected manifolds 1992],

(ii) Simply connected spin manifold X of dimension n > 5 admit metrics
with Sc> 0 unless n = 4k and A[X] # 0 or dim(X) =8k+1,8k+2 and &[X] #0.

For instance,

* Closed simply connected manifolds of dimensions #0,1,2,4 mod 8 '*
carry metrics with positive scalar curvatures.

Thus, theorems of of Lichnerowicz and Hitchin fully account for possible
topologies of compact simply connected manifolds X of dimensions n > 5 with

Sc>0.

It is not so in dimension 4, where the Witten-Seiberg invariant provide ad-
ditional obstructions for Sc > 0. For instance none of smooth complex surfaces
X c CP3, of degree d > 5 admits a Riemannin metric with Sc > 0, be it spin
(for even d) or non-spin (odd d) [75] [121]

On Non-simply Connected Manifolds. If X is a smooth closed,
possibly, non-simply connected manifold, then the codimension two surgery, say
in the category of oriented spin manifolds, shows that existence/non-existence
of a metric with Sc > 0 on X depends only the spin bordism class of X in
the classifying space of the fundamental group m1(X) for the canonical map
X - Bm(X), 4

[XTspin € 3P (B (X)).

It is believed that
if X admits a metric with S¢> 0, then [ X ]spi, ® Q = 0.

More generally, one has the following

[712] Conjecture: Q-Non-Essentiality of Manifolds with Sc > 0.
No rational homology class'* in the classifying space BT of a discrete group T
can be realised by a continuous map from a closed oriented (spin or non-spin)
Riemannian manifold X with Sc(X) >0 to BT'. In particular,

I3Notice that the set {0,1,2,4} is multiplicatively closed mod 8.
M4 This is false for integer homology where the simplest examples are lens spaces.
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[713] [#] no closed aspherical'® manifold admits a metric with Sc > 0.

This Q-non-essentiality conjecture was proven for 3-manifolds and [#] was
confirmed for 4-manifolds which contain incompressible surfaces [54]. Also so-
lution of [*] for all 4-manifolds was announced in [110], [114].

There are several classes of groups, starting from free Abelian ones, for which
the Q-non-essentiality conjecture has been established; we review some of the
corresponding results in sections 29

On Scalar and Ricci Flat Manifolds. If a compact manifold X admits
no metric with Sc > 0 then every metric with Sc(g) = 0 on X must be Ricci
flat, which means vanishing of the Ricci tensor Ricci(g) (see [71], where this is
proven for complete manifolds as well).

This does not immediately constrains the topology of X by itself, since there
is no known topological obstructions to Ricci = 0 on simply connected manifolds
of dimension 7 > 5 unless X is spin and either A[X] #0 or @[X] # 0. (I might
have missed some paper, most probably for n =4.)

But if one of X is spin and one of this invariants does not vanish, then X
carries a non-zero spinor which is parallel if S¢(X) = 0. Then the existence of a
parallel spinor, implies that not only X is Ricci flat but it must have a special
holonomy group (see [104], [26] and references therein.)

This, along with Berger’s classification of special holonomy groups, rules out,
for instance, metrics with Sc =0 on Hitchin’s spheres.

And it is even easier to see that connected sums of 2™ copies of spin man-
ifolds with A > 0 carry no metrics with Sc = 0, since the number of linearly
independent parallel spinors on an n-dimensional manifold is bounded by 2".
(Locally irreducible manifolds can not carry even two linearly independent par-
allel spinors as, probably, all "parallel spinor people" know, compare [126]

On the other hand if X does carry a metric with Sc > 0 and dim(X) > 3
then it seems not hard to prove (I suspect this must in the literature) it also
carries lots of metric with Sc=0.

But the following question remains widely open.

[714] Question. How common are Ricci flat metrics on compact simply con-
nected
manifolds X which admit metrics with positive scalar curvatures?

One may conjecture on the basis of of known examples (unless I miss some)
that (almost) all metrics g with Ricci(g) =0 on compact manifolds must have
special holonomy or to be special in a similar respect, e.g. would satisfy (strong)
additional partial differential equations that are not formal differential-algebraic
corollaries of Ricci(g) = 0.

An opposite conjecture, which is based on the absence of apparent obstruc-
tions, would be that every compact simply connected manifold X of dimension
> 5 which admits a metric with Sc > 0 carries infinitely many "geometrically
different"'® g with Ricci(g) = 0.

All we can say with certainty is that
we do not know what the right question about Ricci =0 is.

15 A Jocally contractible topological space X is aspherical if the universal covering X is
contractible.

6 Two metrics g1 and g2 on X may be regarded as geometrically different if (X, g1) is not
isometric to (X, g2).
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Recall at this point, we mentioned this earlier, that complex hypersurfaces
X c CP™ of degrees > m +3 have A(X) > 2 even m.

Therefore, they must support pairs of linearly independent g-harmonic, hence,
g-parallel, spinors for all Riemannin metrics g on X. This (most probably) rules
out metrics g with Sc(g) = 0.

On the other hand, apart from Lichnerowicz’ case (spin + A+ 0), the com-
plex projective hypersurfaces, except maybe(?) for some X ¢ CP™, where m = 2
mod 4 and deg(X) =m mod 2, }7 carry metrics with Sc > 0 according to the
classification of simply connected manifolds with Sc >0 (see above).

However, there is no apparent candidates for counterexamples to the follow-
ing tentative conjectures.

[‘?14%] Conjecture. Smooth complex projective hypersurfaces of dimen-
sions dimc = m and degrees d > m + 3, be they spin or non-spin, admit no
metrics with Ricci > 0.

[715] Conjecture. Connected sums of sufficiently many copies of compact
manifolds which are not homotopy spheres carry no metrics with Ricci = 0.

Yet,
connected sums of products of spheres,
S x ST AHST x ST

k

for allm,n>2, and k=1,2,3,... do carry metrics with Ricci >0, [107], [25]

5 Asymptotically Flat and Periodic metrics on
R3 with Sc> 0.

Somewhen in early 70s, Robert Geroch, motivated by the positive mass problem
in general relativity, conjectured (see [111]-Schoen Yau On the proof of the positive
mass 1979]) that the 3-torus admits no non-flat metric with Sc > 0.18

This, along with the positive mass conjecture, was solved by Schoen and Yau
[112]Schoen Yau Existence of incompressible 1979| with a use of minimal surfaces
instead of geodesics as follows.'?

Schoen-Yau Rendition of the Second Variation Formula.  Let Y
be a smooth closed coorientable surface in Riemannian 3-manifold X and let
Y cU(Y) c X, —e <t < ¢, be equidistant surfaces in the e-neighbourhood of
Yy =Y. By elementary calculus,?”

ar = WAedQ) gy - [ yypay,

171t must be known to some people if &(X) #0 for any of these X.

81 could not find this on the web, but according to [111], Geroch made a weaker conjec-
ture: the Euclidean Riemannian metric on R® admits no Sc > 0 perturbations with compact
supports.

9Earlier, minimal surfaces were similarly used in [22]-Burago Toponogov On 3-dimensional
riemannian| in the study of 3-manifolds with positive sectional curvatures. Also surfaces were
used in the work by astrophysicists on the positive mass conjecture, e.g. in [36]-Geroch Energy
extraction 1973]

20This goes back to Bonnet, I guess.
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where p(y) is the mean curvature of Y that is p(y) = c1(y) + c2(y) for the
principal curvatures ¢; and ¢y of Y in X, and

_ d*(Area(Y)

A”
d?t

)= [ (-er(0)” - ex(w)” + n(y)? - Ricei, () dy

- [ Catets) - Ricci, ) dy

Next, following [112]Schoen Yau Existence of incompressible 1979], observe that

Ricci, = =(Se(X)|Y = Se(X|Y))

1
2
where (in the present case of dim(X)=3) Sc(X|Y)) is twice the sectional cur-
vature of X on the planes tangents to Y, and that — this is a crucial algebraic
step,

Sc(Y) = Se(X|Y) +2¢1¢0

by Gauss theorema egregium.?! Thus,

A":fy%(SC(Y)(y)—Sc(X)(y))dy+fyq(y)cQ(y)d%

and by the Gauss Bonnet formula,

SY, A" =2 () -5 [ SeWdy+ [ ey,

Schoen-Yau solution of the Geroch 3D Conjecture [1979]. Let X
be a compact orientable 3-dimensional Riemannian manifold with Sc > 0. Then
all homology classes h € Hy(X) are spherical. Consequently, the 3-torus admits
no metric with Sc > 0.

Proof. By the geometric measure theory every h is representable by an
area minimising minimal surface Y ¢ X smoothness of which is guaranteed by a
theorem by Fleming-Almgren’s regularity theorem [?, 7, ?].2? Since it is minimal
A’ =0 and it has zero mean curvature: p=c; +c3 =0 and cics <0, and since it
is area minimising, A" > 0; hence, the Euler characteristic x(Y) is positive by
the [SY]3 inequality. QED. 23

Commentary. There is more to [SY]s, than the above corollary. In fact,
[SY]s says that if Se(X) > o the function Y — Area(Y') is concave in certain
directions on saddle surfaces Y (i.e. those with c¢jcqo < 0) such that

2mx(Y)
area(Y) ~

which tells you something about manifolds with S(X) > o <0 for o < 0. as well
as for o > 0.

21However simple, this is a remarkable identity, since the intrinsic curvature of ¥ should,
a priori, depend on the derivatives of the curvature of X, but these derivatives cancel due
to some symmetries, similarly to what happens in the derivation of (Bochner)-Schroedinger-
Lichnerowicz-Weitzenboeck formula.

22The bulk of the paper [112] by Schoen and Yau is dedicated to an independent proof of
the existence and regularity of minimal Y.

231t takes a little extra effort to show that all metrics on T% with Sc > are flat.
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For instance, the above Schoen-Yau argument shows that
every surface Y ¢ X with positive genus (x <0) and such that

area(Y) < 2r|o| - |x(Y)|

is homologous to a surface of smaller genus; hence, it is homologous to zero if
it is genus minimising in its homology class.

Synge’s 1936 Second Variation Argument for Manifolds with Positive Cur-
vatures. The Schoen-Yau proof vaguely resembles the following.

Let v be a geodesic in a Riemannian manifold X and 0 be a unit vector field
in a neighbourhood of v which is normal to v and is parallel along .

Since the curve v is geodesic, the derivative of the length of v by the flow 0;
is zero and if X has strictly curvatures > k >0, then the second derivative of of
the length of v is negative,

o l h
o] ength(7)je=o < 0.

It follows that
if sect.curv(X) >0 and ~ is a closed geodesic which is length minimising in
its homotopy class in X, then it admits no parallel normal field.

On the other hand a closed geodesic v in an even dimensional orientable
manifold, always carries a parallel normal field, since the holonomy operator in
the normal space H : N, (v) O, zo € 7, has a non-zero fixed vector, because
dim(N) is even and because H is an orthogonal operator with determinant +1
and N is even dimensional.

Thus, sect.curv(X) > 0 rules out closed minimal geodesics in X; therefore,

closed orientable even dimensional Riemannian manifolds with strictly pos-
itive sectional curvatures are simply connected.

Similarly,

odd dimensional Riemannian manifolds with strictly positive sectional cur-
vatures are ortentable.

6 Conformal Laplacian and Codimension 1 De-
scent with Positive Scalar Curvature.

Kazdan-Warner’s Conformal Modification of Scalar Curvature [72, 73].
Let (Xo,g0) be a compact Riemannian manifold of dimension n > 3 where the
scalar curvature function is denoted So(x) = Sc(go) ().

If the conformal Laplace operator L = Ly, defined as

f@) = L(f(x)) =-Af(x) + S0 (z) f(z) for A=-d*d and v, = 47:;21

18 positive, i.e.

[ 1@ f@)do= [ (@I +3080() f(2)?) da > 0

for all smooth functions f(x), then go is conformal to a metric g1 with positive
scalar curvature. And if L is strictly positive, then one can get Sc(g1) >0 as
well.
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Proof. A straightforward computation shows that

n+2

© Sc(fﬁgo):ﬁl];(f)f*n_z

for all smooth positive functions f.?*

Let L(f) = Af, where A is the minimal eigenvalue of L. If L is positive
(strictly positive), then A >0 (A > 0), while f(x) doesn’t vanish on X; otherwise,
the non-negative function f; = f + |f| (a priori, non-smooth at its zero set)
would be yet another (a posteriori, smooth by elliptic regularity) solution of the
equation L(f) = Af. But such a relation can’t hold near the boundaries of the
zero sets of positive functions on X by a simple (and standard) symmetrisation
argument.

Therefore, © applies to f (chosen > 0) and the proof follows.

[151] Problem. Work out the necessary and sufficient condition on (the
Ricci curvature of?) g on a (possibly incomplete) manifold X for the existence of
a small (conformal?) perturbation g’ of g such that ¢’ > g and Sc(g’) > Sc(g).?®

One knows in this respect that if Sc(g) = 0, then Ricci # 0 is known to
be sufficient for the existence of such perturbations g’ [71] and if Se(g) > 0
and g is Einstein, i.e. Ricci(g) = Ag, then no small perturbation ¢’ > g with
Sc(g') > Sc(g) exists, see [39]-Goette Semmelmann Scalar curvature estimates 2002
where this is proven for some non-Einstein metrics as well.

Schoen-Yau Codimension 1 Descent Theorem [113]-Shoen Yau Structure
1979]. Let X be a compact orientable n-manifold with S¢ > 0. Ifn < 7, then every
non-zero homology class h € H,_1(X) is realisable by a map from a compact
oriented (n—-1)-manifold to X, where this manifold admits a metric with Sc > 0.

In fact, there exists a codimension one submanifold X|_j ¢ X, such that the
conformal Laplacian L = Lg._,, on X[ 1) with the induced Riemannian metric
g[-1) Is strictly positive which can be conformally modified to have Sc > 0 by
the above Kazdan-Warner theorem.

Proof. Take the volume minimising subvariety ¥ ¢ X in the class of & for
X[-1] and observe that Y is a smooth cooriented submanifold by the Almgren-
Simons regularity theorem which guaranties smoothness of Y for n < 7.

Let v be the unit vector field normal to Y, let f be a smooth function on Y
and let A” be the second derivative of the (n — 1)-volume of Y with respect to
the field 9 = fv. 26 By the same calculation as in the derivation of the above
[SY]s, one obtains:

Y1, "= [ 1dF)IE - 5 (lewre (V)P () - Se(¥)(y) + 5e(X)(w) Fdy,

where ||curv(Y)|[? = ¥ ¢? for the principal curvatures ¢; of Y c X.
Since Y is volume minimising, A” > 0 for all f and since ||curv(Y)||* > 0 and
Se(X) >0,

LI )IR + 58e(r) @) sy >0

24There must be a conceptual derivation of this formula.

251f Sc(g) < 0, then interesting perturbations g’ of g are such that g’ < g and Sc(g’) > Sc(g).

26Tn general, the second derivatives 92vol,,-1(Y) is defined with fields 9 extended to a
neighbourhood of Y in X. But if Y is minimal, then dvol,—1(Y") = 0 for all fields 9; hence,
8%volp-1(Y) depends only on d|Y.
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for all functions f # 0 on Y. This means that the operator -A + %SC(Y) is
strictly positive and since ~,, = ﬁ < % the conformal Laplacian —A +,,Sc(Y)

is strictly positive as well. QED.

Y. Corollary: No Sc > 0 on Schoen-Yau-Schick n-Manifolds. A
compact orientable n-manifold is Schoen- Yau-Schick , if there exist n—2 integer
homology classes hy, ha, ..., hy_o € H1(X), such that their intersection hy ~ ho ~

oo~ hyo € Ho(X) is non-spherical, i.e. it is not contained in the image of the
Hurewicz homomorphism me(X) - Hy(X).

Alternatively, a homology class h € H,(K), where K = K(II,1) is the
Eilenberg-MacLane space be for an Abelian group II, is called SY' S, if its con-
secutive cap-producs with some cohomology classes hi,ha,...,h, o € H'(K,Z
are NON-zero,

(((hﬁ hl) N h2) N....N hn_g) =hn (hl My ™ hn—2) +0¢€ HQ(K)

(Geometrically speaking, generic 2-dimensional intersections of the n-cycles C c
K representing h with (n-2)-codimensional pullbacks of generic points of, some,
say piecewise linear, maps K — T" 2 are non-homologous to zero.)

Then a manifold X is SYS if the Abel classifying map X — K(II,1) for
IT = Hy(X) sends the fundamental class [X] € H,(X) to a SYS class in this
K(II1,1).

(Recall that, by definition, the spaces K(II,1) have contractible univer-
sal coverings and fundamental groups isomorphic to II. The standard finite
dimensional approximations to these K are products of tori and lens spaces
L= SN/Zli, where the latter, observe, carry natural metrics with Sc > 0.

Abel’'s X - K maps are uniquely up-to homotopy, are characterised by
inducing isomorphisms on the 1-dimensional homology groups.)

It is obvious that non homologous to zero 1-codimensional hypersurfaces in
SYS manifolds are SYS as well; hence, their homologically non-trivial intersec-
tions are also SYS.

Thus, arguing by induction on n starting from the obvious case of n = 2,
Schoen and Yau prove ¥, for n <7 in their 1979 paper:

SYS manifolds of dimensions <7 admit no metrics with Sc > 0.

The primary examples of SYS manifolds are the n-torus T" and the over-
torical n-manifolds X which admit maps X — T" with non-zero degrees.

If n = 2,3, then all Schoen-Yau-Schick n-manifolds admit such maps to T?
and T3. But starting from n = 4 there are Schoen-Yau-Schick n-manifolds X,
such that all continuous maps X — T" are contractible the (n — 1)-skeleton of
.

Example. Let P:T" - T" ! be a coordinate projection and let X = T? be
obtained by the 2D surgery of T™ over the circular fiber Ttlo = P1(t,) for some
point t,eT™ 1.

Let 772 ¢ T" '\ {t,}, i = 1,...n — 1 be subtori which intersect at a single
point, say at t # t, and observe that the surgery does not affect the P-pullbacks
of these tori. Thus we have

PHT ) e X
where these tori intersect in X over the circle

Pt = () PTHIY).

i=1,..n—1
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Since this circle represents non-zero (torsion) element in H; (X') the intersec-
tion of the n—2 homology classes h; = [P1(T/"?)] € H,-1(X),i=1,2,....,n-2.
is aspherical and X is SYS. On other other hand, since rankg H1(X) =n-1<mn,
all maps X — T" have degrees zero.

Conclude by observing that

products of SYS manifolds by overtorical manifolds are SYS
while

products of three or more non-overtorical SYS manifolds are not SYS.
Also notice that

finite coverings of non-overtorical SYS manifolds may be non-SYS.

[716] Conjecture. Singularities are Unstable. Brian White told me
about 30 years ago that he believed that

Volume minimising hypersurfaces in generic Riemannian manifolds X are
non-singular: singularities disappear under arbitrarily small smooth perturba-
tions of metrics in X .

This was confirmed in 1993 by Nathan Smale, [118] for n = 8, which extends
the Schoen-Yau theorem to n = 8.

[717] Conjecture 6. ISC: Singularities are Irrelevant. Schoen and
Yau announced 35 years ago [110], [114] that their descent metod extends to
singular minimal subvarieties

In a series of papers over the last decade, Lohkamp suggested an approach
to the solution of this conjecture(see [86]-Lohkamp The Higher Dimensional Posi-
tive Mass Theorem 11 2016 where one can find references to his earlier papers).
Recently, Schoen and Yau published an alternative proof of a version of the
irrelevance conjecture [115]. 27

7 Flatly Twisted Spinors over Tori and their Pre-
cursors in Algebraic Topology.

The kernels of D™ and D~ on the flat even dimensional torus consist of parallel
spinors, where both spaces have equal dimensions (= 2"71); hence the ordinary
index of the Dirac operator vanishes on the torus.

However, these parallel spinors make the following K -theoretic index of D
non zero not only on tori, but also on what we call over-torical manifolds X,
which admit maps to the n-torus of non-zero degrees, or equivalently, admits n
homology classes with non-zero intersection index.

The index of the Dirac operator D = D* @ D~ on a Riemannian manifold
X of even dimension n we speak about takes the values in the K-theory of the
torus T™ which comes about as the space of the unitary characters of w1 (X), i.e.
of homomorphisms 7 : 71 (X) - T, which is the m-torus for m = rankgH; (X).

These homomorphisms define flat unitary bundles [, 7 € T™, over X which
are used to "twist" the spinor bundle S =S* @ S~ over X by taking the tensor
products S* ® I and accordingly twist the Dirac operator on the sections of
these bundles,

DI=Dg :C*(S*®l;) > C™(ST®l;)

27T have not studied the papers by Lohkamp and Schoen-Yau in depth.
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The kernels of DY and D7, even though their dimensions, in general, depend
on 7, may be regarded as vector bundles over T™ the difference of which defines
the K-theoretic index of Atiyah-Singer.

* If X admits homology classes hi,ha,...,h, € Hi(X) with non zero
intersection inder,
hi~hy~...~h, 0

or, equivalently, if X admits a continuous map to the n-torus with non-zero
degree, then this K -theoretic index is non-zero.

This was shown in 1972 by Lustig [?] for the signature operator in the context
of the Novikov conjecture and adapted to Sec> 0 in [52].)

*% Corollary. No Sc >0 on Over-torical Spin Manifolds [1980]. Let
X be a compact n-dimensional Riemannian spin manifold. If X admits a map
of non-zero degree to the n-torus T", e.g. if X s homeomorphic to T", then X
admits no metric with positive scalar curvature.

Proof. Since the bundles [, are flat, the twisted Dirac operators D, are lo-
cally equal to the untwisted D; hence they satisfy the Schroedinger-Lichnerowicz-
Weitzenboeck formula. Therefore, if the scalar curvature were positive, the
kernel of of D, would be zero for all 7€ T™.

This proves our assertion for even n by contradiction with * and the odd
dimensional case follows by multiplying X with the circle.?® QED.

Twisted Elliptic Operators, Sc > 0, and Higher Signatures. The
original arguments by Lichnerowicz and Hitchin link positivity of the scalar
curvature of X to rather subtle differential-topological invariants of X, which,
are not homotopy invariants for n > 5 and in the Hitchin case they are not
topological, not even combinatorial, invariants of X.

In the twisted case, the emphasis is shifted from the smooth topology of X
to the homotopy theoretic properties of manifolds X concerning the structure of
vector bundles over them where these properties in the case of infinite, especially
torsionless, groups 71 (X) are often (always) reflected in the coarse geometry of
the universal covering X of X. Eventually, the "twisted road", you may expect,
will bring you far from smooth spaces and regular metrics.

The origin of of "twisted paradigm shift" resides in the work by Lustig and
Mishchenko who proved Nowikov’s higher signature conjecture for fundamental
groups of manifolds of non-positive sectional curvatures.

Prior to their work (and, of course, the work by Novikov) the basic "un-
twisted" result of this kind was the (obvious) homotopy invariance of the ordi-
nary signature sign(X) (related to Pontryagin classes by the Thom-Hirzebruch
L-formula®?).

But then Lustig and, in a significantly more general form, Mishchenko
brought forth the full power of the (generalised) twisted Atiyah-Singer index
theorem for the signature operator and arrive the following

Theorem [1974]. Let f: X — B be a smooth maps between closed mani-
folds, where dim(X) = dim(B) +4k, and let sign(X,[f]p) be the the signature
of the pullback of a generic point b € B.

28This product argument is manifestly immoral.

29Recall that sign(X) of a 4k dimensional oriented manifold X is the signature, (the num-
ber of positive minus the number of negative terms in the diagonalization) of the quadratic
intersection form on the 2k-dimensional homology of X.
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It is obvious (if you are fluent in elementary differential topology) that this
o(X,[f]B) is independent of b € B and of a representative of f in its homo-
topy class [f]. What is by no means obvious, however — this was proven by
Mishchenko — is that

if B supports a metrics with non-positive curvature, then o(X,[f]g) is a
homotopy invariant of X .30

(This invariance is dramatically false for simply connected manifolds B and
remains conjectural for general aspherical B.)

The corresponding "twisted story" with the scalar curvature, which started
a few years later, remains, in many respects, close to that with the signatures.

For instance, Jonathan Rosenberg showed (see [101] and references therein)
that Q-non-essentiality of Sc > 0 would follow from the strong Novikov conjec-
ture.

But there is an additional "geometric twist" to the scalar curvature story
which makes it more intriguing and interesting than the Novikov conjecture.

8 Harmonic Stability of Parallel Spinors and the
Positive Mass Theorem.

Since the index of the Dirac operator on the torus is zero the harmonic spinors
(which are parallel on the flat torus) may, a priori, disappear 3! under small
generic perturbations of the flat metric.

However — this lies at the core of the above argument —

harmonic spinors on T™ are stable in the T-family.?

Namely, whenever the Dirac operator D loses harmonic spinors under a
deformation /perturbation of the metric, some T-twisted perturbed D necessarily
acquires a non-zero harmonic spinor.33

The proof of this doesn’t even need the full power of the index theorem,
but only a simple topological argument applicable to general families of Fred-
holm operators + Fourier analysis on the flat torus. And the case of X non-
diffeomorphic to T™ needs only the easy part of the proof of the Atiyah-Singer
theorem.

If one passes from the torus to the Euclidean space R™, that is the universal
covering R™ of T™, then the above can be reformulated in terms of "twisted
stability" of (parallel) harmonic spinors under Z"-periodic perturbations of the
Fuclidean metric.

Then, instead of Z™-periodic perturbations one may look at perturbations
with compact supports and/or at perturbations with fast decay at infinity.

It was proven by Witten in this regard that the parallel spinors on R" are
harmonically stable under suitably weighted Lo perturbations of the Euclidean
metric.

30This was preceded by results proven by topological techniques starting from Novikov’s
work on the topological invariance of Pontryagin classes, who proved this theorem for n-tori
B in many cases, see [33, 102]| and reference therein.

311t may take an effort to actually prove this.

32This is vaguely similar to the stability of volume minimising hypersurfaces exploited by
the Schoen-Yau argument.

33There is no twisted, i.e. with non-zero 7 in the (Abelian) group T™, harmonic spinors on
the flat torus, only the parallel untwisted ones.
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Namely, Witten’s argument shows that

® if a complete Riemannian spin manifold X is isometric to R at infinity,
then it support non-zero harmonic spinors s such that (s— 30)‘00 € Lo wei for all
parallel spinors sg on R™.

This, together with the Schroedinger-Lichnerowicz-Weitzenboeck formula
with the boundary term, shows that such an X can not have Sc> 0.

Of course, this conclusion also follows from * % since compactly supported
perturbations of R™ obviously extend to N - Z™-periodic ones, but Witten’s ®
holds for a class of properly defined asymptotically flat perturbations, which
delivers an alternative proof of the Schoen-Yau positive mass theorem. (See
[95], [66] and references therein.)

Lokhamp’s Deformation [1999] [83]. Asymptotically flat metrics on X
with Sc > 0 and negative energy>* can be deformed to asymptotically flat ones
which have Sc >0 on the non-flat part of X.

Thus, the Witten (Bartnik for n>3) positive mass theorem for spin manifolds
reduces to ** from the previous section.

Another instance of such reduction is as follows.

Semiperiodic Metrics. Let X be a complete Riemannian manifold X with
Sc(X) >0 which is isometric at infinity to a complete flat manifold X ;.

A If there exists a homomorphism between the fundamental groups h: w1 (X) —
m1(Xys1) compatible in the obvious sense with the isometry between these mani-
folds at infinity, 3° then X is flat.

Proof. Complete flat manifolds Xy, = R™/T for I = 71 (X ;) can be approxi-
mated by rational ones, X }l =R"/T" where the rotation angles of all isometries
in I'" are rational, or equivalently, where some subgroups I'’V ¢ T of finite indexes
consist of parallel translations.

It follows by a simple argument (with a use of conformal deformations as
in the Kazdan-Warner theorem in section 6) that the metric in X admits an
arbitrarily small smooth perturbation with Sc > 0 such that the corresponding
Xy becomes rational. Then ** applies to a finite covering of X and the proof
follows.36

[d 7]. Questions and Conjectures. The existence of the homomorphism
h may be (?), in general, essential. But if I' = 7(Xy;) acts on R™ by parallel
translations, then, conjecturally,

[718]  all X with Se(X) >0 isometric to Xy; at infinity are flat.
(These X can be simply connected, for instance.)

[719] Probably, one can fully determine assumptions on 71 (X ) depending on
Xy needed for this conclusion for all flat manifolds Xy;.

[720] Also one can possibly relax the isometry at infinity condition by some
"asymptotic flatness" and negativity of a suitable "energy at infinity".

34The energy or mass of an asymptotically flat metric is defined as the limit of certain
curvature integrals over the spheres S" !1(R) c X, R— oo.

350ne may assume h is induced by a continuous map X — X1 which is isometric at infinity.

36The proposition * * needs X to be spin, where the non-spin case needs a use of non-
singular minimal hypersurfaces which are are available for n < 8, as it is explained in the
previous section. Also one has to take special care of the case Sc(X) = 0.
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9 Twisting Dirac with Moderately Curved Bun-
dles.

The proof of the inequality inf,cx Sc(X)(x) < 0 for overtorical manifolds X
(see * * in section 7) with a use of the Dirac operator twisted with flat bundles
l; tells you nothing about the geometry of X, since the family [, originates
from the fundamental group 71 (X) which is not (directly) related to anything
(geo)metric in X .

But the existence /non-existence of connections with small (rather than zero)
curvatures on vector bundles over X visibly depends on such properties. An
outcome of this is the two curvatures inequality @ which is stated below and
which shows that

manifolds with scalar curvature Sc > o > 0 can not be too
large area-wise,

where the area-wise size of X is measured by the norms curvatures of vector
bundles L over X defined as follows.

|lcurv(L)|| and Essential Bundles. Given a vector bundle (L,V) with
an orthogonal (unitary in the complex case) connection, over a Riemannian
manifold X, let

[leurv(L)[|(2) = lleurv(V)I[(x) = [lcurv(L, V)||(2)

denote

the infimum of positive functions C(x) such that the mazimal rotation angles
a € [-m, ] of the parallel transports along the boundaries of smooth discs S in
X satisfy

la| < [S C(s)ds

(The holonomy operator splits into the direct sum of rotations z — «;z,
2€C,a;€TcC,i=1,2,...,rank(L), and our o = max; ;.)

For instance, this norm of the tangent bundle (complexified if you wish) of
the product of spheres, satisfies

1
CW(T(XS"“RJ')))H " i 72
i J 7Y

A complex vector bundle L with a on a manifold X is called Q-homologically
essential, if it is trivial at infinity and if some Chern number of L does not vanish,
where this number is for non-compact X is defined with the corresponding Chern
class in the cohomology of X with compact supports.

Two Curvatures Inequality. [1983] [54]. Let L be a Q-homologically

essential complex vector bundle with a unitary connection®” over a complete
Riemannian n-manifold X.

37" Unitary connection" means a connection which preserves a Hermitian structure in L and,
similarly, "orthogonal connections" of real vector bundles are supposed to preserve Euclidean
structures in the fibers.
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If X is spin and if the scalar curvature Sc(X) is uniformly positive (at
infinity), Sc >0 >0, then

@ Sc(X)(x) < consty,.

aeX |leurv(L)||(2)

Sketch of the Proof. The Schroedinger-Lichnerowicz-Weitzenboeck formula
for the twisted Dirac operator Dgr, : C*°(S® L) » C*(S® L) reads

D2, =VeVi+iSc+Ry

where Vg denotes the covariant derivative operator in S® L and Ry, is a certain
(zero order) operator which acts in the fibers of the twisted spin bundle S® L
and which is derived from the curvature of the connection in L.

If we are not concerned with the sharpness of constants , all we have to know
is that Ry, is controlled by

IRL|| < const - ||curv(L)]

for const = const(n,rank(L)), where a little thought (no computation is needed)
shows that, in fact, this constant depends only on n = dim(X). (See [95, 74] for
details and references.)

Since L is homologically essential, the index of D twisted with some bundle
L® associated to L3® is non-zero by the Atiyah-Singer theorem and the proof
for compact manifolds follows, and if X is non-compact one applies the relative
index theorem for complete manifolds with uniformly positive scalar curvatures
at infinity, [54]. .

O Corollary: Rough Non-Hypersphericity Inequality.?® Let X be a
complete orientated Riemannian manifold with Sc(X) > o > 0. If X is spin,
then it admits no locally constant at infinity’® map f to the unit sphere S™(1),
such that

e f:X — S™(1) has positive degree,

e f is A\-Lipschitz with \ < const!,o.

Moreover no map [ with deg(f) # 0 decreases the areas of surfaces in X by
a factor X2 > (const], o).

Proof. 1If n is even, one applies @ to the bundle L on X induced from L
on S™ with Chern,,(Lo) # 0 and if n is odd one does this to X x R.

[+/—] Corollary to Corollary: Incompatibility of sect.curv < 0 and
Sc > 0. If a compact manifold admits a metric go with non-positive sectional
curvatures, then it carries no metric g with Sc(g) > 0.

Proof. The existence /nonexistence of A\-contracting maps of non-zero degrees
from the universal covering X of a compact Riemannin manifold X to S™(q) for
all A >0 does not depend on the metric in X.

Since the universal coverings of manifolds with non-positive curvatures, being
contractible, are spin and since they (obviously) admit such maps, () applies
and the proof follows.

38The bundle L® you need is the tensor product of certain exterior powers of L, [44].
39 A sharp version of this due to M Llarull is presented in section 17
40Such a map is constant on the connected components of X minus a compact subset.
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[721] Problem. Remove the spin an the uniform positivity conditions, relax
completeness and determine the sharp value of const,, (depending on the K-theory
class of L) in the inequality GD.

Remark. The method of minimal hypersurfaces (where for n > 10 one needs
Brian White's or a version of Schoen-Yau's singularity conjectures from section 6)
implies the non-spin version of () for A-Lipschitz maps but it remains unclear if it
ever works for area \?-contracting maps.

Also some bounds on on curvatures of vector bundles over non-spin manifolds
X with S¢(X) > 0 > 0 can be obtained with the Dirac operator as follows.

10 Dirac Twisted with %-Spin Bundles.

If £ is a spin bundle over X then the spaces of spinors S, (&), x € X, make a bona
fide vector bundle over X, denoted S(£) which can regarded as a spinor square
root /€. But if £ is non-spin, this bundle, which is defined everywhere locally, is
not defined globally due to the inherent +, / ambiguity in spinors; we write S*V(¢)

in this case and call it the (virtual) %-spin bundle associated to .

If two, say orientable, bundles &; and & of ranks n > 3 over a manifold X are
spin equivalent, i.e. if their restrictions & 2|S to all closed surfaces S in X are
mutually isomorphic, i.e. simultaneously spin or non-spin, then their virtual square
roots S*V/(£;1) and S*V(&;) have "equivalent ambiguities" which means in rigorous
terms that their tensor product S*V/(£;) ® S*V/(&2) is a well defined bundle.

Thus, although the Dirac operator D itself is not defined on non-spin manifolds,

the twisted Dirac operator Dgrrs is well defined for %—spin bundles L[*]
which have the same + ambiguities as S*V(X) = S*V(T(X)), e.g. LF =
S*V(X) ® Lo, where Lo is an arbitrary (true) vector bundle

Now the proof of above inequality @ automatically extends to non-spin mani-
folds X as follows.

Non-spin Two Curvatures Inequality. Let X be a complete Riemannian
(not necessarily spin) n-manifold X and L™ be a Q-homologically essential
virtual complex vector bundle*' defined over X which has the same +ambiguity
as SS*V(X).

Then there exists a point x € X, such that
@ Se(X)(z) < consty||curv(LE)||(z).

2

Dirac over Sphere Bundles. Let is give an alternative generalization of @ to
non-spin manifolds by passing to sphere bundles associated to non-spin bundles
& over X as follows.

X »¢ S™ and its Curvature. If a bundle £ over X is endowed with an
orthogonal structure, i.e with Euclidean metrics in the fibers, let X »¢ S™(R),
m = rankg (&) — 1, denote the total space of the (sub)bundle of R-spheres in the
fibers of €.

4Be LI#] a true or a virtual bundle, it is defined along with its connection everywhere
locally on X. Therefore, its curvature curv(L[*]), hence, its (real) Chern classes derived from
cum}(L[i] ), are globally defined on X, which also makes the concept of Q-Essentiality defined
for all these LI*],
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Next, given a Riemannian metric g in X and a orthogonal connection V in
¢ let § = §(V, R) be the Riemannian metric in X (R) = X x¢ S™(R), such that

e § is equal to g lifted to the V-horizontal (sub)spaces in T(X(R)),

e § is equal to the R-spherical metrics in the fibers S”*(R) ¢ X(R), = € X,
of the sphere fibration X (R) — X,

e the V-horizontal (sub)spaces in T(X (R)) are normal to the fibers S7(R).

Observe that the scalar curvature of this bundle satisfies

Sc(X(R)) 2 Se(X) +m(m—1)R™2 = const,y, - ||curv(€)]].

Also notice that a bundle £ over a manifold X is spin equivalent to the
tangent bundle T'(X) if and only if the total space of the associated to £ sphere
bundle, denoted X x¢ S™, m = rank(§), is spin.

Now, the inequity @D applied to X x¢ S™ implies the following.

Three Curvatures Inequality. Let £ be an orientable vector bundle of
rank m + 1 over a complete Riemannian, not necessarily spin, n-manifold X
with an orthogonal connection and let L be a QQ-homologically essential complex
vector bundle over X (R) = X x¢ S™(R), m = rank(¢).

If € is spin equivalent to the tangent bundle T(X), e.g. £ =T(X), then there
exists a point (x,s) in the fiber S™(R), € X(R) for some x € X, such that

@,wp Sc(X)(x) < constman (||curv(L)||(x, s) + ||curv(€)]|(x)) - const, R?.

(If X is spin and £ is the trivial bundle of rank m + 1, this follows follows
from, @D applied to X x S™, which for m > 1 imposes an a priori stronger bound
on Sc¢(X), than G for X itself.)

Discussion. Albeit the inequalitiesGD% and GAD,L sp have no topological impact

on non-spin manifolds, no corollaries like the above () and/or [+ / —]7 they do
provide non-trivial geometric information which can not be obtained by other
means available at the present day.

For instance, given two smooth Riemannian metics gop and g on a closed n-
manifold X, then the scalar curvature of g is bounded by the sectional curvature
K of go as follows.

Two Metrics Inequality. If g is area-wise greater than gq, i.e. if
areaq(S) > areag, (S)
for all smooth services S c X, then there exists a point x € X, such that

Se(g)(x) < constn|r(go) (7]

for some tangent 2-plane 1, ¢ T,,(X) and a universal constant const,, > 0.
This, qualitatively speaking, well illustrates the principle that

positivity of curvature of a Riemannian manifold
brings about bounds on the geometric size of X,

but quantitatively, as well as topologically, it is a far cry from the expected
inequalities of this kind.
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11 Twisted Dirac Operators versus Minimal Hy-
persurfaces.

As far as overtorical manifolds X are concerned, Dirac operator method, albeit
limited to spin manifolds X, has an advantage over the original Schoen-Yau
theorem of being not limited to n < 8. But it is superseded by the solution of
non-essentiality of singularities conjecture (see section 6).

Besides,

O Minimal hypersurfaces do not mind non-spin manifolds, but there is no
single (known) instance of obstruction to the existence of metrics with Sc > 0
on a non-spin manifold X of dimension > 5 in terms of the topology of X by
means of a Dirac operator.

For instance one can’t rule out metrics with Sc > 0 on connected sums of
2n-tori with complex projective spaces CP" for even n with a use of Dirac
operators.

OO Spin or non-spin, "over-torical" is more topologically restrictive than
the Schoen-Yau-Schick condition. Dirac operators are helpless for proving non-
existence of metrics with Sc > 0 on these manifolds as the example Xg., below
shows.

(O If X is spin then the the two curvatures inequality @ rules out many
topological types of non-SY'S compact manifolds X which admit metrics with
Sc >0, e.g. all those X which supports metrics with sect.curv < 0, which, are
in general not Schoen-Yau-Schick.

00O The major advantage of minimal hypersurfaces over Dirac opera-
tors from a geometric perspective is their applicability(?) to the scalar curvature
problems on non-complete manifolds and compact manifolds X with non-empty
boundaries. ( see section 20, 21)

OO0O The major advantage of twisted Dirac operators is their sen-
sitivity to the areas of surfaces in manifolds X which allow bounds on the area-
wise size of (spin and non-spin) complete manifolds with Sc > o (see sections
16, 17).

For instance, one proves with twisted Dirac operators (see the previous sec-
tion) that given a Riemannin manifold X = (X, go),

O no complete Riemannin metric g on X ("complete" is redundant if X
is compact without a boundary) which is area-wise greater than g can have
Sc(g) > o, for some positive constant o, = 0o(X, go),

where, recall, area-wise greater means that all surfaces S ¢ X satisfy areay(S) >
areag, (S).

Although method of minimal hypersurfaces fails short of proving this and
can only deliver a less precise bound which is expressible in terms of distances

and/or lengths of curves in X rather than areas of surfaces, this method applies

to non-complete metrics and yields the following distance version of O, 42

O [54] no Riemannin metric g on an X = (X, go) which is greater than g
can have Sc(g) > og for some positive constant og = og(X, go)-

L21If dim(X) > 9 the proof needs a suitable solution of the irrelevance of the singularities
conjecture.
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[721] Problem. Evaluate 0,(Xo) and og(Xo) for "simple" Riemannian
manifolds Xg = (X, go).

OOOO Dirac operators, because they are invariant under isometries, often
deliver optimal geometric inequalities for manifolds with Sc > o.

For instance, 0,(Xo) and o5(Xo) are equal to Sc(Xp) for many (conjec-
turally for all) compact symmetric spaces (Xy), see sections 17, but this seems
hard, if possible at all, to prove with minimal hypersurfaces.

Even in the most transparent case, where we know by Llarull’s theorem,
that

if a smooth Riemannian metric g on X = S™ is greater than the spherical
metric g (the difference g—- g is positive semidefinite) then there is a point x € X,
where Sc(g)(z) <n(n—-1) = Sc(S"),
there is no proof of this by means of minimal hypersurfaces for n > 3.

(Maybe, such a proof is possible, it seems realistic for n = 3, but this is
unlikely for complex and quaternionic projective spaces instead of S™, where
the Dirac operator works with no problem).

On the other hand, there are incomplete manifolds X, where a sharp eval-
uation is possible by means of minimal hypersurfaces, but not by the Dirac
operator methods, see section 21.

Thomas Schick Example [1998]. [105]. Let X = Xg.;, be obtained from
the n-torus T™) by attaching the 2-handle to the circle representing the triply-
multiple of one of the generators of 71 (T™). This is a spin Schoe-Yau-Schick
manifold X for all n > 4 with the fundamental groups Z" ! x Z/3Z, where all
(known?) versions of indices of the Dirac operators vanish; thus,

no known Dirac operator argument, unlike the method of minimal hypersur-
faces, can rule out metrics with Sc >0 on these X even in the spin case.

12 Coarea, K-Area, K-Area®™: Definitions and
Applications.

Let us bring out into the open geometric invariants behind the inequalities GD,
C(D% and Q) from sections 9-11.

Definition. The coarea of a complex vector bundle L over a compact Rie-
mannian manifold as

the infimum of the norms of the curvatures of unitary connections V in L,

coarea(L) = irvlf lcurv(L, V)||x-

for the curvature norm ||curv(L)||) from section 9.
Hopf Example. Since the tangent bundle of the unit 2-sphere satisfies
coarea(T(S?)) = 1, the Hopf bundle Lyops = \/T(5?), has coarea(Lops) = 5-
We adjust the definition of the K-area to the relative case, specifically where

X is a non-compact manifold and define coarea = coareafoo by only allowing
connections in L which are trivial flat at infinity. 43

43The relevance and significance of this "trivial", which means with trivial monodromy, will
be discussed later on.
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Whitney Sums and Tensor Products. Clearly,

[COAR® ] coarea(Ly ® L) < max(coarea(Ly),coarea(Lsy)).
and
[COAR®] coarea(Ly ® Ly) < coarea(Ly) + coarea(Ls).

[g|’]—C’omllary; The inequality [COAR®)] implies that

_ the coarea is monotone non-decreasing for push-forwards of vector bundles
L over X under finite covering maps between compact manifolds f: X - X,

coarea(fi(L) < coarea(L),
while the the (semi)invariance under pullbacks,
coarea(f' (L) < coarea(L),

for vector bundles L overX is fully obvious.

And if X are open manifolds, X than the push-forward monotonicity holds if
the covering map f: X — X is trivial/split at infinity, since triviality at infinity
of a bundle L on X and triviality at infinity of f imply triviality at infinity of
the push-forward bundle fi(L) on X.

Define K-area(h) of an even dimensional homology [44, 60, 79] class, h €
Hy(X), as the

supremum of —2"— over all bundles L such that {(h,L) # 0,

coarea(L)
where this non-equality means that there is a cohomology class c in the subring
generated by the Chern classes of L, such that (¢, h) # 0.
0dd Stabilisation. Extend the definition to the odd dimensional homology
by taking the product of X with the line,

K-area(h) = K-area[h ® [R]], for h € Ha;_1(X).

Thus, the K-area of (the fundamental class of) an even dimensional Rie-
mannian manifold,

K-area (X)=K-area[ X],

is equal to the supremum of the numbers A, such that X admits a complex
vector bundle L, with unitary connection such that

o L is Q-homologically essential, i.e. some characteristic number of L is
non-zero, where this L is assumed trivial flat at infinity if X is non-compact;

o [leurv(L)|| < 2F.

And if X is odd dimensional, then this applies to the product of X by the
real line, for

K-area(X) = K-area(X x R).

447 covering map A — A is split/trivial if it is one-to-one on all connected components of
A and the triviality at infinity is understood accordingly. Thus, a covering map f: X — X is
trivial at infinity if has trivial monodromy out of a compact subset in X (e.g. if X is simply
connected at infinity).
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Uncertain Remark. Tt follows from ||' (and from the residual finiteness of the
fundamental group 7 (S1) = Z, compare with | below) that

K-area(X xR) < K-area(X x S').
[722] Tt seems not impossible, at least for compact X, that, in fact,

K-area(X xR) = K-area(X x S').

K-Area*. Let us extend coarea/oo from vector bundles to the K-cohomology
classes in X represented by formal differences of unitary vector bundles L, Lo
on X with connections V1, Vs and with

connection preserving isomorphisms between Ly and Lo at infinity,
where we agree that

[[curv(Ly = Lg) = max(||curv(Ly)||, max ||curv(Ls)),

and where such a difference L, — Lo is regarded homologically essential if the
the Chern character of L; — Ly does not vanish on (X].
Accordingly, define K-Area*(X) as the

supremum of W over all homologically essential differences of bundles.

—Lo)||

It is obvious that
K-area*(X) > K-area(X) for all X,
K-area*(X) = K-area(X) for compact manifolds X,

and we shall see below that K-area®(X) can be significantly greater than K-
area(X) for open manifolds X.

On the other hand, the definition of K-area*(X), as well as that of the K-
area, is adapted to the relative index theorem from [54]; this allows the following
strengthening (and conceptualisation) of the two curvatures inequality (@ from
section 9 ).

Bound on the Scalar Curvature by Inverse K-Area*. All complete
Riemannian spin manifolds satisfy

const,,

inf X _.
X Se(X)(@) < K-area*(X)

Given a Riemannian manifold X = (X, g) with scalar curvature Se(g)(z) >
0 let us conformally modify g by the factor Sc(g)(x)™! and write X/Sc =
(X,Sc(g)"tg) (which corresponds to multiplying the local distance function

disty by \/Sc(g)).

Sc-Conformal K-Area Inequality. The two curvatures inequality @ from
the previous section now says that

complete n-dimensional Riemannian spin manifolds with positive scalar cur-
vatures satisfy

[K/Sc] K-area(X/Sc) < const,,
for some universal constant const, > 0.

In particular,
if Se(X) >0 >0 then K-area(X) < const,o™'.
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13 K-Area and K-Area': Examples and Proper-

ties.
(a) 2-Spheres. Riemann surfaces X homeomorphic to S? satisfy
K-area(X) = area(X).

Proof. Since chern(Lpops) # 0 and coarea(Lpops) = %, the unit sphere
S? satisfy K-area(S?) > 47 = area(S?), while the inequality K-area(X) >
area(X) for X = (S2,g) for all Riemannin metrics g follows from the obvious
area-like scaling property of the K-area and its (equally obvious) invariance

under area preserving diffeomorphisms.
On the other hand, if a unitary L bundle over a closed surface X satisfies

L)<2
/XHCUTU( )< 2w

then by (Chern-Weil) Gauss Bonnet theorem, chern(L) = 0.
The proof of the equality between K-areas and areas of spherical surfaces is
thus concluded.

(b) Equidimensional Embeddings.  Since bundles over open subsets
U c X which are trivial at infinity obviously extend to X,

K-area(U) < K-area(X)

for all manifolds X and all open subsets U c X.

(It is not so for the K-area™. For instance, we shall see below that albeit
K-area®(S?) = K-area(S?) = area(S?) < oo,

non-simply connected domains U c S? have K-area*(U) = c0.)

The above embedding inequality sometimes becomes an equality. For in-
stance,

if the complement to an open subset U c X is zero dimensional, then

K-Area(U) = K-Area(X).

(c) Surfaces of Genus Zero. If a surface X has infinite area then it
follows from (&) below that its K-area is also infinite, while if genus(X) = 0
and area(X) < oo, then X admits an area preserving diffeomorphism onto S?
minus a zero dimensional subset. Hence,

All surfaces X of genus zero satisfy
K-area(X) = area(X).

On the other hand, by (d) below, all surfaces with infinite fundamental
groups, regardless of their genera, have K-area™ = oo

(d) Invariance Under Covering Maps. If f: X — X is a finitely sheeted
covering map, then the above ||' (obviously) implies that

[I]+ K-area*(X) = K-area® (X).
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Furthermore, if f is trivial/split at infinity, then
[I] K-area(X) = K-area(X),

Surface Corollary/Example. Orientable surfaces with infinite fundamental
groups have K -areas™ = oo and those with positive genera also have K -area = co.

(The finiteness of K-areas of surfaces of genus zero with finite areas shows
that triviality at infinity of f is essential.)

(e) Area Monotonicity of the K-Area. It is obvious that the K-Area
decreases under equidimensional proper area decreasing maps f : X; - X5 of
non-zero degrees.

Hyperspherical Corollary. If, given € > 0, an orientable n-dimensional Rie-
mannin manifold X admits a locally constant at infinity e-Lipschitz map X — S™
of a non-zero degree, then

K-area™(X) = oo.

For instance the Euclidean space R™ and, consequently, all other complete
simply connected manifolds with sectional curvatures £ < 0 have infinite K-
areas.

This and the above (d) imply, that

compact manifolds X with £ < 0 and with residually finite fundamental
groups*® have K-area(X) = oo.

[723] Question. Is the residual finiteness of the fundamental group essen-
tial? Can, for instance, a compact manifold X with finite K-area have the
universal covering with infinite K-area?

A Skeptic’s Response. This question is due to the provisional nature of the
definition of the K-area. A satisfactory answer is available with the concept of
the Fredholm K-area which is invariant under infinite coverings. (see section
27).

(f) K-Areas of Spheres. The R-spheres S™(R) have K-areas 47 R?.

Proof. Recall that the bound K-area(S™) > 4rR? for n = 2 was derived
from the existence of a connection with curvature % on the Hopf bundle Lgopy =
+/T(S5?).

If n > 2 is even, then one uses the spin bundle S*(S™) (or S™(S™), if you
wish) in the role of Ly,,s, where it is easy to see that the spin bundle is Q-
homologically essential bundle and the curvature of the Levi-Civita connection
on it satisfies 1
5"

If n is odd, then the lower bound of K-area(S™) by 4 is derived from that
for S™*1 via an (obvious) area non-increasing map S™ x R - S™*! of degree one
and the case of the spheres of radii R # 1 follows by the scaling property of the
K-area. Thus, the inequality

KOs, K-area(S™(R)) = area(S*(R)) > 47 R?,

[leurv(S*(S™))Il =

45The fundamental group IT = 71 (X)) is residually finite if, given an R > 0, there is a finite
covering X — X which is one-to-one on all R-balls in X. For instance, the fundamental groups
of all locally symmetric spaces, e.g. of those with constant sectional curvatures, are residually
finite by an old theorem of Selberg.
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is established.
Now in order to prove that

KOctn, K-area(S™(R)) = area(S*(R)) < 47 R?,

let us show that if a unitary) connection V in a bundle L over 5™ has ||curv|| < 1
then the bundle L is trivial.

To see this, let us parallelly transport an orthonormal frame from the north
pole to the south pole along geodesics in S™, n > 2 and let ® be the resulting
map from the unit (n—1) sphere S~ — the tangent sphere at the south pole —
to the unitary group U(N), N = rankc(L).

Let us endow U(N) with the (standard bi-invariant) metric, such that the
infimum of the lengths of the compact one-parameter subgroups, hence, of all
closed geodesics, is 2. Then the Lipschitz constant of ® with respect to this
metric satisfies

Lip(®) < 2|jcurv(L)||

It follows that if a bundle L has |[curv(L) < 3||, then Lip(®) < 1, and since the
maps S"! - U(N) with Lip < 1 are contractible, L must be trivial and the
inequality ¥4, for even n follows, from the product inequality below.

(g) K-Area of Products of Spheres. The products of spheres satisfy
K-area(S™ (Ry) x ... x 8" (R;) x ... x S™ (R},)) = 47w min R7,

where the minimum is taken over all i for which n; > 2 and where we allow
Snl(Rl = 00) :def Rnl.

Proof. The lower bound K-area(X; S™ (R;)) > 47 min R?, follows from that
for S™**" (min R;) via an obvious distance non-increasing map of degree one,

X S™(R;) —» S™F ™ (min R;).

To prove the opposite inequality, let us show that

The product of the unit n-spheres for n > 2 with all manifolds Y satisfy the
following

Sm-Product Inequality:  K-area(S™ xY) < 4.

Indeed, let first n = 2 and suppose that the restrictions of a unitary connec-
tion V in a bundle L = (L, V) over S xY to the spheres S? xyc S?xY, yeY,
have [|curv||, . Then the parallel north poles - south poles transport in these
spheres defines maps @, : S* = S; — U(N), such that Lip(®,) < 1.

By elementary (and obvious) Morse theory, this inequality implies that the
family of maps ®,, y € Y, is homotopic to a family of constant maps; there-
fore, the restrictions of L to the spheres S2 x y are simultaneously trivializable
continuously in yeY.

Hence, the bundle L is induced from (a bundle on) Y by the projection
5?2 xY Y and it can’t be homologically essential.

Then the case of n > 2 follows via a distance non-increasing map of degree
one, S2x 8" 2xY —» S"xY.

R =min R? = 1 and let n > 2 be the dimension of the corresponding sphere.
If n = 2, then the proof follows, by the reason we indicated above:
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the maps S — U(N) with Lip < 1 are canonically (and obviously) con-
tractible to points as by the elementary Morse theory.

Then the case of n > 2 follows via a distance non-increasing map of degree
one, 5% x "2 - §". QED.

Remarks/Questions.

[724] (i) It is unclear if the last step in the above argument is truly needed:
conceivably, maps ® : $"~* - U(N) with Lip(®) < 3 are contractible to con-
stant ones continuously in ® for all n.

(ii) The Product Inequality in the case n = 2 generalises to products S? x Y’
with arbitrary Riemannian metrics g on S? x Y as follows.

S2-Product Inequality: K-area(S?xY,g) < Sup, ey areag(S? xy).

Proof. The family of restrictions g, of g from S2xY to S?xyc S2xY
can be replaced by a continuous family of metrics h, on S? x y with constant
curvatures, such that

areap, (Uy) = areagy, (Uy) for all U, c 5% xy.

Then the above argument applies to the spheres (S? x y, hy,) = S*(R,), for

(S? xy,hy) = S*(Ry) for R; = \/41ct7"ecthy(52 x 1)
7r

and the proof follows.

[725] (iii) The S™- and S?-product inequalities seems to hold for non-trivial
sphere fibrations, but I have not checked this carefully.

(iv) Much of the above generalises to (open) balls B™ with Riemannian
metrics which admit area non-increasing diffeomorphisms f : B™ - S” \ s,
59 € S™, such that the inverse maps f~!: 8™ \ s, - B" are area preserving on
the equatorial 2-spheres in S™ passing through sg.

For instance, since the Euclidean balls B”(R) c R™ admit such maps, we see
that

K-area(B™(R)) =27 - R?,

and
K-area(B"(R) xY) < 21 - R
for all Riemannin manifolds Y.

Warning. The infinite bands X; = [0,a;] x R and X3 = [0,a2] x R have
infinite K-areas, but their product satisfies

K-area(X; x X3) =ay -as < o0

(This does not happen to closed manifolds X, X5, where, in fact, K-area(X; x
X5) < max(K-area(X), K-area(X3).4%)

46The K-area, unlike the scalar curvature, is not truly additive/multiplicative under Rie-
mannian products of manifolds. In fact, the best you can do, even you go Fredholm, is

K-area(X1 x X2) = max (K-area(X1), K-area(X2)).

One may tolerate this discrepancy between the two notions in-so-far as one does not care for
sharp sharp inequalities. But the latter need a certain "normlization" of the K-area which we
shall discuss elsewhere.
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But
K-area*(B?*(R) x R") = co for all R >0 and n > 1.

[726] Uncertain Remark. Some versions of the above inequalities hold not
only for S™ x X but also for non-trivial sphere and ball bundles over Riemannin
manifolds X, but I have not worked this out in details

14 Spin-Area. and K%-Area.

Denote by spin-area(X) of an orientable Riemannin manifold the supremum
of the numbers A such that X supports a real vector bundle £ over it with
an orthogonal connection trivial flat at infinity, which is spin equivalent to the
tangent bundle 7'(X) and such that

Jeurv ()l < .

Then define Ky -area(X) as the supremum of the numbers A’ such that X

supports a virtual Q-homologically essential complex vector bundle L] (as in

the non-spin two curvatures inequality from previous section) with the same

+-ambiguity as T'(X) and where L[*] admits a unitary connection trivial flat at
infinity, such that

7r

lleurv(LEN)|| < T

Observe that since

1
lleurv(L ® £\/¢]| < (|leurv(L)|| + Slleurv(©)ll,
the K -area of (X) is bounded from below by
Ki-area(X) > [(K-area(X))™! + (spin-area(X)™ | L.

Examples.

e The spin areas of spin manifolds are infinite.

e The spin area of a simply connected non-spin manifold X is bounded by
the area of the infimum of the areas of embedded spheres S? ¢ X on which the
tangent bundle T'(X) is non-spin.

e Even dimensional complex projective spaces CP?™ have spin areas 4
area(S?), since the canonical bundles L., are non-spin and ||curv(Leay)|| =
for the standard metric in CP?™ which are normalised to have the maximum
of the sectional curvatures equal 1.

e Let X be the total space of an orientable non-spin real vector bundle of
rank 2 over an orientable closed surface X;. Then

X is non-spin while spin-area(X) = oo, unless Xg is topologically the 2-
sphere.

D= ]

* Problem/Question. It would be naive to believe that the spin areas of
Riemannian n-manifolds are bounded from below by

spin-area(X) > bymin.area(Sy ¢ X),
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where min.area(Sy ¢ X) denotes the infimum of areas of T(X)-non-spin sur-
faces S surfaces S ¢ X i.e. on which the tangent bundle T'(X) is non-spin, and
where b,, > 0 is a universal constant.

In fact, the stable systolic inequality in conjunction with the systolic free-
dom of CP? [9] suggest, for example, that the complex projective plane CP?
admits Riemannian metrics g with arbitrarily small spin-areas and arbitrarily
large min.areaq(Sy1 c CP?).

[727] On the other hand, if the §-neighbourhoods Us(S) ¢ X of all T'(X)-
non-spin surfaces S in a Riemannian manifold X are "large" then the spin area
of X must be also large.

[728] For instance, let X be homomorphic to CP? and let vol(Us(S)) > 62
for all T'(X)-non-spin surfaces S ¢ X and 0< 4§ < 1. Is then

spin-area(X) > 1/1 000 0007

Now let us reformulate the the non-spin two curvatures inequality from the

previous section in the K 1 -terms.

Sc-Conformal K 1 -Area Inequality. Complete n-dimensional Rieman-
nian manifolds with positive scalar curvatures satisfy

Ky-area(X) < consty,

for some universal constant const, > 0.
In particular, if Sc¢(X) >0 >0, then

min (K-area(X), spin-area(X)) < const,, - o L.

15 Waist, Width, Filling Radius, Macroscopic Di-
mension and Uniform Contractibility.

We remind in in this section definitions of several invariants of Riemannian (and
non-Riemannian) spaces X which characterise their "metric size" and which al-
low formulation of basic conjectures on manifolds with positive scalar curvatures
Sc(X) 20 >0 in section 10. (See [57] and references therein for more informa-
tion.)

Slicings and Waists. An m-sliced i-cycle is an oriented i-dimensional pse-
domanifold P = P? partitioned into m-slices P, c P, which are the pullbacks of
the points of a simplicial map ¢ : P - @ where @ is an (¢ —m)-dimensional ori-
entable pseudomanifold, where all pullbacks P, = ¢~ (¢) c P have dim(P,) <m,
q € Q, and where ¢ is required to be proper, hence, with compact pullbacks
©71(q), if P is non-compact.

The m-waist, denoted waist,,(h), of a homology class h € H;(X) is
the infimum of the numbers w,

such that X receives a Lipschitz map from a compact m-sliced cycle, ¢ : P* - X,
which represent h, i.e.

¢«[P]=h
and the
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the images of all slices in X have m-volumes < w,

where these "volumes of the images" are counted with multiplicities (which is

unneeded for generically 1-1 maps.)
Clearly,

waist,, (h + ho) < max(waist,, (h1), waist,(hs2))

and m-waists are monotone decreasing under homology homomorphisms induced
by m-volume contracting maps.

Waists of Non-Compact Manifolds X. If X is non-compact, then [X] is
understood as the homology class with infinite supports; accordingly the corre-
sponding proper waists are defined with proper Lipschitz maps P - X.

Alternatively, one allows non-proper maps P — () which slice P into non-
compact sub-pseudomanifolds. Then proper maps P — X define what we called
just waist denoted, waist,,[X].

And if X a compact manifold with a boundary, we use the notation [X] for
the relative class in H,(X,0X) and set

waist, [ X] = waisty,[int(X)],

which can be also defined via slicing of compact pseudomanifolds P with bound-
aries and maps of pairs (P,0P) - (X,0X).

The m-~waist of a compact connected orientable Riemannian n-manifolds X
is defined as waist,,[X] of the fundamental homology class [X] € H,(X).

For example,

waist,[X] = vol(X).
Waists of Spheres and Balls. It is obvious that the unit spheres S™ satisfy
waist,, (S™) = vol (S™)

forallm=1,2,...,n.
Conversely, an application of Almgren’s min-max principle yields the follow-
ing.

Sharp Spherical Waist Inequality.
waist,, (S™) > vol(S™)

forallm=1,2,....,n.

In fact, according to Almgen’s Morse theory, the m-waists of a compact
Riemannian manifold X is

bounded from below by the infimum of volumes of minimal m-dimensional
subvarieties Y, < X.

Then the lower bound

ol (Ynin) 2 vol(S™)

for Y "

c 8™ follows from either of the following two inequalities.

o1 If the sectional curvatures of a compact Riemannian manifold X are
bounded fro below by 1 then

vol (X)) vol(Y,ns,,) <vol(S™)[vol(S™)

min
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for all minimal subvarieties Y,; < X.

Indeed, according to Levy-Bishop-Bujalo-Hentze-Karcher comparison inequal-
ity, the volumes of the r-tubes (r-neighbourhoods) around Y, c X are bounded,
as much as such tubes of §™ c S™, where applicability of this inequality to an,
a priori, singular Y, relies on the Almgren-Allard regularity theorem.)

On Generalisations. This e, yields sharp lower bounds on waists of many
non-spherical manifolds, e.g. of the quotient spaces X = S™/Z; for isometric
(free and non-free) actions of finite cyclic groups Z; = Z/iZ on S", see [58, 1],
section 3 in [?, ?], [91] and references therein.

[728] Besides, similar results are expected for all singular Alexandrov spaces
with lower curvature bounds but the Almgren’s regularity theory has not been
developed even for Alexandrov spaces with conical singularities, where the only
apparent, yet instructive, case is that of isolated singularities.

®_,... If the injectivity radius of X at a point z €Y. < X is > R and if the
sectional curvatures of X in the R-ball B, (R) c X are bounded from above by
Ko then the m-volume vol (Y, N By (R)) is bounded from below by the volume
of the R-ball B™(R, k¢) in the standard m-space with constant curvature ko by
the monotonicity formula for minimal subvarieties.

About the Balls. Neither o,.5; nor @, directly apply to the balls B™(R, ko)
with constant curvatures; yet, by comparing their waists to those of spheres by
means of suitable O(n)-equivariant maps B"(R,rq) — S™, one arrives at the
expected values ( see section 3 in [?, ?, 2]),

waist,, (B" (R, ko)) = vol(B™ (R, ko))
Rectangular Example. the rectangular solid
X =[0,d1] x[0,d2] x ... x[0,d,] cR", dy <d3 <... < dpp,
obviously satisfies
waisty, [X]<dy-dy- ... dp,

and
waist,, [ X] > waist,[[0,do]"] for do = X/dy - da- ...  dpm,

where the latter implies that

d, d
waist,[X] > wastm[B"(?O)] = Uolm(B”(g])constn “dy-dy-...-dp,.

Also it is not hard to show that if dyi1 >> dp, €8 dmir 2 (m+1)"d,,,
then waist,,[X]<dy-da- ... dy,. But — this was pointed out in [58] — deciding
what happens for d; = ds = ... = d,, remains a challenge.

However, one knows that, for instance, manifolds X with constant negative
curvatures, e.g. Riemann surfaces of genus > 2, admit finite i-sheeted coverings
X; with arbitrarily large ¢ (which implement expanders), such that the rescaled
manifolds X . = E%i_lXi, which have vol(X; ) = €, satisfy

waist,-1[X;e] — oo for all e >0.

7—>00

Then Riemannian products of such manifolds,

X’ilsl X Xigé‘z XX Xij6j7
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which may cover different X = X1, X»,...X;, deliver a wide range of possible
values of possible waists, but fail short of confirming (if it is true at all) the
following.

[729 | Waist Independence Conjecture. There exist compact Rieman-
nian manifolds X of all dimensions n with arbitrarily prescribed waists,;,[X] >0
for allm=1,2,....,n.

Slice Area. What is most relevant for us in this paper is waisty[ X ], which
is conceptually (and conjecturally) related to the K-area and which may be
called slice area of X,

slice-area(h) = waista(h), h € H;(X), and slice-area[ X | = waista[ X].

The slice area is close to the K-area for "simple" manifolds X.

For instance, it is easy to see that the ratio of the two is bounded from above
and from below for rectangular solids X = x;[0,d;], di,< ds < ... < d,,, and that
if d3 >> dy then K-area = slice-area = dy - ds.

[729 | But it is unclear if K-area = slice-area for all rectangular solids, where
such equality does not seem 100% impossible even for products of general simply
connected surfaces.

[730] On the other hand, there probably exist compact simply connected
n-dimensional manifolds for all n > 4 with arbitrarily prescribed (finite) values
of the K-area and the slice-area.

Grassmannian Example/Exercise. Let the complex Grassmann manifold
Gry(CN*M) be endowed with the standard Riemannian U(N + M )-invariant
Riemannian metric which is normalised such that the maximum of its sectional

curvatures is equal to one.
Then the slice area of this Gry(CN*M) satisfies

waisty(Gry (CVNM) = 47 = area(S?).

Uryson Width and Macroscopic Dimension. The k-width widthy(X) of
a metric space X is

the infimum of the numbers d,

such that X admits a continuous map to a k-dimensional polyhedral space P,
say A: X — P, where

the diameters of the pull-backs of all points are bounded by d,

diamx (A" (p)) <d, pe P.

It is obvious that widtho(X) = diam(X) for connected X, that
widtho(X) < widthy (X) < ... < widthi(X) < widthg1 (X) < ...

and that
widthy,-1(X) < waist, (X).

It is also clear that the rectangular solids satisfy

widthy_m ([0,d1] x [0,d2] x ... x [0,d,,]) <\/d3 + ...+ d2,,
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where we assume d; < ds < ... <d,, as earlier, and the opposite inequality, called
Lebesgue Lemma,

widthy—p ([0,d1] % [0,d2] % ... x [0,dn]) > dpm

is also obvious my the modern standards.*” But

[731] the sharp values of widthy_,, for these solids remains problematic for
m > 2,

(unless I missed some paper).

The macroscopic dimension of X is the minimal number k, such that widthy (X) <

For instance,
macr.dim(Y xRF) = k

for all compact spaces Y, where the (intuitively obvious) inequality
macr.dim(R”) > k-1

follows from Lebesgue’s lemma.

Filling Radius. This radius, denoted fil.rad(h), is defined for homology
classes h of metric spaces X, e.g. for the fundamental classes [X] of manifolds
X, as

the infimum of numbers R such that X = (X,distx) admits a metric exten-
ston Y 5 X, where

odisty(y,X)< R forallyeY;

o the class h vanishes in the homology of Y.

For example, if X is the unit n-sphere S™ with the usual Riemannin metric
and h = [S™] € H,(S™), then the hemisphere S7*! 55" is an instance of such a
Y o X with R=n/2.

It is obvious that

filorad[ X] € width,-1(X), n=dim(X).
What is less obvious and more interesting is the following
Filling-Waist Inequality [41, 55, 124].
fil.rad[X] < const, -waistm[X]%, for all m=1,...,n.

In particular,
fil.rad[X] < consty, - vol(X).

The latter was strengthened simultaneously in two respects by Larry Guth [59]
as follows.

Width Small Ball Inequality. There exits a positive constant e = e(n) > 0,
such that the inequalities

vol(By(1)) <e, x e X,
for all unit balls B, (1) c X imply that

widthn,l (X) <1

47This was proven by Brouwer who pointed out an error in the original paper by Lebesgue.
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[732] Conjecture: Waist-Width Inequality. All complete Riemannian
n-manifolds X satisfy

widthy,_1(X) < consty, - waist,_p+1(X).

Contractibility Radius. This "radius", denoted contr(X,r), r > 0, of a
metric space X is the infimum of the numbers R, such that every r-ball B, (r) c
X is contractible within the concentric ball B, (R) > B, (r) of radius R.

It is (almost) obvious that [41]:

A. Complete Riemannian manifolds with cocompact isometry groups, e.g
universal coverings of compact aspherical manifolds, have contr(X,r) = oo for
all 7> 0.

B. If a complete n-dimensional manifold X satisfies
contr(X,r;) <ry1 fori=1,2,...,n and r1 <o < ... <Tpyp < 00,
then
filrad[X] 2 ri/(n+ 1)L

C. 1t follows that

the universal coverings X of compact aspherical manifolds X have

fil.rad(X) = oo.

Consequently,
these X satisfy

waz’stm(X') =o0,m=1,2..,n=dm(X),

as well.

16 Standard Geometric and Topological Conjec-
tures on Complete Manifolds with Positive
Scalar Curvatures.

[733] Slice-Area Inequality. All complete Riemannian n-manifolds X with
positive scalar curvatures satisfy:

(- D) waista[ X [Se] < by,

where, recall, "/Sc" signifies rescaling of the Riemannian metric g of X by the
function Sc(X)(z)7!, i.e. X/Sc=(X,g(z)/Sc(X)(z)).
Moreover

the (conjectural) optimal constant must be

by, =4mn(n-1),
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which is taken from the equality

waisty(S™(1)) = 4w = 4wn(n +1)Se(S™(1)) ™ .

Corollary to 5.

-3} waista[ X] < bn(gl)g Se(X)(x))™.

[734] Conjecture. Bounds on Width and on the Macroscopic Di-
mension. Complete n-dimensional Riemannian manifolds X with the scalar
curvatures Sc(X) > o > 0 satisfy

macr.dim(X) <n - 2.
Moreover,
O widthy, 2(X) < constno_%.
where, in fact proving even the weaker inequality
ON width,-1(X) < constna_%.

would make one happy.
[735] Conjecture. Bound on the Filling Radius for Sc>o > 0.

® fil.rad[X] < const,, - (12)f( Se(X)(x))72.

This, in view of A,B,C from the previous section, yields the following.

[736+1=37] Conjecture 11. Constrained Contractibility for Sc>o >
0. Complete manifolds X with Sc(X) > o > 0 are not uniformly contractible.
= This yields non-asphercity conjecture [713] from section 4: There are no
compact aspherical manifolds with positive scalar curvatures.

Discussion. (a) Bounds on the filling radius stated in the previous section
and the (easiest of all) waiste-case of the conjectural waist-width inequality
from the previous section show that

®,— 0, = ® = constrained contractibility = non-asphericity.

N7

[’}2 3[‘}1
(b) The conjectures @9 and @, are very strong with no serious evidence in
their favour. They are not even known for manifolds with positive sectional
curvatures, where only the case of convex hypersurfaces X c R™! seems not
difficult.
(¢) What is known about ¥; and % is only (apparently non-sharp) %, for
complete 3-manifolds X? with Sc(X?) > o >0 [54],

width, (X?) < 127677,
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But starting from n = 4 there is no convincing evidence even for macr.dim(X) <
n—1. Yet some results are available for spin manifolds with cocompact isometry
groups.|[13, 28].

(d) The non-asphericity conjecture would follow from @ from section 8 and
the following conjectural algebra-topological property of universal coverings of
compact spherical manifolds X, which, (an easy argument), depends only on
the fundamental group of X.

_ [738] Conjecture. Asphericity = K-Area = co. The universal coverings
X of compact aspherical manifolds X satisfy

K-area(X) = oo.

Notice that this inequality, even in a stabilised form, implies the strong
Novikov conjecture for m1(X), which is stronger than the non-asphericity for
Sc >0 [101].

This makes it too good to be true; yet, no candidate for a counterexample
is anywhere in sight.

(e) Recall that a more comprehensive form of the asphericity conjecture [713]
, that is Q-Non-Essentiality conjecture [712| from section 4. reads.

If a closed orientable manifold supports a metric with Sc > 0, then the
canonical (unique up to homotopy) map from X to the (classifying) Eilenberg-
MacLane space of its fundamental group m = 71(X), say ® : X - Bm =
K(w1,1), vanishes on the fundamental class of X,

®,.[X]=0¢ H,(Bm), n=dim(X).

(Notice that ®,[X] = 0 implies that f.[X] = 0 for all continuous maps f
from X to all aspherical spaces.)

This would follow from the following K-theoretic conjecture.

[739] Let B = BI' be the classifying space of discrete countable group, let
f X - B be a continuous map from a Riemannian manifold X. Then there
exits a compact subset By ¢ B which contains the image f(X) c B and such
that

the Fredholm coareas of certain non-zero multiples of the pullbacks bundles
f*(L) on X become arbitrarily small.

Namely,

given € > 0 there exists an integer N # 0 and a Fredholm bundle (L,V) over
X (see section 27) with ||curv(V)|| < €, such that L is K-theoretically equivalent
to the Nth Whitney power of f*(L),

L[ (L)e..a" (L)

N

17 Extremal Metrics with Sc > 0.

According to the two metrics inequality from section 9 there is an upper bound
on the "area sizes" of metrics g on X with Sc(g) > o > 0 on all compact manifolds
without boundary. This suggests the following definitions.
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Area Extremality. A metric g on a manifold X is called area extremal/maximal
if all area-wise larger Riemannian metrics g on X, i.e. such that

areag(S) 2 areay(S) for all smooth surfaces S c X,
satisfy
[max] in}f((Sc(g)(a:) - Se(g(x)) <0.

Area Extremality/Sc [78]. This is a stronger property of g where the integrals
of the scalar curvatures of all Riemannin metrics g on X over all surfaces S ¢ X
are bounded by such integrals for g

[max], fSS’c(g)(s)dsggzfSSc(g)(s)dsg.

Length Extremality. This is weaker than area extremality: all Riemannian
metrics g, which are greater than g must satisfy the scalar curvature bound
infgex (Sc(g)(x) - Sc(g(x)) <0. B

Length-Sc Extremality. All Riemannian metrics g on X must have the inte-
grals of Sc(g) over the curves in X bounded by such integrals for g.

Rigidity in this context signifies that if g satisfies equalities in place of the
inequalities [max], [max],, etc., then g = g.

[7395|Question. Are C?-limits of area extremal and of area extremal/Sc
metrics on compact manifolds are area extremal? Is this true for length ex-
tremality?

(Limits of rigid metric may be non-rigid as in [max 1] below.)

Examples

[max 1] Surfaces. Metrics with curvatures x > 0 on closed surfaces are area-Sc
extremal by the Gauss-Bonnet theorem. These surfaces are area rigid if and
only if they contain no domains isometric to cylinders [0,71] x S1(ry) or to
corresponding Mébious bands, e.g. if k> 0.

On the other hand, these surfaces are never area-Sc rigid. In fact, there
are plenty of diffeomorhisms between surfaces with positive curvatures which
preserve the integrals of the curvatures over all open subsets in these surfaces.

[max 2] Scalar Flat Manifolds. If Sc(g) = 0 and if the underlying manifold
X, assumed connected, admits no metric with Sc > 0 — this happens, as we
know, to all Riemannin flat and certain (not all) Ricci flat manifolds, then g is
area-Sc extremal. But, none of these metrics is rigid. B

Despite the existence of a bound on the size of a manifold (X,g) by o =
inf, Sec(g)(x), it does not apparently imply that extremal metrics on X exist:

families of strictly increasing metrics with positive strictly increasing scalar
curvatures may be unbounded as the following example shows.

[max 3] Mized Curvature Products. Let S; and S be surfaces with metrics
g1 and go which have constant scalar curvatures x; > 0 and —ko < 0 where
Ko = %m. Then the 4-manifolds

X(t) = (S1,%x82,(2-(1+t)H)?g @ (1+1)g2
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have positive strictly increasing scalar curvatures starting from Se¢(X(0)) = %
and blowing up to X (o) = (S1,2¢1) x R? with scalar curvature Sc(X (o0)) = %

It remains unclear if these manifolds X admit extremal metrics at all, but
the existence of such metrics on the n-spheres is confirmed by a 1996 theorem
by Llarull.

[max 4] Extremality and Rigidity of S™. The unit spheres S™; hence,
all compact manifolds with constant sectional curvatures, are area extremal/Sc
and, if n > 3 Area rigid/Sc.

Llarull only states the area rigidity/extremality of S™ in his paper but his
argument presented in [81, 95] yields area extremality/Sc and rigidity/Sc as well

as it was pointed out by Listing [78].)
[max 5] In fact, Llarull proves the following more general result (rendered
extremal /Sc in[78]*®).

Area Spin Extremality /Rigidity Theorem. Let X be a complete Rie-
mannian orientable spin manifold of dimension n + 4k such that

Se(X)2n(n-1)=Se(S™)
and let f: X — S™ be a smooth non-strictly area decreasing map,
area(f(S)) < -area(f(S)) for all smooth surfaces S c X.

If the pull back
Y§ = f_1(§) cX

of a generic point s € S™ satisfies
A(Y,) #0,

then Sc¢(X) = n(n —1) and the map [ is an isometric submersion, i.e. the
differential Df : T(X) —» T(Y) has rank(Df) =n and Df is isometric on the
vectors normal to the (4k-dimensional) kernel of Df.

In particular, if k = 0 and f has non-zero degree, e.g. it is a homeomorphism,
then f is an isometry.

Goette and Semmelmann generalised the above to several classes of symmetric
spaces with non-constant curvatures. (See [38, 39], where one finds references
to earlier results by other authors). For instance, they prove the following.

[max 6] Compact symmetric spaces X with non-zero Euler characteristics,
e.g. the Grassmanians X = Gra, (R*™) = SO(4n)/SO(2n) x SO(2n), are area

extremal and area Tigid.

More surprisingly, Goette and Semmelmann showed that there are non-
empty C%-open sets of area extremal metrics on the spheres and open subsets of
extremal metric in the spaces of Kdhler metrics on certain complex manifolds.

Namely the prove the following.

[max 7] Persistent Extremality of Metrics with Constant Curva-
tures. Metrics on S™ with positive curvature operators, in particular, the met-
rics which are C?-close to (one could say "moderately far from") the standard
metric on S™ are area-Sc extremal and rigid.

48Be careful with [78]: some statements in this paper, unless I misinterpret them, are
incorrect.
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[max 8] Persistent Extremality of K&hler Metrics. Compact Kéhler
manifolds with Ricci > 0 are area extremal and rigid [38]-Goette Semmelmann
Spin-c Structures 2001].

This generalises an earlier theorem by Min-Oo [93] who proved

area extremality of compact Hermitian symmetric spaces.

[max 9] Extremality of Products. In all known cases — this is true for the
spaces and metrics in the above examples [max 1]*°, [max 2]5° and [max 4]-[max
8],

Riemannin products of area extremal manifolds are area extremal
and products or area rigid manifolds are area rigid.

For instance,

the products of spheres,
X =X 8™

are area extremal, in fact, area-Sc extremal, and if (and only if) all n; > 2, then
these X are area rigid.

[740] Conjecture Area Extremality and Rigidity of Symmetric and
Einstein Spaces. All Riemannin manifolds with positive and parallel Ricci
tensor, in particular all Symmetric and all Einstein Spaces X are area extremal
and those of them which contain no local flat factors are area rigid.

For Einstein spaces, this agrees with local extremality lemma in [39], while

an essential class of examples where the available proofs do not work are
compact Lie groups X with biinvarinat metrics g, where the tangent bundles
are trivial and can not force non-vanishing of indices of natural Dirac operators
over these X.

[741] For instance, if X = SO(n) with n > 5, then no known method can rule
out metrics g > g on X with Sc(g) > Sc(g).

All known area extremal metrics are supported on rather special but the
following questions remains mainly unexplored.

Three Questions

[741] Are there compact manifolds X which support metrics g with Sc(g) >0
but admit no area extremal or length extremal metrics g ?

[742] Can one "effectively" evaluate the minimal constant A = A(X, g),, such
that a given Riemannin manifold X = (X, g), e.g where sect.curv(g) > 0, would
support an area extremal (or a length extremal) metric g which would be \-
biLipschitz equivalent to g, where such a A were expressible in terms of the
pinching constant in the case where sect.curv(g) > 07?

[743] Would it be more prudent to replace the condition Sc(g) > 0 by Ricci >
0?7

49Metrics on S? with curvatures o > 0 have positive curvature operators, call them KOP,
and so they are included in [max 7]. This would also apply to o > 0 if we knew that all metric
on S™ with KOP> 0 were approximable by metrics with KOP>0.

50We do not know if all metrics with Sc = 0 from [max 2] are suitable to be factors of area
extremal manifolds — available proofs apply only to flat metrics and to (necessarily Ricci flat)
metrics which admit parallel spinors and where the underlying manifolds X are spin with
A(X) %0, such as certain (not all) Calabi-Yau manifolds, for instance.
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18 Logic of the Dirac Operator Proofs of Area
Extremality Theorems.

All known proofs of area extremality of a manifold X apply to smooth non-
strictly area contracting maps f: X — X, such that

A. On the one hand, the twisted Dirac operator Dgy, on X, i.e. D with
coeflicients in some bundle L induced by f from a bundle L on X satisfies:

index(Degr,) # 0.

B. On the other hand, the inequality Sc(X) > Se(X) makes the operator
Dé 1, positive, thus, prohibiting L-twisted harmonic spinors on X.

A is a topological condition on f, which is tailored to be satisfied by the
identity map X —d)K , while B makes the operator Dé 1, on X non-strictly pos-
i L
itive.
Thus,

A necessitates the existence of non-zero harmonic L-twisted harmonic spinors
on X while B implies that these spinors are parallel.

Apparently, this is possible only if the the bundle L with its connection is
somehow derived from the tangent bundle T (X)) and so a manifold X can serve
this purpose only if it carries some parallel (spinorial) tensors.

[44] Problem Describe all such X and decide which of them are area ex-
tremal. (compare [64]).

Let us see how this works for the above [max]-examples.

1. Extremality of Even Dimensional Spheres. The only parallel tensors on a
generic manifolds are constant functions and scalar multiples of the Riemannian
volume form. This doesn’t look much but these two are what makes the indices
of the Dirac operator twisted with the spinor bundles, Dgs:, on X = S%™ non-
Z€ro.

In fact, according to the Atiyah-Singer formula, these indices, for all®* man-
ifolds X are expressed in terms of the Euler characteristic and the signature of
X as follows.

151

ind( D) = L (x(X) + sign(X)).

Also, the index theorem implies that if X is a spin manifold and f: X — S™
is a continuous map with non-zero degree then the Dirac operator on X twisted
with the induced bundle L = f'(S*(S™)) satisfies

an(D®L) +0

and, more generally, the same remains true if the A-degree of [ is mon-zero.
Thus, in order to prove extremality of the spheres S™ for even n, (the above
[max 4] and [max 5]), that is
to rule out the existence of smooth area decreasing maps f: X — S™
of non-zero degrees (and/or A-degrees)
one needs to show that

51This twisted Dirac operator is defined and satisfies the index formula even if X is non-spin
as it is (essentially) explained in section 10.
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if Se(X) 2n(n-1) =Sc(S™) and f: X — S™ is a smooth (non-strictly) area
decreasing map, then the operator Dgr, on X for L = f'(S*(S™)) is positive and
if Sc(X) >n(n-1), then D2, is strictly positive, which makes

an(D®L) =0.

This is achieved by analysing the last term in the twisted Schroedinger-
Lichnerowicz-Weitzenboeck formula,

D2, =VeVe+1iSc(X) +Ry,

and showing that

if f:X - S™ is a smooth (non-strictly) area decreasing map and L, =

1 (S*(S™)), then the lowest eigenvalues of Ry, are bounded from below by
_n(n—l)
—_-—-

(In general, Ry, is a fiber-wise Hermitian operator which acts on the bundle
S(X) ® L and which is related to the curvature V}; of L as follows [52, 74].

1
Rr(s®l) = 3 Y (eiejrs) ® (ijl),s eS(X),leL,
0,J

where {e;} is an orthonormal frame in X and "*" denotes Clifford multiplication.
A convenient frame in the present case of L = L, = f'(S*(S™)) is the one which
diagonalises the f-pullback of the spherical Riemannin metric to X [81], [93].)

This concludes our outline of the proof the of area extremality of S™ for even
n and the proof of the area-Sc extremality follows along the same lines.

II. Extremality via Positivity of the Curvature Operator. By looking at Ry,
closer, one can see following Goette and Semmelmann that

if X is a Riemannian manifold with (non-strictly) positive curvature operator
and f: X - X is (non-strictly) area decreasing map then the operators Ry, for
L, = f'(S*(X) are bounded from below at all x € X by

1

[>—1] Ri w2 -78c(X)(z) forz = f(x).

This implies the above extremality statements [max 6] and [max 7], for spin
manifolds X with x(X) # 0 (these manifolds are denoted X in [max 6] and [max
7]), where the corresponding area-Sc extremality is proved similarly.

And if X is non-spin, then instead of insisting that X is spin, one requires
that the bundle f'(T((X)) is spin-equivalent to T(X). Then the twisted Dy,

is defined and it satisfies all of the above properties (see section 10).

ITI. Extremality of Kihler Manifolds. The Kéhler forms on Kéahler manifolds
X are parallel and the canonical line bundles L = Leqn(X) (of holomorphic
n-forms on X, n = dimc (X)) are spin equivalent to T(X).

Because of this, if f: X - X is a spin map then the twisted Dirac operator
Dgyi(r) is defined and — it follows from the index theorem — if Ricci(X) > 0
and deg(f) # 0, then
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Thus, the area extremality of Kéhler X with Ricci(X) > 0 reduces to proving
the inequality [Z —%] for area decreasing maps f,

Rpr) 2 —iSc(&) for L = Legn(X);

this was done by Min-Oo for Hermitian symmetric spaces and by Goette and
Semmelmann in general.

On Ricci = 0. The condition Ricci(X) > 0 is unneeded for the area ex-
tremality (it is needed for the area rigidity) of compact Hermitian symmetric
spaces:

flat factors are taken care with a use of families of flat bundles over X and
the f-induced ones over X as in section 7 for X =T".

But there also exist simply connected (Calabi-Yau) Ricci flat Kéhler, mani-
folds X¢y which may carry metrics with Sc > 0. In fact, by * in section 4, all
simply connected Xy of complex dimensions 4k + 3 carry such metrics.

Therefore,

neither these Xcy, nor their products with the above X are area extremal.

On the other hand, it is plausible, that the metrics g (which have Ricci(g) >
0) on such manifolds admit no (small) area increasing deformations which also
increase the scalar curvature (compare 0.4 in[39]). Then it would be interesting
to evaluate the size of the gaps between the metrics g and g where g > g and

Se(g) > Sc(g).

IV. Extremality of Products. Whenever the area extremality is proven for
some manifolds X by the above A+B argument, it is (more or less ) automati-
cally extends to Riemannin products of these manifolds.

Furthermore, if an X is (A4B)-extremal in this sense, then also (X xR™)/Z"
also so extremal for all free proper actions of Z" on X x R™, which follows by
invoking the families of flat complex line bundles from section 7.

V. Extremality in Odd Dimensions. Area decreasing maps f: X — S"! can be
(obviously) suspended to area area decreasing maps X’ = X x S1(r) - X = 5"
for all sufficiently large radii r.

Exploiting splitting of X', Llarull [81] shows that the area decreasing prop-
erty of f implies that

(n-1)(n-2)
Rp@exn 22—

This rules out twisted harmonic spinors on X’ for S¢(X’) > (n—1)(n -2) and
if n is even, the area extremality of S™~! follows by the application of the index
theorem to (even dimensional!) X’ and X = S™ as earlier.

Alternatively, one can use the spherical suspension @(X ), which satisfies
away from the singularities at the poles,

Sc(@(X)) =Sc(X)+2n+1.

One removes arbitrarily small neighbourhoods of these poles and attach a
I-handle to them, thus, producing X’ homeomorphic to X x St.

The key point here is is that this X’ can be endowed with a metric g/ such
that Sc(gl) > Se(X')-e with an arbitrarily small € > 0 as it is done in surgery for
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smooth spaces with Sc > o [?] and such that (X', g.) admits an area decreasing
map X' — S,

This reduces area extremality of S" ! to that for S™.

Both arguments strike one as something artificial — the adequate concepts are,

obviously, missing.

A seemingly more conceptual approach to odd dimensional X is suggested in
[39] but this does not seem to deliver extremality of products of odd dimensional
spheres, for example,®® while the above applies with no problems.

VI. Area Rigidity. This needs the following additional property of the cur-
vature term in the twisted Schroedinger- Lichnerowicz-Weitzenboeck formula
which sharpens the above [> —i].

If f: X - X is an equidimensional smooth area non-increasing
map, then the bound

Rbw 2 =3 56(X) (@) for 2= f(2)

must be strict at all points xs € X where the differential of Df :
To(X) = Ty2)(X) is not isometric,

[>-4] i, > =1 Se(X)(f(2.)),

see [81, 95, 39].

|745] Spin Problem. All of the above only applies to spin maps
f X - X, for which the required twisted Dirac operator defined,
and, as on similar occasions we met earlier, the necessity of the
spin condition, say for equidimensional maps of degrees# 0, remains
unsettled.

Extremality via Lipschitz Maps. If a manifold X admits no C?-
smooth length decreasing map X — X of degree# 0 which also
strictly decreases the scalar curvature, then it admits no such Lips-
chitz map either my a simple approximation argument.

|746] But it is unclear if this remain true with "area" in place of
"length".

19 Extremality of Open Manifolds.

If X = (X, g) is a complete Riemannin manifold, then the metrics ¢
on X which are length-wise greater 3 than g are complete but this
is not so, in general for g which are area-wise greater than g.

52T have not followed the arguments in [39] in detail.
53 Length-wise greater means just greater. We add length-wise to emphasise the distinction
from area-wise.
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Because of this, we call X in this section area extremal if no
complete area-wise greater metric on X can have Sc(g) > Sc(g).

A companion concept, where the inequality Sc(g) > Sc(g) is
replaced by scalar Sc(g) > Se(g) + ¢ for some € > 0 will go under
heading area gap extremality.

Similarly one defines "complete" length and length gap extremal-
ity and observe that if X is area or length extremal than it is area gap
extremal or length area extremal correspondingly and that "gap" is
automatic for compact manifolds X.

Complete scalar flat X which admit no complete metrics with
positive scalar curvature (i.e. Sc¢>0) are instances of area extremal
manifolds in this sense; they are area gap extremal if they admit
no complete metrics with wuniformly positive (Sc > ¢ > 0) scalar
curvature. But the converse is not quite true.

Flat Examples (a) All complete flat Riemannin manifolds are
area gap extremal.

(b) A complete non-compact Riemannin flat manifold X is area
extremal if and only if its soul X, ¢ X, which is a maximal
compact flat submanifold in X, has codim(X,) = 1.

Proof of (a). Since the universal covering of X is equal to R”
the general case reduces to non-existence of (not necessarily spin)
manifolds with Sc¢ > e > 0 wich admit proper Lipschitz map to R”
of non-zero degrees. 3

Proof of (b) Since a a finite cover of X of X is homeomorphic to
T"1xR, n = dim(X), non-existence of complete metrics with Sc > 0
on X:; hence on X follows by a twisted Dirac operator argument
similar to the case (a)

Actually, this argument applies to X times the 2-sphere S2(R)
with large radius R [54] and the proof of B for X, = S™ below )
where this (annoyingly artificial) spherical factor is brought in to
make the relevant Dirac operator strictly positive at infinity, which
is needed for the applicability of the relative index theorem.

Notice, in the regard of (a) that

a complete flat Riemannin manifold X admits a complete metrics
g with Sc(g) > >0, if and only if codim(X,,,.) > 3.

What is non-trivial here is only if but this easily follows (|51])
from the inequality width(X) < 2* for torical bands in section 21.

|747] Conjecture: Stabilisation of Extremality. Let X, be
a compact area extremal Riemannin manifold. Then
A. Xy xR™ is area gap extremal for all m.
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B. Xy xR is area extremal.

This can be confirmed for all known examples of Xy the area
extremality of which was established by a Dirac operator arguments
sketched in the previous section. Let us do it in two cases.

Start with A for X, = S, let X be a complete orientable spin
Riemannian manifold, let f: X - S™xR™ be a smooth proper map.

All we shall need of R™ for our purpose is that Sc(R™) = 0 and
K-Area(R™) = oco.

Assume for simplicity’s sake that m is and let L., be a Q-homologically
essential unitary vector bundle with gg-flat connection which is flat
at infinity.

Assume for the same reason that n is even and let S* be the
"positive" spinor bundle on S™.

Let L., be the f-pullback of the tensor product S* ® L., and
observe — this needs looking at the Llarull’s computation for Ry o
that if

the scalar curvature of X at infinity is > (n(n—1) +& >0 and if
€0 > 0 is much smaller than e, then the twisted Dirac operator Dy,

0

on X is strictly positive at infinity and if deg(f) + 0 it has non-zero
index relative the Dirac operator twisted with the pullback of S*.

Thus, X carries non-trivial twisted harmonic spinors.

On the other hand, if the scalar curvature of X at infinity is
>(n(n-1)+e>0on all of X and ¢, <€, then again, by looking at
looking at LLarull’s Ry . and sees that X can’t carry such spinors
and the proof follows.

"Subcomplete" Extremality. Let X be an open, not necessar-
ily complete Riemannin manifold.

|748] Question. When does such an X, is area extremal in the
category of complete manifolds?

Namely, when do all complete metrics g on X, which are area-
wise larger than g, necessarily have Sc(g)(z,) < Sc(g)(xo) at some
point z, € X7 a B

It was pointed out by Llarull in [80] that punctured spheres S™ \
{s,} are extremal in this sense.

Moreover, Let X be one of compact area extremal [max] manifolds
from section 17. e.g. the sphere S™ or a Hermitian symmetric space,
and let X, c X be a closed, say piecewise smooth, subset, such that

[ //] the parallel Levi-Civita transport in T(X) is trivial along the

curves in ¥, e.g. ¥, is a union of disjoint trees. Then
X, =X \3%, is area extremal in the the category of
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complete manifolds.

In fact, the relative index theorem [54] allows an extension of
the original proofs for compact X to manifolds X with complete
metrics.

The condition [ // ] is far from being necessary.
For instance, there are "codimension two" obstructions coming
from the fundamental group at infinity (|54, 7, 51]) which show that

[\O] there are no complete metrics with Sc > o >0 on the com-
plement of (possibly trivial) knots and links in S3 as well on S*
minus two or more equatorial S? in general position.

On the other hand the complements to the m-skeleta of smooth
triangulations of an n-dimensional manifolds X, where m > 2, admit,
by an easy surgery type argument, arbitrarily large complete metrics
with Sc> 0. Thus, for instance,

the complements to the m-skeleta for m > 2 of triangulations
of compact scalar flat manifolds X, e.g. for X = T", are not area
extremal in this "complete" sense.

However, we suggests the following.

|749] Conjecture. The sphere S™ minus ¥, is area extremal in
the "subcomplete" sense for all closed subsets Y3, c S™ of topological
dimensions k < 1.

20 Lengths, Widths and Areas of Non-Complete
Manifolds with Sc > 0.

To develop an adequate picture of complete manifolds with scalar
curvatures > o one needs to understand geometric constraints im-
posed by the inequality Sc¢ > o on (bounded) domains in these man-
ifolds.

Thus, we look at possible sizes of incomplete manifolds X, e.g.
(compact) manifolds with boundaries, where we do not, a priori,
assume they are contained in complete manifolds with lower bounds
on Sec. (We shall say something about the shapes rather than mere
sizes of these X in section 22)

A simple example showing what can and what cannot be expected
in this regard is

the universal covering of the 2-sphere minus 2 opposite points
times R"2, denoted

N A
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which satisfies:

. 56(22)550(52) =2, )

o waist;[31] = 7 and width, (X7) <.

o Waisty,[X7] = width, _,(X7) = oo for m =2,...,n and

K-area[X"] = oo as well.

o The r-interior (X7)_, c X2, that is the set of points x which
are r-far from infinity, i.e. such that the closed r’-balls B,(r") c 37
for ' < r are compact, has small all waist,, and K-area, actually,
zero in the present example.

r-Interior and Completeness. Metric completeness of an X in
this terms is equivalent to non-emptiness of the r-interior of X for
r = +00.

1750] Conjecture. All of the above is satisfied, modulo con-
stants, for all n-manifolds, possibly incomplete and/or with bound-
aries, with Sc(X) > o > 0. Namely

wond width,1(X) < constna_%,

O width,_»(X_,) < const,o™2 for r > const,o 2,
oL waisty(X_,) < const,o~! for r > constno’%,
apbnd K-area(X_,) < const,o~ ! for r > constna‘%,

where, of course, all these const,,, especially the optimal ones, may
be different.

Among the first three inequalities, which generalise the corre-
sponding conjectures in section 16, a definite result is available only
for 574 for 3-manifolds, which, similarly to %, is proven with a use
of minimal surfaces [54].

On the other hand, the inequality @ 4 which, in the case
where X is complete spin, easily follows from the index theorem for
the twisted Dirac operator, remains problematic for non-complete,
let them be spin, n-manifolds starting from n = 3. (To make sense
of this for n = 3 one should replace K-area(X3,), which is zero by
definition for odd n, by K-area(X3, xR).)

It is tempting to try to reduce these conjectures, especially
@4 to the case of complete manifolds by extending (the metric
on) X (on X xRN?) to a complete manifold which would also have
the scalar curvature bounded from below by a positive constant.
This raises the following question.
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|751] Extension Problem. Let X be a Riemannian n-manifold
with S¢(X) >0 >0and let o_ <o, r and r, > r be positive numbers.

When does there exist an n-dimensional manifold X, with Sc(X,) >
o_, such that the r-interior X_, c X isometrically embeds into the
ro-interior (X,)_,, ¢ X,?

|752| Conjecture. Completion by Extension. If 0 > o_ and
r > const,(o - 0_)"% for some (large) constant const,, then the
extension problem is solvable with r, = oco:

there exists a complete X, with Sc(X,) > o_ which isometrically
contains X_,

Let us introduce geometrically more transparent geometric in-
variants which may serve as lower bound to the K-area.

|753] Conjecture. Sharp Spherical Length Comparison
Inequality. Spheres with finitely many punctures are length ex-
tremal. In fact — this is, probably equivalent—

All Riemannin n-manifolds X, possibly non-complete and with
boundaries, which have Sc(X) > Sc(S™) = n(n - 1) satisfy

co-s.leng(X) <27

In plain words, if Se(X) > n(n - 1), then
there is no no strictly distance decreasing proper maps from X
to S™ with non-zero degrees.>

|754] Conjecture: Extremality of Concave Spherical Balls. The
balls B(R) c S™ of radii R > § are length extremal:

no Riemannian metric g on such a ball which is greater than the
spherical one (of constant curvature 1) can have Sc(g) >n(n—-1) =
Sc(S™).

7541] Opposite Conjecture. No manifold of dimension n > 3
with smooth non-empty boundary is ever length extremal.

What is known.

The sharp spherical length comparison inequality looks obvious
for n = 2 and the concave length extremality is easy to prove for the
hemisphere S?(= B(%)).

In fact, assume S? is not length extremal and let X be a surface
with sectional curvature >1, which admits a a distance decreasing
homeomorphism f: X — 52 of degree # 0.

Let x € X be the pullback of the center of S? and let S ¢ X
be the shortest closed curve in the complement to the open ball

54Recall that "proper maps" X — S™ are supposed to be locally constant on the boundary
of X as well as on the complement X \ COM P for a sufficiently large compact subset in X.
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B,(%) ¢ X which is non-contractible in this complement. Then the
contradiction follows by comparing the length of S with that of the
boundary circle St c S2.

Probably, a similar argument applies to all concave balls in S2.
Also, there may be other length extremal surfaces with concave
boundaries.

Warning. Let Xo = Us(S') c S? be the d-neighbourhood of the
equator S! c §? with the spherical metric gy on it. (The complement
of Xy is made of two opposite (% - 5)—balls.)

Then X, admits metrics g > go with Sc(g) > Sc(go) =2 = Se(S?).

In fact,

given € € (0,5 -9), there is a cyclic covering of Us,.(S') which ad-
mits a strictly distance decreasing homeomorphism Us,. - Us(S*).

In higher dimensions, only non-sharp bounds on the Lipschitz
constants of proper maps X — S™ of non-complete manifolds X are
available, see [54, 51]

|755] Conjecture 18. Interior Hemi-Spherical Area In-
equality. The r-interiors of all compact Riemannin n-manifolds X
with boundaries and with Sc(X) > Sc(S™) =n(n - 1) satisty for all
r> /2,

co-syar(X_,) <2m:
no strictly area decreasing proper map X_, - S™ of non-zero degree
for r > /2 exists.

It is even unclear what happens in this regard to domains in
closed spin manifolds X. For instance:

|756] What are possible values of the co-s,areas of the comple-
ments of r-balls in compact spin manifolds X with Sc(X) >n(n-1)7

21 Width of Bands with Sc>n(n-1) and Curva-
ture of Submanifolds in S™.

Our bands are connected Riemannian manifolds with two boundary
components the distances between which are regarded as the widths

of the bands

757| 22-Conjecture. Let X be a compact n-dimensional band
with Sc¢(X) >n(n-1).

If no smooth closed hypersurface Y ¢ X which separates the two
boundary components admits a metric with Sc> 0, then

width(X) < 2.
n

58



This is confirmed in [51] for certain bands with large fundamental,
e.g. for the torical ones X = T"! x [-1, 1], but there is no approach
in sight for simply connected bands X.

In fact, if X! is a Hitchin sphere, for example,

|758| there is no apparent non-trivial bound on the width of X =
Y-l x [-1,1] even we assume that the sectional curvature of X is =
1.

On the other hand it is easy to see that the suprema of the
principal curvatures of immersions of Hitchin’s X7 to S™** satisfy
(see [51])

supcurv(X o g >

E+1"
but one doesn’t know

|759| what is the (asymptotically for n - oo and/or for k — o)
sharp inequality for immersions of these ¥""! to spheres

1760| Also it is unclear if there are (non-trivial) inequalities of
this kind for other exotic spheres.

Nor does one know what happens to other topologically compli-
cated manifolds immersed into geometrically simple ones.

Specifically, let Y; be diffeomorphic to the product of j spheres,
of positive dimensions,

X;j=8"x...x8" .

|761| Is then every immersion from X; to the unit ball in R¥
satisfies

supcurv(X; = BN(1) cRM)) >V for all N > ny + ...+ n; + 17

[762| But it is also not impossible that all manifolds admit im-
mersions into the unit ball in the Hilbert space R* with principal
curvatures bounded by a universal constant, say by 1 000 000.
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22 Convex Polyhedra, Manifolds with Corners
and Patterns of Concentration of Positivity
of Scalar Curvature on Curves, Surfaces and
Spaces.

Let P c R™ be a compact convex polyhedron with non-empty inte-
rior, let Q; c P, 1 € I, denote its (n — 1)-faces and let

2i5(P) = 2(Qi,Q;)

denote its dihedral angles.
Say that P is extremal if all convex polyhedra P’ which are com-
binatorially equivalent to P and which have

Aij(P,) < 4Z'j(P) for all 1,] € I,

satisfy
24i(P") = 245(P).

It is known that

the simplices and and also all P with «;;(P) < %, e.g. rectangular
solids, are extremal.

1763| Problem. l|dentify combinatorial types P, of convex poly-
hedra where all representative P € P are extremal and also describe
extremal P of non-extremal types P, oncastr-

Next, call P mean convexly extremal if there is no P’ ¢ R dif-
feomorphic to P and such that

e the faces Q! c P’ corresponding to all Q; ¢ P have mean.curv(Q}) >
0,

e the dihedral angles of P’ that are the angles between the tan-
gent spaces Tp,(Q;) and T}y (@) at the points p’ on the (n-2)-faces

i = QinQj, satisty

2ij(P") < 245(P),

e this angle inequality is strict at some point, i.e. there exits
/ I3 !
Po € Qj; In some Q};, such that

2 (T, (@), T, (@) < 24(P).

1764 Question. Are all extremal convex polyhedra P are mean
convexly extremal?
It is not even known
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|765|  if the regular 3-simplex is mean convexly extremal.
But

mean convex extremality of the n-cube

follows by developing the cube P into a complete (orbi-covering)
manifold P homeomorphic to R® by reflecting P in the faces, ap-
proximating the natural continuous Riemannin metric metric on P
by a smooth one with Sc>¢e >0 [49]

And the same argument yields [49] the following

[*] Let a Riemannin metric g on the n-cube P satisfy:
*o Sc(g) = 0.
*1 mean.curvy(Q;) >0,
xy £4i(P,g) < 3.
Then, necessarily, Sc(g) =0, mean.curvy(Q;) =0 and <;;(P,g) = 5.
|766| Probably, these equalities imply that P is isometric to a
FEuclidean rectangular solid but the approximation/smoothing is no
good for proving this kind of rigidity.
The main merit of [*] is that it provides a test for Sc¢ > 0 in all
Riemannin manifolds X:

Sc(X) >0 if and only if no cubical domain P c X satisfies

[mean.curv,(Q;) > 0]&[ 2,;(P, g) < g]

|767| This suggests a possibility of defining Sc(X) > 0 for some
singular spaces, X, e.g. for manifolds with continuous (bounded
measurable?) Riemannian metrics and for Alezandrov spaces with
sectional curvatures bounded from below.

The following would add credulity to this suggestion.
768] Conjecture. Let X be the universal covering of a Rieman-
nin manifold X homeomorphic to the n-torus. Then
X has non-positive scalar curvature at infinity.

This means that 3

X can be exhausted by overcubic®® domains P; ¢ X with corners,
such that all n — 1 faces of P; have positive mean curvatures and all
dihedral angles of P; are< 7.

This would be especially pleasant to prove for X with continuous
metrics ¢ but the case of smooth g seems non-trivial either.

....... to be continued

55 A manifold P with corners is called overcubic if it admits a map of degree one to the
n-cube O™ such that the k-faces of P go to the k-faces of O".
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23 Symmetrization by Reflection with Sc> o.

Let X be a compact Riemannian n-manifold, Yy ¢ X be a closed
cooriented hypersurface, and let U oY be a (small) neighbourhood
of Yy which is divided by Yj into halves, say U,,U_c U.

Let Y, = Y,(e) c Uy, € > 0, be a closed hypersurface which is
(n - 1)-volume minimizing among all closed hypersurfaces Y/ c U,
such the n-volume in the region between Y, and Y in U is equal to a
given (small) number ¢ > 0, and similarly, we define Y_ =Y;(¢) c U_.

These Y, may intersect Y, as well as the boundaries of U, but
this does not happen if Yy is minimizing in U, which means that all
hypersurfaces Y’ c U which are homologous to Y satisfy

vol(Y'") > vol(Yy).

(We shall later meet Yy which are minimizing among all hypersur-
faces which divide the volume of U in a given proportion.)

In fact, if € > 0 is sufficiently small, these Y. (¢) are unique and
they keep away from Y and from the boundary of U.

Furthermore the regions V.(¢) c U, bounded by Y and Y, are
strictly monotone increasing,

Vi(e1) c Int(V.o(eq)) for all small g5 > £;.

And according to the standard regularity theory, the hypersur-
faces Y, are smooth with strictly positive mean curvatures away
from their singularities >, c Y; of codimensions > 7.

(If n < 8, these Y.(¢) are non singular for an open dense set of
small ¢ > 0 by Natan Smale’s theorem [118]; conjecturally,this is
true for all n.)

Symmetrization by Reflections. Assume Y| is connected and let
Vie)=V,uV_

and let V(¢) be obtained by reflecting V () across dV (¢) = Y. (¢) U
Yi(e). )
In other words, V' (¢) is the infinite cyclic covering of the double

V.V.=V(e) u V(e).

V=V, 0 V()
These V (¢) carry natural continuous Riemannian metrics j. away

from ¥y which converge to an R-invariant metric gy on the Hausdorft

limit

‘A/lo = hHOl V(EE)

62



It is easy to see that go is smooth Riemannian away from the R-
orbit R(X) c V}y and that the Riemannian metrics g. converge to go
in the C°-topology for the natural simultaneous (y, t)-coordinatisation
of the spaces V(e) and Vg \R(Z) = (Yo~ ) x R.

What is significant here is the following.

Preservation of Sc-Positivity. If Sc(X) > o then also Sc(go) >
o. Moreover,

Sc(go)(y,t) = Sce(X)(y) for allye Yo~ Yo and t € R.

Proof. One may assume — slightly C2-perturb the original Rie-
mannian metric in X if necessary — that Y is strictly minimizing
and the subvarieties Y. (¢) have strictly positive mean curvatures at
the regular points. These can be §-regularised that is approximated
by C?-smooth hypersurfaces, say

[regs] Yi(g,0) =0V.(g,d), where V.(¢) 2 V.(g,0) o V.(e-9),

where 0 > 0 can be chosen arbitrarily small and where the hypersur-
faces Y. (e,d) have strictly positive mean curvatures, |48]

Then the Co—continuoqs Riemannian metrics in the correspond-
ing reflection manifolds V.(g,d) can be approximated by smooth
metrics with Sc > Se(X) - o’ with arbitrarily small o’ (see [49]) and
the proof follows by

semicontinuity of the scalar curvature under C°-convergence of
Riemannian metrics [49], [10].

Alternative Proof. Rescale positive functions f,(y;¢) on Yy which
represent Y, (¢) in normal coordinates and of let f.(y) = +f(y) be
the limit functions for ¢ - 0. Observe that

gO =0y, * f2dt27

where gy, denotes the Riemannian metric on the non-singular locus
in Yy ¢ X induced from X.

The positivity of the mean curvatures of Y, (¢) translates, in the
limit for ¢ — 0, to positivity of L(f) for a certain linear differential
(namely, stability) operator L on Yy~ ¥, where the latter positivity
implies that

Sc(gy, + f2dt?) > Se(X)

as in 11.14 of [54]. QED.

Examples and Conjectures. If X is a flat n-torus and Yy c X is a

saboteurs, then the doubles V.V, =V (¢) aVU( ) V(e) are also flat tori
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canonically homeomorphic to X (but not isometric) with
width, 1 (V-V.) <e

while their cyclic coverings V (g) = V.V, are isometric to Yg x R.
Now, given a sequence of homology classes hg, hy, ..., h;, ... € H,_1(X)
and a sequence of positive numbers €g, €y, ..., &;, let

XO = X7 Xl = ‘/;0‘/5507 X2 = ‘/61‘/517 7X’L = ‘/;:‘7;71‘/52'717

where V' (g;) c X is the g;-neighbourhood of the subtorus Y; c X in
the class h;, etc.
Clearly, if the classes h; span H,_1(X) and &; - 0, then

diam(X;) - 0 for i - oo.

Moreover, let X = X be a compact Riemannian n-manifold com-
ing with a homotopy class of maps fy to the torus T" and Y, c X
be a connected volume minimizing subvariety the homology class of
which goes to a non-zero multiple of a class hg € H;(T") represented
by a subtorus. Then the corresponding X; =V, V;, also comes with
a homotopy class of maps f; to T" such that

deg(f1) < deg(fo) and deg(fo) # 0 = deg(fo) # 0.

(In fact, deg(f1) is a divisor of deg(fy).)
Thus, given h; ¢ H;(T") and €; > 0 we construct spaces

X; = X(gifl) = ‘/;-?171 V€z>1>

which, if we worry by about singularities, can be d-regularised by
setting
Xil = X(Ei—la 5i—1) =Veiis

as in the above [regs].

Observation. If the classes h; span Hy(T") and deg(fy) # 0,
then

‘/;17175171

-1

width,7(X]) - 0,fore; > 0
because minimal hypersurfaces have codimensions > 7.

1769] Conjecture. Shrinking of Singularities. Let X be a
compact orientable Riemannin n-manifold, f, : X - T" be a con-
tinuous map of non-zero degree, h;, i=0,1,2,..., be 1-dimensional
homology classes in T which generate Hi(T") and let ¢; - 0 be
positive numbers. Then the above (regularised for prudence) spaces
X, satisfy

diam(X]) - 0 for i — oo.
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Moreover, the minimal hypersurfaces Y; c X become non-singular
for sufficiently large ¢ and the manifolds X as well as X; admit \;-
bi-Lipschitz homeomorphisms to flat n-tori Y; with \; > 1 for i — oo.

This conjecture implies that overtorical manifolds X, (i.e. admit-
ting maps to T™ with non-zero degrees) with Sc(X) > 0 are, in fact,
flat, since the scalar curvature is semicontinuous under "Lipschitz
limits". (The proof of this semicontinuity for C°-convergence given
in [49] automatically extends to the Lipschitz convergence.)

(The arguments used in in [86] and those in [115], for the proof
of this "non-positivity" Sc(X') ¥ 0 probably yield the proof of the
above Conjecture as well.)

24 Scalar Curvature and Mean Curvature.

One may think of positive scalar curvature as Riemannian inter-
nalisation of the concept of mean convexity, where a Riemannian
manifold Y with boundary, e.g. a smooth domain Y in a larger Rie-
mannian manifold, is called mean convex if the boundary dY has
positive mean curvature.

This "internalisation": is motivated by the following.

Doubling Lemma [52]. The natural C°-Riemannian metric go
on the double’® X =Y +5Y of a manifold (Y,0Y )with Sc(Y) >0 and
with mean.curv(dY) > 0 along the boundary can be C°-approximated
by C?-metrics g with with Sc(g) >0, where, moreover, this approx-
imation is C? away from the "0-edge" Zy c X where the two copies
of Y meet in X.

This is achieved by
(1) Smoothing gy with Sc> 0 close to Zy by rescaling along the
geodesics normal to Zp (a five line argument)
+
(2) redistribution of positivity of Sc on all of X by a C?-small
conformal deformation (another 5 lines).

Also there is a similarity between the following "thin" spaces with
mean.curv >0 and with Sc > 0.

Thin,canso- Given a closed subset Y in a Riemannian n-manifold
X, define voly(Y') as the infimum of the (n — 1)-volumes of the
boundaries of arbitrarily small neighbourhoods U oY of YV in X,

56The double of a manifold Y with boundary, is the result of gluing two copies of Y along
the boundary.
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1.e.

voly(Y') = sup ir[}f vol,_1(0U), for all open U' o U >Y.
U/

Observe that this voly is bounded by the (n — 1)-dimensional
Hausdorff measure,

volyg(Y') <mes,_1(Y).

In particular,

closed subsets Y c X with vanishing (n — 1)-dimensional Haus-
dorff measure
have voly(Y') = 0 (but the converse, probably, is not true).

Next, write
mean.curvy(Y) > k

if for all € > 0 all neighbourhoods U’ > Y contain smaller smooth
neighbourhoods U oY such that

mean.curv(OU) > k — €

Implication voly(Y) = 0 = mean.curvy(Y) = co. To show this
let 11 = p(x) be a continuous function on U’ \Y which is > k for a
given x and which may blow up at Y.

Let Uy be a u—bubble pinched between Y and U’ i.e. Uy minimises
the following functional

U~ vol,1(0U) - fUu(x)dx.

If Y is compact and p is sufficiently large near X such a p-bubble
Uy exists and

e, the boundary 9dU, is smooth away from a possible singular
subset X c QU, of codimension > 7;

o, mean.curv(0Uy, x) = u(z) at the regular points x € 9Uy;

o3 U can be approximated by domains U with smooth boundaries
OU such that mean.curv(0U) > k — € for a given € > 0.

(These o1 and e, are standard results of the geometric measure
theory and e3 is an elementary exercise, see [48, 49| for details.?7)

Probably, the implication vols(Y) =0 = mean.curvy(Y) = oo
remains valid for all closed subsets in X, but the above argument, as
it stands, delivers the following weaker property in the non-compact
case.

57T apologise for referring to my own articles, but I could not find what is needed on the
web.
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If X has uniformly bounded geometriyP® then every closed subsets
Y ¢ X with volyg(Y') = 0 is equal to the intersection of a decreasing
family of domains U, c X, k — oo, where mean.curv(0U,) > k.

Remarks/Conjectures. (a) The role of bounded geometry is to
ensure a lower bound on the volumes of balls in the p-bubble away
from Y where p is small and, thus, keep domains U which minimise
the function U ~ vol,-1 (U ) - [,; p(x)dx within an e-neighbourhood
of Y.

(b) The doubles of thin mean convex domains U c X provide
examples of collapsed manifolds with Sc> 0. %

(c¢) All smooth domains U c R™ with mean.curv(0U) > 0 are
diffeotopic to regular neighbourhoods of subpolyhedra P c U with
codim(P) > 2.

In fact, if Y is bounded, this follows by Morse theory applied to
a linear function on Y, while unbounded Y can be exhausted by
bounded Y; ¢ Y with min.curv(9Y;) > 0.

(d) All piecewise smooth subpolyhedra P ¢ X with codim(P) > 2
admit arbitrarily small regular neighbourhoods with arbitrarily large
mean curvatures of their boundaries.

This is obvious for smooth submanifolds Y c X, e.g. for curved
segments Y in the unit ball in R?, n > 3 and the general case follows
by a geometric surgery similar to that for Sc> 0.0

(e) Ezxercise. Show that every bounded smooth domain Uy c R",
n > 3 admits arbitrarily long simple curves (arcs) C' c U, such that
curvature(C') < const = const(U).

Construct such curves with regular neighbourhoods U c Uy which
fill almost all of Uy and such that the mean curvatures of the bound-
aries QU tend to infinity.

Apply this successively to C; c U;_; and obtain

Uo 2 U1 J2...2 Uz’—l o} Uz O ....

such that
mean.curv(0U;) — oo and vol(U;) > const > 0/
Show that the intersection Y,, = n;U; is a compact set such that
e Y has positive Lebesgue measure, vol,(Y') > 0;
e v0ly(Ye) = o0;
e mean.curvy(Y') = oo;

58This means that there exist p > 0 and A > 0, such that all p-balls Bz(p) ¢ X are \-bi-
Lipschitz homeomorphic to a Euclidean ball.

59The original metric in X can be perturbed to have Sc¢ > 0 near Y, since our Y ¢ X have
codim(Y') > 2.

60Despite the scaling difference between Sc and mean.curv, the iterated similarity argument
does apply to the mean convex surgery, but I have always felt uneasy about it.
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e the topological dimension of Y is one.
Construct similar Y ¢ R with dimy,, = m for all m <n -2.

II. Thing..o and Thing,can curvso There is a direct simple con-
struction, see [53], of arbitrarily small smooth regular neighbour-
hoods U 5 Y of piecewise smooth subpolyhedra Y c X in Rie-
mannian manifolds X with codim(Y’) > 3, such that the induced
Riemannian metrics in the boundaries OU satisfy Sc(0U) > k for a
given k> 0.

By the same argument, if V c X is a smooth domain with
Sc(0V') > k and Y is transversal to U, then the union V' uY admits
an arbitrarily small smooth regular neighbourhood U > V uY with
Sc(oU) > k.

For instance, the function A|sint|, can be uniformly approxi-
mated, for all A >0, by C?-functions ¢(t) > 0, such that the hyper-
surface H, c R"*! obtained by rotating the graphs of () around
the t-axis in R"*! has Sc(H,) >0 for all n > 3.

Similarly, subpolyhedra Y ¢ X with codim(Y) > 2 admit arbi-
trarily small smooth regular neighbourhoods U with arbitrary large
mean.curv(0U.

Also, the above H,, can be arranged with mean.curv(H,) > 0 for
all n > 2.6

Intersection and Symmetrization for mean.curv>0. An
essential feature of mean convexity which has no(?) counterpart for
Sc > 0 is the following well known intersection property.

If closed subsets Y; ¢ X have mean.curvy(Y;) > k then also their
intersection satisfies

mean.curvy([Y;) > k.

7

This boils down to showing that if U; and U, are smooth domains
with
mean.curv(0U; 2) > k, then the intersection Uy n U, can be approx-
imated by smooth domains U with mean.curv(0U) > k. (See [48|
for details and references.)

In particular, one can G-symmetrise mean convex subsets V c X
with isometry groups G of X,

Viymm = ﬂ g(V)

geG

61This is counterintuitive. I once have convinced myself in the validity of this (§5% in [44])
but has not written it down.
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Thick Mean Convex Domains and the Maximum Princi-
ple. The following properties of mean convex subsets in manifolds
with lower bounds on their Ricci curvatures can be, probably, traced
to the work by Paul Levy and S. B. Myers. 62

Let X be a Riemannian n-manifold with Ricci > p, i.e. Ricci(X) >
p-gx, and Y c X have mean.curvg(Y) >n - 1.

(For instance, X = R". where Ricci =0. and Y c X is a smooth
domain with mean.curv(9Y) >n-1.)

Inball Inequality. If p > -n, then the radius Rad;,(Y') of the
mazimal inscribed ball in'Y, i.e. Rad;,(Y) = sup,ey dist(y,dY), is
bounded by the radius R = R(n, p) of the ball B(R, p) with mean.curv(0B(R, p)) =
n -1 in the standard (complete simply connected) n-dimensional
space X, of constant curvature with Ricci = p (i.e. with the sec-
tional curvature p/n). %3

Indeed, the normal exponential map to dY necessarily develops
conjugate points on geodesic segments normal to dY of length >
R(n,p).

Inball Equality If Rad;,(Y) = R = R(n,p) then Y, assuming
it is connected, is isometric the R-ball in the standard space with
constant curvature p/n.

This is proven by fiddling at the boundary points of the regions
in JY where the maximal in-ball meets 9Y .

+Inequality. Let a domain Y c R" with mean.curv > n -1
contains two mutually normal balls balls B™(R;) and B"2(Rs),
ni + no = n, which meet at their centers,

Then min(Ry, Ry) < 1.

Indeed, symmetrization reduces this to the case, where Y is
O(n1) x O(ngy)-invariant and the problem becomes a computable
one-dimensional one.

In fact, it is an exercise? to fully determine the range of possible
values of (Ry, Rs), where one sees, for instance. that

TL2—1

Ry > 00= Ry > .
n-1
This suggests the following.

Moving Balls in Mean Convex Domains. Let Y. c YV
denote the set of the centers of the R-balls in Y, that is the set of
points y € Y with dist(y,0Y") > R.

62 Ricci(X, g) 2 p stands for Ricci(X,g) 2 pg.
631f p < —n, no such ball exists and Rad;, (Y) may be infinite.
641 have not done it.
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|770| Conjecture Let a domain Y c R® have mean.curv(9Y’) >
n—k+e¢e for somee >0 and k=2,....n—1. Then Y_; admits a con-
tinuous map onto a (k —1)-dimensional polyhedral space space, say
A :Y_; —» Pk such that the pullbacks of all points are uniformly
bounded,
diam (A~ (p)) < const = const(n, €).

Thus, the macroscopic dimension (see below) of Y_; is <k - 1.

(The extremal case where € = 0 is seen in Y = B"*(1) x RF c R",
where R¥ admits no continuous map to any P* ! with uniformly
bounded pullbacks of all p € P by Lebesque Lemma.)

In particular,

If Y c R” is a connected domain with mean.curv(0Y) >n-2+¢
then the subset Y_; c Y is bounded.

(Recall that the macroscopic dimension of a metric space M is
the minimal dimension of polyhedral spaces P, for which M admits
a continuous map A : M — P, such that diamy;(A='(p)) < d for
some constant d = d(M).)

Now let us formulate the scalar curvature conjecture of the above
conjecture. Start with a few definitions.

Length Metrics in Spaces of Maps. The space ® of maps ¢ from
X to S, where S is a metric space comes with the sup-metric

dist(¢pr, o) = Su;() dist(p1(x), pa(x)).

Let us endow subsets in ® with the corresponding length metrics:
such a metric on a ¥ c ® is

the supremum of the metrics which locally agree with the sup-
metric on W, which the same (except for irrelevant pathological cases)
as the metric defined via the length of curves in V.

What is interesting is that this length metric in a ¥ may be
significantly greater than the sup-metric, which happens when V¥ is
distorted inside .

Ezxamples. (A) Continuous Maps Let W = C(X—S) c ® be the
space of continuous maps X — S with the above length metric and
let S — S be a locally isometric covering map.%> Then the corre-
sponding map C'(X—S) - C(X—S) is an isometry. It follows that

the space of maps from the n-ball B™ to a compact space S with
an infinite fundamental group has infinite diameter.

65Here and below we assume that our spaces are locally contractible, e.g. manifolds or cell
complexes and that S is a length metric space, e.g. a Riemannian manifold.
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But if S has finite fundamental group, then the space C(B"—S)
has finite diameter. For instance,

diam(C(B"=S™(1)))= diam(S™(1)) = = for m > n.
Somewhat less obviously,
diam(C(B"-S"(1)))< 3,

which implies that the (infinite cyclic) universal covering of the space
C(S™1-S5m(1)) also has diameter < 3.
More generally,

diam(C(B"=S))< n - const(S) ,

for all compact, say cellular, spaces S with finite fundamental groups
and, probably, the universal coverings of all connected components
of the spaces C'(X—S) are similarly bounded by dim(X)-const(S).
The above linear bound on diam(C(B"-S)) is asymptotically
matched by a lower bound for most (all?) compact non-contractible
spaces S.
For instance, it follows from 1.4 in [40] that

diam(C(B"=S)) > n - const(S) with const(S) >0

if S is the m-sphere S™(1), m > 2, or, more generally, if the iterated
loop space QF(S) for some k > 1 has non-zero rational homology
groups H;(Q%(S); Q) for i from a subset of positive density in Z,.

(B) Lipschitz Maps. Let X and S be metric spaces and Lipy (X
—95) be the space of A-Lipschitz maps with the above length metric
which we now denote disty and where we observe that the inclusions

LipAl((X%S),d’iSt)\l) C Lip)\Q((X—)S),diSt,\z), /\1 < )\2,

are distance decreasing.
The simplest space here, as earlier is where X is the ball, but
now the geometry of it is essential. For instance,

diamy(Lipy(B"(R)>S)) < AR + diam(S),

where B"(R) is the Euclidean R-ball, where diam, is the diameter
measured with disty and where, observe,

LipAl (Bn(Rl)—hS) = LZp,\Q(B”(RQ)—hS) for )\1R1 = )\QRQ.
More interesting is the lower bound

diamex(Lipy(B"(R)—=S)) > const(S, c)AR,
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which holds whenever the real homology H;(S,R) does not vanish
for some i <n.
In fact,

diamey(Lipy(B"(R)—S)) > diamx(Lipy(B*(R)~S)) for n > 1,

while evaluation of a non-cohomologous to zero real i-cocycle h at
1-Lipschitz maps f : Bi(R) - S defines a C - R*!-Lipschitz map
from Lip(B*(R)—S)) to R for some C = C(S,c)). It follows that
the 1-Lipschitz maps f with h(f) ~ vol;(B‘(R)) ~ R™ — these exist
by the Hurewicz-Serre theorem for the minimal i where H;(S,R) # 0
— are within distance 2 R from the constant maps.

Questions.
|771] [a] Are the diameters

diam.(Lip1(B"(R)~S)))

bounded for a large fixed ¢ and R — oo if H;(S,R) = 0 for i =
1,2,...,n.
(It is not hard to show that diamy(Lipy(B'(R)~S™(1))) < const-

log(R))
|772] [b] What is the asymptotics of the diameters

diam.(Lip,(B%(R)~>S)))

for the hyperbolic balls B} (R) and R - oo?

1773] |c] Let S be a Riemannian manifold homeomorphic to the
connected sum of twenty copies of S? x S2. Are there 1-Lipschitz
maps fr: B4(R) - S, R — oo, such that h(fr) > const - R* for a
cocycle h (e.g. a closed 4-form) which represents the fundamental
cohomology class [S] e H*(S;R), and some const = const(S) > 07

|774] Conjecture. Parametric Hypersphericity. Let X be
a complete oriented Riemannian n-manifold and let W(X') cLip,(X
—Sm(1))) be the space of 1-Lipschitz locally constant at infinity
maps® of degree one from X to the unit sphere.

If Se(X) 2m(m-1)+e, m > 2, € >0, then the macroscopic
dimension of ¥(X) is<n-m-1.

Discussion. (a) If m = n this is equivalent to Llarull’s extremality
theorem for S™.

(b) If m = n—1 the conjecture says that all connected components

of ¥ have diameters bounded by a constant.
(¢) The manifold X = S™(1) x R*™ has Sc(X) =m(m-1) and

66This means such a map X — S™ is constant on connected components of X minus a
compact subset.
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macr.dim(V (X)) =n-m.

|775] If m = n -1 then, conjecturally, this is the only manifold
with this property:

the inequalities

macr.dim(V (X)) >1 and Se(X) 2 (n-1)(n-2)

should imply that X = S* ! x R.

But if m <n -2 one has lots of such manifolds:

e products X = S™ x Xy where Sc(Xp) > 0 and macr.dim(X,) =
n-m,

e ¢ small perturbations of metrics and surgeries of these products
keeping Sc(X) > m(m - 1) and do not disturbing 1-Lipschitz maps
X - Sn(1).

Example. Let X be the unit sphere S*(1) and X be the geomet-
ric connected sum of two copies of S™(1) where these spheres are
connected by a tube S"71(r) x [0,[] for some r <1 and [ > /4.

There are two obvious 1-Lipschitz maps X — S™(1) of degree one
which are constant on one of the two spheres. Clearly,

these maps lie in the same connected component of Lipy(X—S™(1))
if and only if A > 1/r

Furthermore,

if A=1, and r < 1, then each of these components has diameter<
2.

But if A = r = 1 then the image of Lip\(X—=5S"(1)) in C(X
—-S"(1)) has diameter X 1.

Unlike the case where Ricci > p there is no bound on inscribed
balls for n-manifolds with Sc > ¢ for n > 3 and all o, but the
"in-filling inequality" below does have the scalar curvature coun-
terpart(s).

Recall that the filling radius of an integer k-cycle represented
by an oriented subpseudomanifold (e.g. submanifold) Z c Y is the
minimal R such that Z bounds in its R-neighbourhood Ug(Z) c Y.

Define FillRad® (V) as the supremum of the filling radii of all
k-cycles in Y homologous to zero in Y.

Observe that

FillRad?7 (Y) = Rad;,(Y)

and that if Y is mean convez then

FillRad}-2(Y') is bounded by the supremum of the inradii rad;,,(M,Y")
of (n—-1)-dimensional minimal subvarieties M c'Y with boundaries,
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for
Rad;,(M,Y') =45 sup disty (y,0M).
yeM

ii. Upper Bound on the In-Filling Radius. Start with the
case where Y c R with mean.curv(0Y) > n -1 and where M c Y
is an (n — 1)-ball of Radius R.

Let U_(M,r) > M be the lens-like region between two spherical

caps of hight r € [0, R] and with the boundaries OM. If R > 1, the
mean curvatures of these caps are < n — 1; hence they do not meet
JY which makes the R-ball B(R) = U_(M, R) contained in Y. Since
this contradicts i, we conclude that R <1 that is

the sharp bound

FillRad%(Y) <1

for the Euclidean domains Y with mean.curv(0Y) >n—1.

Now let M c Y be a minimal hypersurface in a Riemannian

manifold Y and let yo ¢ M be a pont with dist(yo, 0M) > R. Define
U?(M,r) > M as the subset of points y € Y such that

dist(y, M) < 0(dist(y,y))

where 6(d), d >0, is the function for which U? (M, r) =U,(M,r) in
the above model case of the (n —1)-ball M c R™.

It is not hard to show that

if Y is a Euclidean domain and R is sufficiently large, R >
Ry = Ro(n), then the mean curvature of the boundary dUS(M,r)
is bounded by n —1 = mean.curv(9Y"). (Such a bound makes sense
despite possible singularities of dUZ (M, r).)

Then, by the maximum principle,

FillRad?=(Y) < Ro(n).

Remarks. (a) The above argument yields similar inequality for
manifolds Y with locally bounded geometries and it may(?) also
extend to manifolds with Ricci(Y') > 0 as well as (in obviously mod-
ified form) to manifolds Y with Ricci(Y') > p for negative p > —n0.

(b) Also one expects sharp inequalities of this kind, say FillRad}7*(Y") <
1 for Y c R® with mean.curv(9Y') >n - 1.

Maximum Principle and the Half-space Theorem. There
are also non-trivial geometric constrains on non-strictly mean convex
hypersurfaces Y c R?, i.e. with mean.curv(9Y") > 0 derived by the
maximum principle. For instance,
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€ If such a 'Y c R3 with mean.curv(9Y) > 0 contains a plane,
then, assuming OY 1is mon-empty and connected, Y is equal to a
half-space.

This follows from the half-catenoid mazimal principle that was
originally used by Hoffman and Meeks [69] to show that

properly embedded minimal surfaces Y c R3 are flat.

Symmetrization. Intersections Y, of subsets Y with mean.curv(9Y’) >
¢ have mean.curv(0Yy,;) > ¢ with a properly defined generalised
mean curvature for such Yj,;. This allows G-symmetrization of Y's
under actions of isometry groups G acting on R* > Y,

geG

Thus, one can prove € in some (all?) cases by symmetrization
Y ~ Yy, ¢ R" where Yy, is equal to the intersection of the copies
of Y obtained by rotations of Y around the axis normal to the
hyperplane R*1 c Y.

Similarly, one proves the following

O Sc > 0 «»> mean.curv > 0. Certain constraints on the geome-
try of mean convex domains Y c R" can be derived from positive
mass like results applied to the double of Y.

For example, if 0Y is obtained by a compact perturbation of a
hyperplane, this perturbation can be Z" l-invariantly extended to
all of Y and then (the solution of the) Geroch conjecture applies to
the double of the resulting Z" !-periodic domain.

This however is not terribly impressive since either the maximum
principle or R*~1-symmetrization painlessly yield the same result as
well. symmetrisation

On the other hand, positive scalar curvature enters the proof of
the Fischer-Colbrie-Schoen theorem

Fischer Colbrie-Schoen Planarity Theorem [34|. Complete
stable minimal surfaces in R3 are flat.

This implies [87] what is called

Strong Half-space/Slab Theorem. The only mean convex do-
mains i R3 with disconnected boundaries are slabs between parallel
planes.

On the other hand, as it pointed out in [69] the spaces R" for
n > 4, contain, for instance mean convex domain bounded by pairs
of n-dimensional catenoids.

Yet, there must be significant constrains on the size of mean
convex domains, such as the following.
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|776] Conjecture. Stability of Periodic Slabs. The only
Z"=3-invariant mean convex domains in R" with disconnected bound-
aries are slabs between parallel hyperplanes.

Besides "thin and narrow" mean convex domains Y which sur-
round codimension two subsets in Riemannian manifolds X, there
are also "thick" ones. For instance,

let X be a complete Riemannian n-manifold, such that

Ow X is connected at infinity.

©®c V0l 1(0sX) = 00, that is every proper continuous function
f: X - R, satisfies

limsupvol,, 1 (f7(t)) - oo.
t—o0

e X islocally "(n—-2)-thick" There exist € >0, a > 1 and ¢ > 0,
such that all (n - 2)-cycles B ¢ X with diameters diam(B) < e and
with vol, o(B) < €™ 2 bound (n — 1)-chains C, i.e. B = 9C, such
that

vol,-1(C) < ¢-vol,_o(B)“.

(An X which is uniformly bi-Lipschitz homeomorphic to R”, or
to any Riemannian homogeneous space, satisfies these three condi-
tions.)

Then, granted Oo, @, ®, every compact subset Yy ¢ X is con-
tained in a smooth compact mean conver domain Y; c X.

Sketch of the Proof. Minimise vol,_1(JY) among all bounded
domains Y ¢ X which contain Yy. The conditions Qs and @
guaranty that Y,,;, exists, but it may, a priori be unbounded with
"thin and narrow spikes" going to infinity; e rules out this possibility.

The boundary 0Y,,;, may have singularities, but these are con-
trolled by Almgren-Allard regularity theorem. This allows approxi-
mation of Y,,;, by smooth mean convex domains Y; [48].

Lament. The condition e, unlike ©., is unstable under bounded
measurable perturbations of metrics, where such a perturbation of
the standard metric on R” in a small neighbourhood of a hyperplane
R7-! ¢ R® may turn this R*"! into a minimal hypersurface C' c R»
with vol,,_1(C') < oo.

Let X be a smooth manifold with a C%continuous Riemannian
metric gy and let Y7, Y5 ¢ X be smooth domain with common bound-
ary

Z=0Y1=0Y, =Y nY,

such that that the restrictions of gy to Y; and to Y5 are C?-smooth.
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Denote mean.curvy o(Zs) the mean curvatures of the hypersur-
face Zy in Y19 2 Zy and say that the scalar curvature of (X, go) is
(strictly) positive on Z and write Sc(g)z, = Sc(X)z, > 0 if

mean.curvy(Zy) + mean.curvy(Zy) > 0.

The doubling lemma along with its proof straightforwardly gen-
eralises to the following [3, 92, 49],

Edge Smoothing Lemma. If Sc¢(X);z, > 0 than go can be
CO-approzimated by C?-metrics g such that

e Sc(g) > Sc(go) on X N\ Zy;

e Sc(g,2) > 0(z) for a given continous function o on Zy and all
Z € Za,‘

e approximating metrics g can be taken equal gy away from arbi-
trarily small neighbourhoods of Zg in X.

25 Collapse of Hypersurfaces with Scalar Curva-
ture Blow-up.

[777] Problem. Describe "Remnants of Collapse" of Hypersurfaces
with Scalar Curvatures Blowing-up to +oc.

Namely, decide when a closed subset Y in a C?-smooth Rieman-
nian manifold (W, g) appears as a limit of smooth domains V; c W,
i € I, with Sc(0V;) - oo, where "limit" means that Y = N, V},
where, if Y is non-compact, one may additionally insist that V; c V;
for j > 4, or moreover, that V; eventually become smaller than any
given neighbourhood U Y. (For this one needs uncountable I.)

The following conjectures may give you a feeling of what this
description might tell you.
[7771] Conjecture. No Collapse to Codimensions 0, 1 and
2. If
Y =(\Vi, where Sc(0V;) > o; - oo for i — oo,

then the topological dimension of Y satisfies

dim(Y') < dim(W') - 3.

Discussion. In the simplest case, where W = R**! and Y, is the
unit ball, Llarull’s extrmality theorem implies that

no compact smooth domain V oY can have Sc(0V) >n(n-1),
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where, recall, the scalar curvature of X = 9V c R™*! is expressed in
terms of the principal curvatures ¢;, i =1,2,...,n, of X as

Sce(X) = X ci-cj = mean.curv(X)? = 3, ¢ for mean.curv(X) = ¥, ¢;.

Also, there are similar bounds on the scalar curvatures of bound-
aries of domains V' which contain more general topological subman-
ifolds (and sub-pseudo-manifolds) of codimensions 0, 1 and 2. In
fact, the present day techniques — minimal hypersurfaces and the
Dirac operator — come close to ruling out all Y with codim(Y") < 1
as remnants of collapse with Sc — oo and the case of codim = 2 also
seems within reach.

|778] Conjecture. Subsets with Low Hausdorff Dimen-
sions are Remains of Scalar Curvature Blow-ups. All closed
subset Y ¢ W with

dimpe,(Y) <n-1=dim(W) -2,

are intersections of decreasing families of smooth domains V; ¢ W
with Sc(9V;) - +o0

This is obvious for n = 2. Also subsets Y ¢ W which are con-
tained in smooth hypersurfaces Z™ c¢ W and which have zero Haus-
dorff mes,_1, are representable as such intersections by a simple
argument.

It is convenient at this point define Sc,(0,Y’) as the supremum
of the numbers ¢ such that every neighbourhood U oY contains a
smaller smooth V 5Y such that the scalar curvature of 9V for the
metric induced from the metric g in the ambient manifold W.

|779] Conjecture. Invariance and Non-invariance of Sc¢,(Y') =
+00.

The inequality chﬁ](Y) = +oo is independent of the Riemannian
metric g in W oY Moreover it is a bi-Lipschitz invariant. But it is
not a topological invariant.

There is no serious evidence here, but there are a few examples.

For instance, given k£ =1,2,....n -2 and pu > 0, one can arrange
nested neighbourhoods V;,, i = 1,2, ..., of flat k-subtori in W = Tn+!
such that Sc(dV.,) — oo and such that the Lebesgue measure of
their (solenoidal) intersection Y will be equal mes(W') — p.

(With a little effort, one can make a similar construction with all
V. homeomorphic to the k-ball.)

On the other hand, there, probably, exist compact zero dimen-
sional (Cantor) sets Y c R with SCL"](Y) # +oo. (Compare 5.3
in [48].)
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|780| Conjecture. Stabilisation under Cartesian Prod-
ucts. i
(S5 (1) = +oo] = [Sclph(V x X*) = +oo]
where X* = (X% g;) is a compact Riemannian manifold of dimen-
sion k£ and where W x X* 5 Y x X* is endowed with the metric
9 ® G-
Notice that the implication
[chﬁ](Y) = +oo] = [Sc%}i%(}/ x XF) = +oo]
is obvious for compact manifolds X* without boundary as well as for
complete non-compact manifolds with the scalar curvatures bounded
from below where the leading example is X* = R¥. Possibly, this
remains true for compact manifolds with boundary.
The reverse implication
[Sclanh (v x X*) = +oo] = [Sehi)(v) = +oo]
probably, fails to be true for n = 2 and, possibly, for n = 3,4 but it
is plausible for n > 5.

Relaxing C?-Smoothness of 0V, to C'. The requirement
for the existence metrics with Sc¢ > ¢ - oo on the boundaries of
domains V, ¢ W which approximate Y c W in the above definition of
S cgﬁ] (Y') = +o0 is compounded with the necessity of these boundaries
to be isometrically embeddable to (W) g).67

This complication can be removed by applying to the Nash-
Kuiper theorem on isometric C''-embeddings and allowing V. to have
C-smooth boundaries, yet with C2-smooth, rather than continuous,
induced metrics, where it would be even more natural to admit con-
tinuous metrics on dV.. However the extension of the inequality
Sc > o to continuous metrics is a non-trivial matter.

26 Manifolds with Small Balls.

The definition of the scalar curvature in terms of the volumes of
small balls in section 1 suggests the following.

Say that a metric measure space X = (X,dist,vol) where vol =
volx is the measure on X, called here volume, is locally volume-wise
smaller than another such space X' = (X', dist’,vol") and write

X <vol X,

67There is variety of obstructions to embeddablity of surfaces to 3-spaces (see a brief
overview of basic examples in section 3.2.3 in [42]) but amazingly little is known for n > 3.
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if all e-balls in X are smaller than the e-balls in X",
vol(B.(g)) <vol' (B (g))

for all x € X, 2’ ¢ X’ and some continuous positive function ¢ =
e(x,x").
Cartesian Additivity. Observe that

X <vol X and Y <vol Y’

imply that
X xY <vol X, XY’;

where the product spaces are endowed with volx.y =45 volx ® voly
and with the Pythagorean product metrics,

distxxy =\/dist% + dist.

(The Cartesian additivity obviously holds for all kind of metric prod-
ucts, say for distx.y = (disth, + dist},)'/P.)

Postulate Sc(R") = 0 and say that the n-volumic scalar curvature
of a metric space X is (strictly) positive if X is locally volume-wise
smaller than the Euclidean n-space R”,

X <wol R™.
Also postulate that the 2-sphere of radius R has
Sc(S?(R)) = 2R

and that
Sc(X xR) = Se(X) for all X.

Then declare that the n-volumic scalar curvature of X is < x for
k> 0if X is locally volume-wise smaller than S?(R) x R"~2 for all

R>1/\/k,
X <yt S2(R) xR"2, R > 1/\/k.
Next, motivated by the additivity Sc(X xY') = Sc(X) + Se(Y')
of the classical scalar curvature, say that
the n-volumic scalar curvature of X is > k for k <0 if X x S?(R)

for R =+/-2 has its (n + 2)-volumic scalar curvature > 0.

Definition of the n-Volumic Scalar Curvature Scv»(X)(x). This
is the infimum of the numbers k, such that x € X admits a neigh-
bourhood U c X such that the n-volumic scalar curvature of U is
> K.
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Observe that Scv? properly scales as befits a true curvature,
Scv'n(R-X) = R2Sc" (X))
for all R >0, where
R-X =4ef (X,R-distx, R" -voly),
and that
[-+]« Scvelnm (X x YY) = Scvoln (X)) + Scvolm (V).

by the Cartesian additivity of <,;.

We know that if X is a C2-smooth n-dimensional Riemannian
manifold, then

Scvoln (X)) equals the classical scalar curvature Sc(X)
with the conventional normalisation Sc(S™(1)) =n(n-1).

But it remains problematic if there are "non-smooth spaces" X
remote from C?-Riemannian manifolds where the lower bounds on
Scvol integrate to non-trivial global relations for geometric (and topo-
logical) invariants of X similarly to how it happens in the C?-case.

The apparent class of such non-smooth X is that of C°-Riemannian
manifolds where, despite an absence of serious evidence, we make
the following conjectures.

|779] Conjecture. C-closeness of the spaces of C’-metrics
with Volumically Positive Scalar Curvatures. If a Riemannian
C%-metric g on an n-dimensional manifold X can be C?-approximated
by C%-metrics g' with Scv°»(g') > k then Scvn(g) > k.

This conjecture is motivated by the corresponding property of
smooth metrics:

C9-Closure Theorem. If a Riemannian C?*-metric g on X can
be CO-approximated by C?-metrics g' with Sc(g') > k then Sc(g) > K
49, 10].

Test. Check [779] for continuous piecewise smooth metrics, e.g.
which are obtained by gluing smooth manifolds by isometries be-
tween their boundaries as in the edge smoothing lemma in section
24.

|780] Conjecture. C?-Smoothing of Continuous Metrics
with Volumically Positive Scalar Curvatures. All continuous
Riemannian metrics g on a smooth n-dimensional manifold X which
satisfy
Scln (g) =gep S (X, disty,vol,) > k
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for a given Kk € (—oo0,+00) can be uniformly (i.e. C°) approximated
by C?-metrics g’ with Sc(g') > k.

An obvious topological corollary of this reads:

|781] Conjecture. Topological Equivalence of Different
Scalar Curvatures. If a smooth n-manifold admits a continuous
metric g; with Sc¢vn(gy) > 0 then it also admits a C?-smooth metric
g2 with Sc(gy) > 0.

This says in other words that

if a closed n-manifold X carries no smooth metric with Sc >
0, then every continuous Riemannian metric g on X admits balls
B(X,g;R) of arbitrarily small radii R > 0 such that B(X,g;R) >
vol (B, (R)).

In view of this, one has the following, probably unrealistic, strength-
ening of the Q-non-essentiality conjecture |712] in section 4.

|782] Conjecture. C°-Continuous Guth-Geroch Lower Vol-
ume Bound for Balls in the Coverings of Essential Mani-
folds. [57|. The universal coverings X of Q-essential n-manifolds

X with continuous Riemannian metrics contain R-balls B(R) of all
radii R > 0 such that

vol(B(R)) > vol (B, (R)).

The main justification for 5 is the following rough version of it.

Corollary to Guth’ Mesoscopic Filling Radius Theorem
155, 57]. The universal coverings X of Q-essential Riemannian n-
manifolds X contain R-balls B(R) of all radii R >0 such that

vol(B(R)) 2 uv0l(Bjp,q(R))

for some universal constant &, > 0.
(d) The sharp bound here, i.e. with ¢, = 1 is available for large
balls by the following result.

Burago-Ivanov Asymptotic Ball Volume Theorem [21].5
If the universal cover X of an Q-essential manifold X admits a
sequence of balls B(R;) ¢ X,R; — oo, (where R; depend on the
metric in X ), such that

UOZ(B(RZ)) < UOZ(B%UCZ(RZ'))7
then X is flat.

68 This paper is about X homeomorphic T™; the general case reduces to that by the classi-
fication of groups of polynomial growth.
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(e) The Burago-Ivanov argument automatically extends to non-
Riemannian manifolds and pseudomanifolds (X,dist) with arbi-
trary metrics and suitably defined "volumes" on them, namely Hilbert
volumes Hil.vol™ (see [46]). (These "volumes" are not, a priori, ad-
ditive.) Guth’ theorem also remains valid for all (X, dist, Hil.vol™)
which motivates the following.

|783] Conjecture. Non-Riemannian Guth-Geroch. Let X
be an n-dimensional Q-essential pseudomanifold (e.g. manifold)
with an arbitrary metric. Then the universal covering X of X con-
tains balls of all radii R the Hilbert volumes of which are > than
these of the Fuclidean R-balls,

Hil.vol"(B(R)) > vol(BE,.(R)).

|784] Conjecture Non-Riemannian e-Llarull. Let a compact
n-dimensional pseudomanifold has the Hilbert volumes of all its balls
of radii < g¢ smaller than the volumes of such balls in S™. Then all
A-Lipschitz maps from X to the sphere S™ are contractible, say,
starting from gy = § and A < %

The conjectures [79] - [84] are on the side of wishful thinking —
something quite opposite may be true, e.g. the following.

|785] Conjecture. C%-Density of C’-metrics with Volu-
mically Positive Scalar Curvatures. Continuous Riemannian
metrics with Scv?» > 0 on an X are dense in the spaces of all Rie-
mannian metrics on X for all n-dimensional manifolds X for n > 3.9

(This may be compared with Lohkamp C°-Approzimation Theo-
rem |82]:

C?-metrics with Sc < =1 are C°-dense in the spaces of all Rie-
mannian metrics

on n-manifolds X for n > 3.)

On the other hand, it seems probable that most known properties
of smooth manifolds with Sc > 0 generalise to spaces with "benign
singularities", e.g. to Alezandrov spaces X with sectional curvatures
bounded from below by —1.

(A geodesic metric space™ is Alexander Kapovitch Petrunin Alexan-
drov geometry 2017 with sect.curv > -1 if, for every quadruple of
points z; € X, 7 = 1,2,3,4, there exists a quadruple of points z/
in the hyperbolic plane H? with sectional curvature -1, such that

69 Conformal representation of metrics on surfaces makes this approximation unlikely for
n=2. In fact, it may be safer to assume n > 4.

701 Geodesic" means that every two points 1 and z2 in X can be joined by a path of length
d=dist(z1,x2).
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dist 2 (2}, %) = distx(x;,x5) for i,j = 1,2,3, while disty2(z},2}) <
distx(x;,x4), see [4] and references therein.)
The simplest among expected results is the following.

|786] Conjecture. Geroch for Alexandrov Spaces. If an n-
dimensional Alexandrov space X with sect.curv > -1 and Scv»(X) >
0 admits a continuous map ® with non-zero degree (i.e. the homol-
ogy homomorphism ®, does not vanish on H,(X)) to the n-torus,
then the universal covering of X is isometric to R™.

Moral in Conclusion. The definition of Scv® is not supposed
to answer the question "What is scalar curvature”, but rather to
inspire a quest for a true definition.

27 Fredholm Coarea and Stable K-Area.

Let X be a Riemannin manifold or a more general (metric) space
where one may speak of length of curves and areas of surfaces and
define the Fredholm K-area on its homology similarly to how it
was done for K-area®™ in sections 12,13 but now allowing infinite
dimenstonal bundles L over X.

Namely, given a complex Hilbertian vector bundle L over X,
introduce the concept of a unitary connection V in it via parallel
transport over certain curves in X and define the norm of the cur-
vature of V as in section 9:

\lcurv(V)||(z) is the infimum of positive functions C(x) such that
the mazimal rotation angles o € [-m, 7] of the parallel transports
along the boundaries of "nice” (smooth in the Riemannin case) sur-
faces S in X satisfy

o] < fs C(s)ds
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Represent elements « of the K -cohomology group of X by pairs of
complex Hilbertian vector bundle £ = (Ly, L) over X with Fredholm

homomorphisms™

and it is also useful for certain non-compact ones. ®: L; » Ly and
define the coarea (norm) of x as the infimum of numbers ¢, such that x admits a
representation by ® : Ly — Lo, where L; and Lo are endowed with connections
with [|curv|| < c .

Do the same for the K-cohomology with compact supports (say, on locally
compact X), where the homomorphisms & are required to be unitary isomor-
phisms at infinity, i.e. outside compact subsets in X and such that ® must be
connection preserving at infinity

Define the coarea "norm" on x in the so defined K omp(X) as the infimum
of the numbers ¢, such that x admits a representation by ® : Ly — Ly, where
L; and Ly are endowed with connections with ||curv|| < ¢ and such that @ is
connection preserving at infinity.

Define Fredholm K -area on the K-homology of X, on the ordinary homology
and on the homology with infinite supports by linear duality: for instance, the
value of this K-area on a homology class h, equal the the reciprocal of the infimia
of the coareas of k, such that Chern(x)(h) # 0.

This is (obviously) related to the K-area and K-area® from section 12 by
the inequalities

Fredholm K-area > K-area® > K-area

[787] but there are no apparent examples (if any) where these inequalities are
strict.

Everything we know about K-area™ easily extends to the the Fredholm K-
area where the main gain is covariant functoriality of the Fredholm K-area, such
as follows.

Fredholm Push-forwards of under possibly infinite covering maps. Let f :
X - Y be a covering between oriented Riemannin manifolds.

There is an obvious push forward map from Hilbertian bundles L over X to
Hilbertian bundles over Y, say L —» M = f,(L), where the fiber of the bundle
M over y € Y equals the Hilbertian sum of the fibers of L over the pullback

iy e X,
M,= @ L,.
wef 1 (y)

For instance, if X =Y xX — Y is the trivial covering with all fibers equal to
a given countable set ¥ and L is the trivial line bundle, then M is the trivial
bundle with the fiber I5(X).

Now if ® : L; - Ly is a Fredholm homomorphism which is an isomorphism
at infinity, then the corresponding homomorphism between the pushed forward
bundles, say ¥ : M7 — M, is also Fredholm as well as isomorphic at infinity.

And since, clearly, the pushed bundles have the same curvatures,

[leurv(Mi 2)l = lleurv(L2), ||

"1 This is usually defined for compact spaces X where the operators are required to be
bounded. We shall use below unbounded operators and our spaces may be sometimes non-
compact.
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the Fredholm K-areas of the fundamental homology classes of X and Y, assum-
ing these are manifolds or pseudomanifolds, satisfy:

Fredholm K-area[ X1] > Fredholm K-area[X3].

More generally let f: X — Y be a fibration where the fibers Z, c X have
positive dimension and let them carry Riemannian structures continuous in
yeY.

Let ©(Z,) be some bundle over Z, associated with the tangent bundle T'(Z,)
and let the ©-push-forward L 2 M = f.o(L) be defined by taking the space

H, of the square integrable sections of Lz, ® ©(Zy), (where L, z, denotes the
restriction of L to Z,) for the fiber M,,.

Assume the fibers Z, are closed even dimensional spin manifolds, let the
restrictions Lz, be endowed with unitary connections continuous in y € Y and
let

D,:S"eM,~>S ®M,

be the Dirac operators on Z, twisted with Lz, .

If L is a finite dimensional bundle then the operators D, are Fredholm
and the resulting Fredholm bundle over Y serve as f,(L). (The spinor bundles
S* and S~ play here the role of 0.)

And in general, where £ is defined by ® : L1 — Lo, one gets a (quasi-
commutative) diagram of Fredholm homomorphisms which after a little tinker-
ing ™ defines the push forward Fredholm bundle

M= f*(‘c)

Now let the fibration f : X — Y carry a connection =, that is a parallel
transport Z,, - Z,, along paths from y; to y in Y and let a bundle L over X
is is also endowed with a connection, call it V.

If the E-transport preserves the Riemannin metrics in Z, and if the connec-
tion V is unitary, then it induces a connection in the Fredholm bundle f,(L),the
curvature of which is bounded — this is obvious but significant — by the curva-
tures of the connection Z and V on L. In particular , if the connection Z is flat,
i. e. locally trivial, e.g. X =Y x Z with the trivial connection, then

lleurv(f. V)|l < lleurv(v)|.™

1mm
Product Corollary. If Z is a closed Riemannin manifold with a non-zero
characteristic number, e.g. x(Z) # 0, then

Fredholm K-area[Y x Z] < Fredholm K-area[Y].

72The operators D, are unbounded, but they are bounded Fredholm on suitable Sobolev
spaces.

73This construction goes back to the work of Atiyah and Singer with its present form
suggested in [?]-Mishchenko Infinite-dimensional representations 1974. See Ch 9 in [44]-
Gromov Positive curvature macroscopic dimension 1996] for more about it.

74The Sobolev subspaces in in the Hilbert spaces Hy, on which the operators D, are bounded
Fredholm, are not, in general, invariant under the transport by f«(V) but this causes no
problem due to ellipticity of D,.
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Then this easily extends to open manifolds and implies for instance the
following.

Subcorollary 1: Bott Periodicity The Fredholm K-area is stable under mul-
tiplication by the Euclidean spaces:

Fredholm K-area[X x R?™] = Fredholm K-area[X].

Subcorollary 2: Stable Hypersphericity. Let Y be a complete Riemannian
manifold of dimension n with Sc(Y') > n(n - 1), let Z be an orientable psedo-
manifold of dimension m.

Let f:Y xZ - S™™ be a continuous map which is locally constant at
infinity and which is A\-Lipschitz on Y x {z} c Y x Z for all z € Z.

If X is orientable, if the universal covering is spin and if \ < ¢, for some
universal constant c, > 0. then the map f has zero degree.

[88] Remark/Conjecture. Tt is not hard to show that ¢, > 2™ and,
conceivably, ¢, = 1.

Subcorollary 2 implies, for instance, that
the filling radii of proper 1-Lipschitz embeddings from Y to (possibly infinite
dimensional) manifolds W with non-positive sectional curvatures, e.g. to the

Hilbert space, satisfy:

filrad(Y c W) < i

n

In fact, if a submanifold Y ¢ W has fil.rad(Y c W) > A%, then there exists
a A-Lipschitz map Y x Z - SV~1 N = dimW, for some Z, which, if N < oo,
has non-zero degree. (See section 13 in [54]-Gromov Lawson Positive scalar curvature
1983 and section 8 in [41]-Gromov Filling Riemannian manifolds 1983].)

And since the above constant ¢, is independent of the dimension of the
sphere, the case N = oo reduces to that of N < oo by a straightforward approxi-
mation argument.”

[89] Conjectures. Probably, the present day techniques is sufficient to prove
the above for maps to C AT(0)-spaces, i.e. possibly singular Alexandrov spaces
W with non-positive curvatures, where the expected inequality is fil.rad < 1.

Also, in view of [70]-Kasparov Yu The coarse geometric Novikov 2005], this may be
true for imbeddings to uniformly convex Busemann spaces W with non-positive
curvatures with the bound on fil.rad depending on the convexity modulus of

w.

28 Manifolds with Scalar Curvature bounded from
below by a negative constant: their Volumes,
Spectra and Soap Bubbles.

Let Xy be a complete Riemannian manifold (or an Alexandrov space) with

the sectional curvatures < —1 and let X be a compact n-dimension Riemannin
manifold with Se¢ > -n(n-1)

75This was pointed out to me by Alexander Dranishnikov about 15 years ago who suggested
a simple proof of G. Yu’s theorem in [127]-Yu The coarse Baum-Connes 2000].
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[790] Conjecture. Hyperbolic Volume Inequality. Then every contin-
uous map fo: X — X is homotopic to a map f, such that

vol, (f(X)) < wvol(X)

where, moreover, this inequality can be made strict, unless X has a constant
negative curvature and the map fy is homotopic to a locally isometric map.

Notice that if X as well as X has constant sectional curvature -1, this con-
jecture, which generalises the Mostow’s rigidity theorem, is proved by evaluating
the simplicial volume of X.

Recall that simpl.vol(X) is a non-negative numerical invariant of compact
orientable topological manifolds X such that continuous maps between equidi-
mensional manifolds, X — Y of degree d, satisfy

simpl.vol(X) > d - simpl.vol(Y'),

with the equality simpl.vol(X) = d-simpl.vol(Y") for d-sheeted coverings X — Y.
The simplicial volume of an X is known to be non-zero if X admits a metric
with negative sectional curvatures.
[791] Conjecture. Bound on the Simplicial Volume. The simplicial
volume of a compact manifold X with Sc(X) > —0?, is proportionally bounded
by the volume of X,

simpl.vol(X) < constn,o"vol(X).

There is little evidence for the conjectures 3 and 4. If n > 4 one doesn’t even
know if there are metrics g on n-manifolds (X, go) with negative curvatures,
such that Sc(g) > —o? for a fixed o > 0 and such that g < egg for an arbitrarily
small € > 0.7

Neither is one able to prove (or disprove) that manifolds with positive scalar
curvatures have zero simplicial volumes.

Possibly, these conjectures need significant modifications to become realistic.

................................. to be continued [92] [93] [94]... 777

29 Spectra of Dirac Operators, C'*-Algebras, Asymp-
totics of Infinite Groups, etc.

asymptotically flat and asymptotically periodic bundles. Dirac on products of
non-compact manifolds

[95777]|Conjecture. The Dirac operators on the universal covering of as-
pherical manifolds contain zeros in their spectra.

[23]-Chang+ Positive scalar curvature and a new index|

[97] Piotr W. Nowak. Zero-in-the-spectrum conjecture on regular covers of
compact manifolds Comment. Math. Helv. 84 (2009), 2137222

761f n=3 this follows by the Schoen-Yau argument applied to (possibly infinite) minimal
surfaces in X [43] while the decisive sharp volume bound follows from the properties of the
Ricci flow on 3-manifolds proved by Perelman, see [128] and references therein.
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Abstract. We prove the zero-in-the-spectrum conjecture for large, regular
covers associated to amenable subgroups of fundamental group of a closed man-
ifold N, provided that "1.N/ is

............... to be continued [96]-[100]777

30 Foliations with Sc>0

[101777]Questions. When does a smooth manifold X admit an n-dimensional
foliation F with a Riemannin metric on the leaves with Sc> 07

Would such an X itself (possibly, stabilised in some manner) admit a metric
with Sc¢ > 0.

Which geometric results and/or techniques concerning manifolds with Sc > 0
extend to foliations F with Sc> 07

The index theoretic techniques were developed by Alain Connes for foliations
in [24]-Connes Cyclic cohomology and the transverse fundamental class of a foliation
1986).

Connes’ argument, which is adapted to the leaf-wise Dirac operator D twisted
with the bundles associated to the normal bundle to F [24], also apples to D
twisted with moderately curved bundles on X (this is explained in ch 9 in [44]-
Gromov Positive curvature, macroscopic dimension 1996]), which implies, for instance,
that

tori and, in general, compact manifolds with non-positive sectional curva-
tures, admit no smooth foliations with Sc > 0.

Further results were obtained by in [?]-Bernameur-Heitsch Enlargeability foli-
ations| and in [129]-Zhang Positive scalar curvature on foliations 2017], where the
technique developed by the latter author allows non-spin foliations, provided
the ambient manifold is spin.

............... to be continued

31 Spaces of Metrics and Spaces of Spaces with
Sc>0

32 Non-smooth Spaces and Geometric Functors
with Sc>o.
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