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2-Systems of Arcs on Spheres with Prescribed Endpoints

Sami Douba

Abstract. Let S be an n-punctured sphere with n ≥ 3. We prove that(n
3
)

is the maximum size of a family of pairwise nonhomotopic simple

arcs on S joining a fixed pair of distinct punctures of S and pairwise
intersecting at most twice. On the way, we show that a square annular
diagram A has a corner on each of its boundary paths if A contains at
least one square and the dual curves of A are simple arcs joining the
boundary paths of A and pairwise intersecting at most once.

1. Introduction

A k-system A of arcs on a punctured surface S is a collection of essential simple
arcs on S such that no two arcs of A are homotopic or intersect more than k times.
We begin with the following observation.

Remark 1.1. If k = 0, S is an n-punctured sphere with n ≥ 3, and the arcs of A
all join a fixed pair of distinct punctures p, q of S, then |A| ≤ n−2. To see this, fix
a complete hyperbolic metric on S of area 2π(n − 2) and realize the arcs of A as
geodesics on S. Cutting S along A, we obtain a collection of hyperbolic punctured
strips. Since the boundary of each strip consists of two arcs of A, and since each
arc of A appears twice as a boundary component of some strip, we count precisely
|A| strips. The bound on |A| now follows from the fact that each of these strips
has area at least 2π . Moreover, this bound is tight since we can easily devise a
0-system on S whose complement consists entirely of once-punctured strips (see
Figure 1). An area argument also shows that the maximum size of A is 2n − 5 if
we assume instead that p = q .

Problems involving bounding the size of a k-system of arcs, of which Remark 1.1
serves as a trivial example, originated in similar problems for curves. Juvan, Mal-
nič, and Mohar [JMM96] introduced the term “k-system” and showed that the
maximum size N(k,�) of a k-system of essential simple closed curves on a fixed
compact surface � is finite. Independently, Farb and Leininger inquired about
N(k,g) := N(k,�) for � closed and oriented of genus g and k = 1. In response,
Malestein, Rivin, and Theran [MRT14] provided an upper bound exponential in g

and showed that N(1,2) = 12. Also for k = 1, Przytycki [Prz15, Thm. 1.4] pro-
duced an upper bound on the order of g3; since then, tighter bounds on N(1, g)

have been found by Aougab, Biringer, and Gaster [ABG17] and more recently by
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Figure 1 A maximum-size 0-system joining distinct punctures p, q

of the 7-punctured sphere.

Greene [Gre18a]. Moreover, Przytycki [Prz15, Cor. 1.6] provided an upper bound
on N(k,g) for arbitrary k that grows like gk2+k+1. This bound was subsequently
improved by Greene [Gre18b] to one that grows like gk+1 logg.

In [Prz15], so as to prove the aforementioned results about k-systems of curves,
Przytycki first proved stronger results about k-systems of arcs; he showed, for
example, that the maximum size of a k-system of arcs on a punctured surface S of
Euler characteristic χ < 0 (where distinct arcs are not required to have the same
endpoints) grows like |χ |k+1. In the same paper, Przytycki proved the following:

Theorem 1.2 ([Prz15, Theorem 1.7]). Let p, q be punctures of an n-punctured
sphere S, where n ≥ 3. The maximum size of a 1-system A of arcs on S joining p

and q is
(
n−1

2

)
.

Note that p and q are not assumed to be distinct in the statement of Theorem 1.2.
More recently, Bar-Natan [Bar17] showed that for S, p, q as in Theorem 1.2, if
p = q , then the maximum size of a 2-system of arcs on S joining p and q is

(
n
3

)
.

The main result of this paper is that Bar-Natan’s maximum holds for p, q distinct:

Theorem 1.3. Let p, q be distinct punctures of an n-punctured sphere S, where
n ≥ 3. The maximum size of a 2-system A of arcs on S joining p and q is

(
n
3

)
.

It is worth noting that the natural analogue of Theorem 1.3 does not hold in pos-
itive genus. More precisely, it is not true that if S is an n-punctured surface of
genus g with n ≥ 2 and g > 0, then the maximum size of a 2-system of arcs
joining a fixed pair of distinct punctures of S is, or is even bounded above by,(|χ(S)|+2

3

) = (2g+n
3

)
; see Figure 2 for a counterexample in the case g = 1 and

n = 2, found with Przytycki.

Organization

In Section 3, we provide an example of a 2-system of size
(
n
3

)
joining a fixed pair

of distinct punctures of an n-punctured sphere for n ≥ 3. The remaining sections
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Figure 2 A 2-system of size 12 joining the punctures of a twice-
punctured torus.

are concerned with proving that
(
n
3

)
is an upper bound on the size of such a 2-

system A. This is proved by induction on n; we prove that the number of arcs of
A that become homotopic after forgetting a puncture of S is not too large. This,
in turn, is proved by induction via the following:

Lemma 1.4. Let S be an n-punctured sphere, and let p, q , r be distinct punctures
of S. Let P , Q be 1-systems of arcs starting at r and ending at p, q , respectively,
so that no arc of P intersects an arc of Q. Suppose R⊂ P ×Q such that for any
(α,β), (α′, β ′) ∈ R,

(i) we have |α ∩ α′| + |β ∩ β ′| ≤ 1;
(ii) if |α ∩ α′| + |β ∩ β ′| = 1 with α �= α′, β �= β ′, then the cyclic order around r

of the r-ends of α, α′, β , β ′ is given by (α,α′, β,β ′) or (α′, α,β ′, β).

Then |R| ≤ (
n−1

2

)
.

Section 6 is devoted to the proof of Lemma 1.4. The inductive step again involves
forgetting a puncture s of S, but this time, we choose s with care to control the
subsequent behavior of the arcs of P and Q. More precisely, we require that s be
p-isolated (see Section 2 for definitions).

To guarantee that a puncture with this property exists, we take a detour into
annular square diagrams. A k-system annular diagram A is an annular diagram
whose dual curves constitute a k-system of arcs joining the boundary paths of A.
Such a diagram arises as the dual square complex to a k-system A on a punctured
sphere with distinct prescribed endpoints. In Section 5, we prove the following:

Theorem 1.5. Let A be a 1-system annular diagram. Then either A is a cycle, or
A has a corner on each of its boundary paths.

Roughly speaking, a corner corresponds to an isolated puncture. Note that Theo-
rem 1.5 does not hold for k = 2; see Figure 5 (bottom left) for a counterexample
suggested by Przytycki. We have also included a direct proof found by the referee
of the existence of an isolated puncture (Proof 2 of Corollary 5.3); this proof does
not use annular square diagrams.
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2. Definitions

2.1. Arc Systems

A puncture is a topological end of a space S obtained from a connected oriented
compact surface � by removing finitely many points p1, . . . , pn from �. Note
that the punctures of S are in bijection with p1, . . . , pn and that we allow punc-
tures on the boundary of �. If p1, . . . , pn are taken from the interior of �, then
we call S an n-punctured �.

An arc on S is a proper map α : (0,1) → S. A proper map induces a map
between ends of topological spaces; in this sense, α “maps” each endpoint of
(0,1) to a puncture p of S. We call p an end of α. If p, q are ends of α, then we
say that α starts at p and ends at q , or that α joins p and q . A segment of α is the
restriction of α to some positive-length subinterval of (0,1).

An arc α is simple if it is an embedding, in which case we identify α and its
segments with their images in S. If J is a subinterval of (0,1) with endpoints t1,
t2 and α is a simple arc mapping ti to xi for i = 1,2, then we denote the segment
α|J by (x1x2)α . If R ⊂ S is a subset and p is an end of α corresponding to an
endpoint t0 = 0,1 of (0,1), then we say that the p-end of α lies in R if α−1(R) is
a neighborhood of t0 in (0,1).

A homotopy between arcs α1 and α2 is a proper map (0,1)×[0,1] → S whose
restrictions to (0,1) × {0} and (0,1) × {1} are α1 and α2, respectively. In particu-
lar, a homotopy preserves ends. If r is a puncture of S, then we say that two arcs
on S are r-homotopic if they are homotopic on the surface S̄ obtained from S by
forgetting r . Two arcs are in minimal position if the number of their intersection
points cannot be decreased by a homotopy. Note that if a pair of arcs have a point
of intersection that is not transversal, then they are not in minimal position. An
arc α is essential if it cannot be homotoped into a puncture in the sense that there
is no proper map (0,1)×[0,1) → S whose restriction to (0,1)×{0} is α. Unless
otherwise stated, all arcs in the paper are simple and essential, and all intersec-
tions between arcs are transversal. Note that an arc joining distinct punctures of a
punctured surface is automatically essential.

Let R be a closed disc with at most two punctures on its boundary and possibly
with punctures in its interior. A region between arcs α1 and α2 on S is a properly
embedded R ⊂ S such that ∂R is a union of exactly two segments σ1 and σ2,
where σi is a segment of αi for i = 1,2 (see Figure 3). We say that α1 and α2 (or,
more specifically, σ1 and σ2) form or bound R. If R has no punctures in its interior,
then we say that R is empty. If R has exactly 0 (respectively, 1, 2) punctures on
its boundary and R ∩ (α1 ∪ α2) = ∂R, then we call R a bigon (respectively, half-
bigon, strip). We say that R is adjacent to a puncture p of S if p lies on the
boundary of R. If p, s are distinct punctures of S and A is a collection of arcs on
S with s contained in a half-bigon or strip H adjacent to p formed by a pair of
arcs of A such that H is a component of S −⋃

A, then we say that s is p-isolated
by A.

We will make frequent use of the following lemma.
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Figure 3 Regions formed by arcs. The yellow region is a half-bigon.
The pink and orange regions are bigons. The orange bigon is empty.

Lemma 2.1 (The bigon criterion, [FM12, Proposition 1.7]). Two intersecting arcs
on a punctured surface are in minimal position if and only if they form no empty
regions.

Since an empty region bounded by intersecting arcs must contain an empty bigon
or half-bigon, we immediately obtain the following corollary.

Corollary 2.2. Two intersecting arcs on a punctured surface are in minimal
position if and only if they form no empty bigons or half-bigons.

A k-system of arcs on a punctured surface S is a collection A of essential simple
arcs on S such that no two arcs of A are homotopic or have more than k points of
intersection. We will mainly consider the case where S is a sphere punctured at
least thrice and A is a 2-system of arcs joining a fixed pair of distinct punctures p,
q of S. Note that for any two arcs α1, α2 of such a collection A, a region bounded
by α1, α2 that contains neither p nor q must be a bigon, a half-bigon, or a strip.

If a punctured surface S has Euler characteristic χ < 0, then S admits a com-
plete hyperbolic metric of area 2π |χ |. Under such a metric, the homotopy class of
any arc contains a unique geodesic representative, and any two distinct geodesic
arcs are in minimal position. Thus, for the purposes of determining the size of a
k-system A of arcs on S, we may assume that A consists of geodesics.

2.2. Combinatorial Complexes

A map X → Y between CW complexes X and Y is combinatorial if its restriction
to each open cell of X is a homeomorphism onto an open cell of Y . A CW com-
plex X is combinatorial if the attaching map of each cell in X is combinatorial
for some subdivision of the sphere. A cell of dimension 0 is a vertex, and a cell of
dimension 1 is an edge. The degree of a vertex v of X is the number of edges in
X incident to v, with loops counted twice.

2.3. Square Complexes

An n-cube is a copy of [−1,1]n. A square complex X is a combinatorial complex
whose cells are n-cubes with n ≤ 2; that is, X is a combinatorial 2-complex each
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of whose 2-cells is attached via a combinatorial map from a 4-cycle into the 1-
skeleton of X. The cells of X are called cubes, and its 2-cells are called squares.

A midcube is a subspace of a cube [−1,1]n obtained by restricting one coor-
dinate to 0. Let U be a new square complex whose cells are midcubes of X and
whose attaching maps are restrictions of attaching maps in X to midcubes. A dual
curve α of a cube c in X is a connected component of U containing a midcube
of c. If c is an edge, then we say that α is dual to c. We call the dual curve α an
arc if it is homeomorphic to an interval (possibly of length 0). There is a natural
immersion α → X; if this map is an embedding, then we say that α is simple. In
this case, we identify α with its image in X. Note that if c is a square whose dual
curves are simple, then it has exactly two dual curves.

2.4. Annular Diagrams

An annular diagram A is a finite combinatorial cell decomposition of S2 minus
two disjoint open 2-cells (see Figure 4). The attaching map of each of these 2-cells
is a boundary path of A.

We call A a square annular diagram, or simply a diagram, if it is also a square
complex (see Figure 5). A corner on a boundary path P of a diagram A is a vertex
v on P of degree 2 that is contained in some square of A.

Let c be a square of a diagram A with boundary path P , and let x be the center
of c. Suppose the dual curves α, β of c are dual to consecutive edges a, b on P

with shared vertex v. Let γ be the loop obtained from the subarcs of α, β joining
x and P and from the half-edges of a, b containing v. If γ is homotopic in A to a
constant path, then we call c a cornsquare with outerpath ab.

A hexagon move on a diagram A is the replacement of three squares forming a
subdivided hexagon by an alternate three squares forming a subdivided hexagon
(see Figure 6). A hexagon move can be visualized as a benign “sliding” operation
on one of the dual curves of A, so that if A′ is obtained from A by a hexagon
move, then there is a natural correspondence between the dual curves of A and
those of A′. Note that the number of squares of A is preserved under hexagon
moves.

Figure 4 An annular diagram. The boundary paths are indicated in red.
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Figure 5 Square annular diagrams. Dual curves are dashed and col-
ored. Corners are colored red. The bottom left (respectively, bottom
right) diagram is a 2-system (respectively, 1-system) annular diagram.
Note that the square at which the blue and orange dual curves meet
in the bottom right diagram is a cornsquare with an outerpath on each
boundary path, whereas the square at which the green and purple dual
curves meet is not a cornsquare, even though the latter two dual curves
are dual to consecutive edges on each boundary path.

Figure 6 A hexagon move and its effect on dual curves.

A square annular diagram A is a k-system annular diagram if its dual curves
are simple arcs joining the boundary paths of A and pairwise intersecting at most
k times in A. Note that the number of intersections between any pair of dual
curves of A is preserved under a hexagon move. Thus, if A′ is obtained from a k-
system annular diagram A by a hexagon move, then A′ is also a k-system annular
diagram.
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3. A 2-System of Maximum Size

We provide an example of a 2-system of arcs of size
(
n
3

)
joining a fixed pair of

distinct punctures of an n-punctured sphere S. This collection was independently
discovered by Assaf Bar-Natan.

We think of S as R2 punctured at p = (−1,0) and at the points ri = (i − 1
2 ,0)

for i = 1, . . . , n − 2. We construct a 2-system A joining p and the puncture q at
infinity.

Let α<−1 be the arc given by the ray {(x,0) : x < −1}. For a, b, c ∈
{0,1, . . . , n − 2} with a < b < c or 0 < a < b = c = n − 2, let αabc be
the graph of the polynomial function fabc : (−1,∞) → R given by x �→
(x + 1)(x − a)(x − b)(x − c).

Note that for distinct triples (a, b, c) and (a′, b′, c′), the difference fabc − fa′b′c′
is a cubic polynomial, one of whose roots is −1. Thus, the αabc pairwise intersect
at most twice. Furthermore, the αabc are pairwise nonhomotopic [Bar17, proof of
Lemma 4.2], and α<−1 is not homotopic to any of the αabc since the complement
of α<−1 ∪ αabc is a pair of punctured strips.

Now fix M > 0 such that M > |fabc(x)| for all x ∈ (−1, n − 2]. For each
i, j ∈ {1, . . . , n − 2} with i < j , let αij be the union of the following horizon-
tal and vertical segments: the segment joining (−1,0) and (−1,M), the segment
joining (−1,M) and (i − 1

2 + 1
4 ,M), the segment joining (i − 1

2 + 1
4 ,M) and

(i − 1
2 + 1

4 ,−M), the segment joining (i − 1
2 + 1

4 ,−M) and (−2,−M), the seg-
ment joining (−2,−M) and (−2,M + 1), the segment joining (−2,M + 1) and
(j − 1

2 − 1
4 ,M + 1), and the vertical ray traveling down from (j − 1

2 − 1
4 ,M + 1).

Note that each αij intersects α<−1 exactly once, and each αabc exactly twice
(see Figure 7). Furthermore, each αij is in minimal position with α<−1 by Corol-
lary 2.2; since α<−1 is disjoint from the αabc , this shows that none of the αij is
homotopic to any of the αabc .

We claim that the αij are pairwise nonhomotopic. Indeed, for k ∈ {1, . . . , n − 3}
let γk be the horizontal arc joining the punctures at x = k − 1

2 and x = k + 1
2 , and

note that αij and γk are in minimal position by Corollary 2.2. Since no two of the
αij share the same number of intersection points with each of the γk , the αij must
be pairwise nonhomotopic.

We claim further that the αij pairwise intersect at most twice. Indeed, if
i, j, i′, j ′ ∈ {1, . . . , n − 2} with i ≤ i′, then the number of intersection points be-
tween αij , αi′j ′ is determined by the order of j , i′, j ′. If i′ < j ≤ j ′, then αij and
αi′j ′ are disjoint (see Figure 8, top). If i′ < j ′ < j , then αij and αi′j ′ intersect once
(see Figure 8, middle). Otherwise, j ≤ i′, and there are two points of intersection
between αij and αi′,j ′ (see Figure 8, bottom). Thus the family A consisting of
α<−1, the αabc , and the αij is a 2-system of size 1+ (n−3)+(

n−1
3

)+(
n−2

2

) = (
n
3

)
.

4. Properties of r-Homotopic Arcs Intersecting at Most Twice

Let p, q , r be distinct punctures of a punctured sphere S, and let A be a 2-system
of arcs on S joining p and q . Let S̄ be the surface obtained from S by forgetting
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Figure 7 The arcs αabc on the 5-punctured sphere, together with arc
α<−1, drawn in blue, arc α23, drawn in violet, and arc γ1, drawn in
green.

Figure 8 The αij pairwise intersect at most twice.
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r , and for each arc α ∈ A, let ᾱ be the homotopy class of the corresponding arc
on S̄. To bound the size of A from above, we will need to examine to what extent
the map α �→ ᾱ is injective. In this section, we collect some facts about the fibers
of this map. Together, the results of this section show that we can extend A so
that the size of each fiber is 1 larger than the number of pairs of disjoint arcs in
that fiber.

The main results of this section are Lemmas 4.5, 4.6, and 4.7. The proofs are
rather technical and may be skipped on an initial reading.

Lemma 4.1. Let p, q , r be distinct punctures of a punctured sphere S, and let α1,
α2 be a pair of r-homotopic arcs joining p and q and intersecting at most twice.
If the αi are in minimal position, then they are in one of the configurations shown
in Figure 9, up to relabeling p and q .

Proof. If α1 and α2 are disjoint, then they bound a strip whose only puncture is r

(see Figure 9, top left). Otherwise, by Corollary 2.2, α1 and α2 bound a half-bigon
or bigon R whose only puncture is r . If α1 and α2 intersect exactly once, then R

is a half-bigon, and since the αi are r-homotopic, all punctures of S distinct from
p, q , r lie in the other half-bigon formed by α1 and α2 (see Figure 9, top right).

If the αi intersect twice and R is a half-bigon, then the αi do not form a bigon,
since otherwise they would not be r-homotopic (see Figure 10). Thus, in this case,

Figure 9 The possible configurations of a pair of r-homotopic arcs
in minimal position and intersecting at most twice, up to relabeling p

and q .
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Figure 10 If α1 and α2 are in minimal position, intersect exactly
twice, and form a bigon that does not contain r , then they cannot be
r-homotopic. The fact that the bigon and half-bigons bounded by the
αi prior to forgetting r are punctured and the fact that the arcs on the
right are in minimal position are consequences of Corollary 2.2.

Figure 11 Reconstructing the αi in Lemma 4.2.

the αi must be as in the bottom right diagram of Figure 9, and since the αi are r-
homotopic, all punctures of S distinct from p, q , r must lie in the other half-bigon
formed by the αi .

Otherwise, R is a bigon, and the αi also bound a pair of punctured half-bigons.
These half-bigons must contain all the remaining punctures of S since the αi are
r-homotopic (see Figure 9, bottom left). �

The corollary of the following lemma will be useful in the proof of Lemma 4.4.
The former tells us that, in a particular context, if we have a portion of an arc,
then we can trace out the remainder of that arc.

Lemma 4.2. Let D be a disc with at least two punctures in its interior and at least
one puncture on its boundary, and let α be an arc joining an interior puncture p

of D to a puncture x on ∂D. If β is another arc joining p and x such that α and
β bound a strip containing all interior punctures of D distinct from p, then β is
homotopic to exactly one of the arcs α1 and α2 shown in Figure 11 (left).
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Proof. Suppose that the x-end of β lies to the right of α. Then we may homotope
α1 so that it bounds an empty strip with β , as in Figure 11 (right). Thus, in this
case, β is homotopic to α1. Similarly, if the x-end of β lies to the left of α, then
β is homotopic to α2. �

Corollary 4.3. Let p, q , r be distinct punctures of an n-punctured sphere S

with n ≥ 4, and let α, β be r-homotopic arcs in minimal position joining p, q

and intersecting once or twice. Let x1, . . . , xm be the points of intersection of α,
β in the order that β traverses them as β travels from p to q , and set x0 = p,
xm+1 = q . For i = 0, . . . ,m, let βi be the segment of β joining xi and xi+1. If
m = 2, then the homotopy types of β0 and β1 determine that of β . If α and β do
not bound a bigon, then the homotopy type of β0 determines that of β for m = 1,2.

Proof. For i = 0, . . . ,m, let αi be the segment of α joining xi and xi+1. We punc-
ture S at x1, . . . , xm.

Case 1: α and β intersect exactly once. Cutting S along α0 and β0 yields two
punctured strips. Let D be the strip containing q . Note that x1 is now a puncture
on ∂D and that α1 and β1 are arcs joining q and x1 and bounding a strip con-
taining all the interior punctures of D distinct from q . Thus by Lemma 4.2 the
homotopy type of β1 is uniquely determined, since only one of the arcs described
in Lemma 4.2 produces a β that intersects α transversally at x1 (in fact, the only
other candidate homotopy class of β1 produces a β that is homotopic to α).

Case 2: α and β form a bigon. Let D be the square containing the puncture q

obtained by cutting S along α0, β0, α1, β1. Now x2 is a puncture on ∂D, and α2
and β2 are arcs joining q and x2 and bounding a strip containing all the interior
punctures of D distinct from q , so we may apply Lemma 4.2 as in Case 1. Again,
only one of the two homotopy classes to which β2 must belong by Lemma 4.2
produces a β that intersects α transversally at x2 (see Figure 12).

Case 3: α and β intersect exactly twice but do not form a bigon. Let D be the
strip containing q obtained by cutting S along α0 and β0. Since x1 is a puncture

Figure 12 By Lemma 4.2, given segments β0 and β1 of β , there are
at most two homotopy classes of arcs joining q and x2 to which β2
can belong. One such homotopy class produces a β that intersects α

nontransversally at x2, as shown above.
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on ∂D, and α1 and β1 are arcs joining x1 and x2 and bounding a strip contain-
ing all the interior punctures of D distinct from x2, the homotopy type of β1 is
uniquely determined by Lemma 4.2 as in the previous cases. Now let D′ be the
strip containing q obtained by cutting D along α1 and β1. Since x2 is a puncture
on ∂D′, and α2 and β2 are arcs joining q and x2 and bounding a strip containing
all interior punctures of D′ distinct from q , the homotopy type of β2 is uniquely
determined by Lemma 4.2. �

Lemma 4.4. Let p, q , r be distinct punctures of an n-punctured sphere S with
n ≥ 4. Let Ar be a maximal 2-system of r-homotopic arcs on S that join p and
q and are pairwise in minimal position. Then, up to homotopy and relabeling p

and q , Ar is as in Figures 13 or 14, depending on whether or not there is a pair
of arcs in Ar that form a bigon.

We divide the proof of Lemma 4.4 into the following two lemmas. Note that if Ar

is as in Lemma 4.4, then Ar necessarily contains a pair of intersecting arcs.

Figure 13 The configuration of Ar in Lemma 4.4 if no pair of arcs
in Ar form a bigon.

Figure 14 The configuration of Ar if a pair of arcs in Ar form a bigon.
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Figure 15 Case 1 of Lemma 4.5.

Figure 16 Case 2 of Lemma 4.5.

Lemma 4.5. Let Ar be as in Lemma 4.4, and suppose further that Ar contains
intersecting arcs α1, α2 ∈Ar that do not form a bigon. Then Ar is as in Figure 13
up to homotopy and relabeling p and q .

Proof. Let H be the half-bigon formed by the αi containing r , and assume that
H is adjacent to p (see Figures 15, 16, left). Let β ∈Ar .

Case 1: The αi intersect exactly once. Let x be their unique point of intersection.
If β is disjoint from the αi , then β is homotopic to arc β1 in Figure 15 (right).
Now suppose β is not disjoint from αi , and let z be the first point of intersection
of β and the αi as β travels from p to q . Suppose that z lies on α1. If the p-end
of β lies in H , then β forms a half-bigon with α1 whose only puncture is r , since
otherwise α1 and β would form an empty half-bigon, contradicting our assump-
tion that α1 and β are in minimal position (Corollary 2.2). Thus, by Lemma 4.1
and Corollary 4.3, β is either homotopic to α2 or to arc β2 in Figure 15 (right).
If the p-end of β lies outside H , then z cannot lie on the segment (px)α1 , since
otherwise β and α1 would form an empty half-bigon. Thus z lies on (xq)α1 , and
so β again forms a half-bigon with α1 whose only puncture is r . Thus, by Corol-
lary 4.3, β is again homotopic to one of α2 or β2. Note that, by the above, Ar

cannot contain an additional arc β ′ intersecting α2 first as β ′ travels from p to q .
This is because the reflection of β2 across the vertical diameter in Figure 15 (right)
intersects β2 thrice.
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Case 2: The αi intersect exactly twice. Let x, y be the points of intersection of
the αi in the order that α1 traverses them as it travels from p to q . In this case,
β intersects at least one of the αi since p,q are in distinct components of the
complement of α1 ∪ α2. Let z be the first point of intersection of β and the αi as
β travels from p to q . Suppose that z lies on α1. If the p-end of β lies in H , then,
as in Case 1, β forms a half-bigon with α1 whose only puncture is r . Thus, by
Corollary 4.3, β is either homotopic to α2 or to arc β1 in Figure 16 (right). If the
p-end of β lies outside H , then, as in Case 1, z cannot lie on the segment (px)α1 .
Thus z lies on (xy)α1 . But then β again forms a half-bigon with α1 whose only
puncture is r , and so β is either homotopic to α2 or to β1 as before. Similarly, if
β intersects α2 first as it travels from p to q , then β is either homotopic to α1 or
to arc β2 in Figure 16 (right). �

Lemma 4.6. Let Ar be as in Lemma 4.4, and suppose further that Ar contains
arcs α1, α2 ∈ Ar that form a bigon. Then Ar is as in Figure 14 up to homotopy
and relabeling p and q .

Proof. Let H be the half-bigon adjacent to p formed by the αi . Let x, y be the
points of intersection of the αi in the order that α1 traverses them as it travels from
p to q .

Let β ∈ Ar . If β is disjoint from the αi , then β is homotopic to the blue arc
in Figure 14. Now suppose β is not disjoint from the αi , and let z1, z2, . . . be the
points of intersection of β and the αi in the order that β traverses them as it travels
from p to q . We assume that z1 lies on α1. Note that, by Lemma 4.5, β forms a
bigon (containing only the puncture r) with each of the αi that it intersects.

Case 1: z1 lies on the segment (yq)α1 . In this case, α1 and β form a half-bigon
whose only puncture is r . As remarked above, this is impossible.

Case 2: z1 lies on the segment (xy)α1 . In this case, z2 does not lie on (xy)α2 .
Otherwise, since α2 and β are in minimal position, they would form a half-bigon
whose only puncture is r (as in Case 1 of Lemma 4.5), but this is impossible. Thus
z2 lies on (xy)α1 , and so β is homotopic to α2 by Corollary 4.3.

Case 3: z1 lies on the segment (px)α1 . In this case, since α1, β are in minimal
position, β forms a half-bigon H ′ with α1 adjacent to p and containing at least
one of the punctures of H .
Observe that z2 cannot lie on the segment (yq)α2 , since otherwise α2 and β would
form a half-bigon containing r . We also have that z2 cannot lie on (xy)α1 , since
otherwise α1 and β would not form a bigon. Furthermore, if z2 lies on (px)α2 ,
then so must z3, since otherwise α1 and β would not form a bigon. But if z2 and
z3 both lie on (px)α2 , then α2 and β form a bigon that does not contain r , which
is impossible.

Now, if H ′ contains all the punctures of H , then z2 cannot lie on (xy)α2 since
α2, β are in minimal position, and if z2 lies on (yq)α1 , then β is homotopic to α2
by Corollary 4.3. Thus we may assume that H ′ contains some but not all of the
punctures of H .
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Figure 17 The arc β in the proof of Lemma 4.6 is ultimately forced
to intersect one of the αi thrice.

Figure 18 The arc β can be added to a 2-system of arcs joining p

and q containing the αi .

Under this assumption, z2 cannot lie on (yq)α1 , since otherwise β would be
homotopic to the purple arc in Figure 17 (left) by Corollary 4.3, and so β would
intersect α2 thrice. For the same reason, z3 cannot lie on (xy)α1 if z2 lies on
(xy)α2 . The only case left to consider is that z2 and z3 both lie on (xy)α2 . But
then β is homotopic to the orange arc in Figure 17 (right) by Corollary 4.3, and
so β intersects α1 thrice. �

Lemma 4.7. Let p, q be distinct punctures of an n-punctured sphere S with n ≥ 4.
Let α1, α2, and β be arcs on S joining p and q in one of the configurations shown
in Figure 18. Then an arc γ joining p and q that is in minimal position with β

and intersects β at least thrice must intersect α1 or α2 at least thrice.

Proof. Set x0 = p, and let x1, x2, x3 be the first three points of intersection of β

and γ in the order that γ traverses them as γ travels from p to q . For i = 0,1,2,
let βi = (xixi+1)β and γi = (xixi+1)γ , and let Ri be the region not containing p

bounded by βi and γi . If γ0 does not intersect the αi , then R0 contains no punc-
tures, and so β and γ are not in minimal position by Lemma 2.1, contradicting our
assumption. Thus γ0 has at least one point of intersection with the αi . Similarly,
R1 and R2 must each contain at least one puncture of S, and so each of γ1 and γ2
has at least two points of intersection with the αi . Thus, γ has at least three points
of intersection with α1 or α2. �
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5. 1-System Annular Diagrams

In this section, we prove Theorem 1.5, which will be useful in the inductive step
of the proof of Lemma 1.4.

Lemma 5.1. Let S be a twice-punctured sphere, and let p and q be its punctures.
Let A be a finite collection of simple arcs joining p and q . If there is a pair of
intersecting arcs of A, then there is a pair of intersecting arcs of A forming a
region R adjacent to p such that no other arc of A has its p-end in R.

Proof. Pick α,β ∈ A such that α and β intersect. Since neither α nor β has both
of its ends at p, there is a unique region R adjacent to p formed by α and β . If R

is as in the statement of the lemma, then we are done. Otherwise, there is an arc
β ′ ∈ A whose p-end lies in R. Since the q-end of β ′ is outside R, the arc β ′ must
intersect one of α or β , say α. We now repeat the above steps with arcs α and β ′.
Since there are finitely many arcs in A, this process must terminate. �
The following corollary follows immediately.

Corollary 5.2. Let A be a square annular diagram whose dual curves are sim-
ple arcs joining its two boundary paths, and let P be a boundary path of A. If A

has at least one square, then A has a cornsquare with outerpath on P .

We now proceed to the proof of Theorem 1.5.

Proof of Theorem 1.5. We proceed by induction on the number of squares of A.
If A has no squares, then A is a cycle. Now suppose A has at least one square,
that there is a boundary path P of A without a corner, and that the theorem holds
for any annular square complex with fewer squares than A. Since A contains a
square, A contains a cornsquare with outerpath on P by Corollary 5.2. Since A

is a 1-system annular diagram, we may thus produce a corner on P via a series
of hexagon moves [Wis12, Figure 3.17]. Note that a single hexagon move cannot
produce two corners on P ; otherwise, there would be a dual curve beginning and
terminating at P (see Figure 19).

We perform hexagon moves until the first corner v on P is produced. Note that
each neighbor of v has degree at least 4. Indeed, since P had no corners, we had
to have performed at least one hexagon move to obtain v, but a neighbor of v of
degree 3 would correspond to a corner prior to performing that move, contradict-
ing our assumption that v is the first corner produced on P (see Figure 20). Thus

Figure 19 If a single hexagon move produces two corners on P , then
there is a dual curve beginning and ending at P .
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Figure 20 If a corner v produced by a hexagon move has a neigh-
bor of degree 3, then that neighbor had to have been a corner prior to
performing that move.

by deleting v as well as the two edges and the square incident to v we obtain a
1-system annular diagram with one fewer square than A and without any corners
on one of its boundary paths, contradicting the induction hypothesis. �

Corollary 5.3. Let p and q be punctures of an n-punctured sphere S, and let
A be a 1-system of arcs joining p and q such that |A| ≥ 2 and the arcs of A are
pairwise in minimal position. There is a puncture s of S distinct from p and q that
is p-isolated by A. If A contains a pair of intersecting arcs, then s can be chosen
so that the component H of S − ⋃

A containing s is a half-bigon.

Proof 1. The dual square complex A to A is an annular square complex as in
Theorem 1.5. Let P be the boundary path corresponding to p. Note that A has at
least two vertices since |A| ≥ 2 and that A has at least one square if and only if
A contains at least one pair of intersecting arcs. If A is a cycle, then we may take
H to be the strip corresponding to any vertex of A. Otherwise, A has a corner v

on P , and we may take H to be the half-bigon corresponding to v. In either case,
H is punctured since the arcs of A are pairwise nonhomotopic and in minimal
position. �

What follows is a direct proof of Corollary 5.3 found by the referee that does not
employ square complexes.

Proof 2. Note that since |A| ≥ 2, we must have n ≥ 4. If A is a 0-system, then
the components of S − ⋃

A are punctured strips, and we may take s to be any
puncture of S distinct from p and q . Otherwise, by Lemma 5.1 there is a pair of
intersecting arcs α,β ∈ A forming a region R adjacent to p such that no other
arc of A has its p-end in R. Since α and β are in minimal position and intersect
exactly once, R is a punctured half-bigon. Let α′ ∈ A (resp., β ′ ∈ A) be the arc
of A whose intersection with α (resp., β) is closest to p along α (resp., along β).
If α′ = β (resp., β ′ = α), then we may take s to be any puncture of R. Otherwise,
since α′ (resp., β ′) does not have its p-end in R, it must intersect (px)β (resp.,
(px)α), where x is the unique intersection point of α and β . The p-end of α′
(resp., β ′) lies in one of the components of α′ − α (resp., β ′ − β). Observe that
since A is a 1-system, either α′ has its p-end in the component of α′ − α disjoint
from R, or β ′ has its p-end in the component of β ′ − β disjoint from R. Without
loss of generality, assume that the former is true, and set α1 = α′.
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Now α1 and α form a punctured half-bigon H1 adjacent to p, and no other arcs
of A may intersect (px1)α , where x1 is the unique intersection point of α and α1.
In particular, because A is a 1-system, any arc of A that enters H1 (necessarily
through (px1)α1 ) must have its p-end in H1. If no arc of A enters H1, then we may
take s to be any puncture of H1. Otherwise, let α2 be the arc whose intersection
with α1 is closest to p along α1. Now α1 and α2 form a half-bigon H2, and we
choose the arc α3 whose intersection with α2 is closest to p along α2, and so on.
Since A is necessarily finite, this process must terminate. �

6. Proof of Lemma 1.4

In this section, we prove Lemma 1.4, which essentially constitutes the inductive
step in the proof of Theorem 1.3. We will need the following:

Lemma 6.1 ([Erd46]). A set of pairwise intersecting straight line segments be-
tween 
 points on a circle in R

2 has size at most 
.

Proof of Lemma 1.4. We fix a complete hyperbolic metric on S of area 2π(n−2).
We may assume that P and Q are nonempty and that the arcs of P ∪ Q are
pairwise in minimal position. We divide the proof into steps.

Step 0: The arcs of P (and hence the arcs of Q) are consecutive at r . Indeed,
suppose α,α′ ∈ P are distinct, and suppose there is an arc β ∈ Q whose r-end
lies in the strip or half-bigon H bounded by α and α′ and adjacent to r . Since
β does not intersect α or α′, the puncture q must lie in H . Since no arc of Q
intersects α or α′, it follows that the r-end of every arc of Q must also lie in H .

We fix an orientation on S. This induces a cyclic order C of the arcs of P ∪ Q
around r . By Step 0 this order in turn induces a linear order < on P , where the
minimum and maximum arcs of P are those with a successor or predecessor in Q
under C.

We proceed by induction. If n = 3, then, up to homotopy, there is a unique arc
joining r to each of p, q , and the statement of the lemma holds. Now let n ≥ 4,
and assume that the lemma holds if S has fewer punctures. If P consists of a
single arc, then the lemma is trivially satisfied since |Q| ≤ (

n−1
2

)
by Theorem 1.2.

Thus we may assume that |P| ≥ 2.

Step 1: There is a puncture s of S distinct from p,q, r that is p-isolated by P .
Indeed, if the arcs of P are pairwise disjoint, then since |P| ≥ 2, we have that
S −P consists of at least two punctured strips adjacent to p and r , and so we may
take s to be a puncture of any such strip that does not contain q (see Figure 21,
left). Otherwise, by Corollary 5.3 there is a puncture s distinct from p, r that is
p-isolated by P such that the component of S − ⋃

P containing s is a half-bigon
(see Figure 21, right). In this case, s is necessarily distinct from q since we are
assuming Q to be nonempty, and so there is at least one arc disjoint from the arcs
of P joining q and r .



20 Sami Douba

Figure 21 An illustration of Step 1.

Let S̄ be the surface obtained from S by forgetting the puncture s (endowed with
a complete finite-area hyperbolic metric), and for each arc α ∈ P ∪ Q, let ᾱ be
the corresponding arc on S̄. Let P̄ , Q̄ be the collection of all ᾱ for α ∈ P,Q,
respectively. We tighten the arcs of P̄ ∪ Q̄ to geodesics, thereby identifying arcs
that correspond to s-homotopic arcs on S.

The orientation on S induces an orientation on S̄. As above, this gives us a
linear order ≺ on P̄ .

Step 2: Two distinct arcs in Q cannot be s-homotopic. Otherwise, they would form
a strip adjacent to q , r or a half-bigon adjacent to one of q , r whose only puncture
is s, which cannot happen since the component of S − ⋃

(P ∪Q) containing s is
adjacent to p. Thus we may identify Q̄ with Q.

Step 3: Arcs in P that are s-homotopic must be consecutive at r . Indeed, suppose
that α,α′ ∈ P are s-homotopic. If α, α′ bound a strip whose only puncture is s,
then the r-end of any arc β ∈ P distinct from α, α′ cannot lie inside this strip,
since otherwise β and one of α, α′ would necessarily form a half-bigon adjacent
to r whose only puncture is s, contradicting the fact that s is p-isolated.
Otherwise, α and α′ form a half-bigon adjacent to p whose only puncture is s,
and a half-bigon adjacent to r containing all punctures of S except p, r , s (see
Figure 22). Thus, any arc α′′ in P distinct from α and α′ with r-end outside the
latter half-bigon must be disjoint from α and α′, in which case α, α′′, and α′ are
in fact s-homotopic and consecutive at r .

In the case that P contains a (necessarily unique) pair of intersecting s-
homotopic arcs α,α′, we extend P and R as follows. As discussed in Step 3,
there is a unique arc α′′ up to homotopy joining p and r and disjoint from α

and α′. The arc α′′ is s-homotopic to α and α′ and lies between α and α′ in the
linear order on P . If P contains an arc α′′′ homotopic to α′′, then we rename
the former arc α′′. Otherwise, we add α′′ to P . At this stage, if there is an arc
β ∈Q such that (α,β), (α′, β) ∈R but (α′′, β) /∈ R, then we add the pair (α′′, β)

to R. Since α′′ is disjoint from all arcs in P ∪Q, we have not violated any of the
conditions of the lemma.

Note that if P does not contain a pair of intersecting s-homotopic arcs, then
the fibers of the map P → P̄ have size at most 2.
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Figure 22 The only possible configuration of two intersecting s-
homotopic arcs α,α′ ∈ P and the unique arc α′′ up to homotopy join-
ing p and r and disjoint from α and α′.

Step 4: For any α,α′ ∈ P , if α < α′ then ᾱ � ᾱ′. Indeed, if ᾱ � ᾱ′, then α and
α′ form a half-bigon adjacent to r whose only puncture is s. This cannot happen
since s is p-isolated.

Let R̄ be the image of R under the map P ×Q → P̄ ×Q, (α,β) �→ (ᾱ, β). It is
clear that R̄ satisfies condition (i), and it follows from Step 4 that R̄ satisfies (ii)
as well, so that |R̄| ≤ (

n−2
2

)
. It remains to show that |R| − |R̄| ≤ n − 2.

Let I be the subset of R̄ consisting of elements with more than one preimage
under the map R→ R̄.

Step 5: If (ᾱ, β), (ᾱ′, β ′) ∈ I with β �= β ′, then β and β ′ are disjoint. Indeed, let
(α1, β), (α2, β) be preimages of (ᾱ, β), and let (α′

1, β
′), (α′

2, β
′) be preimages of

(ᾱ′, β ′) with α1 �= α2 and α′
1 �= α′

2. Suppose that β and β ′ intersect. Note that
we cannot have {α1, α2} = {α′

1, α
′
2}, since otherwise either (α1, β), (α2, β

′) or
(α1, β

′), (α2, β) would be two intersecting pairs of arcs in R whose cyclic order
around r is not alternating, contradicting assumption (ii).
Now suppose {α1, α2}∩{α′

1, α
′
2} �= ∅. Then there are three distinct arcs among α1,

α2, α′
1, α′

2 that are s-homotopic. Assume without loss of generality that these arcs
are α1, α2, α′

1. Observe that α′
1 cannot intersect αi for i = 1,2, since otherwise

(αi, β) and (α′
1, β

′) would intersect more than once, contradicting assumption (i).
Thus α1 intersects α2, but then α′

1 lies between α1 and α2 at r , and so there is
i ∈ {1,2} such that (αi, β) and (α′

1, β
′) contradict assumption (ii).

We conclude that α1, α2, α′
1, α′

2 are distinct; in particular, since at most three
distinct arcs in P can be s-homotopic, we must have ᾱ �= ᾱ′. Thus by Step 3 the
order of α1, α2, α′

1, α′
2 at r is neither alternating nor nested. By the latter we mean

that α1 and α2 do not both lie between α′
1 and α′

2 in the linear order on P , and vice
versa. Since each of the pairs of arcs α1, α2 and α′

1, α′
2 bound a strip or half-bigon

containing s, we must have that αi and α′
j intersect for some i, j ∈ {1,2}, but then

(αi, β) and (α′
j , β

′) intersect more than once, contradicting assumption (i).
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Figure 23 An illustration of Step 6. Here the pairs (α1, β) and
(α′

1, β ′) contradict assumption (ii).

Figure 24 The collection Hs (the arcs of Hs are dashed). The case
where P contains an intersecting pair of s-homotopic arcs is depicted
on the left, whereas a generic case is depicted on the right. Note that
in either case, |Hs | = |P| − |P̄|.

Step 6: If (ᾱ, β), (ᾱ′, β ′) ∈ I with ᾱ �= ᾱ′, β �= β ′, then the cyclic order of (ᾱ, β)

and (ᾱ′, β ′) at r is alternating. Indeed, suppose otherwise, and let (α1, β), (α2, β)

be preimages of (ᾱ, β), and let (α′
1, β

′) and (α′
2, β

′) be preimages of (ᾱ′, β ′) with
α1 �= α2, α′

1 �= α′
2. Then by Step 3 the order of α1, α2, α′

1, α′
2 at r is neither

alternating nor nested. Thus, as in Step 5, αi and α′
j must intersect for some

i, j ∈ {1,2}, but then (αi, β) and (α′
j , β

′) are two intersecting pairs of arcs in R
whose cyclic order around r is not alternating, contradicting assumption (ii) (see
Figure 23).

Let Hq be the image of I under the projection map P̄ × Q → Q. Let Hs be the
collection of all geodesic arcs a joining r and s such that a is contained in a strip
bounded by a pair of distinct, disjoint s-homotopic arcs in P (see Figure 24).

Let H = Hs ∪ Hq , and let I ′ ⊂ Hs × Hq be the set of all (a,β) ∈ Hs × Hq

such that (α,β) ∈ I for an arc α bounding a strip corresponding to a. We extended
R (immediately after Step 3) so that the map R → R̄ is injective outside a set of
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cardinality |I ′|. Indeed, each element of I has either 2 or 3 preimages in R; in
the first case, we get 1 element of I ′, and in the second, we get 2 elements of I ′.
Thus, to complete the proof, it suffices to show that |I ′| ≤ n − 2.

Step 7: The complement of
⋃

H consists of punctured strips and a single square,
possibly with no punctures. Indeed, the arcs of Hs are disjoint by construction
[Prz15, proof of Theorem 1.7], and the arcs of Hq are disjoint by Step 5, so that
the complements of

⋃
Hs and

⋃
Hq consist of punctured strips. By Step 0 the

arcs in Hq (and hence the arcs in Hs ) are consecutive at r . Thus Hs is contained in
a single strip of S −⋃

Hq and vice versa. Let β,β ′ be the arcs in Hq bounding the
unique strip of S −⋃

Hq containing Hs , and let γ, γ ′ be the arcs in Hs bounding
the unique strip of S − ⋃

Hs containing Hq (note that we do not exclude the
possibility that β = β ′ or γ = γ ′). Then the complement of

⋃
H consists of the

remaining strips of S − ⋃
Hq and S − ⋃

Hs and a square bounded by β , β ′, γ ,
γ ′.

Step 8: |H| ≤ n − 1. Indeed, |H| is by 2 larger than the number of strips of
S − ⋃

H, so it suffices to show that there are at most n − 3 of these strips. This
is true by Step 7 since S has area 2π(n − 2), and a punctured strip and a square
each have area at least 2π .

Step 9: |I ′| ≤ n − 2. To show this, we intersect H with a small circle C centered
at r . Each element of I ′ is determined by a pair of points of this intersection, and
we connect them by a straight line segment. We also draw a line segment between
the outermost points on C corresponding to elements of Hq . By Step 6 these line
segments are pairwise intersecting, so by Lemma 6.1, |I ′|+1 ≤ |H| ≤ n−1. �

Remark 6.2. Note that we already used planarity in Step 0 of the proof of
Lemma 1.4 (see Figure 25).

Remark 6.3. Note that if |H| = n−1 in Step 8, then S−⋃
H necessarily consists

of a single square without punctures, |Hq | − 1 once-punctured strips from r to q ,
and |Hs | − 1 once-punctured strips from r to s, one of which contains p (see
Figure 26).

Figure 25 If we allow S to have positive genus then, under the as-
sumptions of Lemma 1.4, the arcs of P need not be consecutive at r .
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Figure 26 The 0-system H must have the above configuration if it is
of maximum size.

7. Proof of Theorem 1.3

Proof of Theorem 1.3. We proceed by induction on n. The case n = 3 is trivial.
Now let n ≥ 4, and assume that the theorem holds if S has fewer punctures. Let r

be a puncture of S distinct from p and q . Let S̄ be the (n − 1)-punctured sphere
obtained from S by forgetting r . For each arc α ∈ A, let ᾱ be the corresponding
arc on S̄, and let Ā = {ᾱ : α ∈ A}. We tighten the arcs of Ā to geodesics. Note
that Ā is a 2-system on S̄, and so |Ā| ≤ (

n−1
3

)
by the induction hypothesis. Thus

it suffices to show that |A| − |Ā| ≤ (
n−1

2

)
. To that end, we examine the extent to

which the map π : A → Ā, α �→ ᾱ fails to be injective.
By Lemmas 4.4 and 4.7 we may add arcs to A so that for each α ∈ A,

|π−1(ᾱ)| − 1 = |{{α1, α2} ∈ π−1(ᾱ) : α1, α2 distinct and disjoint}|.
Let P (resp., Q) be the collection of all geodesic arcs α on S starting at r and end-
ing at p (resp., ending at q) such that α is contained entirely in a strip bounded
by a pair of distinct, disjoint r-homotopic arcs in A. Let R ⊂ P ×Q be the rela-
tion consisting of all pairs (α,β) such that both α and β lie in a single such strip.
We claim that P , Q, R satisfy the conditions of Lemma 1.4, so that |R| ≤ (

n−1
2

)
.

Since |R| = |A| − |Ā|, this completes the proof.
We first note that for (α,β), (α′, β ′) ∈ R corresponding to pairs of disjoint

r-homotopic arcs γ1, γ2 ∈ A and γ ′
1, γ

′
2 ∈ A, respectively, we have for some

i, j ∈ {1,2} that r produces at least one point of intersection between γi and γ ′
j .

Each point of intersection between the arcs α, β , α′, β ′ produces an additional
point of intersection between γi and γ ′

j . It follows that there is at most one point
of intersection between any two pairs of arcs in R.

We now show that no arc in P intersects an arc in Q. Indeed, suppose we have
(α,β), (α′, β ′) ∈ R such that α intersects β ′. By the above, α intersects β ′ exactly
once and that is the only point of intersection between the pairs of arcs (α,β) and
(α′, β ′). But then we can find two arcs in A that intersect thrice, as shown in
Figure 27 (left).
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Figure 27 The systems P,Q and the relation R satisfy the condi-
tions of Lemma 1.4.

Finally, if there are two intersecting pairs of arcs in R whose cyclic order
around r is not alternating, then we can also find two arcs in A that intersect
thrice, as shown in Figure 27 (right). �
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