GEOMETRIC AND ARITHMETIC PROPERTIES OF LÖBELL POLYHEDRA

NIKOLAY BOGACHEV AND SAMI DOUBA

Abstract

The Löbell polyhedra form an infinite family of compact rightangled hyperbolic polyhedra in dimension 3 . We observe, through both elementary and more conceptual means, that the "systoles" of the Löbell polyhedra approach 0 , so that these polyhedra give rise to particularly straightforward examples of closed hyperbolic 3-manifolds with arbitrarily small systole, and constitute an infinite family even up to commensurability. By computing number theoretic invariants of these polyhedra, we refine the latter result, and also determine precisely which of the Löbell polyhedra are quasi-arithmetic.

1. Introduction

For each $n \geqslant 5$, consider a combinatorial 3-polyhedron whose "top" and "bottom" faces are n-gons and whose "lateral" surface consists of $2 n$ pentagons (see Figure 1 and Figure 3, left, for illustrations of the case $n=6$). By Andreev's theorem [3, 26], this abstract polyhedron can be realized as a compact right-angled polyhedron L_{n} in \mathbb{H}^{3} for any $n \geqslant 5$. For instance, the polyhedron L_{5} is the rightangled hyperbolic dodecahedron.

The polyhedra L_{n} are called Löbell polyhedra, after F. R. Löbell, who constructed the first example [18] of a closed oriented hyperbolic 3-manifold by gluing eight copies of the polyhedron L_{6}. The subgroup $\Gamma_{n}<\operatorname{Isom}\left(\mathbb{H}^{3}\right)$ generated by the reflections in the faces of L_{n} is a cocompact right-angled reflection group; we refer to the quotients $\mathbb{H}^{3} / \Gamma_{n}$ as Löbell orbifolds. Such an orbifold $\mathbb{H}^{3} / \Gamma_{n}$ can be visualized as the polyhedron L_{n} itself with reflective singularities in its faces. The example of Löbell is a particular instance of a general construction of degree-8 manifold covers of right-angled reflection 3-orbifolds; see [29] or [32, Section 3.1].

Much is understood about Löbell polyhedra. In particular, Vesnin [31] computed their volumes $\operatorname{vol}\left(L_{n}\right)$, and showed that $\operatorname{vol}\left(L_{n}\right)$ is an increasing function of n. Moreover, Mednykh and Vesnin [21] showed that the distance δ_{n} between the top and bottom faces of the Löbell polyhedron L_{n} satisfies

$$
\cosh \delta_{n}=\frac{\cos \left(\frac{\pi}{n}\right)}{\cos \left(\frac{2 \pi}{n}\right)}
$$

The following is an elementary consequence of the above identity.
Observation 1.1. The distance δ_{n} between the top and bottom faces of the Löbell polyhedron L_{n} approaches 0 as $n \rightarrow \infty$.

Since the systole of a compact right-angled reflection orbifold is twice the minimal distance between two nonadjacent walls (see Section 3.4 for the definition of the systole of a hyperbolic orbifold), and by an application of a collar lemma as in [6]

Figure 1. The Löbell polyhedron L_{6}, displayed in the Poincaré ball model of \mathbb{H}^{3} using Geomview.
to the lateral faces of L_{n}, whose areas are fixed, the following is immediate from Observation 1.1.

Corollary 1.1.1. For sufficiently large n, the systole of the Löbell orbifold L_{n} is precisely $2 \delta_{n}$.

Observation 1.1 also yields the following.
Corollary 1.1.2. Let M_{n} be manifold covers of the Löbell orbifolds L_{n} of uniformly bounded degree (for instance, the degree-8 manifold covers discussed above). Then the systole of M_{n} approaches 0 as $n \rightarrow \infty$.

Indeed, for n a multiple of 3 , we provide an explicit degree- 8 oriented manifold cover of L_{n} whose systole is precisely $2 \delta_{n}$ for sufficiently large n; see Figure 2. We thus obtain straightforward examples of closed hyperbolic 3-manifolds with arbitrarily small systole. Such manifolds were known to exist in dimension 3 by Thurston's hyperbolic Dehn filling theorem (see, for instance, [8, Sections E. 5 and E.6]). In fact, the Löbell polyhedron L_{n} decomposes into $2 n$ copies of a polyhedron T_{n} (see Section 3.1) which may be viewed as a Dehn filling of a cusped polyhedron T_{∞}, so that Observation 1.1 ultimately also follows from a Dehn filling argument; see Section 4.

Agol [1] provided another construction that, given an input arithmetic lattice $\Gamma<$ Isom $\left(\mathbb{H}^{3}\right)$ and $\varepsilon>0$, outputs a closed hyperbolic 3 -manifold with systole at most ε. Agol originally suggested this construction in dimension 4 (where the problem had theretofore been open), but it evidently also applies in lower dimensions, and in fact applies in all dimensions by work of Belolipetsky and Thomson [7] (alternatively, by a result of Bergeron, Haglund, and Wise [9, Theorem 1.4]). While the output lattices are nonarithmetic for fixed ${ }^{1} \Gamma$ and sufficiently small ϵ, they are nevertheless all quasi-arithmetic, as observed by Thomson [28]. On the other hand, the reflection lattices Γ_{n} are eventually not quasi-arithmetic.

[^0]

Figure 2. The above 4-coloring of the Löbell polyhedron L_{6} and its analogues for the polyhedra $L_{3 k}, k \geq 2$, determine (orientable) degree-8 manifold covers $M_{3 k}$ as in [32, Section 3.1]. Since the top and bottom faces of $L_{3 k}$ receive the same color, the manifold $M_{3 k}$ contains a closed geodesic of length $2 \delta_{3 k}$. For sufficiently large k, the systole of $M_{3 k}$ is in fact precisely $2 \delta_{3 k}$ by Corollary 1.1.1.

Theorem 1.2. The Löbell polyhedron L_{n} is quasi-arithmetic if and only if $n=5$, $6,8,12$, and is properly quasi-arithmetic only when $n=12$.
Recall that a lattice is said to be properly quasi-arithmetic if it is quasi-arithmetic but not arithmetic. See Section 2.2 for definitions. We remark that it is unclear to us whether Theorem 1.2 exemplifies a more general phenomenon. More precisely, it appears that the following question is open.

Question 1.3. Are only finitely many Dehn fillings of a complete finite-volume noncompact hyperbolic 3 -orbifold quasi-arithmetic?
The answer to Question 1.3 is known to be affirmative if one replaces "quasiarithmetic" with "arithmetic"; see Maclachlan and Reid [19, Cor. 11.2.2].

Returning to our discussion on Löbell polyhedra, Vesnin [30] observed that the Löbell polyhedron L_{n} is nonarithmetic for $n \neq 5,6,7,8,10,12,18$. AntolínCamarena, Maloney, and Roeder [5] later showed that L_{n} is arithmetic if and only if $n=5,6,8$.

Our proof of Theorem 1.2 is straightforward and uses only classical tools from Vinberg's theory of hyperbolic reflection groups. Along the way, we compute the adjoint trace fields of the lattices Γ_{n}.
Theorem 1.4. The adjoint trace field k_{n} of Γ_{n} is $\mathbb{Q}\left(\cos \frac{2 \pi}{n}\right)$. In particular, if $p, q \geq 5$ are distinct primes, then the Löbell polyhedra L_{p} and L_{q} are incommensurable.

It is shown in [19, Section 4.7.3] that there are infinitely many pairwise incommensurable compact Coxeter polyhedra in \mathbb{H}^{3}. However, we could not find in the literature a justification of the existence of infinitely many pairwise incommensurable right-angled such polyhedra. Indeed, this was our initial motivation for considering the Löbell polyhedra. Since $\operatorname{deg}\left(k_{n}\right)=\frac{\phi(n)}{2} \rightarrow \infty$ as $n \rightarrow \infty$, where ϕ is Euler's totient function, one can in fact conclude from Theorem 1.4 that there is no infinite subsequence of Γ_{n} consisting entirely of pairwise commensurable lattices. This fact is indeed already implied by Observation 1.1; see Remark 3.3.

It is worth mentioning that the existence of infinitely many pairwise incommensurable noncompact finite-volume right-angled polyhedra in \mathbb{H}^{3} was already known.

For instance, Meyer-Millichap-Trapp [22] and Kellerhals [16] showed that the ideal right-angled antiprisms A_{n} provide a sequence of pairwise incommensurable reflection groups with the same trace fields as those of the Γ_{n}. There is in fact more to be said about the relationship between these two families of right-angled polyhedra: indeed, as observed by Kolpakov [17, Section 5.1], the Löbell polyhedra L_{n} can be viewed as having been obtained from the antiprisms A_{n} via Dehn filling; see Section 4. Another way of phrasing this is that the antiprisms are obtained from Löbell polyhedra by "contracting" certain edges to ideal vertices. We explain in Section 4 how this trick of contracting edges of a finite-volume right-angled polyhedron is a general method for constructing infinitely many commensurability classes of such polyhedra in dimension 3 , and also why an analogous trick is not available in dimension 4 (Theorem 4.2), where the existence of such an infinite family appears to be open.

Acknowledgements. We are grateful to Misha Belolipetsky, Sasha Kolpakov, Greg Kuperberg, Nicolas Tholozan, and Andrei Vesnin for helpful discussions and comments. We thank the Institut des Hautes Études Scientifiques for hosting the first author in the fall of 2022, during which most of this work was completed. The second author was supported by the Huawei Young Talents Program.

2. Preliminaries

2.1. Hyperbolic lattices. Let $\mathbb{R}^{d, 1}$ be the real vector space \mathbb{R}^{d+1} equipped with the standard quadratic form f of signature $(d, 1)$, namely,

$$
f(x)=-x_{0}^{2}+x_{1}^{2}+\cdots+x_{d}^{2}
$$

The hyperboloid $\mathcal{H}=\left\{x \in \mathbb{R}^{d, 1} \mid f(x)=-1\right\}$ has two connected components

$$
\mathcal{H}^{+}=\left\{x \in \mathcal{H} \mid x_{0}>0\right\} \text { and } \mathcal{H}^{-}=\left\{x \in \mathcal{H} \mid x_{0}<0\right\} .
$$

The d-dimensional hyperbolic space \mathbb{H}^{d} is the manifold \mathcal{H}^{+}with the Riemannian metric ρ induced by restricting f to each tangent space $T_{p}\left(\mathcal{H}^{+}\right), p \in \mathcal{H}^{+}$. This hyperbolic metric ρ satisfies $\cosh \rho(x, y)=-(x, y)$, where (x, y) is the scalar product in $\mathbb{R}^{d, 1}$ associated to f. The hyperbolic d-space \mathbb{H}^{d} is known to be the unique simply connected complete Riemannian d-manifold with constant sectional curvature -1 . Hyperplanes of \mathbb{H}^{d} are intersections of linear hyperplanes of $\mathbb{R}^{d, 1}$ with \mathcal{H}^{+}, and are totally geodesic submanifolds of codimension 1 in \mathbb{H}^{d}.

Let $\mathrm{O}_{d, 1}=\mathbf{O}(f, \mathbb{R})$ be the orthogonal group of the form f, and $\mathrm{O}_{d, 1}^{\prime}<\mathrm{O}_{d, 1}$ be the subgroup (of index 2) preserving \mathcal{H}^{+}. The group $\mathrm{O}_{d, 1}^{\prime}$ preserves the metric ρ on \mathbb{H}^{d}, and is in fact the full group $\operatorname{Isom}\left(\mathbb{H}^{d}\right)$ of isometries of the latter.

If $\Gamma<\mathrm{O}_{d, 1}^{\prime}$ is a lattice, i.e., if Γ is a discrete subgroup of $\mathrm{O}_{d, 1}^{\prime}$ with a finitevolume fundamental domain in \mathbb{H}^{d}, then the quotient $M=\mathbb{H}^{d} / \Gamma$ is a complete finite-volume hyperbolic orbifold. If Γ is torsion-free, then M is a complete finitevolume Riemannian manifold, and is called a hyperbolic manifold.

Now set $G=\mathrm{O}_{d, 1}^{\prime}$, and suppose \mathbf{G} is an admissible (for G) algebraic k-group, i.e. $\mathbf{G}(\mathbb{R})^{o}$ is isomorphic to G^{o} and $\mathbf{G}^{\sigma}(\mathbb{R})$ is a compact group for any non-identity embedding $\sigma: k \hookrightarrow \mathbb{R}$. Then any subgroup $\Gamma<G$ commensurable with the image in G of $\mathbf{G}\left(\mathcal{O}_{k}\right)$ is an arithmetic lattice (in G) with ground field k.

Since G also admits non-arithmetic lattices, we discuss some weaker notions of arithmeticity for lattices in G. Following Vinberg [33], a lattice $\Gamma<G$ is called quasi-arithmetic with ground field k if some finite-index subgroup of Γ is contained
in the image in G of $\mathbf{G}(k)$, where \mathbf{G} is some admissible algebraic k-group, and is called properly quasi-arithmetic if Γ is quasi-arithmetic, but not arithmetic on the nose.

It is worth stressing that the notion of quasi-arithmeticity is indeed broader than that of arithmeticity; as was mentioned in the introduction, the nonarithmetic closed hyperbolic manifolds constructed by Agol [1] and Belolipetsky-Thomson [7] exist in all dimensions and, as observed by Thomson [28], are quasi-arithmetic. The first examples of properly quasi-arithmetic lattices in dimensions 3,4 , and 5 were constructed by Vinberg [33] via reflection groups.
2.2. Convex polyhedra and arithmetic properties of hyperbolic reflection groups. A (hyperbolic) reflection group is a discrete subgroup of $\mathrm{O}_{d, 1}^{\prime}$ generated by reflections in hyperplanes. The fixed hyperplanes of the reflections in a finitecovolume reflection group $\Gamma<\mathrm{O}_{d, 1}^{\prime}$ divide \mathbb{H}^{d} into isometric copies of a single finitevolume convex polyhedron $P \subset \mathbb{H}^{d}$. The polyhedron P is a Coxeter polyhedron, that is, a finite-sided convex polyhedron in which the dihedral angle between any two adjacent facets is an integral submultiple of π. We say P is a fundamental chamber for Γ. Conversely, given a finite-volume Coxeter polyhedron $P \subset \mathbb{H}^{d}$, the group generated by the reflections in all the supporting hyperplanes, or walls, of P is a finite-covolume reflection group $\Gamma<\mathrm{O}_{d, 1}^{\prime}$ with fundamental chamber P. We thus frequently conflate finite-volume Coxeter polyhedra in \mathbb{H}^{d} with their corresponding lattices in $\mathrm{O}_{d, 1}^{\prime}$ (or their corresponding hyperbolic orbifolds).

Let $H_{e}=\left\{x \in \mathbb{H}^{d} \mid(x, e)=0\right\}$ be a hyperplane in $\mathbb{H}^{d} \subset \mathbb{R}^{d, 1}$ whose linear span in $\mathbb{R}^{d, 1}$ has normal vector $e \in \mathbb{R}^{d, 1}$ with $(e, e)=1$, and $H_{e}^{-}=\left\{x \in \mathbb{H}^{d} \mid(x, e) \leq 0\right\}$ be the half-space associated with it. If

$$
P=\bigcap_{j=1}^{N} H_{e_{j}}^{-}
$$

is a Coxeter polyhedron in \mathbb{H}^{d}, then the matrix $G(P)=\left\{g_{i j}\right\}_{i, j=1}^{N}=\left\{\left(e_{i}, e_{j}\right)\right\}_{i, j=1}^{N}$ is its Gram matrix. We write $K(P)=\mathbb{Q}\left(\left\{g_{i j}\right\}_{i, j=1}^{N}\right)$ and denote by $k(P)$ the field generated by all possible cyclic products of the entries of $G(P)$; we call the field $k(P)$ the ground field of P. For convenience, the set of all cyclic products of entries of a given matrix $A=\left(a_{i j}\right)_{i, j=1}^{N}$, i.e., the set of all possible products of the form $a_{i_{1} i_{2}} a_{i_{2} i_{3}} \ldots a_{i_{k} i_{1}}$, will be denoted by $\operatorname{Cyc}(A)$. Thus, we have $k(P)=$ $\mathbb{Q}(\operatorname{Cyc}(G(P))) \subset K(P)$.

The following criterion allows us to determine if a given finite-covolume hyperbolic reflection group Γ with fundamental chamber P is arithmetic, quasiarithmetic, or neither.

Theorem 2.1 (Vinberg's arithmeticity criterion [33]). Let $\Gamma<\mathrm{O}_{d, 1}^{\prime}$ be a reflection group with finite-volume fundamental chamber $P \subset \mathbb{H}^{d}$. Then Γ is arithmetic if and only if each of the following conditions holds:
(V1) $K(P)$ is a totally real algebraic number field;
(V2) for any embedding $\sigma: K(P) \rightarrow \mathbb{R}$, such that $\left.\sigma\right|_{k(P)} \neq \mathrm{Id}$, the matrix $G^{\sigma}(P)$ is positive semi-definite;
(V3) $\operatorname{Cyc}(2 \cdot G(P)) \subset \mathcal{O}_{k(P)}$,

Figure 3. The Löbell polyhedron L_{6} and its slice, the truncated tetrahedron T_{6}. We use the analogous edge labeling for all the truncated tetrahedra T_{n}.
and, in this case, the ground field of Γ is $k(P)$. The group Γ is quasi-arithmetic if and only if it satisfies conditions (V1)-(V2), but not necessarily (V3), and, in this case, the ground field of Γ is again $k(P)$.

Remark 2.2. Note that $2 \cos \frac{\pi}{n}$ is always an algebraic integer. Thus, if there are no dashed edges in the Coxeter-Vinberg diagram of a finite-volume Coxeter polyhedron P, then condition (V3) above automatically holds, and there is no distinction between arithmeticity and quasi-arithmeticity for the associated reflection group Γ. In particular, a triangle group acting on \mathbb{H}^{2} is quasi-arithmetic precisely when it is arithmetic.

Remark 2.3. Work of Vinberg [34, Section 4] implies that the ground field of a finite-covolume hyperbolic reflection group coincides with its adjoint trace field, and is thus a commensurability invariant.

3. GEometry and arithmetic of LÖbell orbifolds

3.1. A decomposition of L_{n}. For any $n \geqslant 5$ the Löbell polyhedron L_{n} admits a decomposition into $2 n$ isometric "slices" T_{n}, each of which may be regarded as a twice-truncated tetrahedron; this decomposition is illustrated in Figure 3 for $n=6$, where the hyperbolic triangles $A B C$ and $A^{\prime} B^{\prime} C^{\prime}$ are exactly the results of these truncations.

The polyhedron T_{n} is a Coxeter polyhedron whose edges are labeled in Figure 3, right. The Coxeter-Vinberg diagram for T_{n} is given in Figure 4. The weight d_{n} in this diagram is equal to $\cosh \delta_{n}$ since the distance between the top and bottom faces of L_{n} is the same as that for T_{n}; note that δ_{n} is also equal to the length of the edge $A A^{\prime}$.

Figure 4. The Coxeter-Vinberg diagram of the polytope T_{n}

The Gram matrix of T_{n} is

$$
G_{n}:=G\left(T_{n}\right)=\left(\begin{array}{rrrrrr}
1 & -\cos \left(\frac{\pi}{n}\right) & 0 & 0 & 0 & -\frac{1}{2} \sqrt{2} \\
-\cos \left(\frac{\pi}{n}\right) & 1 & 0 & 0 & -\frac{1}{2} \sqrt{2} & 0 \\
0 & 0 & 1 & -d_{n} & 0 & -a_{n} \\
0 & 0 & -d_{n} & 1 & -a_{n} & 0 \\
0 & -\frac{1}{2} \sqrt{2} & 0 & -a_{n} & 1 & 0 \\
-\frac{1}{2} \sqrt{2} & 0 & -a_{n} & 0 & 0 & 1
\end{array}\right)
$$

We know that the signature ${ }^{2}$ of G_{n} is $(3,1,2)$, since $T_{n} \subset \mathbb{H}^{3}$ is compact. Therefore, using the fact $\operatorname{det} G_{n}$ and all 5×5 principal minors of G_{n} vanish, we obtain that $d_{n}^{2}=\left(2 a_{n}^{2}-1\right)\left(a_{n}^{2}-1\right)$. This allows us to compute d_{n} and a_{n} :

$$
d_{n}=\cosh \delta_{n}=\frac{\cos \frac{\pi}{n}}{\cos \frac{2 \pi}{n}} ; \quad a_{n}=\sqrt{1+\frac{1}{2 \cos \frac{2 \pi}{n}}} .
$$

3.2. Proof of Theorem 1.4. By Remark 2.3, we have that the adjoint trace field k_{n} of the lattice Γ_{n} coincides with the ground field of the polyhedron T_{n} for $n \geq 5$. Our computations in Section 3.1 allow us to determine the cyclic products $C_{n}:=\operatorname{Cyc}\left(G_{n}\right)$ using the Coxeter-Vinberg diagram shown in Figure 4. We have

$$
\mathbb{Q}\left(C_{n}\right)=\mathbb{Q}\left(\left\{\cos \frac{2 \pi}{n} ; \quad 1+\frac{1}{2 \cos \frac{2 \pi}{n}} ; \quad \frac{\cos ^{2} \frac{\pi}{n}}{\cos ^{2} \frac{2 \pi}{n}} ; \quad \frac{\cos ^{2} \frac{\pi}{n}}{\cos \frac{2 \pi}{n}}\left(1+\frac{1}{2 \cos \frac{2 \pi}{n}}\right)\right\}\right)
$$

Thus

$$
k_{n}=\mathbb{Q}\left(C_{n}\right)=\mathbb{Q}\left(\cos \frac{2 \pi}{n}\right)
$$

Since $\operatorname{deg}\left(k_{n}\right)=\frac{\phi(n)}{2}$, where ϕ is Euler's totient function, we have that for distinct primes p and q the fields k_{p} and k_{q} have different degrees, so that the polyhedra L_{p} and L_{q} are not commensurable.
3.3. Proof of Theorem 1.2. The reflection group Γ_{n} is commensurable with the group Λ_{n} generated by reflections in the walls of T_{n}. It thus remains to check quasiarithmeticity of Λ_{n} using Vinberg's arithmeticity criterion (see Theorem 2.1).

The main result in [10] implies in particular that any face of a quasi-arithmetic hyperbolic Coxeter 3-polyhedron that is itself a Coxeter polygon is also quasiarithmetic with the same ground field. Note that if some face F of a Coxeter 3 -polyhedron meets its adjacent faces at even angles, i.e. angles of the form $\frac{\pi}{2 m}$ for some $m \geq 1$, then F is a Coxeter polygon. It is shown in [10] that, in the latter case, if P is moreover arithmetic, then F is arithmetic as well.

[^1]| $n=5$ | $k_{5}=\mathbb{Q}\left(\cos \frac{2 \pi}{5}\right)=\mathbb{Q}(\sqrt{5})$ | $d_{5}=2$ | $G_{5}^{\sigma_{\ell}} \geqslant 0$ for all $\ell \neq 1$ |
| :---: | :---: | :---: | :---: |
| $n=6$ | $k_{6}=\mathbb{Q}$ | $d_{6}=1$ | no nonidentity embeddings |
| $n=7$ | $k_{7}=\mathbb{Q}\left(\cos \frac{2 \pi}{7}\right)$ | $d_{7}=3$ | $G_{7}^{\sigma_{2}}$ has signature $(3,1)$ |
| $n=8$ | $k_{8}=\mathbb{Q}(\sqrt{2})$ | $d_{8}=2$ | $G_{8}^{\sigma_{\ell}} \geqslant 0$ for all $\ell \neq 1$ |
| $n=10$ | $k_{10}=\mathbb{Q}\left(\cos \frac{\pi}{5}\right)=\mathbb{Q}(\sqrt{5})$ | $d_{10}=2$ | $G_{10}^{\sigma_{3}}$ has signature $(3,1)$ |
| $n=12$ | $k_{12}=\mathbb{Q}\left(\cos \frac{\pi}{6}\right)=\mathbb{Q}(\sqrt{3})$ | $d_{12}=2$ | $G_{12}^{\sigma_{\ell}} \geqslant 0$ for all $\ell \neq 1$ |
| $n=18$ | $k_{18}=\mathbb{Q}\left(\cos \frac{2 \pi}{18}\right)$ | $d_{18}=3$ | $G_{18}^{\sigma_{5}}$ has signature $(3,1)$ |

Table 1. Properties of the Gram matrices G_{n} under the nonidentity embeddings σ_{ℓ} of the fields k_{n} for $n=5,6,7,8,10,12,18$.

The polyhedron T_{n} has a $(2,4, n)$-triangular face orthogonal to all adjacent faces. For the $(2,4, n)$-triangle group, arithmeticity is equivalent to quasi-arithmeticity (see Remark 2.2). Takeuchi [27] showed that these triangle groups are arithmetic only for $n=5,6,7,8,10,12,18$. Thus, by the previous paragraph, we have that Λ_{n} is not quasi-arithmetic for n outside these values (and hence neither is Γ_{n}). It then suffices to check the conditions of Vinberg's criterion for the Gram matrix of the Coxeter polyhedron T_{n} for n within these values.

Denote by σ_{ℓ} the embeddings of the totally real number field $k_{n}=\mathbb{Q}\left(\cos \frac{2 \pi}{n}\right)$, enumerated as follows:

$$
\sigma_{\ell}\left(\cos \frac{2 \pi}{n}\right)=\cos \frac{2 \pi \ell}{n}, \quad(\ell, n)=1, \quad 1 \leq \ell<n
$$

Note that $\sigma_{\ell}\left(k_{n}\right)=\mathbb{Q}\left(\cos \frac{2 \pi \ell}{n}\right)$.
We see from Table 1, which is a result of computations made in Sage, that Λ_{n} is quasi-arithmetic only for $n=5,6,8,12$. In order to show that Λ_{n} is properly quasi-arithmetic if and only if $n=12$, one needs to check the condition (V3) of Theorem 2.1, that is, that $\operatorname{Cyc}\left(2 G_{n}\right) \subset \mathcal{O}_{k_{n}}$ if and only if $n=5,6,8$. This can easily be done even without a computer. To avoid being redundant, we record here only the (most interesting) case $n=12$. Indeed, the other cases were already verified in [5].
Lemma 3.1. The reflection group Λ_{12} is properly quasi-arithmetic.
Proof. Notice that $\cos \left(\frac{\pi}{12}\right)=\frac{\sqrt{6}+\sqrt{2}}{4}$. The Gram matrix G_{12} of T_{12} is

$$
\left(\begin{array}{rrrrrr}
1 & -\frac{\sqrt{2}(1+\sqrt{3})}{4} & 0 & 0 & 0 & -\frac{1}{2} \sqrt{2} \\
-\frac{\sqrt{2}(1+\sqrt{3})}{4} & 1 & 0 & 0 & -\frac{1}{2} \sqrt{2} & 0 \\
0 & 0 & 1 & -\frac{\sqrt{2}(3+\sqrt{3})}{6} & 0 & -\frac{\sqrt{\sqrt{3}+3}}{\sqrt{3}} \\
0 & 0 & -\frac{\sqrt{2}(3+\sqrt{3})}{6} & 1 & -\frac{\sqrt{\sqrt{3}+3}}{\sqrt{3}} & 0 \\
0 & -\frac{1}{2} \sqrt{2} & 0 & -\frac{\sqrt{\sqrt{3}+3}}{\sqrt{3}} & 1 & 0 \\
-\frac{1}{2} \sqrt{2} & 0 & -\frac{\sqrt{\sqrt{3}+3}}{\sqrt{3}} & 0 & 0 & 1
\end{array}\right)
$$

We have that $k_{12}=\mathbb{Q}(\sqrt{3})$ and

$$
K_{12}:=K\left(T_{12}\right)=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{3+\sqrt{3}})=\mathbb{Q}(\sqrt{2}, \sqrt{3+\sqrt{3}}) .
$$

The latter field is of degree 8 with all embeddings given by

$$
\sqrt{2} \rightarrow \pm \sqrt{2}, \quad \sqrt{3+\sqrt{3}} \rightarrow \pm \sqrt{3 \pm \sqrt{3}}
$$

We verified via Sage that for each ${ }^{3}$ embedding $\sigma: K_{12} \rightarrow \mathbb{R}$ such that $\left.\sigma\right|_{k_{12}} \neq 1$, the matrix G_{12}^{σ} has signature $(4,0,2)$.

Finally, we observe that not all cyclic products of $2 \cdot G_{12}$ are algebraic integers. For instance, we have that $\left(2 \frac{\sqrt{\sqrt{3}+3}}{\sqrt{3}}\right)^{2}=\frac{4(3+\sqrt{3})}{3} \notin \mathbb{Z}[\sqrt{3}]=\mathcal{O}_{k_{12}}$.
3.4. Systoles of Löbell orbifolds. For a lattice $\Gamma<\operatorname{Isom}\left(\mathbb{H}^{d}\right)$, the systole sys (Γ) of Γ is the minimal translation length of a loxodromic element of Γ. The systole $\operatorname{sys}(M)$ of the complete finite-volume hyperbolic orbifold $M=\mathbb{H}^{d} / \Gamma$ is simply the systole of the lattice Γ. We record in this section a couple of remarks about systoles of hyperbolic reflection orbifolds.

Remark 3.2. Suppose we have a sequence of reflection groups $\Gamma_{n}<\operatorname{Isom}\left(\mathbb{H}^{d}\right)$, $d \geq 2$, with the property that $\operatorname{sys}\left(\Gamma_{n}\right) \rightarrow 0$. Then Γ_{n} is arithmetic for at most finitely many n. Indeed, suppose otherwise, so that we may assume the Γ_{n} are all arithmetic. Since there are only finitely many maximal arithmetic reflection groups (see [24], [2], and [12]), up to further extraction, we may also assume the Γ_{n} are all contained in a single lattice $\Gamma<\operatorname{Isom}\left(\mathbb{H}^{d}\right)$, so that $\operatorname{sys}\left(\Gamma_{n}\right) \geq \operatorname{sys}(\Gamma)$, a contradiction.

Remark 3.3. It follows from Remark 3.2 that if $\Gamma_{n}<\operatorname{Isom}\left(\mathbb{H}^{d}\right), d \geq 2$, is a sequence of finite-covolume reflection groups satisfying $\operatorname{sys}\left(\Gamma_{n}\right) \rightarrow 0$, then for each $m \in \mathbb{N}$, we have that Γ_{m} is commensurable to Γ_{n} for at most finitely many n. Indeed, suppose otherwise. Then, up to passing to a subsequence, we may assume that the Γ_{n} are all commensurable. Since the Γ_{n} are nonarithmetic by Remark 3.2, it follows from a result of Margulis [20, Theorem 1, page 2] that their commensurator $\Lambda<$ Isom $\left(\mathbb{H}^{d}\right)$ contains each Γ_{n} as a finite-index subgroup, so that $\operatorname{sys}\left(\Gamma_{n}\right) \geq \operatorname{sys}(\Lambda)$, a contradiction.

As observed in [7, Sections 5.2 and 5.3], the above conclusion in fact holds for any sequence of lattices $\Gamma_{n}<\operatorname{Isom}\left(\mathbb{H}^{d}\right)$ satisfying sys $\left(\Gamma_{n}\right) \rightarrow 0$. Indeed, suppose one has such a sequence Γ_{n} where the Γ_{n} are all commensurable. If the Γ_{n} are nonarithmetic, then one obtains a contradiction as in the previous paragraph. If the Γ_{n} are arithmetic, then since they are commensurable, a uniform lower bound for $\operatorname{sys}\left(\Gamma_{n}\right)$ is provided by the fact that, given $d \in \mathbb{N}$ and $\mu>1$, there are only finitely many monic integer polynomials of degree d and Mahler measure at most μ. We remark that the strongest form of Lehmer's conjecture would imply a uniform lower bound on the systole of any arithmetic locally symmetric orbifold; see the discussion immediately following Conjecture 10.2 in Gelander [13].

[^2]
4. LÖbell orbifolds and hyperbolic Dehn fillings of ideal RIGHT-ANGLED ANTIPRISMS

Let $P \subset \mathbb{H}^{3}$ be a finite-volume Coxeter polyhedron with a compact edge e, and say the dihedral angle at e is $\frac{\pi}{m}$. Following Kolpakov [17], if $Q \subset \mathbb{H}^{3}$ is a finitevolume Coxeter polyhedron of the same combinatorial type and with the same dihedral angles as P except that the dihedral angle at e in Q is diminished to $\frac{\pi}{n}$ for some $n \geq m$, we say that Q is obtained from P via a $\frac{\pi}{n}$-contraction at e. For example, for $n \geq 5$ and $k \geq 2$, the polyhedron $P_{n, k} \subset \mathbb{H}^{3}$ whose Coxeter-Vinberg diagram is shown in Figure 5 is obtained from the truncated tetrahedron T_{n} via $\frac{\pi}{2 k}$-contractions at the (analogues of the) edges $B^{\prime} D$ and $E C$, while T_{n} is in turn obtained from T_{5} via a $\frac{\pi}{n}$-contraction at the edge $A A^{\prime}$; see Figures 3 and 4 .

Figure 5. The Coxeter-Vinberg diagram of the polyhedron $P_{n, k}$
If instead Q and P differ (as labeled polyhedra) only in that, in Q, the edge e is replaced by an ideal vertex $v \in \partial \mathbb{H}^{3}$, then we say that Q is obtained from P by contracting e to an ideal vertex. Note that, if such a contraction exists, the dihedral angle at each edge adjacent to e in P (and each edge incident to v in Q) is $\frac{\pi}{2}$, and the faces sharing e in P are at least 4-sided.

In [16], Kellerhals studies a family of ideal right-angled polyhedra known as the antiprisms $A_{n} \subset \mathbb{H}^{3}, n \geq 3$, where she exploits a decomposition of each such polyhedron A_{n} into $2 n$ copies of a polyhedron R_{n}, analogous to the decomposition of the Löbell polyhedron L_{n} into $2 n$ copies of T_{n}; see Figure 6. In the above language, for $n \geq 5$, the polyhedron R_{n} is in fact obtained from T_{n} by contracting the edges $B^{\prime} D$ and $E C$ of T_{n} to ideal vertices. In particular, for such n, the antiprism A_{n} may be obtained from the Löbell polyhedron L_{n} by a sequence of edge contractions to ideal vertices. This was already observed by Kolpakov [17, Section 5.1]. Indeed,

Figure 6. The antiprism A_{6} and its slice R_{6}.

Figure 7. A visual proof that the distance between the "top" and "bottom" faces of the antiprism A_{n} approaches 0. Drawn above are the ideal boundaries of the walls of A_{n} for $n=5,8$, and 12 (from left to right), visualized via stereographic projection onto the page from the ideal boundary of \mathbb{H}^{3} such that the circles corresponding to the top and bottom faces, indicated here in red, are concentric. Keeping fixed the Euclidean diameter of the inner red circle, we have that as n approaches ∞, the diameter of an inner blue circle approaches 0 , so that the ratio between the diameters of the inner and outer red circles approaches 1 . In fact, an elementary exercise in Euclidean geometry shows that this ratio is precisely $\frac{1+\sin \left(\frac{\pi}{n}\right)}{\cos \left(\frac{\pi}{n}\right)}$, corroborating a computation of Kellerhals [16, Examples $1 \& 2]$.
the existence of the polyhedra $P_{n, k}$ and $R_{n}, n \geq 5, k \geq 2$, is predicted by the following result of Kolpakov, whose proof rests on Andreev's theorem [3, 26].

Theorem 4.1 (c.f. the proof of Prop. 1 in [17]). Let $P \subset \mathbb{H}^{3}$ be a finite-volume Coxeter polyhedron with at least 5 faces and a compact edge e such that the dihedral angle at each edge adjacent to e is $\frac{\pi}{2}$, and the faces sharing e in P are at least 4 -sided. If the dihedral angle at e in P is $\frac{\pi}{m}, m \geq 2$, then P admits a $\frac{\pi}{n}$-contraction P_{n} at e for each $n \geq m$, as well as a contraction P_{∞} of e to an ideal vertex.

Since we may instead view the P_{n} as having been obtained from P_{∞} via Dehn filling ${ }^{4}$, it follows from work of Dunbar and Meyerhoff [11] that the length of the (analogue of the) edge $e \subset P_{n}$ approaches 0 as $n \rightarrow \infty$. Taking P_{n} to be the truncated tetrahedron T_{n} and e the edge $A A^{\prime}$, we obtain another justification for Observation 1.1. Applying a similar argument to the R_{n} instead of the T_{n}, one concludes that the distance between the "top" and "bottom" faces of the antiprism

[^3]A_{n} also approaches 0 as $n \rightarrow \infty$; for a justification of the latter that uses only elementary Euclidean geometry, see Figure 7.

We remark that the conditions of Theorem 4.1 are satisfied for any compact edge e of a finite-volume right-angled polyhedron $P \subset \mathbb{H}^{3}$. This suggests a method of constructing a family of new finite-volume right-angled polyhedra starting from the polyhedron P. Namely, for $n \geq 2$, let $P_{n} \subset \mathbb{H}^{3}$ be the polyhedron obtained from P by a $\frac{\pi}{n}$-contraction at e, let $\Lambda_{n}<\operatorname{Isom}\left(\mathbb{H}^{3}\right)$ be the associated reflection group, and let Δ_{n} be the stabilizer of e in Λ_{n}. Then the finite-volume polyhedron $Q_{n}=\bigcup_{\gamma \in \Delta_{n}} \gamma P_{n}$ is right-angled, and is compact if and only if P was. Moreover, for each $m \geq 2$, we have that Λ_{m} is commensurable to Λ_{n} for at most finitely many $n \geq 2$, for instance, because $\operatorname{sys}\left(\Lambda_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$ (see Remark 3.3). We conclude our discussion by observing that this strategy for producing an infinite family of pairwise incommensurable finite-volume right-angled hyperbolic polyhedra fails in dimension 4 , where the existence of such a family appears to be open. The observation is essentially that codimension- 2 contractions in dimensions higher than 3 yield orbifolds à la Gromov-Thurston [15].
Theorem 4.2. Let $n, m \geq 3$ be of the same parity and $d \geq 4$. Suppose $P_{n} \subset \mathbb{H}^{d}$ is a finite-volume Coxeter polyhedron all of whose dihedral angles are right angles except for a single dihedral angle of $\frac{\pi}{n}$. Suppose there is also a finite-volume Coxeter polyhedron $P_{m} \subset \mathbb{H}^{d}$ with the same combinatorics and dihedral angles as P_{n} except that the exceptional dihedral angle of P_{m} is $\frac{\pi}{m}$. Then $n=m$.
We will make use of the following lemma.
Lemma 4.3. Let P be a finite-volume Coxeter polyhedron in $\mathbb{H}^{d}, d \geq 4$, and suppose all dihedral angles of P are right angles except possibly for one dihedral angle formed by walls H_{1} and H_{2} of P. Then the group $\Gamma<\operatorname{Isom}\left(\mathbb{H}^{d}\right)$ generated by the reflections in all walls of P except H_{1} and H_{2} is Zariski-dense in Isom $\left(\mathbb{H}^{d}\right)$.
Proof of Lemma 4.3. Let $P^{\prime} \subset \mathbb{H}^{d}$ be the (infinite-volume) polyhedron obtained from P by forgetting the walls H_{1} and H_{2}, and let P_{i} be the intersection of P^{\prime} with the hyperplane H_{i} of \mathbb{H}^{d} for $i=1,2$. Then the $(d-1)$-dimensional rightangled hyperbolic polyhedron P_{i} is obtained from a finite-volume such polyhedronnamely, the polyhedron $P \cap H_{i}$-by forgetting a single wall-namely, the intersection $H_{1} \cap H_{2}$. Since $d-1 \geq 3$, it follows that the subgroup of $\operatorname{Isom}\left(H_{i}\right)$ generated by the reflections in the walls of P_{i} is Zariski-dense in $\operatorname{Isom}\left(H_{i}\right)$; see, for instance, [14, Section 1.7]. The lemma follows.

Proof of Theorem 4.2. For $k=n, m$, let H_{k} and H_{k}^{\prime} be the walls of P_{k} forming the exceptional dihedral angle of $\frac{\pi}{k}$, and let R_{k} be the union of the images of P_{k} under the reflection group D_{k} generated by the reflections in H_{k} and H_{k}^{\prime}. Since n and m have the same parity, we may choose reflections $r_{k} \in D_{k}$ such that the $(d-1)$ dimensional polyhedra $\operatorname{Fix}\left(r_{n}\right) \cap R_{n}$ and $\operatorname{Fix}\left(r_{m}\right) \cap R_{m}$ have the same combinatorics and dihedral angles and are thus isometric by Mostow-Prasad rigidity [23, 25] (see also Andreev [3, 4]).

Now interbreed the R_{k} along $\operatorname{Fix}\left(r_{k}\right) \cap R_{k}$ and let R be the resulting finite-volume polyhedron in \mathbb{H}^{d}. Then there is an obvious dihedral group $D_{\frac{n+m}{2}}$ of combinatorial symmetries of R preserving dihedral angles. By Mostow-Prasad rigidity, each of these combinatorial symmetries is a hyperbolic isometry. However, by Lemma 4.3, there is (up to inverses) a unique hyperbolic isometry γ_{k} rotating the surface of any
given slice of R_{k} two slices over, namely, the composition of the reflections in H_{k} and H_{k}^{\prime}, so that γ_{k} has order k. Since γ_{n} and γ_{m} each generate the commutator subgroup of $D_{\frac{n+m}{2}}$, it follows that $n=m$.

References

[1] I. Agol, Systoles of hyperbolic 4-manifolds, arXiv preprint math/0612290, (2006).
[2] I. Agol, M. Belolipetsky, P. Storm, and K. Whyte, Finiteness of arithmetic hyperbolic reflection groups, Groups Geom. Dyn., 2 (2008), pp. 481-498.
[3] E. M. Andreev, Convex polyhedra in Lobačevskǐ̆ spaces, Mat. Sb. (N.S.), 81 (123) (1970), pp. 445-478.
[4] —, Convex polyhedra of finite volume in Lobačevskǐ̆ space, Mat. Sb. (N.S.), 83 (125) (1970), pp. 256-260.
[5] O. Antolín-Camarena, G. R. Maloney, and R. K. W. Roeder, Computing arithmetic invariants for hyperbolic reflection groups, in Complex dynamics, A K Peters, Wellesley, MA, 2009, pp. 597-631.
[6] A. Basmajian, Tubular neighborhoods of totally geodesic hypersurfaces in hyperbolic manifolds, Invent. Math., 117 (1994), pp. 207-225.
[7] M. V. Belolipetsky and S. A. Thomson, Systoles of hyperbolic manifolds, Algebr. Geom. Topol., 11 (2011), pp. 1455-1469.
[8] R. Benedetti and C. Petronio, Lectures on hyperbolic geometry, Universitext, SpringerVerlag, Berlin, 1992.
[9] N. Bergeron, F. Haglund, and D. T. Wise, Hyperplane sections in arithmetic hyperbolic manifolds, J. Lond. Math. Soc. (2), 83 (2011), pp. 431-448.
[10] N. Bogachev and A. Kolpakov, On faces of quasi-arithmetic Coxeter polytopes, Int. Math. Res. Not. IMRN, (2021), pp. 3078-3096.
[11] W. D. Dunbar and G. R. Meyerhoff, Volumes of hyperbolic 3-orbifolds, Indiana Univ. Math. J., 43 (1994), pp. 611-637.
[12] D. Fisher and S. Hurtado, A new proof of finiteness of maximal arithmetic reflection groups, arXiv preprint arXiv:2207.00258, (2022).
[13] T. Gelander, Homotopy type and volume of locally symmetric manifolds, Duke Math. J., 124 (2004), pp. 459-515.
[14] M. Gromov and I. Piatetski-Shapiro, Nonarithmetic groups in Lobachevsky spaces, Inst. Hautes Études Sci. Publ. Math., (1988), pp. 93-103.
[15] M. Gromov and W. Thurston, Pinching constants for hyperbolic manifolds, Invent. Math., 89 (1987), pp. 1-12.
[16] R. Kellerhals, A polyhedral approach to the arithmetic and geometry of hyperbolic link complements, (2022).
[17] A. Kolpakov, Deformation of finite-volume hyperbolic Coxeter polyhedra, limiting growth rates and Pisot numbers, European J. Combin., 33 (2012), pp. 1709-1724.
[18] F. LÖBELL, Beispiele geschlossener dreidimensionaler Clifford-Kleinscher Räume negativer Krümmung, Ber. Verh. Sächs. Akad. Leipzig, 83 (1931), pp. 167-174.
[19] C. Maclachlan and A. W. Reid, The arithmetic of hyperbolic 3-manifolds, vol. 219 of Graduate Texts in Mathematics, Springer-Verlag, New York, 2003.
[20] G. A. Margulis, Discrete subgroups of semisimple Lie groups, vol. 17 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Springer-Verlag, Berlin, 1991.
[21] A. D. Mednykh and A. Y. Vesnin, Löbell manifolds revised, Sib. Èlektron. Mat. Izv., 4 (2007), pp. 605-609.
[22] J. S. Meyer, C. Millichap, and R. Trapp, Arithmeticity and hidden symmetries of fully augmented pretzel link complements, New York J. Math., 26 (2020), pp. 149-183.
[23] G. D. Mostow, Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Inst. Hautes Études Sci. Publ. Math., (1968), pp. 53-104.
[24] V. V. Nikulin, Finiteness of the number of arithmetic groups generated by reflections in Lobachevskǐ̆ spaces, Izv. Ross. Akad. Nauk Ser. Mat., 71 (2007), pp. 55-60.
[25] G. Prasad, Strong rigidity of Q-rank 1 lattices, Invent. Math., 21 (1973), pp. 255-286.
[26] R. K. W. Roeder, J. H. Hubbard, and W. D. Dunbar, Andreev's theorem on hyperbolic polyhedra, Ann. Inst. Fourier (Grenoble), 57 (2007), pp. 825-882.
[27] K. Takeuchi, Arithmetic triangle groups, J. Math. Soc. Japan, 29 (1977), pp. 91-106.
[28] S. Thomson, Quasi-arithmeticity of lattices in $\mathrm{PO}(n, 1)$, Geom. Dedicata, 180 (2016), pp. 8594.
[29] A. Y. Vesnin, Three-dimensional hyperbolic manifolds of Löbell type, Sibirsk. Mat. Zh., 28 (1987), pp. 50-53.
[30] —, Three-dimensional hyperbolic manifolds with general fundamental polyhedron, Math. Notes, 49 (1991), p. 575-577.
[31] —, Volumes of Löbell 3-manifolds, Math. Notes, 64 (1998), pp. 15-19.
[32] ——, Right-angled polytopes and three-dimensional hyperbolic manifolds, Uspekhi Mat. Nauk, 72 (2017), pp. 147-190.
[33] E. B. Vinberg, Discrete groups generated by reflections in Lobačevskǐ̆ spaces, Mat. Sb. (N.S.), 72 (114) (1967), pp. 471-488; correction, ibid. 73 (115) (1967), 303.
[34] E. B. Vinberg, Rings of definition of dense subgroups of semisimple linear groups, Math. of USSR-Izvestiya, 5 (1) (1971), pp. 45-55.

Department of Mathematics, University of Toronto, 40 St George Street, Toronto ON, M5S 2E4, Canada

Institute for Information Transmission Problems, Moscow, Russia
Email address: nvbogach@mail.ru
Institut des Hautes Études Scientifiques, 35 route de Chartres, 91440 Bures-SurYvette, France

Email address: douba@ihes.fr

[^0]: ${ }^{1}$ Conjecturally, there is no dependence on Γ; see the discussion following Theorem 4.3 in [1], and [7, Section 5.1].

[^1]: ${ }^{2}$ The signature of a real symmetric matrix A is the triple (p, q, r) of numbers of positive, negative, and zero eigenvalues of A, respectively.

[^2]: ${ }^{3}$ In fact, since the semi-definiteness property can be checked via principal minors (and since these minors are computed using cyclic products contained in $\left.k_{12}=\mathbb{Q}(\sqrt{3})\right)$, it suffices to consider only a single embedding $\sigma: K_{12} \rightarrow \mathbb{R}$ mapping $\sqrt{3}$ to $-\sqrt{3}$.

[^3]: ${ }^{4}$ More precisely, Dunbar and Meyerhoff adapt Thurston's theory of hyperbolic Dehn fillings to the setting of oriented hyperbolic 3-orbifolds. Applying this theory to the orientation covers of the P_{n}, where the P_{n} are viewed as reflection orbifolds, one concludes that the length of the edge e in P_{n} approaches 0 as $n \rightarrow \infty$.

