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Abstract. The Löbell polyhedra form an infinite family of compact right-

angled hyperbolic polyhedra in dimension 3. We observe, through both elemen-
tary and more conceptual means, that the “systoles” of the Löbell polyhedra

approach 0, so that these polyhedra give rise to particularly straightforward

examples of closed hyperbolic 3-manifolds with arbitrarily small systole, and
constitute an infinite family even up to commensurability. By computing num-

ber theoretic invariants of these polyhedra, we refine the latter result, and also

determine precisely which of the Löbell polyhedra are quasi-arithmetic.

1. Introduction

For each n ⩾ 5, consider a combinatorial 3-polyhedron whose “top” and “bot-
tom” faces are n-gons and whose “lateral” surface consists of 2n pentagons (see
Figure 1 and Figure 3, left, for illustrations of the case n = 6). By Andreev’s
theorem [3, 26], this abstract polyhedron can be realized as a compact right-angled
polyhedron Ln in H3 for any n ⩾ 5. For instance, the polyhedron L5 is the right-
angled hyperbolic dodecahedron.

The polyhedra Ln are called Löbell polyhedra, after F.R. Löbell, who constructed
the first example [18] of a closed oriented hyperbolic 3-manifold by gluing eight
copies of the polyhedron L6. The subgroup Γn < Isom(H3) generated by the
reflections in the faces of Ln is a cocompact right-angled reflection group; we refer
to the quotientsH3/Γn as Löbell orbifolds. Such an orbifoldH3/Γn can be visualized
as the polyhedron Ln itself with reflective singularities in its faces. The example of
Löbell is a particular instance of a general construction of degree-8 manifold covers
of right-angled reflection 3-orbifolds; see [29] or [32, Section 3.1].

Much is understood about Löbell polyhedra. In particular, Vesnin [31] computed
their volumes vol(Ln), and showed that vol(Ln) is an increasing function of n.
Moreover, Mednykh and Vesnin [21] showed that the distance δn between the top
and bottom faces of the Löbell polyhedron Ln satisfies

cosh δn =
cos

(
π
n

)
cos

(
2π
n

) .
The following is an elementary consequence of the above identity.

Observation 1.1. The distance δn between the top and bottom faces of the Löbell
polyhedron Ln approaches 0 as n → ∞.

Since the systole of a compact right-angled reflection orbifold is twice the minimal
distance between two nonadjacent walls (see Section 3.4 for the definition of the
systole of a hyperbolic orbifold), and by an application of a collar lemma as in [6]
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Figure 1. The Löbell polyhedron L6, displayed in the Poincaré
ball model of H3 using Geomview.

to the lateral faces of Ln, whose areas are fixed, the following is immediate from
Observation 1.1.

Corollary 1.1.1. For sufficiently large n, the systole of the Löbell orbifold Ln is
precisely 2δn.

Observation 1.1 also yields the following.

Corollary 1.1.2. Let Mn be manifold covers of the Löbell orbifolds Ln of uniformly
bounded degree (for instance, the degree-8 manifold covers discussed above). Then
the systole of Mn approaches 0 as n → ∞.

Indeed, for n a multiple of 3, we provide an explicit degree-8 oriented manifold cover
of Ln whose systole is precisely 2δn for sufficiently large n; see Figure 2. We thus
obtain straightforward examples of closed hyperbolic 3-manifolds with arbitrarily
small systole. Such manifolds were known to exist in dimension 3 by Thurston’s
hyperbolic Dehn filling theorem (see, for instance, [8, Sections E.5 and E.6]). In
fact, the Löbell polyhedron Ln decomposes into 2n copies of a polyhedron Tn (see
Section 3.1) which may be viewed as a Dehn filling of a cusped polyhedron T∞,
so that Observation 1.1 ultimately also follows from a Dehn filling argument; see
Section 4.

Agol [1] provided another construction that, given an input arithmetic lattice Γ <
Isom(H3) and ε > 0, outputs a closed hyperbolic 3-manifold with systole at most ε.
Agol originally suggested this construction in dimension 4 (where the problem had
theretofore been open), but it evidently also applies in lower dimensions, and in fact
applies in all dimensions by work of Belolipetsky and Thomson [7] (alternatively,
by a result of Bergeron, Haglund, and Wise [9, Theorem 1.4]). While the output
lattices are nonarithmetic for fixed1 Γ and sufficiently small ϵ, they are nevertheless
all quasi-arithmetic, as observed by Thomson [28]. On the other hand, the reflection
lattices Γn are eventually not quasi-arithmetic.

1Conjecturally, there is no dependence on Γ; see the discussion following Theorem 4.3 in [1],
and [7, Section 5.1].

www.geomview.org
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Figure 2. The above 4-coloring of the Löbell polyhedron L6 and
its analogues for the polyhedra L3k, k ≥ 2, determine (orientable)
degree-8 manifold covers M3k as in [32, Section 3.1]. Since the top
and bottom faces of L3k receive the same color, the manifold M3k

contains a closed geodesic of length 2δ3k. For sufficiently large k,
the systole of M3k is in fact precisely 2δ3k by Corollary 1.1.1.

Theorem 1.2. The Löbell polyhedron Ln is quasi-arithmetic if and only if n = 5,
6, 8, 12, and is properly quasi-arithmetic only when n = 12.

Recall that a lattice is said to be properly quasi-arithmetic if it is quasi-arithmetic
but not arithmetic. See Section 2.2 for definitions. We remark that it is unclear to
us whether Theorem 1.2 exemplifies a more general phenomenon. More precisely,
it appears that the following question is open.

Question 1.3. Are only finitely many Dehn fillings of a complete finite-volume
noncompact hyperbolic 3-orbifold quasi-arithmetic?

The answer to Question 1.3 is known to be affirmative if one replaces “quasi-
arithmetic” with “arithmetic”; see Maclachlan and Reid [19, Cor. 11.2.2].

Returning to our discussion on Löbell polyhedra, Vesnin [30] observed that
the Löbell polyhedron Ln is nonarithmetic for n ̸= 5, 6, 7, 8, 10, 12, 18. Antoĺın-
Camarena, Maloney, and Roeder [5] later showed that Ln is arithmetic if and only
if n = 5, 6, 8.

Our proof of Theorem 1.2 is straightforward and uses only classical tools from
Vinberg’s theory of hyperbolic reflection groups. Along the way, we compute the
adjoint trace fields of the lattices Γn.

Theorem 1.4. The adjoint trace field kn of Γn is Q
(
cos 2π

n

)
. In particular, if

p, q ≥ 5 are distinct primes, then the Löbell polyhedra Lp and Lq are incommensu-
rable.

It is shown in [19, Section 4.7.3] that there are infinitely many pairwise incom-
mensurable compact Coxeter polyhedra in H3. However, we could not find in the
literature a justification of the existence of infinitely many pairwise incommen-
surable right-angled such polyhedra. Indeed, this was our initial motivation for

considering the Löbell polyhedra. Since deg(kn) =
ϕ(n)
2 → ∞ as n → ∞, where ϕ

is Euler’s totient function, one can in fact conclude from Theorem 1.4 that there is
no infinite subsequence of Γn consisting entirely of pairwise commensurable lattices.
This fact is indeed already implied by Observation 1.1; see Remark 3.3.

It is worth mentioning that the existence of infinitely many pairwise incommen-
surable noncompact finite-volume right-angled polyhedra in H3 was already known.



4 NIKOLAY BOGACHEV AND SAMI DOUBA

For instance, Meyer–Millichap–Trapp [22] and Kellerhals [16] showed that the ideal
right-angled antiprisms An provide a sequence of pairwise incommensurable reflec-
tion groups with the same trace fields as those of the Γn. There is in fact more to
be said about the relationship between these two families of right-angled polyhedra:
indeed, as observed by Kolpakov [17, Section 5.1], the Löbell polyhedra Ln can be
viewed as having been obtained from the antiprisms An via Dehn filling; see Sec-
tion 4. Another way of phrasing this is that the antiprisms are obtained from Löbell
polyhedra by “contracting” certain edges to ideal vertices. We explain in Section 4
how this trick of contracting edges of a finite-volume right-angled polyhedron is a
general method for constructing infinitely many commensurability classes of such
polyhedra in dimension 3, and also why an analogous trick is not available in di-
mension 4 (Theorem 4.2), where the existence of such an infinite family appears to
be open.

Acknowledgements. We are grateful to Misha Belolipetsky, Sasha Kolpakov,
Greg Kuperberg, Nicolas Tholozan, and Andrei Vesnin for helpful discussions and
comments. We thank the Institut des Hautes Études Scientifiques for hosting the
first author in the fall of 2022, during which most of this work was completed. The
second author was supported by the Huawei Young Talents Program.

2. Preliminaries

2.1. Hyperbolic lattices. Let Rd,1 be the real vector space Rd+1 equipped with
the standard quadratic form f of signature (d, 1), namely,

f(x) = −x2
0 + x2

1 + · · ·+ x2
d.

The hyperboloid H = {x ∈ Rd,1 | f(x) = −1} has two connected components

H+ = {x ∈ H |x0 > 0} and H− = {x ∈ H |x0 < 0}.
The d-dimensional hyperbolic space Hd is the manifold H+ with the Riemannian

metric ρ induced by restricting f to each tangent space Tp(H+), p ∈ H+. This
hyperbolic metric ρ satisfies cosh ρ(x, y) = −(x, y), where (x, y) is the scalar product
in Rd,1 associated to f . The hyperbolic d-space Hd is known to be the unique simply
connected complete Riemannian d-manifold with constant sectional curvature −1.
Hyperplanes of Hd are intersections of linear hyperplanes of Rd,1 with H+, and are
totally geodesic submanifolds of codimension 1 in Hd.

Let Od,1 = O(f,R) be the orthogonal group of the form f , and O′
d,1 < Od,1 be

the subgroup (of index 2) preserving H+. The group O′
d,1 preserves the metric ρ

on Hd, and is in fact the full group Isom(Hd) of isometries of the latter.
If Γ < O′

d,1 is a lattice, i.e., if Γ is a discrete subgroup of O′
d,1 with a finite-

volume fundamental domain in Hd, then the quotient M = Hd/Γ is a complete
finite-volume hyperbolic orbifold. If Γ is torsion-free, then M is a complete finite-
volume Riemannian manifold, and is called a hyperbolic manifold.

Now set G = O′
d,1, and suppose G is an admissible (for G) algebraic k-group,

i.e. G(R)o is isomorphic to Go and Gσ(R) is a compact group for any non-identity
embedding σ : k ↪→ R. Then any subgroup Γ < G commensurable with the image
in G of G(Ok) is an arithmetic lattice (in G) with ground field k.

Since G also admits non-arithmetic lattices, we discuss some weaker notions of
arithmeticity for lattices in G. Following Vinberg [33], a lattice Γ < G is called
quasi-arithmetic with ground field k if some finite-index subgroup of Γ is contained
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in the image in G of G(k), where G is some admissible algebraic k-group, and is
called properly quasi-arithmetic if Γ is quasi-arithmetic, but not arithmetic on the
nose.

It is worth stressing that the notion of quasi-arithmeticity is indeed broader
than that of arithmeticity; as was mentioned in the introduction, the nonarithmetic
closed hyperbolic manifolds constructed by Agol [1] and Belolipetsky–Thomson [7]
exist in all dimensions and, as observed by Thomson [28], are quasi-arithmetic. The
first examples of properly quasi-arithmetic lattices in dimensions 3, 4, and 5 were
constructed by Vinberg [33] via reflection groups.

2.2. Convex polyhedra and arithmetic properties of hyperbolic reflection
groups. A (hyperbolic) reflection group is a discrete subgroup of O′

d,1 generated
by reflections in hyperplanes. The fixed hyperplanes of the reflections in a finite-
covolume reflection group Γ < O′

d,1 divide Hd into isometric copies of a single finite-

volume convex polyhedron P ⊂ Hd. The polyhedron P is a Coxeter polyhedron,
that is, a finite-sided convex polyhedron in which the dihedral angle between any
two adjacent facets is an integral submultiple of π. We say P is a fundamental
chamber for Γ. Conversely, given a finite-volume Coxeter polyhedron P ⊂ Hd, the
group generated by the reflections in all the supporting hyperplanes, or walls, of P is
a finite-covolume reflection group Γ < O′

d,1 with fundamental chamber P . We thus

frequently conflate finite-volume Coxeter polyhedra in Hd with their corresponding
lattices in O′

d,1 (or their corresponding hyperbolic orbifolds).

Let He = {x ∈ Hd | (x, e) = 0} be a hyperplane in Hd ⊂ Rd,1 whose linear span
in Rd,1 has normal vector e ∈ Rd,1 with (e, e) = 1, and H−

e = {x ∈ Hd | (x, e) ≤ 0}
be the half-space associated with it. If

P =

N⋂
j=1

H−
ej

is a Coxeter polyhedron in Hd, then the matrix G(P ) = {gij}Ni,j=1 = {(ei, ej)}Ni,j=1

is its Gram matrix. We write K(P ) = Q
(
{gij}Ni,j=1

)
and denote by k(P ) the

field generated by all possible cyclic products of the entries of G(P ); we call the
field k(P ) the ground field of P . For convenience, the set of all cyclic products
of entries of a given matrix A = (aij)

N
i,j=1, i.e., the set of all possible products

of the form ai1i2ai2i3 . . . aiki1 , will be denoted by Cyc(A). Thus, we have k(P ) =
Q (Cyc(G(P ))) ⊂ K(P ).

The following criterion allows us to determine if a given finite-covolume hy-
perbolic reflection group Γ with fundamental chamber P is arithmetic, quasi-
arithmetic, or neither.

Theorem 2.1 (Vinberg’s arithmeticity criterion [33]). Let Γ < O′
d,1 be a reflection

group with finite-volume fundamental chamber P ⊂ Hd. Then Γ is arithmetic if
and only if each of the following conditions holds:

(V1) K(P ) is a totally real algebraic number field;
(V2) for any embedding σ : K(P ) → R, such that σ |k(P ) ̸= Id, the matrix Gσ(P )

is positive semi-definite;
(V3) Cyc(2 ·G(P )) ⊂ Ok(P ),
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Figure 3. The Löbell polyhedron L6 and its slice, the truncated
tetrahedron T6. We use the analogous edge labeling for all the
truncated tetrahedra Tn.

and, in this case, the ground field of Γ is k(P ). The group Γ is quasi-arithmetic
if and only if it satisfies conditions (V1)–(V2), but not necessarily (V3), and, in
this case, the ground field of Γ is again k(P ).

Remark 2.2. Note that 2 cos π
n is always an algebraic integer. Thus, if there are no

dashed edges in the Coxeter–Vinberg diagram of a finite-volume Coxeter polyhedron
P , then condition (V3) above automatically holds, and there is no distinction
between arithmeticity and quasi-arithmeticity for the associated reflection group Γ.
In particular, a triangle group acting on H2 is quasi-arithmetic precisely when it is
arithmetic.

Remark 2.3. Work of Vinberg [34, Section 4] implies that the ground field of a
finite-covolume hyperbolic reflection group coincides with its adjoint trace field,
and is thus a commensurability invariant.

3. Geometry and arithmetic of Löbell orbifolds

3.1. A decomposition of Ln. For any n ⩾ 5 the Löbell polyhedron Ln admits a
decomposition into 2n isometric “slices” Tn, each of which may be regarded as a
twice-truncated tetrahedron; this decomposition is illustrated in Figure 3 for n = 6,
where the hyperbolic triangles ABC and A′B′C ′ are exactly the results of these
truncations.

The polyhedron Tn is a Coxeter polyhedron whose edges are labeled in Figure 3,
right. The Coxeter–Vinberg diagram for Tn is given in Figure 4. The weight dn
in this diagram is equal to cosh δn since the distance between the top and bottom
faces of Ln is the same as that for Tn; note that δn is also equal to the length of
the edge AA′.
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6

2 5

1 3

4

n

an

an

dn

Figure 4. The Coxeter–Vinberg diagram of the polytope Tn

The Gram matrix of Tn is

Gn := G(Tn) =



1 − cos
(
π
n

)
0 0 0 − 1

2

√
2

− cos
(
π
n

)
1 0 0 − 1

2

√
2 0

0 0 1 −dn 0 −an
0 0 −dn 1 −an 0

0 − 1
2

√
2 0 −an 1 0

− 1
2

√
2 0 −an 0 0 1


We know that the signature2 of Gn is (3, 1, 2), since Tn ⊂ H3 is compact. There-

fore, using the fact detGn and all 5 × 5 principal minors of Gn vanish, we obtain
that d2n = (2a2n − 1)(a2n − 1). This allows us to compute dn and an:

dn = cosh δn =
cos π

n

cos 2π
n

; an =

√
1 +

1

2 cos 2π
n

.

3.2. Proof of Theorem 1.4. By Remark 2.3, we have that the adjoint trace
field kn of the lattice Γn coincides with the ground field of the polyhedron Tn for
n ≥ 5. Our computations in Section 3.1 allow us to determine the cyclic products
Cn := Cyc(Gn) using the Coxeter–Vinberg diagram shown in Figure 4. We have

Q(Cn) = Q
({

cos
2π

n
; 1 +

1

2 cos 2π
n

;
cos2 π

n

cos2 2π
n

;
cos2 π

n

cos 2π
n

(
1 +

1

2 cos 2π
n

)})
.

Thus

kn = Q(Cn) = Q
(
cos

2π

n

)
.

Since deg(kn) =
ϕ(n)
2 , where ϕ is Euler’s totient function, we have that for distinct

primes p and q the fields kp and kq have different degrees, so that the polyhedra
Lp and Lq are not commensurable. ■

3.3. Proof of Theorem 1.2. The reflection group Γn is commensurable with the
group Λn generated by reflections in the walls of Tn. It thus remains to check quasi-
arithmeticity of Λn using Vinberg’s arithmeticity criterion (see Theorem 2.1).

The main result in [10] implies in particular that any face of a quasi-arithmetic
hyperbolic Coxeter 3-polyhedron that is itself a Coxeter polygon is also quasi-
arithmetic with the same ground field. Note that if some face F of a Coxeter
3-polyhedron meets its adjacent faces at even angles, i.e. angles of the form π

2m for
some m ≥ 1, then F is a Coxeter polygon. It is shown in [10] that, in the latter
case, if P is moreover arithmetic, then F is arithmetic as well.

2The signature of a real symmetric matrix A is the triple (p, q, r) of numbers of positive,
negative, and zero eigenvalues of A, respectively.
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n = 5 k5 = Q
(
cos 2π

5

)
= Q(

√
5) d5 = 2 Gσℓ

5 ⩾ 0 for all ℓ ̸= 1
n = 6 k6 = Q d6 = 1 no nonidentity embeddings

n = 7 k7 = Q
(
cos 2π

7

)
d7 = 3 Gσ2

7 has signature (3, 1)

n = 8 k8 = Q(
√
2) d8 = 2 Gσℓ

8 ⩾ 0 for all ℓ ̸= 1

n = 10 k10 = Q
(
cos π

5

)
= Q(

√
5) d10 = 2 Gσ3

10 has signature (3, 1)

n = 12 k12 = Q
(
cos π

6

)
= Q(

√
3) d12 = 2 Gσℓ

12 ⩾ 0 for all ℓ ̸= 1

n = 18 k18 = Q
(
cos 2π

18

)
d18 = 3 Gσ5

18 has signature (3, 1)

Table 1. Properties of the Gram matrices Gn under the noniden-
tity embeddings σℓ of the fields kn for n = 5, 6, 7, 8, 10, 12, 18.

The polyhedron Tn has a (2, 4, n)-triangular face orthogonal to all adjacent faces.
For the (2, 4, n)-triangle group, arithmeticity is equivalent to quasi-arithmeticity
(see Remark 2.2). Takeuchi [27] showed that these triangle groups are arithmetic
only for n = 5, 6, 7, 8, 10, 12, 18. Thus, by the previous paragraph, we have that Λn

is not quasi-arithmetic for n outside these values (and hence neither is Γn). It then
suffices to check the conditions of Vinberg’s criterion for the Gram matrix of the
Coxeter polyhedron Tn for n within these values.

Denote by σℓ the embeddings of the totally real number field kn = Q
(
cos 2π

n

)
,

enumerated as follows:

σℓ

(
cos

2π

n

)
= cos

2πℓ

n
, (ℓ, n) = 1, 1 ≤ ℓ < n.

Note that σℓ(kn) = Q
(
cos 2πℓ

n

)
.

We see from Table 1, which is a result of computations made in Sage, that Λn

is quasi-arithmetic only for n = 5, 6, 8, 12. In order to show that Λn is properly
quasi-arithmetic if and only if n = 12, one needs to check the condition (V3) of
Theorem 2.1, that is, that Cyc(2Gn) ⊂ Okn

if and only if n = 5, 6, 8. This can
easily be done even without a computer. To avoid being redundant, we record
here only the (most interesting) case n = 12. Indeed, the other cases were already
verified in [5].

Lemma 3.1. The reflection group Λ12 is properly quasi-arithmetic.

Proof. Notice that cos( π
12 ) =

√
6+

√
2

4 . The Gram matrix G12 of T12 is

1 −
√
2(1+

√
3)

4 0 0 0 − 1
2

√
2

−
√
2(1+

√
3)

4 1 0 0 − 1
2

√
2 0

0 0 1 −
√
2(3+

√
3)

6 0 −
√√

3+3√
3

0 0 −
√
2(3+

√
3)

6 1 −
√√

3+3√
3

0

0 − 1
2

√
2 0 −

√√
3+3√
3

1 0

− 1
2

√
2 0 −

√√
3+3√
3

0 0 1


We have that k12 = Q(

√
3) and

K12 := K(T12) = Q
(√

2,
√
3,

√
3 +

√
3

)
= Q

(√
2,

√
3 +

√
3

)
.
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The latter field is of degree 8 with all embeddings given by

√
2 → ±

√
2,

√
3 +

√
3 → ±

√
3±

√
3.

We verified via Sage that for each3 embedding σ : K12 → R such that σ |k12 ̸= 1,
the matrix Gσ

12 has signature (4, 0, 2).
Finally, we observe that not all cyclic products of 2 ·G12 are algebraic integers.

For instance, we have that

(
2

√√
3+3√
3

)2

= 4(3+
√
3)

3 ̸∈ Z[
√
3] = Ok12 . ■

3.4. Systoles of Löbell orbifolds. For a lattice Γ < Isom(Hd), the systole sys(Γ)
of Γ is the minimal translation length of a loxodromic element of Γ. The systole
sys(M) of the complete finite-volume hyperbolic orbifold M = Hd/Γ is simply the
systole of the lattice Γ. We record in this section a couple of remarks about systoles
of hyperbolic reflection orbifolds.

Remark 3.2. Suppose we have a sequence of reflection groups Γn < Isom(Hd),
d ≥ 2, with the property that sys(Γn) → 0. Then Γn is arithmetic for at most
finitely many n. Indeed, suppose otherwise, so that we may assume the Γn are
all arithmetic. Since there are only finitely many maximal arithmetic reflection
groups (see [24], [2], and [12]), up to further extraction, we may also assume the
Γn are all contained in a single lattice Γ < Isom(Hd), so that sys(Γn) ≥ sys(Γ), a
contradiction.

Remark 3.3. It follows from Remark 3.2 that if Γn < Isom(Hd), d ≥ 2, is a sequence
of finite-covolume reflection groups satisfying sys(Γn) → 0, then for each m ∈ N,
we have that Γm is commensurable to Γn for at most finitely many n. Indeed,
suppose otherwise. Then, up to passing to a subsequence, we may assume that the
Γn are all commensurable. Since the Γn are nonarithmetic by Remark 3.2, it follows
from a result of Margulis [20, Theorem 1, page 2] that their commensurator Λ <
Isom(Hd) contains each Γn as a finite-index subgroup, so that sys(Γn) ≥ sys(Λ), a
contradiction.

As observed in [7, Sections 5.2 and 5.3], the above conclusion in fact holds for
any sequence of lattices Γn < Isom(Hd) satisfying sys(Γn) → 0. Indeed, suppose
one has such a sequence Γn where the Γn are all commensurable. If the Γn are
nonarithmetic, then one obtains a contradiction as in the previous paragraph. If
the Γn are arithmetic, then since they are commensurable, a uniform lower bound
for sys(Γn) is provided by the fact that, given d ∈ N and µ > 1, there are only
finitely many monic integer polynomials of degree d and Mahler measure at most µ.
We remark that the strongest form of Lehmer’s conjecture would imply a uniform
lower bound on the systole of any arithmetic locally symmetric orbifold; see the
discussion immediately following Conjecture 10.2 in Gelander [13].

3In fact, since the semi-definiteness property can be checked via principal minors (and since

these minors are computed using cyclic products contained in k12 = Q(
√
3)), it suffices to consider

only a single embedding σ : K12 → R mapping
√
3 to −

√
3.
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4. Löbell orbifolds and hyperbolic Dehn fillings of ideal
right-angled antiprisms

Let P ⊂ H3 be a finite-volume Coxeter polyhedron with a compact edge e, and
say the dihedral angle at e is π

m . Following Kolpakov [17], if Q ⊂ H3 is a finite-
volume Coxeter polyhedron of the same combinatorial type and with the same
dihedral angles as P except that the dihedral angle at e in Q is diminished to π

n
for some n ≥ m, we say that Q is obtained from P via a π

n -contraction at e. For

example, for n ≥ 5 and k ≥ 2, the polyhedron Pn,k ⊂ H3 whose Coxeter–Vinberg
diagram is shown in Figure 5 is obtained from the truncated tetrahedron Tn via
π
2k -contractions at the (analogues of the) edges B′D and EC, while Tn is in turn
obtained from T5 via a π

n -contraction at the edge AA′; see Figures 3 and 4.

6

2 5

1 3

4

n

2k

2k an

an

dn

Figure 5. The Coxeter–Vinberg diagram of the polyhedron Pn,k

If instead Q and P differ (as labeled polyhedra) only in that, in Q, the edge e
is replaced by an ideal vertex v ∈ ∂H3, then we say that Q is obtained from P by
contracting e to an ideal vertex. Note that, if such a contraction exists, the dihedral
angle at each edge adjacent to e in P (and each edge incident to v in Q) is π

2 , and
the faces sharing e in P are at least 4-sided.

In [16], Kellerhals studies a family of ideal right-angled polyhedra known as
the antiprisms An ⊂ H3, n ≥ 3, where she exploits a decomposition of each such
polyhedron An into 2n copies of a polyhedron Rn, analogous to the decomposition of
the Löbell polyhedron Ln into 2n copies of Tn; see Figure 6. In the above language,
for n ≥ 5, the polyhedron Rn is in fact obtained from Tn by contracting the edges
B′D and EC of Tn to ideal vertices. In particular, for such n, the antiprism An

may be obtained from the Löbell polyhedron Ln by a sequence of edge contractions
to ideal vertices. This was already observed by Kolpakov [17, Section 5.1]. Indeed,

Figure 6. The antiprism A6 and its slice R6.
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Figure 7. A visual proof that the distance between the “top” and
“bottom” faces of the antiprism An approaches 0. Drawn above are
the ideal boundaries of the walls of An for n = 5, 8, and 12 (from
left to right), visualized via stereographic projection onto the page
from the ideal boundary of H3 such that the circles corresponding
to the top and bottom faces, indicated here in red, are concentric.
Keeping fixed the Euclidean diameter of the inner red circle, we
have that as n approaches ∞, the diameter of an inner blue circle
approaches 0, so that the ratio between the diameters of the inner
and outer red circles approaches 1. In fact, an elementary exercise

in Euclidean geometry shows that this ratio is precisely
1+sin(π

n )

cos(π
n ) ,

corroborating a computation of Kellerhals [16, Examples 1 & 2].

the existence of the polyhedra Pn,k and Rn, n ≥ 5, k ≥ 2, is predicted by the
following result of Kolpakov, whose proof rests on Andreev’s theorem [3, 26].

Theorem 4.1 (c.f. the proof of Prop. 1 in [17]). Let P ⊂ H3 be a finite-volume
Coxeter polyhedron with at least 5 faces and a compact edge e such that the dihedral
angle at each edge adjacent to e is π

2 , and the faces sharing e in P are at least
4-sided. If the dihedral angle at e in P is π

m , m ≥ 2, then P admits a π
n -contraction

Pn at e for each n ≥ m, as well as a contraction P∞ of e to an ideal vertex.

Since we may instead view the Pn as having been obtained from P∞ via Dehn
filling4, it follows from work of Dunbar and Meyerhoff [11] that the length of the
(analogue of the) edge e ⊂ Pn approaches 0 as n → ∞. Taking Pn to be the
truncated tetrahedron Tn and e the edge AA′, we obtain another justification for
Observation 1.1. Applying a similar argument to the Rn instead of the Tn, one
concludes that the distance between the “top” and “bottom” faces of the antiprism

4More precisely, Dunbar and Meyerhoff adapt Thurston’s theory of hyperbolic Dehn fillings to

the setting of oriented hyperbolic 3-orbifolds. Applying this theory to the orientation covers of
the Pn, where the Pn are viewed as reflection orbifolds, one concludes that the length of the edge

e in Pn approaches 0 as n → ∞.
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An also approaches 0 as n → ∞; for a justification of the latter that uses only
elementary Euclidean geometry, see Figure 7.

We remark that the conditions of Theorem 4.1 are satisfied for any compact
edge e of a finite-volume right-angled polyhedron P ⊂ H3. This suggests a method
of constructing a family of new finite-volume right-angled polyhedra starting from
the polyhedron P . Namely, for n ≥ 2, let Pn ⊂ H3 be the polyhedron obtained
from P by a π

n -contraction at e, let Λn < Isom(H3) be the associated reflection
group, and let ∆n be the stabilizer of e in Λn. Then the finite-volume polyhedron
Qn =

⋃
γ∈∆n

γPn is right-angled, and is compact if and only if P was. Moreover,
for each m ≥ 2, we have that Λm is commensurable to Λn for at most finitely many
n ≥ 2, for instance, because sys(Λn) → 0 as n → ∞ (see Remark 3.3). We conclude
our discussion by observing that this strategy for producing an infinite family of
pairwise incommensurable finite-volume right-angled hyperbolic polyhedra fails in
dimension 4, where the existence of such a family appears to be open. The obser-
vation is essentially that codimension-2 contractions in dimensions higher than 3
yield orbifolds à la Gromov–Thurston [15].

Theorem 4.2. Let n,m ≥ 3 be of the same parity and d ≥ 4. Suppose Pn ⊂ Hd

is a finite-volume Coxeter polyhedron all of whose dihedral angles are right angles
except for a single dihedral angle of π

n . Suppose there is also a finite-volume Coxeter

polyhedron Pm ⊂ Hd with the same combinatorics and dihedral angles as Pn except
that the exceptional dihedral angle of Pm is π

m . Then n = m.

We will make use of the following lemma.

Lemma 4.3. Let P be a finite-volume Coxeter polyhedron in Hd, d ≥ 4, and
suppose all dihedral angles of P are right angles except possibly for one dihedral
angle formed by walls H1 and H2 of P . Then the group Γ < Isom(Hd) generated
by the reflections in all walls of P except H1 and H2 is Zariski-dense in Isom(Hd).

Proof of Lemma 4.3. Let P ′ ⊂ Hd be the (infinite-volume) polyhedron obtained
from P by forgetting the walls H1 and H2, and let Pi be the intersection of P ′

with the hyperplane Hi of Hd for i = 1, 2. Then the (d − 1)-dimensional right-
angled hyperbolic polyhedron Pi is obtained from a finite-volume such polyhedron—
namely, the polyhedron P ∩Hi—by forgetting a single wall—namely, the intersec-
tion H1 ∩H2. Since d− 1 ≥ 3, it follows that the subgroup of Isom(Hi) generated
by the reflections in the walls of Pi is Zariski-dense in Isom(Hi); see, for instance,
[14, Section 1.7]. The lemma follows. ■

Proof of Theorem 4.2. For k = n,m, let Hk and H ′
k be the walls of Pk forming the

exceptional dihedral angle of π
k , and let Rk be the union of the images of Pk under

the reflection group Dk generated by the reflections in Hk and H ′
k. Since n and

m have the same parity, we may choose reflections rk ∈ Dk such that the (d− 1)-
dimensional polyhedra Fix(rn)∩Rn and Fix(rm)∩Rm have the same combinatorics
and dihedral angles and are thus isometric by Mostow–Prasad rigidity [23, 25] (see
also Andreev [3, 4]).

Now interbreed the Rk along Fix(rk)∩Rk and let R be the resulting finite-volume
polyhedron in Hd. Then there is an obvious dihedral group Dn+m

2
of combinatorial

symmetries of R preserving dihedral angles. By Mostow–Prasad rigidity, each of
these combinatorial symmetries is a hyperbolic isometry. However, by Lemma 4.3,
there is (up to inverses) a unique hyperbolic isometry γk rotating the surface of any
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given slice of Rk two slices over, namely, the composition of the reflections in Hk

and H ′
k, so that γk has order k. Since γn and γm each generate the commutator

subgroup of Dn+m
2

, it follows that n = m. ■
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