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Abstract. Let Γ be a finitely generated group of matrices over C. We con-

struct an isometric action of Γ on a complete CAT(0) space such that the
restriction of this action to any subgroup of Γ containing no nontrivial unipo-

tent elements is well behaved. As an application, we show that if M is a graph

manifold that does not admit a nonpositively curved Riemannian metric, then
any finite-dimensional C-linear representation of π1(M) maps a nontrivial el-

ement of π1(M) to a unipotent matrix. In particular, the fundamental groups

of such 3-manifolds do not admit any faithful finite-dimensional unitary rep-
resentations.

1. Introduction

Let F be a field and n a positive integer. An element of SLn(F ) is unipotent if
it has the same characteristic polynomial as the identity matrix. In [9, 10], Button
demonstrated that finitely generated subgroups of SLn(F ) containing no infinite-
order unipotent elements share some properties with groups acting properly by
semisimple isometries on complete CAT(0) spaces. Indeed, Button showed that
if F has positive characteristic (in which case any unipotent element of SLn(F )
has finite order), then any finitely generated subgroup of SLn(F ) admits such an
action [10, Theorem 2.3]. The main theorem of this article is intended to serve as
an analogue of the latter result in the characteristic-zero setting. (Note that, since
any finitely generated characteristic-zero domain embeds in C, one may view any
finitely generated subgroup of SLn(F ), where F is a field of characteristic zero, as
a subgroup of SLn(C).)

Theorem 1.1. Let Γ be a finitely generated subgroup of SLn(C), n > 0. Then Γ
acts on a complete CAT(0) space X such that

(i) for any subgroup H < Γ containing no nontrivial unipotent matrices, the
induced action of H on X is proper;

(ii) if such a subgroup H is free abelian of finite rank, then H preserves and
acts as a lattice of translations on a thick flat in X; in particular, any
infinite-order element of such a subgroup H acts ballistically on X;

(iii) if g ∈ Γ is a diagonalizable, then g acts as a semisimple isometry of X.

See Section 2 for the relevant definitions. The space X is a finite product
∏
iXi

of symmetric spaces of non-compact type and (possibly locally infinite) Euclidean
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buildings, and Γ acts on X via a product
∏
i SLn(Ki), where the Ki are completions

of the entry field E of Γ with respect to various absolute values on E. The technique
of extracting information about a linear group by varying the absolute value on its
entry field is credited to Tits [30] and was employed by Margulis in the latter’s
proof of arithmeticity of higher-rank lattices [24].

We remark that, taken on its own, property (i) in Theorem 1.1 is not so interest-
ing. Indeed, the author is not aware of a finitely generated group that is known to
admit no proper action on a complete CAT(0) space. On the other hand, there are
several constraints on those finitely generated groups Γ admitting proper actions
by semisimple isometries on complete CAT(0) spaces. For instance, within such Γ,
finitely generated abelian subgroups are undistorted (in particular, all polycyclic
or Baumslag–Solitar subgroups are virtually abelian), and central finite-rank free
abelian subgroups are virtual direct factors; see [7, Ch. III.Γ, Thm. 1.1(i)-(iv)].
Button [10] showed that these properties persist when Γ is replaced with a finitely
generated subgroup of SLn(C) lacking nontrivial unipotents. We view Theorem 1.1
as providing geometric context for Button’s results (see Remark 2.3 and Corollary
4.1).

Since an element of SLn(C) that is both diagonalizable and unipotent must be
trivial, the following corollary of Theorem 1.1 is immediate.

Corollary 1.2. Any finitely generated subgroup of SLn(C) consisting entirely of di-
agonalizable matrices acts properly by semisimple isometries on a complete CAT(0)
space.

Precompact subgroups of SLn(C) are conjugate into SU(n) and thus consist
entirely of diagonalizable matrices. Furthermore, by the Peter–Weyl theorem, any
compact Lie group can be realized as a compact subgroup of SLn(C) for some n
[8, Theorem III.4.1]. Thus, by Corollary 1.2, any finitely generated subgroup of a
compact Lie group admits a proper action by semisimple isometries on a complete
CAT(0) space.

For us, a graph manifold is a connected closed orientable irreducible non-Seifert
3-manifold all of whose JSJ blocks are Seifert. Property (ii) of the action described
in Theorem 1.1 allows us to conclude the following fact about representations of
fundamental groups of graph manifolds.

Theorem 1.3. Let M be a graph manifold and let ρ : π1(M) → SLn(C) be any
representation. If M does not admit a nonpositively curved Riemannian metric,
then there is a JSJ torus S of M and a nontrivial element h ∈ π1(S) < π1(M) such
that ρ(h) is unipotent.

A compact manifold is said to be nonpositively curved (NPC) if its interior admits
a complete nonpositively curved Riemannian metric. Those non-NPC graph mani-
folds M that are not Sol 3-manifolds are the only remaining aspherical 3-manifolds
whose fundamental groups are not known to admit faithful finite-dimensional linear
representations. Such M abound; see Buyalo–Kobel’skii [11] or Kapovich–Leeb [20,
Section 3.2]. Theorem 1.3, while failing to preclude a characteristic-zero matrix rep-
resentation of π1(M) sending no nontrivial element to the identity (i.e., a faithful
representation), achieves the weaker objective of ruling out any characteristic-zero
matrix representation of π1(M) mapping no nontrivial element to a unipotent ma-
trix. This indeed distinguishes the non-NPC graph manifolds from their NPC
counterparts, as we explain below.
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By work of Agol [2] (building on work of Bergeron–Wise [5, Thm. 1.5] that used
as crucial input a deep result of Kahn–Marković [18]), Przytycki–Wise [26, 27],
Liu [23], and Wise [31, Thm. 1.5], the fundamental group of any compact NPC
3-manifold is virtually special in the sense of Haglund and Wise [17] (for a detailed
history of this result, see [4, Ch. 4]). By the theory of special cube complexes
developed by the latter two authors, it then follows that the fundamental groups
of such manifolds virtually embed into right-angled Coxeter groups. Moreover,
Agol [1] showed that any finitely generated right-angled Coxeter group embeds in
a compact Lie group (for an elaboration on Agol’s argument, see [13]). Since the
property of embedding in some compact Lie group passes to finite-index super-
groups via induced representations, one concludes that the fundamental group of
any compact NPC 3-manifold embeds in a compact Lie group. On the other hand,
if M is a compact aspherical non-NPC 3-manifold, then M is closed [6, Thm. 4.3],
and either M is Seifert, in which case there is a nontrivial element of π1(M) that
gets mapped to a virtually unipotent matrix under any finite-dimensional linear
representation of π1(M) (see, for example, the discussion in the introduction of
[14]), or the orientation cover of M is a non-NPC graph manifold. Thus, we obtain
from Theorem 1.3 the following corollary.

Corollary 1.4. Let M be a compact aspherical 3-manifold. Then the following are
equivalent:

(i) the manifold M is nonpositively curved;
(ii) the fundamental group π1(M) embeds in a compact Lie group;

(iii) there is a faithful finite-dimensional C-linear representation of π1(M) whose
image consists entirely of diagonalizable matrices;

(iv) there is a faithful finite-dimensional C-linear representation of π1(M) whose
image contains no nontrivial unipotent matrices.

We remark that a result similar to Theorem 1.1 was announced in [25, The-
orem 1.4]. However, the proof of [25, Theorem 4.8], on which that result rests,
contains an error; a CAT(0) action of a finitely generated linear group G with
proper restrictions to certain subgroups of G is desired, but what is provided is a
proper CAT(0) action for each such subgroup of G.

Organization. In Section 2, we define the relevant objects, discuss briefly some
properties of ballistic isometries of complete CAT(0) spaces, and introduce the
central notion of a “thick flat” in such a space. In Section 3, we prove several
lemmas used in the proofs of Theorems 1.1 and 1.3. The latter proofs are contained
in Section 4.

Acknowledgements. I am deeply grateful to Piotr Przytycki for his encourage-
ment, patience, and guidance. I also thank Bruno Duchesne, Zachary Munro, and
Abdul Zalloum for helpful discussions, and the anonymous referees for comments
that significantly improved the quality of this article.

2. Preliminaries

2.1. Complete CAT(0) spaces. Let X be a complete CAT(0) space and ∂X its
visual boundary. We will make references to the cone topology on X := X ∪ ∂X,
described in [7]. Under this topology, a sequence of points xn ∈ X converges to
ξ ∈ ∂X if and only if for some (hence any) point x0 ∈ X, the geodesics joining x0 to
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xn converge uniformly on compact intervals to the unique geodesic ray emanating
from x0 in the class of ξ. In addition, we will use the angular metric ∠ on ∂X, also
described in [7]. Note that the topology on ∂X induced by the angular metric is in
general finer than the cone topology on ∂X.

An r-dimensional flat in X is an isometrically embedded copy of Rr in X. We
say X is π-visible if for any ξ, η ∈ ∂X satisfying ∠(ξ, η) = π, there is a geodesic line
in X whose endpoints on ∂X are ξ and η. Since Euclidean spaces are π-visible, a
complete CAT(0) space X with the property that any two points on ∂X lie on the
boundary of a common flat in X is also π-visible. Note that if X is a Euclidean
building, a symmetric space of non-compact type, or a product of such spaces,
then X possesses the latter property by the building structure on ∂X, so that X
is π-visible. For more information on symmetric spaces, we refer the reader to the
monograph [16].

2.2. Isometries of complete CAT(0) spaces. Let (X, dX) be a complete CAT(0)
space and let g ∈ Isom(X). The translation length of g is the quantity |g|X :=
infx∈X dX(x, gx). The isometry g is semisimple if |g|X = dX(x0, gx0) for some x0 ∈
X. We say g is ballistic (resp., neutral) if |g|X > 0 (resp., if |g|X = 0), and hyperbolic
if g is both ballistic and semisimple. A subgroup H < Isom(X) acts neutrally on
X if each h ∈ H is neutral.

Example 2.1. Consider the action of SLn(C) on its associated symmetric space
Xn := SLn(C)/SU(n), where the latter is endowed with an SLn(C)-invariant Rie-
mannian metric. Under a suitable scaling of this metric, we have that for each
g ∈ SLn(C), the translation length of g on Xn is given by

|g|X =

(
n∑
k=1

(ln|λk|)2
) 1

2

,

where λ1, . . . , λn ∈ C are the eigenvalues of g. In particular, a matrix g ∈ SLn(C)
acts as a ballistic (resp., neutral) isometry of Xn if and only if g has an eigenvalue of
modulus 6= 1 (resp., if and only if all eigenvalues of g are of modulus 1). Moreover,
an element g ∈ SLn(C) acts as a semisimple isometry of Xn if and only if g is
diagonalizable. Thus, for example, the matrixÑ

2 1 0
0 2 0
0 0 1

4

é
acts as a ballistic isometry of X3 that is not hyperbolic.

Returning to the general setting, if g ∈ Isom(X) is ballistic, then there is a point
ωg ∈ ∂X such that for any x ∈ X, we have gnx → ωg as n → ∞ with respect

to the cone topology on X [12]; we call ωg the canonical attracting fixed point of
g. We use repeatedly the following fact, due to Duchesne [15, Prop. 6.2]. For an
arbitrary group G and g1, . . . , gm ∈ G, we denote by ZG(g1, . . . , gm) the centralizer
of g1, . . . , gm in G.

Theorem 2.2. Let X be a complete π-visible CAT(0) space and suppose g ∈
Isom(X) is ballistic. Then there is a closed convex subspace Y ⊂ X and a metric
decomposition Y = Z × R such that
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• ZIsom(X)(g) preserves Y and acts diagonally with respect to the decomposi-
tion Y = Z × R, acting by translations on the second factor;
• the isometry g acts neutrally on the factor Z.

Remark 2.3. Using Theorem 2.2, one can easily adapt the proof of [7, II.6.12] to
show that if Γ is a finitely generated group acting by isometries on a complete
π-visible CAT(0) space X and H is a central finite-rank free abelian subgroup of
Γ all of whose nontrivial elements act ballistically on X, then H is a virtual direct
factor of Γ, i.e., there is a finite-index subgroup of Γ containing H as a direct factor.
(In fact, the π-visibility assumption in the previous sentence can be removed by
replacing the map ZIsom(X)(g) → R given by Theorem 2.2 with the Busemann
character associated to ωg in the more general setting; see [12, page 673].) One
then recovers from Theorem 1.1(ii) Button’s result [10, Cor. 3.3] that if Γ is a
finitely generated subgroup of SLn(C) and H is a central finite-rank free abelian
subgroup of Γ lacking nontrivial unipotents, then H is a virtual direct factor of Γ.

In accordance with [7], we define an isometric action of a group H on a metric
space X to be proper if for any point x ∈ X, there is a neighborhood U ⊂ X of x
such that {h ∈ H : U∩hU 6= ∅} is finite. In this case, the set {h ∈ H : K∩hK 6= ∅}
is finite for any compact subset K ⊂ X (see, for example, [7, Remark I.8.3(1)]).
Note, however, that if the metric space X is not proper, i.e., if X possesses bounded
subsets that are not precompact, then X may contain balls B such that {h ∈ H :
B ∩ hB 6= ∅} is infinite; that is, the notion of properness for isometric actions
used here is strictly weaker than metric properness. We remark that the particular
CAT(0) space X described in Theorem 1.1 is in general not proper; however, if the
entries of the elements of Γ are all algebraic, then one can indeed arrange for X to
be proper (in the latter case, one can choose the valuations ν1, . . . , νm on E in the
proof of Theorem 1.1 such that Eνi is a local field for i = 1, . . . ,m).

We will make use of the following well-known theorem [7, Theorem II.7.1].

Theorem 2.4. Let H be a free abelian group of rank r acting properly by semisimple
isometries on a complete CAT(0) space X. Then H preserves and acts as a lattice
of translations on an r-dimensional flat in X.

2.3. Thick flats. Let r ≥ 0 be an integer. A triple (Y, Z, ϕ), where Z ⊂ Y ⊂ X
are nonempty closed convex subspaces and ϕ : Y → Z×Rr is an isometry satisfying
ϕ(z) = (z, 0) for all z ∈ Z, is called a thick flat of dimension r in X. We say a
group H acting isometrically on X preserves the thick flat (Y, Z, ϕ) if H preserves
Y . Such a group H acts as a lattice of translations on the thick flat (Y,Z, ϕ) if
H acts diagonally with respect to the decomposition Z × Rr given by ϕ, acting
neutrally on the first factor and by translations on the second, and in addition the
induced map φ : H → Rr embeds H as a lattice of Rr. We will typically suppress
the data of Z and ϕ and refer to a thick flat (Y,Z, ϕ) simply as Y .

3. Lemmata

Lemmas 3.1 and 3.2 are probably well known, but we include their proofs for
completeness. The objective is to determine the canonical attracting fixed point of
a ballistic isometry acting diagonally on a product.

Lemma 3.1. Let Y,Z be complete CAT(0) spaces and X = Y ×Z. Suppose gY is
a neutral isometry of Y and gZ a hyperbolic isometry of Z, and let g, g′ ∈ Isom(X)
be the isometries gY × gZ , IdY × gZ of X, respectively. Then ωg = ωg′ .
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Proof. There exist a geodesic line γZ : R → Z in Z and a positive number ` such
that gZ(γZ(t)) = γZ(t + `) for any t ∈ R. The point ωg′ ∈ ∂X is represented by
a geodesic ray of the form (y0, γZ(t)), t ≥ 0, y0 ∈ Y . Thus, we reduce to the case
that Z = R and gZ is a translation by ` > 0. Set x0 = (y0, 0), and for n ∈ N, let
γ(n) : [0,∞)→ X be given by

γ(n)(t) =

®
γ(n)(t) 0 ≤ t ≤ dX(x0, g

nx0)

gnx0 t > dX(x0, g
nx0)

,

where γ(n) is the geodesic segment in X from x0 to gnx0. We show that the γ(n)

converge uniformly on compact subsets as n→∞ to the geodesic ray γ : [0,∞)→
X given by t 7→ (y0, t).

To that end, let R > 0, and let n be large enough such that dX(x0, g
nx0) ≥ R.

Then γ(n)(t) = (γ
(n)
Y (t), αnt) for 0 ≤ t ≤ R, where αn > 0 and γ

(n)
Y is a linearly

reparameterized geodesic segment in Y joining y0 to gnY y0. Note that the maximum

value of dX(γ(t), γ(n)(t)) on [0, R] is attained at t = R; indeed, for 0 ≤ t ≤ R, we
have

dX(γ(t), γ(n)(t))2 = dY (y0, γ
(n)
Y (t))2 + t2(1− αn)2.

Thus, it suffices to show that dX(γ(R), γ(n)(R)) → 0. This will follow if we can

show that dY (y0, γ
(n)
Y (R))→ 0 since

R2 = dX(x0, γ
(n)(R))2 = dY (y0, γ

(n)
Y (R))2 + α2

nR
2.

To see that dY (y0, γ
(n)
Y (R))→ 0, note that since γ

(n)
Y is a linearly reparameterized

geodesic segment, we have

dY (y0, γ
(n)
Y (R))

dY (y0, gnY y0)
=

R

dX(x0, gnx0)

and so

dY (y0, γ
(n)
Y (R))2 = R2 dY (y0, g

n
Y y0)2

dX(x0, gnx0)2

= R2 dY (y0, g
n
Y y0)2

dY (y0, gnY y0)2 + n2`2

= R2

Ä
dY (y0,g

n
Y y0)

n

ä2Ä
dY (y0,gnY y0)

n

ä2
+ `2

.

Now the latter approaches 0 as n→ 0 since

lim
n→∞

dY (y0, g
n
Y y0)

n
≤ |gY |Y

and |gY |Y = 0 by assumption. �

We bootstrap Lemma 3.1 to prove the following lemma, which features in the
proof of Theorem 1.1(ii).

Lemma 3.2. Let X1, X2 be complete π-visible CAT(0) spaces, let gi ∈ Isom(Xi) for
i = 1, 2, and suppose g1 is ballistic. Let X = X1×X2 and let g = g1×g2 ∈ Isom(X).
Then g acts ballistically on X and

ωg =

Å
arctan

Å |g2|X2

|g1|X1

ã
, ωg1 , ωg2

ã
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in the spherical join ∂X1 ∗ ∂X2 = ∂X.

Proof. We suppose first that g1, g2 are both ballistic, so that we may assume that
Xi admits a decomposition Xi = Yi × Zi with respect to which gi acts diagonally,
where Zi is isometric to R, and where gi acts neutrally on the first factor and acts by
a translation of |gi|Xi

on the second factor. Let g′i ∈ Isom(Xi) be the product of the
identity on Yi with the translation by |gi|Xi

on Zi, and let g′ = g′1× g′2 ∈ Isom(X).
Note we have |gi|Xi = |g′i|Xi , and by Lemma 3.1, we have ωgi = ωg′i . Moreover, by

viewing X as the product X = (Y1 × Y2) × (Z1 × Z2), we also have ωg = ωg′ by
Lemma 3.1. Thus, to establish the lemma, it suffices to show

ωg′ =

Å
arctan

Å |g′2|X2

|g′1|X1

ã
, ωg′1 , ωg′2

ã
but this follows from plane geometry since g′1, g

′
2 preserve and act as translations

on the 2-dimensional flat {(y1, y2)} × (Z1 × Z2) ⊂ X, where yi is any point in Yi.
If g2 is neutral, then we may only assume that X1 admits a decomposition

X1 = Y1 × Z1 as above, and now the lemma follows immediately from Lemma 3.1
by viewing X as the product X = (Y1 ×X2)× Z1. �

We now apply Lemma 3.1 to the special case of matrices acting on symmetric
spaces.

Lemma 3.3. Let M = GLn(C)/U(n) be the symmetric space associated to GLn(C),
endowed with a GLn(C)-invariant Riemannian metric, and let g ∈ GLn(C) be of
the form

g = diag(λ1U1, . . . , λmUm)

where λ1, . . . , λm ∈ C∗ with |λk| 6= 1 for at least one k ∈ {1, . . . ,m}, and Uk ∈
SLnk

(C) is an upper unitriangular matrix for k ∈ {1, . . . ,m}. Then g acts ballisti-
cally on M and has the same canonical attracting fixed point as

g′ := diag(λ1In1
, . . . , λmInm

)

on ∂M . The same statement holds when GLn(C) is replaced with SLn(C) and M
is replaced with SLn(C)/SU(n).

Proof. For k = 1, . . . ,m, let X,Xk, Yk, Zk be the projections of the subgroups

{diag(h1, . . . , hm) : hk ∈ GLnk
(C)}

{diag(In1 , . . . , Ink−1
, h, Ink+1

, . . . , Inm) : h ∈ GLnk
(C)}

{diag(In1
, . . . , Ink−1

, h, Ink+1
, . . . , Inm

) : h ∈ SLnk
(C)}

{diag(In1
, . . . , Ink−1

, etInk
, Ink+1

, . . . , Inm
) : t ∈ R}

of GLn(C) to M under the quotient map GLn(C) → M = GLn(C)/U(n), re-
spectively. Then X is a closed convex subspace of M admitting a decomposition
X =

∏m
k=1Xk. The subspace Xk in turn admits a decomposition Xk = Yk × Zk,

and the factor Zk is isometric to R. Each of the isometries g, g′ preserves X and acts
diagonally with respect to the decomposition X =

∏m
k=1Xk. On each factor Xk,

each of g, g′ also acts diagonally with respect to the decomposition Xk = Yk × Zk,
acting neutrally on the first factor (via the matrix Uk in the case of g, and via the
identity Ink

in the case of g′) and as a translation by αk ln |λk| on the second for
some αk > 0. The lemma now follows from Lemma 3.1 by setting Y =

∏m
k=1 Yk

and Z =
∏m
k=1 Zk, and viewing X as the product Y × Z.
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To see that the lemma remains true when GLn(C) is replaced with SLn(C), note
that (up to scaling the metrics) the symmetric space for SLn(C) embeds as a closed
convex SLn(C)-invariant subspace of the symmetric space for GLn(C). �

We now observe that a collection of pairwise commuting matrices over C can be
simultaneously put into the form described in Lemma 3.3.

Lemma 3.4. Let K be an algebraically closed field and let hα ∈ Mn(K) be a
collection of pairwise commuting matrices. Then there are s ∈ N and C ∈ SLn(K)
such that

ChαC
−1 = diag(hα,1, . . . , hα,s)

where hα,` ∈ Mn`
(K) is upper triangular and has a single eigenvalue for ` =

1, . . . , s.

Proof. Since K is algebraically closed, it suffices to find such C ∈ GLn(K); indeed,
we may ultimately replace C with µC, where µ is an nth root of 1/ det(C). We
now proceed by induction on n. The case n = 1 is trivial. Now let n > 1 and
suppose the above claim has been established for matrices of smaller dimension.
If each of the hα has a single eigenvalue, then the statement follows from the fact
that any collection of pairwise commuting elements of Mn(K) are simultaneously
upper triangularizable [28, Theorem 1.1.5]. Now suppose a matrix h ∈ {hα}α has
more than one eigenvalue. By putting h into Jordan canonical form, for instance,
we may assume h is of the form

h = diag(h1, h2)

where hi ∈ Mni
(K) for i = 1, 2 and h1, h2 do not share an eigenvalue. Since the

hα commute with h, they preserve the generalized eigenspaces of h, and so hα also
has a block-diagonal structure

hα = diag(hα,1, hα,2)

where hα,i ∈ Mni(K) for i = 1, 2. The lemma now follows by applying the induction
hypothesis to the collections {hα,i}α, i = 1, 2. �

We now prove what one might call a “thick flat torus theorem.” This fact is used
in the proof of Theorem 1.1(ii).

Theorem 3.5. Suppose X is a complete π-visible CAT(0) space and H is a free
abelian subgroup of Isom(X) with a basis h1, . . . , hr ∈ H consisting of ballistic
isometries such that for each m ∈ {1, . . . , r}, there is no (m − 1)-dimensional flat
in X whose boundary contains the canonical attracting fixed points ωh1

, . . . , ωhm
.

Then H preserves and acts as a lattice of translations on a thick flat of dimension
r in X.

Proof. We prove by induction the following statement: for m ∈ {1, . . . , r}, there is
a closed convex subspace Ym of X and a decomposition Ym = Zm × Rm such that

• ZIsom(X)(h1, . . . , hm) preserves Ym and acts diagonally with respect to the
decomposition Ym = Zm×Rm, acting by translations on the second factor;

• the subgroup 〈h1, . . . , hm〉 acts neutrally on the first factor and as a lattice
of translations (in the usual sense) on the second.
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The base case m = 1 is given by Theorem 2.2 (note that a 0-dimensional flat is
just a singleton, and hence has empty boundary). Now suppose the above holds for
m − 1, where m ∈ {2, . . . , r}. Then since hm ∈ ZIsom(X)(h1, . . . , hm−1), we have
that hm preserves Ym−1 and acts diagonally with respect to the decomposition
Ym−1 = Zm−1 × Rm−1. Moreover, the action of hm on the factor Zm−1 must
be ballistic, since otherwise ωh1

, . . . , ωhm
would be contained in the boundary of

{z}×Rm−1 by Lemma 3.1, where z is any point in Zm−1. Now Zm−1 is a complete
π-visible CAT(0) space, so that by Theorem 2.2 there is a closed convex subspace
Y of Zm−1 and a decomposition Y = Z × R satisfying

• ZIsom(Zm−1)(hm) preserves Y and acts diagonally with respect to the de-
composition Y = Z × R, acting by translations on the second factor;
• the action of hm on the first factor Z is neutral.

Then the subspace Ym := Y ×Rm−1 ⊂ Zm−1×Rm−1 has the desired properties. �

The following observation is used in the proof of Lemma 3.7.

Lemma 3.6. Let X be a complete CAT(0) space and suppose H < Isom(X) is a
free abelian subgroup with a basis h1, . . . , hr ∈ H. Suppose H preserves and acts as
a lattice of translations on thick flats Y, Y ′ of dimension r in X, and let φ, φ′ be
the induced maps H → Rr, respectively. Then the unique linear map T : Rr → Rr
satisfying T (φ(hi)) = φ′(hi) for i = 1, . . . , r is orthogonal.

Proof. We wish to show that T preserves the standard inner product on Rr. Since
the φ(hi) constitute a basis for Rr, it suffices to show that 〈φ′(hi), φ′(hj)〉 =
〈φ(hi), φ(hj)〉 for i, j ∈ {1, . . . , r}. This is equivalent to saying that for i, j ∈
{1, . . . , r}, we have ‖φ(hi)‖ = ‖φ′(hi)‖ and ∠(φ(hi), φ(hj)) = ∠(φ′(hi), φ

′(hj)).
The former is true since

‖φ(hi)‖ = |hi|X = ‖φ′(hi)‖
and the latter is true since ∠(φ(hi), φ(hj)) and ∠(φ′(hi), φ

′(hj)) are both equal to
the Tits distance between ωhi and ωhj on ∂X by Lemma 3.1. �

The proof of the following lemma borrows heavily from an argument of Leeb; see
the proof of Theorem 2.4 in [20]. Note that we work with the JSJ decomposition of
a graph manifold as opposed to its geometric decomposition, so that, for example,
the twisted circle bundle over the Möbius band may appear as a JSJ block of a
graph manifold. For details on the JSJ and geometric decompositions and the
distinction between the two, see [19, Section 1.7].

Lemma 3.7. Let M be a graph manifold and suppose π1(M) acts by isometries
on a complete CAT(0) space X such that for each JSJ torus S of M , the subgroup
π1(S) < π1(M) preserves and acts as a lattice of translations on a thick flat in X.
Then M admits a nonpositively curved Riemannian metric.

Proof. Let B be a JSJ block of M , and let f ∈ π1(B) be an element representing
a generic fiber of B. The element f acts ballistically on X since f is a nontrivial
element of π1(S), where S is a torus boundary component of B, and π1(S) preserves
and acts as a lattice of translations on a thick flat in X by assumption. By Theorem
2.2, there is a closed convex subspace Y ⊂ X with a metric decomposition Y = Z×R
such that

• any element of π1(B) preserves Y and acts diagonally with respect to the
decomposition Y = Z × R, acting as a translation on the second factor;
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• the action of f on the first factor Z is neutral.

Moreover, for each element z ∈ π1(B) representing a boundary component of the
base orbifold O of B, the action of z on Z is ballistic since the subgroup 〈f, z〉 <
π1(B) preserves and acts as a lattice of translations on a thick flat in X.

We now realize B as a nonpositively curved Riemannian manifold with totally
geodesic flat boundary as follows. Endow the orbifold O with a nonpositively
curved Riemannian metric1 that is flat near the boundary so that the length of each
boundary component c of O is equal to the translation length on Z of an element
in π1(B) representing c. We let π1(B) act on the universal cover Õ of O via the

projection π1(B) → π1(O), where π1(O) acts on Õ by deck transformations. The
product of this action with the action of π1(B) on R coming from the decomposition

Y = Z×R yields a covering space action of π1(B) on Õ×R. The quotient of Õ×R
by this action is the desired geometric realization of B. We may do this for each
Seifert component of M ; the flat metrics on any pair of boundary tori that are
matched in M will coincide by Lemma 3.6, so that we may glue the metrics on the
Seifert components to obtain a smooth nonpositively curved metric on M . �

The following lemma will not be used in the proofs of Theorems 1.1 or 1.3, but
will be applied to derive Corollary 4.1 from Theorem 1.1.

Lemma 3.8. Let Γ be a finitely generated group and H0 a free abelian subgroup
of Γ of rank r ≥ 0. Suppose Γ acts on a complete CAT(0) space X such that H0

preserves and acts as a lattice of translations on a thick flat in X. Then H0 is
undistorted in Γ.

Proof. Let B = {h1, . . . , hr} ⊂ H0 be a basis for H0, and let | · |B be the word
metric on H0 with respect to B. Let S ⊂ Γ be a finite generating set for Γ and
let | · |S be the word metric on Γ with respect to S. Let φ : H0 → Rr be the
homomorphism to Rr induced by the action of H0 on a thick flat in X. Fix x0 ∈ X
and let K = maxs∈S∪S−1 dX(x0, sx0). Since any two norms on Rr are equivalent,
there is some C > 0 such that ‖φ(h)‖ ≥ C|h|B for any h ∈ H0. Thus, for h ∈ H0,
we have

K|h|S ≥ dX(x0, hx0) ≥ |h|X = ‖φ(h)‖ ≥ C|h|B,
where the first inequality follows from the triangle inequality. �

4. Proof of Theorems 1.1 and 1.3

Proof of Theorem 1.1. (i) Since Γ is finitely generated, we have that Γ ⊂ SLn(A)
for some finitely generated subdomain A ⊂ C. Let E = Q(A) ⊂ C, so that E
is a finitely generated field extension of Q. The extension E/Q has the structure
Q ⊂ F ⊂ F (T ) ⊂ E, where F is the algebraic closure of Q in E, and T is a
(possibly empty) transcendence basis for E over F . Since the extension E/Q is
finitely generated, the set T is finite and the extensions F/Q and E/F (T ) are of
finite degree.

Let d = deg(F/Q), and let σ1, . . . , σd be the embeddings of F in C. Since σj(F )
is countable but C is not, the extension C/σj(F ) has infinite transcendence degree,

1Roughly speaking, a nonpositively curved Riemannian orbifold (with totally geodesic bound-

ary) is an orbifold (with boundary) locally modelled on a nonpositively curved Riemannian man-
ifold (with totally geodesic boundary) modulo a finite group of isometries, with transition maps

that are equivariant isometries. For precise definitions, see Kleiner and Lott [22, Def. 2.14].
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and hence, by mapping T injectively into a transcendence basis for C over σj(F ), we
may extend σj to an embedding σj : F (T )→ C. The latter may in turn be extended
to an embedding σj : E → C since E/F (T ) is algebraic and C is algebraically closed.
The embedding σj : E → C induces an embedding σj : SLn(E)→ SLn(C). Let

σ : SLn(E)→ G1 :=

d∏
j=1

SLn(C)

be the diagonal embedding induced by the maps σj : SLn(E) → SLn(C). Then

SLn(E) acts by isometries on the Hadamard manifold X1 :=
∏d
j=1Mj via the

embedding σ, where each Mj is a copy of the symmetric space (unique up to
scaling of the Riemannian metric) associated to SLn(C).

By [3, Prop. 1.2], there are finitely many discrete valuations ν1, . . . , νm on E
such that A ∩

⋂m
i=1Oi ⊂ O, where O is the ring of integers of F and Oi is the

valuation ring of νi. Let Bi be the Bruhat–Tits building associated to SLn(Eνi),
where Eνi is the completion of E with respect to νi; let X2 =

∏m
i=1Bi; and let

τ : SLn(E)→ G2 :=
∏m
i=1 SLn(Eνi) be the diagonal embedding. Then SLn(E) acts

by automorphisms on X2 via the embedding τ . We claim that the diagonal action
of Γ on X := X1 ×X2 via σ × τ : SLn(E)→ G1 ×G2 has the desired properties.

To that end, let H be a subgroup of Γ containing no nontrivial unipotent
elements. We first claim that for any vertex v of X2, the subgroup σ(Hv) < G1

is discrete, where Hv is the stabilizer of v in H. Indeed, let h ∈ Hv. Then for
i = 1, . . . ,m, the element h fixes a vertex of Bi and (since GLn(E) acts transitively
on the vertices of Bi) is thus conjugate within GLn(E) into SLn(Oi); in particular,
the coefficients of the characteristic polynomial χh of h lie in Oi. Since this is true
for each i ∈ {1, . . . ,m} and since h ∈ SLn(A), we have that the coefficients of χh
lie in A ∩

⋂m
i=1Oi and hence in O. We thus have a commutative diagram

(4.1)

G1 =
∏d
j=1 SLn(C)

∏d
j=1 Cn

Hv On

P

σ

p

σ̂

where the function p maps an element h ∈ Hv to the n-tuple whose entries are the
non-leading coefficients of χh, the function P is the d-fold product of the analogous
map SLn(C)→ Cn, and the function σ̂ is given by

σ̂(α1, . . . , αn) = (σ1(α1), . . . , σ1(αn), . . . , σd(α1), . . . , σd(αn))

for α1, . . . , αn ∈ O. Since σ̂ has discrete image (see, for example, Lemma 25.1.10
in [21]) and the diagram (4.1) is commutative, it follows that P (σ(Hv)) is discrete

in
∏d
j=1 Cn. Now suppose we have a sequence (hk)k∈N in Hv such that σ(hk)→ 1

in G1. Then, by continuity of the function P , we have P (σ(hk)) → P (1). By
discreteness of P (σ(Hv)), this implies that P (σ(hk)) = P (1) for k sufficiently large.
It follows that for such k the matrix hk is unipotent and hence trivial by our
assumption that H contains no nontrivial unipotent elements. We conclude that
σ(Hv) is indeed discrete in G1.

We now argue that for any x ∈ X2, there is a neighborhood V of x in X2 such
that HV ⊂ Hv for some vertex v of X2, where

HV = {h ∈ H : V ∩ hV 6= ∅}.
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Let c be the cell of X2 containing x and let ` be the dimension of c. Let ε > 0
be such that the intersection of the ball BX2(x, ε) with the `-skeleton X`

2 of X2

is contained in c. Then we may take V = BX2(x, ε/2). Indeed, if h ∈ HV , then
hx ∈ X`

2 ∩ BX2
(x, ε) ⊂ c, and so hc = c. Since SLn(E) acts on Bi without

permutations, it follows that h ∈ Hv for any vertex v of c.
Now, to see that H acts properly on X, we observe that for any point x ∈ X2

and any ball B ⊂ X1, the set U := B × V ⊂ X has the property that {h ∈ H :
U ∩ hU 6= ∅} is finite, where V ⊂ X2 is as in the preceding paragraph. Indeed,
we have HV ⊂ Hv for some vertex v of X2, and Hv acts properly on X1 since σ
embeds Hv discretely in G1.
(ii) Suppose H is free abelian with a basis h1, . . . , hr ∈ H. We show that this basis
is as in the statement of Theorem 3.5, so that H preserves and acts as a lattice of
translations on a thick flat in X. Indeed, by Lemma 3.4, we may assume that for
j ∈ {1, . . . , d}, k ∈ {1, . . . , r}, we have

σj(hk) = diag(hj,k,1, . . . , hj,k,s)

where hj,k,` ∈ GLn`
(C) is upper triangular with a single eigenvalue for ` ∈ {1, . . . s}.

We now have a homomorphism ∆j : H → SLn(C) that maps h ∈ H to the diagonal
part of σj(h); note that ∆j is injective since H contains no nontrivial unipotent
matrices. The embeddings ∆j produce a diagonal embedding ∆ : H → G1. Now
let ∆′ : H → G1 × G2 be the product of ∆ with τ

∣∣
H

: H → G2. Then, since

∆j(h) has the same characteristic polynomial as σj(h) for each h ∈ H, and since
∆j(H) contains no nontrivial unipotent matrices, the action of ∆′(H) on X is
proper by the above arguments. Since the latter action is by semisimple isometries,
by Theorem 2.4 there is a genuine r-dimensional flat in X preserved by ∆′(H) on
which ∆′(H) acts as a lattice of translations. Thus, by Lemmas 3.2 and 3.3, each
nontrivial h ∈ H acts ballistically on X and the canonical attracting fixed point
of h on ∂X is equal to that of ∆′(h); in particular, ωh1

, . . . , ωhr
must be of the

desired form.
(iii) Suppose g ∈ Γ is diagonalizable (over C). Since any isometry of X2 is semisim-
ple, to show that g acts as a semisimple isometry of X, it suffices to show that σj(g)
is a semisimple isometry of Mj for j = 1, . . . , d. To that end, we show that σj(g) is
diagonalizable. Indeed, since a diagonalization of g has entries in the splitting field
Ẽ ⊂ C of χg over E, we in fact have g = CDC−1 for some C,D ∈ SLn(Ẽ) with D
diagonal (see, for example, [29, Theorem 8.11]). Since C is algebraically closed, we

may extend σj to an embedding σ̃j : Ẽ → C. Now

σj(g) = σ̃j(g) = σ̃j(C) σ̃j(D) σ̃j(C)−1

and σ̃j(D) is diagonal.
�

We recover the following result, due to Button [9, Theorem 5.2].

Corollary 4.1. Let Γ be a finitely generated group and H a distorted finitely gen-
erated abelian subgroup of Γ. Then for any representation ρ : Γ→ SLn(C), there is
an infinite-order element h ∈ H such that ρ(h) is unipotent.

Proof. Let H0 < H be a free abelian subgroup of finite-index, and suppose there is
a representation ρ0 : Γ→ SLn(C) that does not map any nontrivial element of H0

to a unipotent matrix (in particular, ρ is faithful on H0). Then, by Theorem 1.1,
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there is an action of Γ via ρ on a complete CAT(0) space X such that H0 preserves
and acts as a lattice of translations on a thick flat in X. By Lemma 3.8, it follows
that H0 is undistorted in Γ, and hence the same is true of H. �

Proof of Theorem 1.3. Suppose otherwise, so that for each JSJ torus S of M , the
representation ρ is faithful on π1(S) < π1(M) and the image ρ(π1(S)) contains no
nontrivial unipotent matrices. Then, by Theorem 1.1, there is an action of π1(M)
via ρ on a complete CAT(0) space X such that for each JSJ torus S of M , the
subgroup π1(S) preserves and acts as a lattice of translations on a thick flat in X.
Thus, M admits a nonpositively curved metric by Lemma 3.7. �
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