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Abrégé Il a été observé par Button que les groupes de matrices de type fini ne con-

tenant aucune matrice unipotente non triviale ont un comportement similaire aux groupes

admettant une action propre par isométries semisimples sur un espace CAT(0) complet.

Nous démontrons que tout groupe C-linéaire de type fini admet une action sur un tel

espace où, lorsque restreinte aux sous-groupes sans unipotents, l’action est en un certain

sens docile. Ceci parfait un résultat de Button en caractéristique non nulle. En appli-

quant ce résultat aux représentations de π1(M) où M est une variété graphe n’admettant

pas de métrique riemannienne de courbure négative ou nulle, nous démontrons que toute

représentation de dimension finie de π1(M) envoie un élément non trivial de π1(M) sur

une matrice unipotente. Lorsque jumelé à certains théorèmes notoires relatifs aux groupes

fondamentaux des 3-variétés, il est possible d’en déduire la caractérisation suivante de

la courbure négative ou nulle en dimension 3: une 3-variété fermé et asphérique ad-

met une métrique riemannienne de courbure négative ou nulle si et seulement si son

groupe fondamental se plonge dans un groupe de Lie compact. Pour certaines variétés M

comme ci-dessus, nous démontrons qu’en fait il existe un élément non trivial de π1(M)

dont l’image est virtuellement unipotente sous toute représentation de dimension finie

de π1(M).

Abstract Button observed that finitely generated matrix groups containing no nontriv-

ial unipotent matrices behave much like groups admitting proper actions by semisimple

isometries on complete CAT(0) spaces. We show that any finitely generated C-linear

group possesses an action on such a space whose restrictions to unipotent-free subgroups

are in some sense tame. This complements a result of Button in the positive-characteristic

setting. As an application, we show that if M is a graph manifold that does not admit

a nonpositively curved Riemannian metric, then any finite-dimensional linear represen-

tation of π1(M) maps a nontrivial element of π1(M) to a unipotent matrix. Together

with existing knowledge of 3-manifold groups, this yields the following characterization

of nonpositive curvature in dimension 3: a closed aspherical 3-manifold admits a non-

positively curved Riemannian metric if and only if its fundamental group embeds in a

compact Lie group. For certain manifolds M as above, we show that in fact there is a
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nontrivial element of π1(M) whose image under any finite-dimensional representation of

π1(M) is virtually unipotent.
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semester at Université Paris-Saclay, during which some of this document was completed,

and for being so generous with his time and ideas.

It takes a village. In alphabetical order, I thank the following members of the com-

munity for their support, mathematical or moral (but usually both): Tarik Aougab,

Macarena Arenas, Fernando Al Assal, Yves Benoist, Jack Button, Michelle Chu, James

Farre, Jonah Gaster, Tyrone Ghaswala, Nima Hoda, Khánh Lê, Rylee Lyman, Zachary
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Chapter 0

Introduction

The main result of this thesis is a necessary and sufficient condition for the fundamental

group of a closed 3-manifold to embed in a compact Lie group (Corollary 2.0.8). Since

geometers tend to favour discrete subgroups among the countable subgroups of Lie groups,

and since no infinite subgroup of a compact Lie group is discrete, it may come as a

surprise that much of the thrust of this thesis is geometric. However, the following

example already demonstrates that commutative algebra can provide a bridge between

the theories of discrete and non-discrete groups.

Example 0.0.1. Consider the group Γ = SO3(Z[ 3
√

2]) and let σ : Q( 3
√

2)→ Q(ω 3
√

2) be

a nontrivial field isomorphism, where ω 6= 1 is a cube root of 1 in C. Denote also by σ the

map SL3(Q( 3
√

2)) → SL3(Q(ω 3
√

2)) given by applying the field isomorphism σ entry by

entry to the elements of SL3(Q( 3
√

2)). By the Borel–Harish-Chandra theorem [BHC62],

the map Id × σ : Γ → SO3(R) × SO3(C) embeds Γ as a lattice in the latter product

of Lie groups. Compactness of the factor SO3(R) implies that the projection σ(Γ) of Γ

to the factor SO3(C) remains a lattice in the latter. Moreover, since SO3(R) contains

no nontrivial unipotent elements (Definition 2.0.1), and since an element of SL3(Q( 3
√

2))

is unipotent if and only if the same is true of its image under σ, we obtain that the

lattice σ(Γ) ⊂ SO3(C) contains no nontrivial unipotents.

Now the adjoint representation SL2(C)→ GL(sl2(C)) has kernel {±Id} and preserves

a nondegenerate symmetric bilinear form on the 3-dimensional complex Lie algebra sl2(C),

9



Chapter 0. Introduction 10

namely, that given by (A,B) → tr(AB) for A,B ∈ sl2(C). Since such forms are all

equivalent over C, we obtain an embedding of the Lie group PSL2(C) into SO3(C) upon

fixing an appropriate basis for sl2(C). By a dimensionality argument, this map is an

isomorphism of Lie groups. Moreover, it sends parabolic elements of PSL2(C) to nontrivial

unipotents in SO3(C). Thus, the preimage of σ(Γ) under this map is a lattice in PSL2(C)

that lacks parabolics and is hence cocompact. Interpreting PSL2(C) as the orientation-

preserving isometry group of hyperbolic 3-space, we conclude that any torsion-free finite-

index subgroup of Γ is isomorphic to the fundamental group of a closed hyperbolic 3-

manifold (the existence of such finite-index subgroups is guaranteed by Selberg’s lemma;

see, for instance, [Cas86, Chapter 5, Theorem 4.1]).

The above example shows that the fundamental groups of some arithmetic hyperbolic

3-manifolds can be Galois conjugated into compact Lie groups. In Chapter 1, using

much of what is known about fundamental groups of 3-manifolds, we conclude that in

fact the fundamental group of any closed 3-manifold admitting a nonpositively curved

Riemannian metric virtually embeds in a (typically higher-rank) arithmetic lattice that

can be Galois conjugated into a compact Lie group.

Chapter 2 is devoted to proving that, among the closed aspherical 3-manifolds, those

whose fundamental groups embed in compact Lie groups are precisely those admitting

nonpositively curved Riemannian metrics (Corollary 2.0.7). The structure of the proof is

as follows: On the one hand, the absence of a nonpositively curved metric on a closed as-

pherical 3-manifold M is an obstruction to the existence of a well-behaved action of π1(M)

on any complete CAT(0) space. On the other hand, one can associate to any finitely gen-

erated subgroup Γ < SLn(C) containing no nontrivial unipotent matrices (for instance,

any precompact finitely generated subgroup) a complete CAT(0) space on which Γ acts

in a well-behaved manner (Theorem 2.0.2). Thus, the fundamental group π1(M) of a

manifold M as above cannot be realized as a unipotent-free group of matrices over a field

of characteristic 0, let alone as a subgroup of a compact Lie group. In fact, we show that

for such M any finite-dimensional linear representation of π1(M) maps some nontrivial

element to a unipotent; this element a priori depends on the representation.
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In Chapter 3, we strengthen the previous statement for some examples of closed as-

pherical 3-manifolds M admitting no nonpositively curved metrics. Namely, for these M ,

we show that there is a nontrivial element of π1(M) whose image under any finite-

dimensional linear representation of π1(M) is virtually unipotent.

Literature Review

The proof of Theorem 1.0.1 is a slight variation on Agol’s unpublished proof of the same

fact [Ago18]. The advantage of our proof is that it leads to the discussion in Section 1.1,

where we show that a right-angled Coxeter group associated to a connected finite graph

embeds as a thin subgroup of a cocompact lattice in an indefinite orthogonal group.

The question as to which groups arise as thin groups was raised by Ballas and Long

in [BL20], where they show that many arithmetic lattices in SO(n, 1) virtually embed

as thin subgroups of lattices in SLn+1(R). Prior to that, it was known by classical work

of Borel [Bor60, Corollary 4.3] and Tits [Tit72, Theorem 3] that any lattice in the R-

points of a nontrivial connected semisimple algebraic R-group without compact factors

contains a thin nonabelian free subgroup, and by a famous construction of Kahn and

Marković [KM12] that any cocompact lattice in SO(3, 1) contains a thin surface subgroup.

For some other manifestations of surface groups as thin groups, see [Ham15], [LR16],

[CF19], and [KLM18]. To the author’s knowledge, Example 1.1.4 (with n = 5) is the first

construction to appear in the literature of a thin surface subgroup of a cocompact lattice in

the split Lie group SO(2, 3). The one-parameter family of representations σd described in

the proof of Theorem 1.0.1 was also used by Danciger, Guéritaud, and Kassel [DGK20]

to construct proper affine actions of finitely generated right-angled Coxeter groups on

Euclidean spaces.

The discussion in Chapter 2 is intended to complement a series of papers by Button

[But17b, But17a, But19] in which he examines finitely generated matrix groups containing

no infinite-order unipotents. Button shows that such groups behave in some ways like

finitely generated groups admitting proper actions by semisimple isometries on complete

CAT(0) spaces; he terms groups admitting such actions weak CAT(0). Moreover, Button
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proves that finitely generated matrix groups over fields of positive characteristic are indeed

weak CAT(0), and asks whether the latter holds for all finitely generated matrix groups

lacking infinite-order unipotents (note that unipotent matrices are torsion in positive

characteristic; see, for instance, [But17a, Proposition 2.1]). This amounts to asking

whether finitely generated subgroups of SLn(C) containing no nontrivial unipotents are

weak CAT(0). While we do not answer this question, we do show that finitely generated

subgroups of SLn(C) consisting entirely of diagonalizable matrices (which is a stronger

condition than lacking nontrivial unipotents) are weak CAT(0) (Corollary 2.0.3), and

Theorem 2.0.2 at the very least provides geometric reasons for Button’s observations

about finitely generated unipotent-free matrix groups.

Weak CAT(0) groups featured previously as the Hadamard groups studied by Kapovich

and Leeb [KL96] in a paper of great relevance to this work. In fact, the group property

of being Hadamard is stronger than that of being weak CAT(0), as Kapovich and Leeb

adopt a notion of properness for isometric actions—namely, metric properness—that is

more restrictive than that which appears here and in the work of Button. The latter

notion of properness lies between metric properness and topological properness (for iso-

metric actions) and is the one promoted by Bridson and Haefliger [BH99]. Nevertheless,

all of the statements in [KL96] still hold when one replaces “Hadamard” with “weak

CAT(0).” Among them is a result credited to Leeb [Lee92] stating that the fundamen-

tal group of a closed aspherical 3-manifold M is Hadamard if and only if M admits a

nonpositively curved Riemannian metric (the statement in [KL96] includes the assump-

tion that M is Haken, but Perelman’s resolution of Thurston’s geometrization conjecture

[Per02, Per03a, Per03b] obviates this condition). It follows from this fact and Button’s

aforementioned result on finitely generated matrix groups in positive characteristic that

the absence of a nonpositively curved metric on a closed aspherical 3-manifold M pre-

cludes linearity of π1(M) in positive characteristic; this does not seem to have been

recorded anywhere in the literature.

Together with Corollary 2.0.3, Leeb’s result also implies that fundamental groups of

manifolds M as above cannot be realized as groups of diagonalizable matrices, already
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ruling out embeddings of π1(M) in compact Lie groups, for instance. In order to rule out

unipotent-free embeddings altogether, we adjust Leeb’s argument to apply in a slightly

more general setting (Lemma 2.2.7). Tools for doing so were contained in Duchesne’s

work [Duc15] on ballistic isometries of complete CAT(0) spaces; these are isometries with

positive translation length that are not necessarily hyperbolic (to our knowledge, the term

“ballistic” is due to Caprace and Monod [CM09]). We remark here that Theorem 1.4

in [Duc15] is false as stated; Lemma 2.2.5 is a substitute that suffices for our purposes.

Already visible in Example 0.0.1, the broad strategy at play in Chapter 2 is to extract

information about a matrix group by varying the absolute value on its entry field. This

technique was popularized by Tits [Tit72] via the proof of his alternative and was fa-

mously exploited by Margulis [Mar84] in the latter’s proof of arithmeticity of higher-rank

lattices. In our application of the above technique, the availability of “enough” absolute

values is guaranteed by a result of Alperin and Shalen [AS82, Prop. 1.2], which they

use to prove the following: a finitely generated subgroup Γ < SLn(C) has finite virtual

cohomological dimension provided there is some uniform k ≥ 0 such that each finitely

generated unipotent subgroup of Γ has Hirsch rank at most k. The case k = 0 can be

viewed as a corollary of Theorem 2.0.2.

We remark that a result similar to Theorem 2.0.2 was announced by Matsnev [Mat07,

Theorem 1.4]. However, the proof of [Mat07, Theorem 4.8], on which that result rests,

contains an error; what is desired is a CAT(0) action of a finitely generated subgroup G

of SLn(C) whose restrictions to certain subgroups of G are proper, but what is provided

is a proper CAT(0) action for each such subgroup of G.

The discussion in Chapter 3 is motivated by the observation that, often, a finitely

generated group Γ admitting no faithful representation as a matrix group lacking infinite-

order unipotents even contains an infinite-order element whose image under any finite-

dimensional representation of Γ is virtually unipotent. We say an element of an abstract

group Γ is VU if it possesses the latter property. The study of infinite-order VU ele-

ments can be traced at least as far back as a well-known paper of Lubotzky, Mozes, and

Raghunathan [LMR00] where they show that an element γ of a finitely generated group Γ
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generating a distorted subgroup of Γ is VU (Corollary 2.3.1, originally proved through

different means by Button [But17b, Theorem 5.2], generalizes this fact). Other examples

of infinite-order VU elements γ of finitely generated groups Γ were provided by Button,

who showed that these include the Dehn twists in (most) mapping class groups [But17b]

and a certain nontrivial element of Gersten’s free-by-cyclic group [But17a]. In all the

examples listed so far, it is even true that for any action of Γ on a complete π-visible

CAT(0) space X, the element γ acts with translation length 0 on X (Section 4.0.4); for Γ a

(generic) mapping class group and γ ∈ Γ a Dehn twist, this is a result of Bridson [Bri10]

(even without the π-visibility assumption) that preceded the aforementioned work of

Button. That this is stronger than saying that γ is VU in Γ is implied for instance by

Theorem 2.0.2 (see also Proposition 4.0.12), though we suspect it was previously known

to experts.



Chapter 1

Precompact embeddings of

right-angled Coxeter groups

The overarching goal of this chapter is to explain the relevance of the theory of virtu-

ally special groups, developed by Wise and collaborators, to the subject of precompact

embeddings of 3-manifold groups.

To that end, let Σ1 be a simplicial graph with vertex set {vi}i∈I ; we think of Σ1 as

a Coxeter scheme in the sense of [VS93, pg. 201, Def. 1.7] all of whose edges are bold.

Let W be the group given by the presentation with generators {γi}i∈I in bijection with

the vertices of Σ1 subject to the relations γ2
i = 1 for i ∈ I and [γi, γj] = 1 for each

distinct i, j ∈ I such that vi and vj are not adjacent in Σ1. The group W is the (right-

angled) Coxeter group on the (or associated to the) graph Σ1. (This convention will be

convenient for our purposes; however, in the literature, the right-angled Coxeter group

associated to a graph Σ is often defined as the right-angled Coxeter group associated to

the complement graph of Σ in our sense.) We denote by W+ the subgroup of W consisting

of all elements that can be expressed as products of the γi of even length. In [Ago18],

Agol observed the following.

Theorem 1.0.1. If Σ1 is a simplicial graph on n vertices, then the group W embeds

in O(n).

Throughout this chapter, if M ∈ Mn(R) is a symmetric matrix and A is a subdomain

15
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of C, we use the notation

O(M ;A) = {g ∈ GLn(A) : gTMg = M},

SO(M ;A) = {g ∈ SLn(A) : gTMg = M}.

Proof of Theorem 1.0.1. Fix an order v1, . . . , vn on the vertices of Σ1. For d ∈ R, let

Md = (mij) ∈ Mn(Z[d]) be the symmetric matrix given by

mij =


1 if i = j

−d if i 6= j and vi, vj are joined by an edge in Σ1

0 otherwise.

(The matrix M1 is the Gram matrix of the Coxeter scheme Σ1 and the given order on the

vertices of Σ1. For d > 1, the matrix Md is the Gram matrix of the Coxeter scheme Σd

obtained from Σ1 by replacing each edge with a dotted edge labeled by d. Here, we are

again using the conventions employed by [VS93].)

For d ≥ 1, let σd : W → GLn(R) be the Tits–Vinberg representation associated to the

Coxeter scheme Σd and the given order on its vertices; this is the representation given by

σd(γi)(v) = v − 2(vTMdei)ei

for i = 1, . . . , n and v ∈ Rn, where (e1, . . . , en) is the standard basis for Rn. It follows

from Vinberg’s theory of reflection groups that the representations σd, d ≥ 1, are faithful

[Vin71, Theorem 5]. Note that we have Wd := σd(W ) ⊂ O(Md;Z[d]).

Now let K ⊂ R be a real quadratic extension of Q, let τ : K → K be the nontrivial

element of Gal(K/Q), and let OK be the ring of integers of K. Then by Dirichlet’s unit

theorem, there is a unit α ∈ O∗K such that α ≥ 1
ε
, where ε ∈ (0, 1) is such that Md is

positive-definite for d ∈ [−ε, ε]. Thus, we have

|τ(α)|
ε
≤ α|τ(α)| = |α · τ(α)| = 1,

where the final equality holds because α ∈ O∗K . We conclude that |τ(α)| ≤ ε, and so Mτ(α)

is positive-definite. It follows that O(Mτ(α);R) is a conjugate of O(n) in GLn(R), so that
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it suffices to produce an embedding of W ∼= Wα in O(Mτ(α);R). Such an embedding is

provided by the map Wα → O(Mτ(α);R) given by applying the Galois automorphism τ

entry by entry to the elements of Wα.

1.1 Thin right-angled Coxeter groups

In this section, we digress slightly and discuss how the proof of Theorem 1.0.1 allows us

to realize many right-angled Coxeter groups as thin subgroups of cocompact arithmetic

lattices in indefinite orthogonal groups. We retain the notation used in that proof.

Suppose that n ≥ 3 and that Σ1 is connected. Under these assumptions, the group W

is infinite (since, for instance, the subgroup 〈γi, γj〉 ⊂ W is an infinite dihedral group

when vi and vj are adjacent in Σ1); in particular, the form Md is indefinite for d ≥ 1,

since Wd is an infinite discrete subgroup of O(Md;R) for such d [Vin71]. Let D ≥ 1

be such that Md is nondegenerate and its signature constant as d varies within [D,∞).

If in the proof of Theorem 1.0.1 we require that α ≥ max{1
ε
, D}, then since Mτ(α) is

positive-definite, we have that O(Mα;OK) is a cocompact arithmetic lattice in O(Mα;R)

(for a survey of the relevant facts, see, for instance, Section 2 of [GPS87]). Since Wα is

contained in O(Mα;OK), we obtain the following.

Theorem 1.1.1. A right-angled Coxeter group associated to a connected graph on n ≥ 3

vertices embeds in a cocompact arithmetic lattice in O(p, q) for some p, q ≥ 1 satisfying

p+ q = n.

Let G be a semisimple algebraic R-group and Γ a lattice in G := G(R). A sub-

group ∆ ⊂ Γ is said to be thin if ∆ is Zariski-dense in G but of infinite index in Γ. We

observe the following.

Theorem 1.1.2. In the above setting, we have that Wα is thin in O(Mα;OK).

We first justify Zariski-density of Wα.

Lemma 1.1.3. The group Wd is Zariski-dense in O(Md;R) for d ≥ D.
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Proof. The proof of the main theorem in [BdlH04] applies here, so we only sketch the

argument provided there. Let d ≥ D and let Gd be the Zariski-closure of Wd in O(Md;R).

Denote by g and h the Lie algebras of O(Md;R) and Gd, respectively. It is enough to

show that g = h, since the Zariski-closure of SO(Md;R)◦ is SO(Md;R) and since Wd 6⊂

SO(Md;R).

For each distinct pair i, j ∈ {1, . . . , n}, let Ei,j be the orthogonal complement of 〈ei, ej〉

in Rn with respect to Md. The subgroup of O(Md;R) consisting of all elements that

fix each vector in Ei,j is a 1-dimensional closed subgroup of O(Md;R) whose identity

component Ti,j corresponds to a subspace 〈Xi,j〉 of g for some Xi,j ∈ g. Since Md is

nondegenerate, the elements Xi,j form a basis for g as a vector space [BdlH04, Lemme 7].

Thus, to show g = h, it suffices to show that Xi,j ∈ h for each distinct pair i, j ∈

{1, . . . , n}.

To that end, let i, j ∈ {1, . . . , n}, i 6= j, and suppose first that vi and vj are adjacent

in Σ1. Then σd(γiγj) generates an infinite cyclic subgroup of Ti,j, so that Ti,j ⊂ Gd. It

follows thatXi,j ∈ h in this case. One now verifies that, since Σ1 is connected, any Lie sub-

algebra of g that contains Xi,j for all i, j such that vi, vj are adjacent in fact contains Xi,j

for each distinct pair i, j ∈ {1, . . . , n} [BdlH04, Preuve du Théorème, second cas].

Before proceeding to the proof of Theorem 1.1.2, we recall that, given some group

property, we say a group G virtually possesses that property if a finite-index subgroup

of G possesses that property. Likewise, we say a space virtually posesses some property

if a finite-degree cover of that space possesses that property.

Proof of Theorem 1.1.2. By Lemma 1.1.3, it suffices to show that Wα is of infinite index

in O(Mα;OK). Indeed, suppose otherwise. Then Wα is a cocompact lattice in O(Mα;R).

If n = 3, then immediately we obtain a contradiction, since in this case Wα is virtually a

closed hyperbolic surface group, whereas W is virtually free. If Mα has signature (2, 2)

(the one case under consideration in which SO(Mα;R)◦ is not simple), then we again

obtain a contradiction as W has virtual cohomological dimension at most 3 (for instance,

since the latter is an upper bound for the dimension of the Davis complex associated to the

infinite right-angled Coxeter group W ; see [Dav08, Chapter 1]), while the symmetric space
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associated to O(Mα;R) has dimension 4. Now suppose that n > 3 and that the signature

of Mα is not (2, 2). There is some β > α and a path [α, β] → GLn(R), d 7→ hd such

that hTdMdhd = Mα for all d ∈ [α, β] (this follows, for example, from the fact that GLn(R)

acts continuously and transitively on the set Ω ⊂Mn(R) of symmetric matrices with the

same signature as Mα, and so the orbit map GLn(R)→ Ω, g 7→ gTMαg is a fiber bundle).

Setting gd = hdh
−1
α for d ∈ [α, β], we have that gα = In and gTdMdgd = Mα for d ∈ [α, β].

For d ∈ [α, β], let ρd = g−1
d σdgd, and note

ρd(W ) ⊂ g−1
d O(Md;R)gd = O(gTdMdgd;R) = O(Mα;R).

Let ρ+
d = ρd

∣∣
W+ and σ+

d = σd
∣∣
W+ for d ∈ [α, β]. Then ρ+

α (W+) is a cocompact lattice

in the connected non-compact simple Lie group SO(Mα;R)◦, and the latter is not locally

isomorphic to SO(2, 1)◦ by our assumption that n > 3. Thus, by Weil local rigidity

[Wei60, Wei62], up to choosing β closer to α, we may assume that for each d ∈ [α, β]

there is some ad ∈ SO(Mα;R)◦ such that

ρ+
d = adρ

+
αa
−1
d = adσ

+
α a
−1
d . (1.1)

But ρ+
d = g−1

d σ+
d gd, so we obtain from (1.1) that the trace tr(σd(γiγj)) remains constant

as d varies within [α, β], where i, j ∈ {1, . . . , n} are chosen so that the vertices vi, vj are

adjacent in Σ1.

We claim, however, that tr(σd(γiγj)) = 4d2 − 4 + n for d ≥ D. Indeed, let d ≥ D.

Then Md is nondegenerate, so that Rd splits as a direct sum of the 2-dimensional sub-

space 〈ei, ej〉 ⊂ Rn and its orthogonal complement Ei,j with respect to Md. Each of γi

and γj acts as the identity on Ei,j, so our claim is equivalent to the assertion that

tr
(
σd(γiγj)

∣∣
〈ei,ej〉

)
= 4d2−2, and the latter follows from the fact that, with respect to the

basis (ei, ej) of 〈ei, ej〉, the matrices representing σd(γi), σd(γj) are

−1 2d

0 1

 ,

 1 0

2d −1

 ,

respectively.

Example 1.1.4. We consider the case that n ≥ 5 and the complement graph of Σ1 is the

cycle v1v2 . . . vn. In this case, the group W may be realized as the subgroup of Isom(H2)
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generated by the reflections in the sides of a right-angled hyperbolic n-gon, so that W is

virtually the fundamental group of a closed hyperbolic surface. We have

Md = (1 + d)In + d(Jn + Jn−1
n )− d(In + Jn + . . .+ Jn−1

n ), (1.2)

where Jn ∈ Mn(C) is the matrix

Jn =
(
e2 e3 . . . en e1

)
.

There is some C ∈ GLn(C) such that

CJnC
−1 = diag(1, ζn, ζ

2
n, . . . , ζ

n−1
n ),

where ζn = e2πi/n. Observe that

C(In + Jn + . . .+ Jn−1
n )C−1 = diag(n, 0, . . . , 0),

C(Jn + Jn−1
n )C−1 = diag

(
2, 2 cos

2π

n
, 2 cos

2π · 2
n

, . . . , 2 cos
2π(n− 1)

n

)
.

It follows from (1.2) that, counted with multiplicity, the eigenvalues ofMd are 1− d(n− 3)

and 1 + d
(
1 + 2 cos 2πk

n

)
, where k = 1, . . . , n − 1. Note that for d sufficiently large, we

have that 1− d(n− 3) < 0, and that 1 + d
(
1 + 2 cos 2πk

n

)
≥ 0 if and only if cos 2πk

n
≥ −1

2
.

We conclude that the signature of Md is (2bn
3
c, n − 2bn

3
c) for all d sufficiently large. In

particular, if n = 3m, m ≥ 2, then the signature of Md is (2m,m) for all d sufficiently

large. The above discussion yields thin surface subgroups of uniform arithmetic lattices

in SO(2bn
3
c, n− 2bn

3
c) for each n ≥ 5.

1.2 Precompact embeddings of 3-manifold groups

In this section, we explain how Theorem 1.0.1 allows us to embed many closed 3-manifold

groups into compact Lie groups.

Definition 1.2.1. A closed 3-manifold is nonpositively curved (NPC) if it admits a Rie-

mannian metric of everywhere nonpositive sectional curvature.
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Definition 1.2.2. A finitely generated group is C-special if it embeds in a right-angled

Coxeter group associated to a finite graph. We say a finitely generated group is virtually

special if it is virtually C-special.

Remark 1.2.3. Haglund and Wise [HW08] define a notion of A-specialness (respectively,

C-specialness) for cube complexes and show that the 2-skeleton of an A-special (respec-

tively, C-special) cube complex admits a local isometry into a square complex whose

fundamental group is a right-angled Artin group (resp., whose fundamental group is the

subgroup W+ of a right-angled Coxeter group W ). Since any right-angled Artin group is

the fundamental group of an A-special cube complex [HW08, Example 3.3(2)] and since

A-specialness is inherited by covers [HW08, Corollary 3.8], it follows that the fundamen-

tal groups of A-special cube complexes are precisely the subgroups of right-angled Artin

groups, and, in the literature, a group is usually defined to be special if it belongs to this

class of groups. This gives a notion of virtual specialness for finitely generated groups

that is consistent with Definition 1.2.2, since a right-angled Coxeter group on a finite

graph is virtually the fundamental group of an A-special cube complex [HW10], since a

finitely generated special group embeds in a right-angled Artin group on a finite graph

(see the discussion following Corollary 1.3 in [PW18]), and since a group of the latter

kind embeds in a right-angled Coxeter group on a finite graph [HW99, DJ00].

Note that a free product (respectively, direct product) of finitely many right-angled

Coxeter groups, each associated to a finite graph, is the right-angled Coxeter group

associated to the join (resp., disjoint union) of the graphs of the factors. It follows that a

finite free (resp., direct) product of C-special groups is again C-special. We observe in the

following lemma that the previous statement remains true when we replace “C-special”

with “virtually special” (this is evident for direct products, so we only prove the free

product case).

Lemma 1.2.4. Suppose that each of Γ1 and Γ2 is virtually special. Then the same is

true of Γ := Γ1 ∗ Γ2.

Proof. For i = 1, 2, let Ki be a finite-index normal subgroup of Γi that is C-special, and

let ϕi : Γi → Γi/Ki be the quotient map. Let ψi : Γ → Γi/Ki be the composition of the
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projection Γ→ Γi with ϕi, and let K be the intersection of the kernels of the ψi. Then K

is a finite-index normal subgroup of Γ whose intersection with the factor Γi is Ki. Thus,

by the Kurosh subgroup theorem (see, for instance, [SW79, Section 3]), the subgroup K

splits as a free product of infinite cyclic subgroups and conjugates of the Ki. Since each

of the latter groups is C-special, so is K.

Remark 1.2.5. Lemma 1.2.4 can also be deduced from the observation that a wedge of

two cube orbicomplexes (see [AGM13, Definition 2.1] and the references therein) each of

which is virtually an A-special cube complex is virtually an A-special cube complex. A

variant of this observation is vastly generalized in [HW12].

The theory of virtually special groups developed by Wise and collaborators has demon-

strated that this class of groups is quite large (for an exposition, we refer the reader to

Wise’s monograph [Wis21]). One culmination of this theory is the following result.

Theorem 1.2.6 ([PW18, Corollary 1.4]). The fundamental group of a closed NPC 3-

manifold is virtually special.

Remark 1.2.7. We discuss briefly the history of Theorem 1.2.6. Together with previ-

ous knowledge about closed nonpositively curved Riemannian manifolds [GW71, Yau71,

Ebe82], Perelman’s resolution of the geometrization conjecture implied that a closed NPC

3-manifold either admits one of the nonpositively curved Thurston geometries—namely,

the R3, H2 × R, or H3 geometries—or is (virtually) a graph manifold (Definition 2.0.5)

or a so-called mixed 3-manifold. Virtual specialness of NPC graph manifolds is due

to Liu [Liu13], while that of mixed 3-manifolds is due to Przytycki and Wise [PW18].

Virtual specialness of fundamental groups of closed 3-manifolds locally modeled on R3

or H2×R is immediate, for instance since the group Z, closed surface groups, and hence

products thereof are C-special. Bergeron and Wise [BW12] showed that closed hyperbolic

3-manifold groups act properly and cocompactly on CAT(0) cube complexes using a result

of Kahn and Marković [KM12], and, using in an essential way Wise’s work on Gromov hy-

perbolic groups with a quasiconvex virtual hierarchy [Wis21, Chapter 13], Agol [AGM13]

showed that any hyperbolic group acting properly and cocompactly on a CAT(0) cube
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complex, hence any closed hyperbolic 3-manifold group by the aforementioned result of

Bergeron and Wise, is virtually special. Virtual specialness of fundamental groups of

closed hyperbolic 3-manifolds containing embedded geometrically finite incompressible

surfaces had already been established by Wise [Wis21, Theorem 17.1].

Since the fundamental group of the connected sum of two 3-manifolds is the free prod-

uct of the fundamental groups of the summands, we obtain the following from Theorem

1.2.6. For details on the Kneser–Milnor prime decomposition of a closed (not necessarily

orientable) 3-manifold, see, for instance, [Hat07, Section 1.1].

Corollary 1.2.8. Let M be a closed 3-manifold with the property that none of the sum-

mands in the prime decomposition of M is both aspherical and non-NPC. Then π1(M) is

virtually special.

Proof. By Lemma 1.2.4, it suffices to show that π1(Mi) is virtually special for each sum-

mand Mi in the prime decomposition of M . By assumption (and by geometrization),

either Mi is NPC, in which case π1(Mi) is virtually special by Theorem 1.2.6, or Mi

is virtually S3 or S2 × S1, in which case π1(Mi) is virtually cyclic and hence virtually

special.

Note that if H is an index-m subgroup of a group G and H embeds in O(n) for

some n, then G embeds in O(mn) via the induced representation. We thus conclude the

following.

Corollary 1.2.9. Any virtually special group embeds in a compact Lie group, and hence

so does π1(M) for any 3-manifold M as in Corollary 1.2.8.

Remark 1.2.10. We remark that the virtually special groups do not exhaust all the

finitely generated subgroups of compact Lie groups. For instance, let n ≥ 5, and consider

the subgroup SOn(Z[ 3
√

2]) of SO(n). As in Example 0.0.1, we may embed SOn(Z[ 3
√

2])

as a lattice in SOn(C). In particular, the former group is infinite since the latter is

not compact. Since n ≥ 5, the Lie group SOn(C) has Kazhdan’s property (T), and

so SOn(Z[ 3
√

2]) inherits this property when viewed as a discrete group (see, for instance,
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[BdlHV08, Chapter I.1] and the references therein). It follows that SOn(Z[ 3
√

2]) is finitely

generated and is not virtually special [NR97, Theorem B]. A similar argument, where C

is replaced with the nonarchimedean local field Q5, shows that the subgroup SOn(Z[1
5
])

of SO(n) is infinite and has property (T) as a discrete group when n ≥ 5 (see the proof

of Proposition 5 in [Mar80]).

We close this section by observing that, in fact, the free product of any two countable

subgroups of O(n) again embeds in a compact Lie group. The proof is essentially Shalen’s

[Sha79], but we have adjusted some of the arguments to produce the desired result.

Theorem 1.2.11. Let Γ1,Γ2 be countable subgroups of O(n). Then Γ1 ∗ Γ2 embeds

in U(n+ 1).

We first prove the following lemma.

Lemma 1.2.12. Let Γ be a countable subgroup of GLn(R) with the property that no

nontrivial element of Γ is a scalar matrix. Then there is some g ∈ O(n) such that for

any nontrivial γ ∈ Γ, the bottom left entry of gγg−1 is nonzero.

Proof. Let e1, . . . , en be the standard basis for Rn. Since Γ is countable and no nontrivial

element of Γ is a scalar matrix, the union of all the eigenspaces of nontrivial elements

of Γ has Lebesgue measure 0, so there is some unit vector in Rn that is not an eigenvector

of any nontrivial element of Γ. By transitivity of the action of O(n) on Sn−1, we may

assume this vector is e1.

Since O(n) acts transitively on the set of pairs (v,H), where v ∈ Rn and H is a

hyperplane of Rn containing v, it now suffices to find a hyperplane H ⊂ Rn containing e1

such that γe1 /∈ H for any nontrivial γ ∈ Γ. We can take H to be the orthogonal

complement in Rn of the subspace spanned by (0, x2, . . . , xn) ∈ Rn, where x2, . . . , xn ∈ R

are linearly independent over the entry field of Γ; since the latter field is countable, we

can always find such xi.

Proof of Theorem 1.2.11. Suppose first that no nontrivial element of either of the Γi is a

scalar matrix (i.e., is equal to −Id). In this case, we show that Γ1 ∗ Γ2 embeds in U(n).
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By Lemma 1.2.12, we may assume that all nontrivial elements of Γ1 and Γ2 have nonzero

bottom left entry. Let Γ′2 be the group obtained from Γ2 by transposing each of the

latter’s elements. Pick t ∈ C be such that |t| = 1 and t is transcendental over the entry

field of 〈Γ1,Γ2〉 < O(n), and let s = (sij) ∈ U(n) be given by sij = tiδij. Then, by the

proof of [Sha79, Proposition 1.3], the subgroup 〈Γ1, sΓ
′
2s
−1〉 < U(n) decomposes as the

free product of its subgroups Γ1, sΓ
′
2s
−1.

Theorem 1.2.11 now follows from the fact that the embedding of O(n) in O(n + 1)

given by extending by the identity on the orthogonal complement of Rn in Rn+1 takes

any nontrivial element of O(n) to a nonscalar element of O(n+ 1).
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Chapter 2

Proper CAT(0) actions of

unipotent-free matrix groups

Let F be a field and n a positive integer.

Definition 2.0.1. An element of SLn(F) is unipotent if it has the same characteristic

polynomial as the identity matrix.

In [But17b, But19], Button demonstrated that finitely generated subgroups of SLn(F)

containing no infinite-order unipotent elements share some properties with groups acting

properly by semisimple isometries on complete CAT(0) spaces. Indeed, Button showed

that if F has positive characteristic (in which case any unipotent element of SLn(F)

has finite order), then any finitely generated subgroup of SLn(F) admits such an action

[But19, Theorem 2.3]. The following theorem, to whose proof this chapter is devoted, is

intended to serve as an analogue of the latter result in the characteristic-0 setting.

Theorem 2.0.2. Let Γ be a finitely generated subgroup of SLn(C), n > 0. Then Γ acts

on a complete π-visible CAT(0) space X such that

(i) for any subgroup H < Γ containing no nontrivial unipotent matrices, the induced

action of H on X is proper;

(ii) if such a subgroup H is free abelian of finite rank, then H preserves and acts as a

27
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lattice of translations on a thick flat in X; in particular, any infinite-order element

of such a subgroup H acts ballistically on X;

(iii) if g ∈ Γ is a diagonalizable, then g acts as a semisimple isometry of X.

See Section 2.1 for the relevant definitions. The space X is a finite product
∏

iXi of

symmetric spaces of non-compact type and (possibly locally infinite) Euclidean buildings,

and Γ acts on X via a product
∏

i SLn(Ki), where the Ki are completions of the entry

field E of Γ with respect to various absolute values on E.

Since an element of SLn(C) that is both diagonalizable and unipotent must be trivial,

the following corollary is immediate.

Corollary 2.0.3. Any finitely generated subgroup of SLn(C) consisting entirely of diag-

onalizable matrices acts properly by semisimple isometries on a complete CAT(0) space.

Remark 2.0.4. Precompact subgroups of SLn(C) are conjugate into SU(n) and thus

consist entirely of diagonalizable matrices. Furthermore, by the Peter–Weyl theorem,

any compact Lie group can be realized as a compact subgroup of SLn(C) for some n

[BTD85, Theorem III.4.1]. Thus, by Corollary 2.0.3, any finitely generated subgroup

of a compact Lie group admits a proper action by semisimple isometries on a complete

CAT(0) space.

Definition 2.0.5. A graph manifold is a connected closed orientable irreducible non-

Seifert 3-manifold all of whose JSJ blocks are Seifert.

Property (ii) of the action described in Theorem 2.0.2 allows us to conclude the

following fact about representations of fundamental groups of graph manifolds.

Theorem 2.0.6. Let M be a graph manifold and let ρ : π1(M) → SLn(C) be any rep-

resentation. If M does not admit a nonpositively curved Riemannian metric, then there

is a JSJ torus S of M and a nontrivial element h ∈ π1(S) < π1(M) such that ρ(h) is

unipotent.

Recall from Section 1.2 that fundamental groups of closed NPC 3-manifolds are virtu-

ally special and hence embed in compact Lie groups. On the other hand, if M is a closed
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aspherical non-NPC 3-manifold, then either M is Seifert, in which case there is a non-

trivial (hence infinite-order) element of π1(M) that gets mapped to a virtually unipotent

matrix under any finite-dimensional linear representation of π1(M) (see, for example, the

discussion in the introduction of Chapter 3), or the orientation cover of M is a non-NPC

graph manifold. Thus, we obtain from Theorem 2.0.6 the following extension of Theorem

1.2.6.

Corollary 2.0.7. Let M be a closed aspherical 3-manifold. Then the following are equiv-

alent:

(i) the manifold M is nonpositively curved;

(ii) the group π1(M) is virtually special;

(iii) the group π1(M) embeds in a compact Lie group;

(iv) there is a faithful finite-dimensional C-linear representation of π1(M) whose image

consists entirely of diagonalizable matrices;

(v) there is a finite-dimensional C-linear representation of π1(M) mapping no nontrivial

element of π1(M) to a unipotent matrix.

Corollary 2.0.7 tells us that the sufficient condition given in Corollary 1.2.8 for the

fundamental group of a closed 3-manifold to embed in a compact Lie group is also nec-

essary.

Corollary 2.0.8. The fundamental group of a closed 3-manifold M embeds in a compact

Lie group if and only if none of the summands in the prime decomposition of M is both

aspherical and non-NPC.

Organization

In Section 2.1, we define the relevant objects, discuss briefly some properties of ballistic

isometries of complete CAT(0) spaces, and introduce the notion of a “thick flat” in such

a space. In Section 2.2, we prove several lemmas used in the proofs of Theorems 2.0.2

and 2.0.6. The latter proofs are contained in Section 2.3.
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2.1 Preliminaries

2.1.1 Complete CAT(0) spaces

We recall some definitions and facts from CAT(0) geometry. These are drawn mainly

from [BH99].

A geodesic metric space X is said to be CAT(0) if any two points on a geodesic

triangle in X are at most as distant as their analogues on a Euclidean triangle with the

same side lengths. Any two points in such a space are in fact joined by a unique geodesic

segment. Associated to a CAT(0) space is its visual boundary ∂X, the space of geodesic

rays in X up to asymptoticity.

Let X be a complete CAT(0) space and ∂X its visual boundary. We will make

references to the cone topology on X := X ∪ ∂X, described in [BH99]. Under this

topology, a sequence of points xn ∈ X converges to ξ ∈ ∂X if and only if for some (hence

any) point x0 ∈ X, the geodesics joining x0 to xn converge uniformly on compact intervals

to the unique geodesic ray emanating from x0 in the class of ξ. In addition, we will use

the angular metric ∠ on ∂X, also described in [BH99]. The topology on ∂X induced by

the angular metric is in general finer than the cone topology on ∂X.

An r-dimensional flat in X is an isometrically embedded copy of Rr in X. We say X

is π-visible if for any ξ, η ∈ ∂X satisfying ∠(ξ, η) = π, there is a geodesic line in X whose

endpoints on ∂X are ξ and η. Since Euclidean spaces are π-visible, a complete CAT(0)

space X with the property that any two points on ∂X lie on the boundary of a common

flat in X is also π-visible. Note that if X is a Euclidean building, a symmetric space of

non-compact type, or a product of such spaces, then X possesses the latter property by

the building structure on ∂X, so that X is π-visible. For more information on symmetric

spaces, we refer the reader to the monograph [Ebe96].

2.1.2 Isometries of complete CAT(0) spaces

Let (X, dX) be a metric space and let g ∈ Isom(X). The translation length of g on X is

the quantity |g|X := infx∈X dX(x, gx).
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For any x ∈ X, the limit limn
d(x,gnx)

n
exists and is independent of the choice of x ∈ X.

By the triangle inequality, we have d(x,gnx)
n

≤ d(x, gx) for each positive integer n and

each x ∈ X (see Exercise 1, Section II.6.6 of [BH99]), so that limn
d(x,gnx)

n
≤ |g|X . If X is

a CAT(0) space, then this inequality is in fact an identity. This fact is well known, but

we could not find a reference for it, so we have included a proof. (We in fact only use the

inequality in this chapter, but the identity will be useful in Section 4.0.4.)

Lemma 2.1.1. Let X be a CAT(0) space and let g ∈ Isom(X). Then |g|X = limn
d(x,gnx)

n

for each x ∈ X.

Proof. It suffices to show that for each nonnegative integer n, we have |g|X ≤ d(x,g2
n
x)

2n
for

all x ∈ X. We prove this by induction on n. The base case n = 0 is evident. Now suppose

the claim is true for some particular n ≥ 0, let x ∈ X, and let y be the midpoint of the

geodesic segment in X joining x and g2nx. Then g2ny is the midpoint of the geodesic

segment in X joining g2nx and g2n+1
x. Thus we have

d(y, g2ny) ≤ d(x, g2n+1
x)

2
(2.1)

by the midsegment theorem in Euclidean geometry and the CAT(0) property applied to

the geodesic triangle in X with vertices x, g2nx, and g2n+1
x. By the induction hypothesis,

we have

|g|X ≤
d(y, g2ny)

2n
≤ d(x, g2n+1

x)

2n+1
,

where the second inequality follows from (2.1).

Now suppose X is a complete CAT(0) space. The isometry g is semisimple if |g|X =

dX(x0, gx0) for some x0 ∈ X. We say g is ballistic (resp., neutral) if |g|X > 0 (resp.,

if |g|X = 0), and hyperbolic if g is both ballistic and semisimple. A subgroupH < Isom(X)

acts neutrally on X if each h ∈ H is neutral.

If g ∈ Isom(X) is ballistic, then there is a point ωg ∈ ∂X such that for any x ∈ X,

we have gnx→ ωg as n→∞ with respect to the cone topology on X [CM09]; we call ωg

the canonical attracting fixed point of g. We use repeatedly the following fact, due to
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Duchesne [Duc15, Prop. 6.2]. For an arbitrary group G and g1, . . . , gm ∈ G, we denote

by ZG(g1, . . . , gm) the centralizer of g1, . . . , gm in G.

Theorem 2.1.2. Let X be a complete π-visible CAT(0) space and suppose g ∈ Isom(X)

is ballistic. Then there is a closed convex subspace Y ⊂ X and a metric decomposition

Y = Z × R such that

• ZIsom(X)(g) preserves Y and acts diagonally with respect to the decomposition Y =

Z × R, acting by translations on the second factor;

• the isometry g acts neutrally on the factor Z.

In accordance with [BH99], we define an isometric action of a group H on a metric

space X to be proper if for any point x ∈ X, there is a neighborhood U ⊂ X of x such

that {h ∈ H : U ∩ hU 6= ∞} is finite. In this case, the set {h ∈ H : K ∩ hK 6= ∞} is

finite for any compact subset K ⊂ X (see, for example, [BH99, Remark I.8.3(1)]). Note,

however, that if the metric space X is not proper, then X may contain balls B such that

{h ∈ H : B ∩ hB 6=∞} is infinite; that is, the notion of properness for isometric actions

used here is strictly weaker than metric properness.

We will make use of the following well-known theorem [BH99, Theorem II.7.1].

Theorem 2.1.3. Let H be a free abelian group of rank r acting properly by semisimple

isometries on a complete CAT(0) space X. Then H preserves and acts as a lattice of

translations on an r-dimensional flat in X.

2.1.3 Thick flats

A closed convex subspace Y ⊂ X together with an isometry ϕ : Y → Z×Rr, where r ≥ 0

and Z is some complete CAT(0) space, is called a thick flat of dimension r in X. We say a

group H acting isometrically on X preserves the thick flat (Y, ϕ) if H preserves Y . Such

a group H acts as a lattice of translations on the thick flat (Y, ϕ) if H acts diagonally

with respect to the decomposition Z × Rr, acting neutrally on the first factor and by

translations on the second, so that the induced map H → Rr embeds H as a lattice

of Rr.
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2.2 Lemmata

Lemmas 2.2.1 and 2.2.2 are probably well known, but we include their proofs for com-

pleteness. The objective is to determine the canonical attracting fixed point of a ballistic

isometry acting diagonally on a product.

Lemma 2.2.1. Let Y, Z be complete CAT(0) spaces and X = Y × Z. Suppose gY ∈

Isom(Y ) is neutral and gZ ∈ Isom(Z) is hyperbolic, and let g, g′ ∈ Isom(X) be the

isometries gY × gZ, IdY × gZ of X, respectively. Then ωg = ωg′.

Proof. There exist a geodesic line γZ : R → Z in Z and a positive number ` such that

gZ(γZ(t)) = γZ(t+ `) for any t ∈ R. The point ωg′ ∈ ∂X is represented by a geodesic ray

of the form (y0, γZ(t)), t ≥ 0, y0 ∈ Y . Thus, we reduce to the case that Z = R and gZ

is a translation by ` > 0. Setting x0 = (y0, 0), we show that the geodesics γ(n) in X

joining x0 to gnx0 converge uniformly on compact subsets as n→∞ to the geodesic ray

γ : [0,∞)→ X given by t 7→ (y0, t).

To that end, write γ(n)(t) = (γ
(n)
Y (t), αnt), where αn > 0 and γ

(n)
Y is a linearly repa-

rameterized geodesic in Y joining y0 to gnY y0, and let R > 0. Note that the maximum

value of dX(γ(t), γ(n)(t)) on [0, R] is attained at t = R; indeed, for 0 ≤ t ≤ R, we have

dX(γ(t), γ(n)(t))2 = dY (y0, γ
(n)
Y (t))2 + t2(1− αn)2.

Thus, it suffices to show that dX(γ(R), γ(n)(R))→ 0. This will follow if we can show that

dY (y0, γ
(n)
Y (R))→ 0 since

R2 = dX(x0, γ
(n)(R))2 = dY (y0, γ

(n)
Y (R))2 + α2

nR
2.

To see that dY (y0, γ
(n)
Y (R))→ 0, note that since γ

(n)
Y is a linearly reparameterized geodesic,

we have

dY (y0, γ
(n)
Y (R))

dY (y0, gnY y0)
=

R

dX(x0, gnx0)
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and so

dY (y0, γ
(n)
Y (R))2 = R2 dY (y0, g

n
Y y0)2

dX(x0, gnx0)2

= R2 dY (y0, g
n
Y y0)2

dY (y0, gnY y0)2 + n2`2

= R2

(
dY (y0,gnY y0)

n

)2

(
dY (y0,gnY y0)

n

)2

+ `2

.

Now the latter approaches 0 as n→ 0 since

lim
n→∞

dY (y0, g
n
Y y0)

n
= |gY |Y

and |gY |Y = 0 by assumption.

Lemma 2.2.2. Let X1, X2 be complete π-visible CAT(0) spaces, let gi ∈ Isom(Xi) for

i = 1, 2, and suppose g1 is ballistic. Let X = X1 × X2 and let g = g1 × g2 ∈ Isom(X).

Then g acts ballistically on X and

ωg = (arctan(|g2|/|g1|), ωg1 , ωg2)

in the spherical join ∂X1 ∗ ∂X2 = ∂X.

Proof. We suppose first that g1, g2 are both ballistic, so that we may assume that Xi

admits a decomposition Xi = Yi × Zi with respect to which gi acts diagonally, where Zi

is isometric to R, and where gi acts neutrally on the first factor and acts by a translation

of |gi| on the second factor. Let g′i ∈ Isom(Xi) be the product of the identity on Yi

with the translation by |gi| on Zi, and let g′ = g′1 × g′2 ∈ Isom(X). Note we have

|gi| = |g′i|, and by Lemma 2.2.1, we have ωgi = ωg′i . Moreover, by viewing X as the

product X = (Y1 × Y2) × (Z1 × Z2), we also have ωg = ωg′ by Lemma 2.2.1. Thus, to

establish the lemma, it suffices to show

ωg′ = (arctan(|g′1|/|g′2|), ωg′1 , ωg′2),

but this follows from plane geometry since g′1, g
′
2 preserve and act as translations on the

2-dimensional flat {(y1, y2)} × (Z1 × Z2) ⊂ X, where yi is any point in Yi.
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If g2 is neutral, then we may only assume that X1 admits a decomposition X1 = Y1×Z1

as above, and now the lemma follows immediately from Lemma 2.2.1 by viewing X as

the product X = (Y1 ×X2)× Z1.

We apply Lemma 2.2.2 to the special case of matrices acting on symmetric spaces.

Lemma 2.2.3. Let M be a symmetric space associated to GLn(C) and let g ∈ GLn(C)

be of the form

g = diag(λ1U1, . . . , λmUm)

where λ1, . . . , λm ∈ C∗ with |λk| 6= 1 for at least one k ∈ {1, . . . ,m}, and Uk ∈ SLnk
(C)

is an upper unitriangular matrix for k ∈ {1, . . . ,m}. Then g acts ballistically on M and

has the same canonical attracting fixed point as

g′ := diag(λ1In1 , . . . , λmInm)

on ∂M . The same statement holds when GLn(C) is replaced with SLn(C).

Proof. For k = 1, . . . ,m, let X,Xk, Yk, Zk be the projections of the subgroups

{diag(h1, . . . , hm) : hk ∈ GLnk
(C)}

{diag(In1 , . . . , Ink−1
, h, Ink+1

, . . . , Inm) : h ∈ GLnk
(C)}

{diag(In1 , . . . , Ink−1
, h, Ink+1

, . . . , Inm) : h ∈ SLnk
(C)}

{diag(In1 , . . . , Ink−1
, etInk

, Ink+1
, . . . , Inm) : t ∈ R}

of GLn(C) to M under the quotient map GLn(C) → M = GLn(C)/U(n), respectively.

Then X is a closed convex subspace of M admitting a decomposition X =
∏m

k=1Xk. The

subspace Xk in turn admits a decomposition Xk = Yk×Zk, and the factor Zk is isometric

to R. Each of the isometries g, g′ preserves X and acts diagonally with respect to the

decomposition X =
∏m

k=1Xk. On each factor Xk, each of g, g′ also acts diagonally with

respect to the decomposition Xk = Yk × Zk, acting neutrally on the first factor and as a

translation by αk ln |λk| on the second for some αk > 0. Thus, the lemma follows from a

repeated application of Lemma 2.2.2.
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To see that the lemma remains true when GLn(C) is replaced with SLn(C), note that

a symmetric space for SLn(C) embeds as a closed convex SLn(C)-invariant subspace of a

symmetric space for GLn(C).

We now observe that a collection of pairwise commuting matrices over C can be

simultaneously put into the form described in Lemma 3.1.3.

Lemma 2.2.4. Let K be an algebraically closed field and let hα ∈ Mn(K) be a collection

of pairwise commuting matrices. Then there are s ∈ N and C ∈ SLn(K) such that

ChαC
−1 = diag(hα,1, . . . , hα,s)

where hα,` ∈ Mn`
(K) is upper triangular and has a single eigenvalue for ` = 1, . . . , s.

Proof. Since K is algebraically closed, it suffices to find such C ∈ GLn(K); indeed,

we may ultimately replace C with µC, where µ is an nth root of 1/ det(C). We now

proceed by induction on n. The case n = 1 is trivial. Now let n > 1 and suppose the

above claim has been established for matrices of smaller dimension. If each of the hα

has a single eigenvalue, then the statement follows from the fact that any collection of

pairwise commuting elements of Mn(K) are simultaneously upper triangularizable [RR00,

Theorem 1.1.5]. Now suppose a matrix h ∈ {hα}α has more than one eigenvalue. By

putting h into Jordan canonical form, for instance, we may assume h is of the form

h = diag(h1, h2),

where hi ∈ Mni
(K) for i = 1, 2 and h1, h2 do not share an eigenvalue. Since the hα

commute with h, they preserve the generalized eigenspaces of h, and so hα also has a

block-diagonal structure

hα = diag(hα,1, hα,2),

where hα,i ∈ Mni
(K) for i = 1, 2. The lemma now follows by applying the induction

hypothesis to the collections {hα,i}α, i = 1, 2.

We now prove what one might call a “thick flat torus theorem.”
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Lemma 2.2.5. Suppose X is a complete π-visible CAT(0) space and H is a free abelian

subgroup of Isom(X) with a basis h1, . . . , hr ∈ H consisting of ballistic isometries such

that for each m ∈ {1, . . . , r}, there is no (m− 1)-dimensional flat in X whose boundary

contains the canonical attracting fixed points ωh1 , . . . , ωhm. Then H preserves and acts as

a lattice of translations on a thick flat of dimension r in X.

Proof. We prove by induction the following statement: for m ∈ {1, . . . , r}, there is a

closed convex subspace Ym of X and a decomposition Ym = Zm × Rm such that

• ZIsom(X)(h1, . . . , hm) preserves Ym and acts diagonally with respect to the decom-

position Ym = Zm × Rm, acting by translations on the second factor;

• the subgroup 〈h1, . . . , hm〉 acts neutrally on the first factor and as a lattice of

translations on the second.

The base case m = 1 is given by Theorem 2.1.2. Now suppose the above holds for m− 1,

where m ∈ {2, . . . , r}. Then hm must act ballistically on the factor Zm−1, since other-

wise ωh1 , . . . , ωhm would be contained in the boundary of {z} × Rm−1 by Lemma 2.2.1,

where z is any point in Zm−1. Now Zm−1 is a complete π-visible CAT(0) space, so that

by Theorem 2.1.2 there is a closed convex subspace Y of Zm−1 and a decomposition

Y = Z × R satisfying

• ZIsom(Zm−1)(hm) preserves Y and acts diagonally with respect to the decomposition

Y = Z × R, acting by translations on the second factor;

• the action of hm on the first factor Z is neutral.

Then the subspace Ym := Y × Rm−1 ⊂ Zm−1 × Rm−1 has the desired properties.

The following observation is used in the proof of Lemma 2.2.7.

Lemma 2.2.6. Let X be a complete CAT(0) space and suppose H < Isom(X) is a free

abelian subgroup with a basis h1, . . . , hr ∈ H. Suppose H preserves and acts as a lattice

of translations on thick flats Y, Y ′ in X, and let φ, φ′ be the maps H → Rr induced by

the actions of H by translations on the Euclidean factors of Y, Y ′, respectively. Then the

unique linear map T : Rr → Rr satisfying T (φ(hi)) = φ′(hi) for i = 1, . . . , r is orthogonal.



Chapter 2. Proper CAT(0) actions of unipotent-free matrix groups 38

Proof. We wish to show that T preserves the standard inner product on Rr. Since

the φ(hi) constitute a basis for Rr, it suffices to show that 〈φ′(hi), φ′(hj)〉 = 〈φ(hi), φ(hj)〉

for i, j ∈ {1, . . . , r}. This is equivalent to saying that for i, j ∈ {1, . . . , r}, we have

‖φ(hi)‖ = ‖φ′(hi)‖ and ∠(φ(hi), φ(hj)) = ∠(φ′(hi), φ
′(hj)). The former is true since

‖φ(hi)‖ = |hi|X = ‖φ′(hi)‖

and the latter is true since ∠(φ(hi), φ(hj)) = ∠(φ′(hi), φ
′(hj)) = ∠(ωhi , ωhj) by Lemma

2.2.1.

The proof of the following lemma borrows heavily from an argument of Leeb; see the

proof of Theorem 2.4 in [KL96]. Note that we work with the JSJ decomposition of a graph

manifold as opposed to its geometric decomposition, so that, for example, the twisted

circle bundle over the Möbius band may appear as a JSJ block of a graph manifold.

Lemma 2.2.7. Let M be a graph manifold and suppose π1(M) acts by isometries on

a complete π-visible CAT(0) space X such that for each JSJ torus S of M , the sub-

group π1(S) < π1(M) preserves and acts as a lattice of translations on a thick flat in X.

Then M admits a nonpositively curved Riemannian metric.

Proof. Let B be a JSJ block of M , and let f ∈ π1(B) be an element representing a generic

fiber of B. The element f acts ballistically on X since f is a nontrivial element of π1(S),

where S is a torus boundary component of B, and π1(S) preserves and acts as a lattice

of translations on a thick flat in X by assumption. By Theorem 2.1.2, there is a closed

convex subspace Y ⊂ X with a metric decomposition Y = Z × R such that

• any element of π1(B) preserves Y and acts diagonally with respect to the decom-

position Y = Z × R, acting as a translation on the second factor;

• the action of f on the first factor Z is neutral.

Moreover, for each element z ∈ π1(B) representing a boundary component of the base

orbifold O of B, the action of z on Z is ballistic since the subgroup 〈f, z〉 < π1(B)

preserves and acts as a lattice of translations on a thick flat in X.
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We now realize B as a nonpositively curved Riemannian manifold with totally geodesic

flat boundary as follows. Endow the orbifold O with a nonpositively curved Riemannian

metric that is flat near the boundary so that the length of each boundary component c

of O is equal to the translation length on Z of an element in π1(B) representing c. We

let π1(B) act on the universal cover Õ ofO via the projection π1(B)→ π1(O), where π1(O)

acts on Õ by deck transformations. The product of this action with the action of π1(B)

on R coming from the decomposition Y = Z ×R yields a covering space action of π1(B)

on Õ × R. The quotient of Õ × R by this action is the desired geometric realization

of B. We may do this for each Seifert component of M ; the flat metrics on any pair of

boundary tori that are matched in M will coincide by Lemma 2.2.6, so that we may glue

the metrics on the Seifert components to obtain a smooth nonpositively curved metric

on M .

The following lemma will not be used in the proofs of Theorems 2.0.2 or 2.0.6, but

will be applied to derive Corollary 2.3.1 from Theorem 2.0.2.

Lemma 2.2.8. Let Γ be a finitely generated group and H0 a free abelian subgroup of Γ of

rank r ≥ 0. Suppose Γ acts on a complete CAT(0) space X such that H0 preserves and

acts as a lattice of translations on a thick flat in X. Then H0 is undistorted in Γ.

Proof. Let B = {h1, . . . , hr} ⊂ H0 be a basis for H0, and let |·|B be the word metric on H0

with respect to B. Let S ⊂ Γ be a finite generating set for Γ and let | · |S be the word

metric on Γ with respect to S. Let φ : H0 → Rr be the homomorphism to Rr induced by

the action of H0 on a thick flat in X, and let y0 ∈ Y , K = maxs∈S∪S−1 dX(y0, sy0). Since

any two norms on Rr are equivalent, there is some C > 0 such that ‖φ(h)‖ ≥ C|h|B for

any h ∈ H0. Thus, for h ∈ H0, we have

K|h|S ≥ dX(y0, hy0) ≥ ‖φ(h)‖ ≥ C|h|B

where the first inequality follows from the triangle inequality.
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2.3 Proofs of Theorems 2.0.2 and 2.0.6

Proof of Theorem 2.0.2. (i) Since Γ is finitely generated, we have that Γ ⊂ SLn(A) for

some finitely generated subdomain A ⊂ C. Let E = Q(A) ⊂ C, so that E is a finitely

generated field extension of Q. The extension E/Q has the structure Q ⊂ F ⊂ F (T ) ⊂ E,

where F is the algebraic closure of Q in E, and T is a (possibly empty) transcendence

basis for E over F . Since the extension E/Q is finitely generated, the set T is finite and

the extensions F/Q and E/F (T ) are of finite degree.

Let d = deg(F/Q), and let σ1, . . . , σd be the embeddings of F in C. Since σj(F ) is

countable but C is not, the extension C/σj(F ) has infinite transcendence degree, and

hence we may extend σj to an embedding σj : F (T ) → C. The latter may in turn be

extended to an embedding σj : E → C since E/F (T ) is algebraic and C is algebraically

closed. The embedding σj : E → C induces an embedding σj : SLn(E)→ SLn(C). Let

σ : SLn(E)→ G1 :=
d∏
j=1

SLn(C)

be the diagonal embedding induced by the maps σj : SLn(E) → SLn(C). Then SLn(E)

acts by isometries on the Hadamard manifold X1 :=
∏d

j=1Mj via the embedding σ, where

each Mj is a copy of the symmetric space (unique up to scaling of the Riemannian metric)

associated to the simple Lie group SLn(C).

By [AS82, Prop. 1.2], there are finitely many discrete valuations ν1, . . . , νm on E such

that A ∩
⋂m
i=1Oi ⊂ O, where O is the ring of integers of F and Oi is the valuation

ring of νi. Let Bi be the Bruhat–Tits building associated to SLn(Eνi), where Eνi is the

completion of E with respect to νi; let X2 =
∏m

i=1Bi; and let τ : SLn(E) → G2 :=∏m
i=1 SLn(Eνi) be the diagonal embedding. Then SLn(E) acts by automorphisms on X2

via the embedding τ . We claim that the diagonal action of Γ on X := X1 ×X2 via

σ × τ : SLn(E)→ G1 ×G2 has the desired properties.

To that end, let H be a subgroup of Γ containing no nontrivial unipotent elements.

We first claim that for any vertex v of X2, the subgroup σ(Hv) < G1 is discrete, where Hv

is the stabilizer of v in H. Indeed, let h ∈ Hv. Then for i = 1, . . . ,m, the element h
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fixes a vertex of Bi and (since GLn(E) acts transitively on the vertices of Bi) is thus

conjugate within GLn(E) into SLn(Oi); in particular, the coefficients of the characteristic

polynomial χh of h lie in Oi. Since this is true for each i ∈ {1, . . . ,m} and since h ∈

SLn(A), we have that the coefficients of χh lie in A ∩
⋂m
i=1Oi and hence in O. We thus

have a commutative diagram

G1 =
∏d

j=1 SLn(C)
∏d

j=1 Cn

Hv On

P

σ

p

σ̂
(2.2)

where the function p maps an element h ∈ Hv to the n-tuple whose entries are the

non-leading coefficients of χh, the function P is the d-fold product of the analogous

map SLn(C)→ Cn, and the function σ̂ is given by

σ̂(α1, . . . , αn) = (σ1(α1), . . . , σ1(αn), . . . , σd(α1), . . . , σd(αn))

for α1, . . . , αn ∈ O. Since σ̂ has discrete image (see, for example, Lemma 25.1.10 in

[KM79]) and the diagram (2.2) is commutative, it follows that P (σ(Hv)) is discrete

in
∏d

j=1 Cn. Now suppose we have a sequence (hk)k∈N in Hv such that σ(hk) → 1

in G1. Then, by continuity of the function P , we have P (σ(hk))→ P (1). By discreteness

of P (σ(Hv)), this implies that P (σ(hk)) = P (1) for k sufficiently large. It follows that for

such k the matrix hk is unipotent and hence trivial by our assumption that H contains

no nontrivial unipotent elements. We conclude that σ(Hv) is indeed discrete in G1.

We now argue that for any x ∈ X2, there is a neighborhood V of x in X2 such

that HV ⊂ Hv for some vertex v of X2, where

HV = {h ∈ H : V ∩ hV 6= ∅}.

Let c be the cell of X2 containing x and let ` be the dimension of c. Let ε > 0 be such

that the intersection of the ball BX2(x, ε) with the `-skeleton X`
2 of X2 is contained in c.

Then we may take V = BX2(x, ε/2). Indeed, if h ∈ HV , then hx ∈ X`
2 ∩ BX2(x, ε) ⊂ c,

and so hc = c. Since SLn(E) acts on Bi without permutations, it follows that h ∈ Hv for

any vertex v of c.
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Now, to see that H acts properly on X, we observe that for any point x ∈ X2 and

any ball B ⊂ X1, the set U := B × V ⊂ X has the property that {h ∈ H : U ∩ hU 6= ∅}

is finite, where V ⊂ X2 is as in the preceding paragraph. Indeed, we have HV ⊂ Hv for

some vertex v of X2, and Hv acts properly on X1 since σ embeds Hv discretely in G1.

(ii) Suppose H is free abelian with a basis h1, . . . , hr ∈ H. We show that this basis is as

in the statement of Lemma 2.2.5, so that H preserves and acts as a lattice of translations

on a thick flat in X. Indeed, by Lemma 2.2.4, we may assume that for j ∈ {1, . . . , d},

k ∈ {1, . . . , r}, we have

σj(hk) = diag(hj,k,1, . . . , hj,k,s)

where hj,k,` ∈ GLn`
(C) is upper triangular with a single eigenvalue for ` ∈ {1, . . . s}. We

now have a homomorphism ∆j : H → SLn(C) that maps h ∈ H to the diagonal part

of σj(h); note that ∆j is injective since H contains no nontrivial unipotent matrices. The

embeddings ∆j produce a diagonal embedding ∆ : H → G1. Now let ∆′ : H → G1 ×G2

be the product of ∆ with τ
∣∣
H

: H → G2. Then, since ∆j(h) has the same characteristic

polynomial as σj(h) for each h ∈ H, and since ∆j(H) contains no nontrivial unipotent

matrices, the action of ∆′(H) on X is proper by the above arguments. Since the latter

action is by semisimple isometries, by Theorem 2.1.3 there is a genuine r-dimensional

flat in X preserved by ∆′(H) on which ∆′(H) acts as a lattice of translations. Thus, by

Lemmas 2.2.2 and 3.1.3, each nontrivial h ∈ H acts ballistically on X and the canonical

attracting fixed point of h on ∂X is equal to that of ∆′(h); in particular, ωh1 , . . . , ωhr

must be of the desired form.

(iii) Suppose g ∈ Γ is diagonalizable (over C). Since any isometry of X2 is semisimple,

to show that g acts as a semisimple isometry of X, it suffices to show that σj(g) is

a semisimple isometry of Mj for j = 1, . . . , d. To that end, we show that σj(g) is

diagonalizable. Indeed, since a diagonalization of g has entries in the splitting field Ẽ ⊂ C

of χg over E, we in fact have g = CDC−1 for some C,D ∈ SLn(Ẽ) with D diagonal (see,

for example, [Rom13, Theorem 8.11]). Since C is algebraically closed, we may extend σj
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to an embedding σ̃j : Ẽ → C. Now

σj(g) = σ̃j(g) = σ̃j(C) σ̃j(D) σ̃j(C)−1

and σ̃j(D) is diagonal.

This completes the proof of Theorem 2.0.2.

We recover the following result, due to Button [But17b, Theorem 5.2].

Corollary 2.3.1. Let Γ be a finitely generated group and H a distorted finitely generated

abelian subgroup of Γ. Then for any representation ρ : Γ→ SLn(C), there is an infinite-

order element h ∈ H such that ρ(h) is unipotent.

Proof. Let H0 < H be a free abelian subgroup of finite-index, and suppose there is a

representation ρ0 : Γ → SLn(C) that does not map any nontrivial element of H0 to a

unipotent matrix (in particular, ρ is faithful on H0). Then, by Theorem 2.0.2, there is

an action of Γ via ρ on a complete CAT(0) space X such that H0 preserves and acts by

translations on a thick flat in X. By Lemma 2.2.8, it follows that H0 is undistorted in Γ,

and hence the same is true of H.

Proof of Theorem 2.0.6. Suppose otherwise, so that for each JSJ torus S of M , the rep-

resentation ρ is faithful on π1(S) < π1(M) and the image ρ(π1(S)) contains no nontrivial

unipotent matrices. Then, by Theorem 2.0.2, there is an action of π1(M) via ρ on a

complete CAT(0) space X such that for each JSJ torus S of M , the subgroup π1(S)

preserves and acts as a lattice of translations on a thick flat in X. Thus, M admits a

nonpositively curved metric by Lemma 2.2.7.
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Chapter 3

VU curves in some non-NPC graph

manifolds

We say a matrix P ∈ GLn(F), where F is a field, is virtually unipotent if Pm is unipotent

for some positive integer m, that is, if the eigenvalues of P are all roots of 1 in the

algebraic closure F of F. Note that a matrix in GLn(F) that is both virtually unipotent

and diagonalizable has finite order.

We begin this chapter with an observation about the integral Heisenberg group H,

defined as the subgroup of GL3(R) consisting of the upper unitriangular integer matrices.

Remark 3.0.1. Let F be a field, let ρ : H → GLn(F) be any representation, and

let x, y, z ∈ H be the matrices

x =


1 1 0

0 1 0

0 0 1

 , y =


1 0 0

0 1 1

0 0 1

 , z =


1 0 1

0 1 0

0 0 1

 .

Up to replacing F with its algebraic closure and postconjugating ρ, we may assume

that ρ(z) has a block-diagonal structure

ρ(z) = diag(Z1, . . . , Zk)

where Zr ∈ GLnr(F) is upper triangular with a unique eigenvalue λr ∈ F∗, and that

λ1, . . . , λk are distinct. Since ρ(x), ρ(y) commute with ρ(z), each of the former preserves

45
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the generalized eigenspaces of ρ(z) and thus has a block-diagonal structure

ρ(x) = diag(X1, . . . , Xk)

ρ(y) = diag(Y1, . . . , Yk)

where Xr, Yr ∈ GLnr(F). Since z = [x, y], we have Zr = [Xr, Yr], and so

λnr
r = detZr = 1

for r = 1, . . . , k. We conclude that ρ(z) is a virtually unipotent matrix.

Remark 3.0.1 motivates the following definition.

Definition 3.0.2. An element γ of an arbitrary group Γ is VU if any finite-dimensional

linear representation of Γ maps γ to a virtually unipotent matrix.

Remark 3.0.3. If Γ is a residually finite group, as are many groups of interest and, in

particular, as is the fundamental group of any closed 3-manifold [Hem16], then for any

nontrivial element γ ∈ Γ, there is a finite-dimensional unitary representation ρ of Γ such

that ρ(γ) is nontrivial and hence, by diagonalizability of unitary matrices, not unipotent.

Thus, for our purposes, it is not sensible to omit the word “virtually” in Definition 3.0.2.

Remark 3.0.4. If γ is a VU element of a group Γ, then any element in the conjugacy

class of γ is VU in Γ. Moreover, if Γ0 is an abelian subgroup of Γ generated by VU

elements of Γ, then any element of Γ0 is VU in Γ. The latter follows from the previously

used fact that commuting matrices over an algebraically closed field are simultaneously

triangularizable [RR00, Theorem 1.1.5].

Remark 3.0.5. Suppose Γ0 is a finite-index normal subgroup of a group Γ, and that γ

is a VU element of Γ. Then a generator γ0 of 〈γ〉 ∩ Γ0 is a VU element of Γ0. Indeed,

let ρ0 be a finite-dimensional linear representation of Γ0. Then ρ0 is a direct summand

of the restriction ρ
∣∣
Γ0

, where ρ is the representation induced by ρ0 on Γ. Since ρ(γ0) is a

virtually unipotent matrix, it follows that the same is true for ρ0(γ0).

Remark 3.0.6. Lubotzky, Mozes, and Raghunathan [LMR00, Prop. 2.4] showed that an

element generating a distorted cyclic subgroup of a finitely generated group is VU. This

fact can also be seen as a special case of Corollary 2.3.1.
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Note that a finite-order element of any group is VU. From Remark 3.0.1 (or Remark

3.0.6), one observes that the integer Heisenberg group H, viewed as an abstract group,

contains an infinite-order VU element (namely, a generator of the center of H), and

hence by Remark 3.0.5 so does the fundamental group of any closed 3-manifold with Nil

geometry. In fact, the argument in Remark 3.0.1 shows that if an element γ of a group Γ

is contained in [CΓ(γ), CΓ(γ)], where CΓ(γ) is the centralizer of γ in Γ, then γ is a VU

element of Γ. Thus, for example, an element of π1(M) representing a Seifert fiber of a

closed 3-manifold M with ˜SL(2,R) geometry is VU in π1(M).

Closed 3-manifolds locally modeled on Nil or S̃L2(R) are not NPC [GW71, Yau71,

Ebe82]. The goal of this chapter is to exhibit nontrivial VU elements within fundamental

groups of non-NPC 3-manifolds of a different nature.

Theorem 3.0.7. Let M be a connected closed orientable irreducible 3-manifold containing

exactly one JSJ torus, and each of whose JSJ blocks is a product of S1 with a surface.

If M is not NPC, then π1(M) contains a nontrivial VU element.

We use a necessary and sufficient condition (Theorem 3.1.2) for such 3-manifolds M

to be NPC due to Buyalo and Kobel’skii [BK95], and independently Kapovich and Leeb

[KL96] in the case that M has two JSJ blocks. Our argument is similar to Button’s

proof that Gersten’s free-by-cyclic group contains a nontrivial VU element [But17a, The-

orem 4.5]. We remark that if M is a 3-manifold as in the statement of Theorem 3.0.7 that

is not the mapping torus of an Anosov homeomorphism of the 2-torus, then it follows

from [KL98] that all cyclic subgroups of π1(M) are undistorted.

An example of a 3-manifold M as in the statement of Theorem 3.0.7 is the mapping

torus of a Dehn twist about an essential simple closed curve on a closed orientable surface

of genus at least 2 [KL96, Theorem 3.7]. In this case, our proof in fact shows that an

element of π1(M) representing that curve is VU.

Remark 3.0.8. If F is a field of positive characteristic, then any unipotent matrix over F

is torsion [But17a, Proposition 2.1], and hence no group containing an infinite-order VU

element is linear over F. Thus, a consequence of Theorem 3.0.7 is that the fundamental

group of a non-NPC 3-manifold M as in Theorem 3.0.7 is not linear over a field of positive
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characteristic. In fact, the same can be said about the fundamental group of any closed

aspherical non-NPC 3-manifold by [KL96, Theorem 2.4] and [But19, Theorem 2.3].

3.1 Preliminaries

3.1.1 Definitions

If S is a (not necessarily connected) closed surface embedded in a 3-manifold M , we

denote by M
∣∣S the complement in M of a small open tubular neighborhood of S. If M is

a connected closed orientable irreducible 3-manifold, then there is, up to isotopy, a unique

minimal collection E of disjoint embedded incompressible tori such that each component

of M
∣∣⋃ E is either Seifert or atoroidal (see, for example, [Kap01, Thm 1.41] and the

references therein). The decomposition of M into the components of M
∣∣⋃ E is called the

Jaco–Shalen–Johannson (JSJ) decomposition of M . If E = ∅, we say M has trivial JSJ

decomposition. Note that if M is the mapping torus of an Anosov homeomorphism of

the 2-torus, then M has nontrivial JSJ decomposition.

Let G denote the class of all connected closed orientable irreducible non-Seifert 3-

manifolds M such that each component Mv of M
∣∣⋃ E , where E is the collection of JSJ

tori in M , is a trivial S1-bundle over a compact orientable surface Σv with boundary. The

manifolds Mv are the blocks of M . The underlying graph G = G(M) of M is the graph

dual to the JSJ decomposition of M ; the graph G is well-defined since the collection E is

unique up to isotopy. We identify the vertex set V of G with the set of blocks of M , and

the set of unoriented edges of G with E . Denote by W the set of oriented edges of G. We

identifyW with the set of boundary components of M
∣∣⋃ E by assigning to each oriented

edge w ∈ ∂v ⊂ W the corresponding boundary component Tw of Mv.

Choose an orientation of M , thereby inducing an orientation on each block Mv of M ,

and hence on each component of ∂Mv. For each v ∈ V , choose an orientation of the fibers

in Mv, as well as a Waldhausen basis for H1(∂Mv;Z); that is, a basis {(fw, zw) |w ∈ ∂v}

for H1(∂Mv;Z) =
⊕

w∈∂vH1(Tw;Z) such that the elements fw represent oriented fibers,

the algebraic intersection number î(zw, fw) on Tw is +1, and the sum ⊕w∈∂vzw lies in the
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kernel of the map H1(∂Mv;Z)→ H1(Mv;Z) induced by inclusion. We call the additional

structure on M given by the choices made in this paragraph a framing of M .

An oriented edge w ∈ W corresponds to a gluing homeomorphism T−w → Tw, which

induces an isomorphism φw : H1(T−w;Z) → H1(Tw;Z). Define Bw =

aw bw

cw dw

 ∈
GL2(Z) to be the matrix whose entries satisfy

φw(f−w) = awfw + bwzw

φw(z−w) = cwfw + dwzw

Note that detBw = −1 since M is orientable, that B−w = B−1
w , and that bw 6= 0 by

minimality of E .

This chapter is concerned with the subclasses E,L of G consisting of all manifolds M

in G whose underlying graph is a single edge (joining distinct vertices) or a loop, respec-

tively. We call B ∈ GL2(Z) a gluing matrix for such a manifold M if B = Bw for an

oriented edge w of G(M) with respect to some framing of M .

The fundamental group π1(M) of a manifold M ∈ E with gluing matrix B =

a b

c d


and whose blocks Mv,Mv′ have base surfaces Σ,Σ′ of genus g, g′, respectively, is isomor-

phic to the group ΓE
g,g′,B given by the presentation with generators

x1, y1, . . . , xg, yg, z, f,

x′1, y
′
1, . . . , x

′
g′ , y

′
g′ , z

′, f ′

subject to the relations

(I) z =
∏g

i=1[xi, yi],

(II) [xi, f ] = [yi, f ] = 1 for i = 1, . . . , g,

(III) z′ =
∏g′

i=1[x′i, y
′
i],

(IV) [x′i, f
′] = [y′i, f

′] = 1 for i = 1, . . . , g′,

(V) f ′ = fazb,
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(VI) z′ = f czd,

where the subgroup 〈x1, y1, . . . , xg, yg〉 (resp., 〈x′1, y′1, . . . , x′g′ , y′g′〉) is the image of the

map π1(Σ) → π1(M) (resp., π1(Σ′) → π1(M)) induced by the inclusions Σ ⊂ Mv ⊂ M

(resp., Σ′ ⊂ Mv′ ⊂ M), and the element f (resp., f ′) represents an oriented fiber of Mv

(resp., Mv′).

Remark 3.1.1. Note that if C is obtained from B by negating a row or a column of B,

then ΓE
g,g′,B

∼= ΓE
g,g′,C . Note also that ΓE

g,g′,B
∼= ΓE

g′,g,B−1 .

The fundamental group π1(M) of a manifold M ∈ L with gluing matrix B =

a b

c d


and the base surface Σ of whose unique block Mv has genus g is isomorphic to the

group ΓL
g,B given by the presentation with generators

x1, y1, . . . , xg, yg, z, z
′, f, t

subject to the relations

(1) zz′ =
∏g

i=1[xi, yi],

(2) [xi, f ] = [yi, f ] = [z, f ] = 1 for i = 1, . . . , g,

(3) tft−1 = fazb,

(4) tz′t−1 = f czd,

where the subgroup 〈x1, y1, . . . , xg, yg, z〉 is the image of the map π1(Σ)→ π1(M) induced

by the inclusion Σ ⊂Mv ⊂M , and the element f represents an oriented fiber of Mv.

The following theorem is a special case of a result of Buyalo and Kobel’skii [BK95],

and was proved independently by Kapovich and Leeb [KL96] in the case M ∈ E.

Theorem 3.1.2. Let M ∈ E (resp., M ∈ L) and let B =

a b

c d

 ∈ GL2(Z) be a gluing

matrix for M . Then M is NPC if and only if a = d = 0 (resp., if and only if |a−d| < 2).
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3.1.2 Basic lemmas

The following lemma will allow us to conjugate a representation ρ of the appropriate

group Γ in a manner that makes the interactions between generalized eigenspaces of

certain elements of ρ(Γ) more apparent.

Lemma 3.1.3. Let F be an algebraically closed field, let P, P ′, Q ∈ Mn(F), and let

λ1, . . . , λk (resp. λ′1, . . . , λ
′
`) be the distinct eigenvalues of P (resp. P ′). If P, P ′, Q

pairwise commute, then there is a matrix C ∈ GLn(F) such that

CPC−1 = diag (P1,1, . . . , P1,`, . . . , Pk,1, . . . , Pk,`) ,

CP ′C−1 = diag
(
P ′1,1, . . . , P

′
1,`, . . . , P

′
k,1, . . . , P

′
k,`

)
,

CQC−1 = diag (Q1,1, . . . , Q1,`, . . . , Qk,1, . . . , Qk,`) ,

where Pr,s, P
′
r,s, Qr,s are (possibly empty) upper triangular matrices and the only eigenvalue

of Pr,s (resp., P ′r,s) is λr (resp., λ′s).

Proof. For r = 1, . . . , k, let Wr be the generalized λr-eigenspace of P , and let nr =

dimWr. We index the standard ordered basis for Fn as follows:

(e1,1, . . . , e1,n1 , . . . , ek,1, . . . , ek,nk
).

We may assume that Wr = Span(er,1, . . . , er,nr). Since each of P ′, Q commutes with P ,

we have that P ′, Q preserve the generalized eigenspaces of P , so P, P ′, Q share a block-

diagonal structure

P = diag(P1, . . . , Pk),

P ′ = diag(P ′1, . . . , P
′
k),

Q = diag(Q1, . . . , Qk)

where Pr, P
′
r ∈ Mnr(F). We may also assume that for some indexing

(er,1,1, . . . , er,1,nr,1 , . . . , er,`,1, . . . , er,`,nr,`
)

of the ordered basis (er,1, . . . , er,nr) for Wr, where the nr,s are nonnegative integers satisfy-

ing
∑`

s=1 nr,s = nr, we have that Span(er,s,1, . . . , er,s,nr,s) is the generalized λ′s-eigenspace
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of P ′r. Since each of Pr, Qr commutes with P ′r, we have that Pr, Qr preserve the generalized

eigenspaces of P ′r, so Pr, P
′
r, Qr share a block-diagonal structure

Pr = diag(Pr,1, . . . , Pr,`),

P ′r = diag(P ′r,1, . . . , P
′
r,`),

Qr = diag(Qr,1, . . . , Qr,`).

Now since Pr,s, P
′
r,s, Qr,s pairwise commute, they are simultaneously upper triangulariz-

able [RR00, Theorem 1.1.5], and Lemma 3.1.3 follows.

The following lemma will allow us to reduce systems of equations whose unknowns

lie in F∗, where F is some field, to systems of linear equations with integer unknowns. It

is a step in the proof of Theorem 4.5 in [But17a]. We include Button’s argument for the

convenience of the reader.

Lemma 3.1.4. Let M be an integer matrix with L columns and suppose there is a sub-

set I ⊂ {1, . . . , L} such that for any α = (α1, . . . , αL)T ∈ ZL satisfying Mα = 0,

we have αi = 0 for i ∈ I. Let A be a torsion-free abelian group, and suppose a =

(a1, . . . , aL)T ∈ AL satisfies Ma = 0. Then ai = 0 for i ∈ I.

Proof. Let A0 = 〈a1, . . . , aL〉 ⊂ A. Then A0 is a finitely generated torsion-free abelian

group, so there is an isomorphism ϕ : A0 → ZK for some K. For each j = 1, . . . , K, we

have

M(ϕj(a1), . . . , ϕj(aL))T = 0

where ϕj = pj ◦ ϕ and pj : ZK → Z is the projection onto the jth coordinate, so

that ϕj(ai) = 0 for i ∈ I. We conclude that ϕ(ai) = 0, and hence ai = 0, for i ∈ I.

3.2 Proof of Theorem 3.0.7

We divide Theorem 3.0.7 into Theorem 3.2.1 (the loop case) and Theorem 3.2.2 (the edge

case), and prove each separately.
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Theorem 3.2.1. Suppose M ∈ L is not NPC, and let Γ = π1(M). Then Γ contains a

nontrivial VU element.

Proof. By Theorem 3.1.2, we have Γ = ΓL
g,B for some g ≥ 0 and B =

a b

c d

 ∈ GL(2,Z)

with detB = −1, b 6= 0, and |a − d| ≥ 2. We show that fa−1zb ∈ Γ is VU if a − d ≥ 2,

and that fa+1zb is VU if a− d ≤ −2.

Let F be an algebraically closed field, n ≥ 1, and ρ : Γ→ GL(n,F) any representation.

We may assume that ρ is indecomposable. Let λ1, . . . , λk ∈ F∗ be the distinct eigenvalues

of ρ(f), and let f ′ = tft−1. By Lemma 3.1.3 and relation (3) in the presentation of Γ,

we may assume further that

ρ(f) = diag(F1,1, . . . , F1,k, . . . , Fk,1, . . . , Fk,k),

ρ(f ′) = diag(F ′1,1, . . . , F
′
1,k, . . . , F

′
k,1, . . . , F

′
k,k),

ρ(z) = diag(D1,1Z1,1, . . . , D1,kZ1,k, . . . , Dk,1Zk,1, . . . , Dk,kZk,k),

where Fr,s, F
′
r,s, Zr,s ∈ GL(nr,s,F) are (possibly empty) upper triangular matrices, Dr,s is a

(possibly empty) diagonal matrix in GL(nr,s,F) whose diagonal entries are |b|th roots of 1

in F, and the only eigenvalue of Fr,s (resp., F ′r,s, Zr,s) is λr (resp., λs, µr,s), with µr,s ∈ F∗

satisfying

λs = λarµ
b
r,s. (3.1)

Since, by relation (2) in the presentation of Γ, each of ρ(z′), ρ(x1), ρ(y1), . . . , ρ(xg), ρ(yg)

commutes with ρ(f), each preserves the generalized eigenspaces of ρ(f), and so

ρ(z′) = diag(Z ′1, . . . , Z
′
k),

ρ(xi) = diag(X
(i)
1 , . . . , X

(i)
k ),

ρ(yi) = diag(Y
(i)

1 , . . . , Y
(i)
k )

for some Z ′r, X
(i)
r , Y

(i)
r ∈ GL(nr,F), where nr =

∑k
s=1 nr,s is the dimension of the gener-

alized λr-eigenspace of ρ(f).

Let Vr be the generalized λr-eigenspace of ρ(f ′). Then ρ(t)−1Vr is the generalized

λr-eigenspace of ρ(t)−1ρ(f ′)ρ(t) = ρ(f), and the characteristic polynomial of

ρ(z′)
∣∣
ρ(t)−1Vr

= ρ(t)−1ρ(f chd)ρ(t)
∣∣
ρ(t)−1Vr
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coincides with the characteristic polynomial of ρ(f czd)
∣∣
Vr

. Thus, up to multiplying each

root by a root of 1, the characteristic polynomial of the block Z ′r is

(x− λc1µd1,r)n1,r . . . (x− λckµdk,r)nk,r .

Now let Zr = diag(Dr,1Zr,1, . . . , Dr,kZr,k). Then, by relation (1) in the presentation

of Γ, we have ZrZ
′
r =

∏g
i=1[X

(i)
r , Y

(i)
r ], so that det(ZrZ

′
r) = 1. It follows that

k∏
s=1

µnr,s
r,s (λcsµ

d
s,r)

ns,r = 1 (3.2)

in the quotient A of the group of units F∗ by its torsion subgroup. Viewing (3.1) also as

equations in A and switching to additive notation within A, we obtain the equations

λs = aλr + bµr,s, (3.3)

k∑
s=1

(nr,sµr,s + ns,r(cλs + dµs,r)) = 0. (3.4)

Multiplying (3.4) by b and substituting λs − aλr for bµr,s, we have

k∑
s=1

(
nr,s(λs − aλr) + ns,r

(
bcλs + d(λr − aλs)

))
= 0

and so
k∑
s=1

(
nr,s + (bc− ad)ns,r)λs = λr

k∑
s=1

(anr,s − dns,r). (3.5)

Since bc − ad = − detB = 1, the left-hand side of (3.5) is equal to
∑k

s=1(nr,s + ns,r)λs.

On the other hand, since
∑k

s=1 ns,r =
∑k

s=1 nr,s = nr, the right-hand side of (3.5) is equal

to (a− d)nrλr.

In summary, λ1, . . . , λk satisfy

k∑
s=1

(nr,s + ns,r)λs = (a− d)nrλr (3.6)

as elements of A.

Consider the case that a − d ≥ 2. We show that, in this case, if we set A = Z, then

(3.6) implies λ1 = . . . = λk, so that

(a− 1)λr + bµr,s = aλr − λs + bµr,s = 0,
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where the second equality follows from (3.3). By Lemma 3.1.4, it will follow that

(a− 1)λr + bµr,s = 0 in the original torsion-free abelian group A, i.e., that ρ(fa−1zb)

is virtually unipotent, and thus completing the proof of the a− d ≥ 2 case.

To that end, suppose for a contradiction that the integers λ1, . . . , λk are not all equal.

Then we may assume

λ1 = . . . = λr0 > λr0+1, . . . , λk

for some r0 ∈ {1, . . . , k − 1}. Thus, for r = 1, . . . , r0, either we have nr,s + ns,r = 0 for

all s > r0, or we obtain the contradiction

2nrλr =
k∑
s=1

(nr,s + ns,r)λr >
k∑
s=1

(nr,s + ns,r)λs = (a− d)nrλr ≥ 2nrλr.

We conclude that nr,s = ns,r = 0 for r ≤ r0 and s > r0, so that ρ(t) preserves the span

of the first
∑r0

r=1 nr standard basis vectors and the span of the last
∑k

r=r0+1 nr standard

basis vectors of Fn. But then ρ(Γ) also preserves each of these subspaces, contradicting

the indecomposability of ρ. This completes the proof for the case a− d ≥ 2.

We now consider the case a− d ≤ −2. We show in this case that, considered over Z,

equations (3.3) and (3.6) imply that (a + 1)λr + bµr,s = 0 for all r, s with nr,s 6= 0. One

then applies Lemma 3.1.4 to conclude that ρ(fa+1zb) is virtually unipotent.

We first observe that, setting A = Z, equation (3.6) implies that |λ1| = . . . = |λk|.

Indeed, suppose otherwise. Then we may assume |λ1| = . . . = |λr0| > |λr0+1|, . . . , |λk| for

some r0 ∈ {1, . . . , k− 1}. Thus, for r ≤ r0, either we have nr,s + ns,r = 0 when s > r0, or

we obtain the contradiction

2nr|λr| =
k∑
s=1

(nr,s + ns,r)|λr| >
k∑
s=1

(nr,s + ns,r)|λs| ≥

∣∣∣∣∣
k∑
s=1

(nr,s + ns,r)λs

∣∣∣∣∣ = |a− d|nr|λr|

≥ 2nr|λr|.

We conclude that indeed nr,s = ns,r = 0 for r ≤ r0 and s > r0, so that ρ(t) preserves the

span of the first
∑r0

r=1 nr standard basis vectors and that of the last
∑k

r=r0+1 nr standard

basis vectors of Fn. But then ρ(Γ) also preserves each of these subspaces, contradicting

the indecomposability of ρ. This establishes our claim that |λ1| = . . . = |λk|.
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Now suppose for a contradiction that there is a solution to equation (3.6) with

λ1 = . . . = λk = λ, where λ is a nonzero integer. Then we have

2n1λ =
k∑
s=1

(n1,s + ns,1)λ = (a− d)n1λ,

and hence a− d = 2, contradicting our assumption that a− d ≤ −2.

Thus, if the λr are to satisfy equation (3.6), then either λ1 = . . . = λk = 0, or, up to

reordering the λr, we have λ1 = . . . = λr0 = −λr0+1 = . . . = −λk = λ for some nonzero

integer λ and some r0 ∈ {1, . . . , k − 1}. In either case, we have by (3.3) that

(a+ 1)λr + bµr,s = aλr − λs + bµr,s = 0

whenever r ≤ r0 and s > r0, and whenever r > r0 and s ≤ r0. This is in fact true for

all r and s in the first case. In the second case, we have by (3.6) that for r > r0,

(a− d)nr(−λ) =

r0∑
s=1

(nr,s + ns,r)λ−
k∑

s=r0+1

(nr,s + ns,r)λ = 2nrλ− 2
k∑

s=r0+1

(nr,s + ns,r)λ,

and so

2
k∑

s=r0+1

(nr,s + ns,r) = (2 + (a− d))nr ≤ 0

since a − d ≤ −2, from which we conclude that nr,s = 0 for r, s > r0, and hence also

for r, s ≤ r0 (in other words, the matrix ρ(t) interchanges the span of the first
∑r0

r=1 nr

standard basis vectors with that of the last
∑k

r=r0+1 nr standard basis vectors of Fn).

This completes the proof for the case a− d ≤ −2.

Theorem 3.2.2. Suppose M ∈ E is not NPC, and let Γ = π1(M). Then Γ contains a

nontrivial VU element.

Proof. We have Γ = ΓE
g,g′,B for some g, g′ ≥ 1, where B =

a b

c d

 is a gluing matrix

for M . Note that b 6= 0, and that, by Theorem 3.1.2, one of a, d is nonzero. By Remark

3.1.1, up to replacing B with its inverse, we may assume a 6= 0. Furthermore, by Remark

3.1.1 and the fact that | detB| = 1, up to negating rows and columns of B, we may
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assume a, b, c, d ≥ 0. We show that if c = 0 (resp., c > 0) then z (resp., f) is a VU

element of Γ.

Let F be an algebraically closed field, n ≥ 1, and ρ : Γ → GLn(F) any represen-

tation. Let λ1, . . . , λk ∈ F∗ (resp., λ′1, . . . , λ
′
` ∈ F∗) be the distinct eigenvalues of ρ(f)

(resp., ρ(f ′)). By Lemma 3.1.3 and relation (V) in the presentation of Γ, we may assume

that

ρ(f) = diag(F1,1, . . . , F1,`, . . . , Fk,1, . . . , Fk,`),

ρ(f ′) = diag(F ′1,1, . . . , F
′
1,`, . . . , F

′
k,1, . . . , F

′
k,`),

ρ(z) = diag(D1,1Z1,1, . . . , D1,`Z1,`, . . . , Dk,1Zk,1, . . . , Dk,`Zk,`),

where Fr,s, F
′
r,s, Zr,s ∈ GLnr,s(F) are (possibly empty) upper triangular matrices, Dr,s is a

diagonal matrix in GLnr,s(F) whose diagonal entries are bth roots of 1 in F, and the only

eigenvalue of Fr,s (resp., F ′r,s, Zr,s) is λr (resp., λ′s, µr,s), with µr,s ∈ F∗ satisying

λ′s = λarµ
b
r,s. (3.7)

Since, by relation (II) in the presentation of Γ, the ρ(xi), ρ(yi) commute with ρ(f),

each of the former preserves the generalized eigenspaces of ρ(f). Thus, we have

ρ(xi) = diag(X
(i)
1 , . . . , X

(i)
k ),

ρ(yi) = diag(Y
(i)

1 , . . . , Y
(i)
k ),

for some X
(i)
r , Y

(i)
r ∈ GLnr(F), where nr =

∑k
s=1 nr,s is the dimension of the generalized

λr-eigenspace of ρ(f). Letting Zr = diag(Dr,1Zr,1, . . . , Dr,`Zr,`), we have by relation (I)

in the presentation of Γ that

Zr =

g∏
i=1

[X(i)
r , Y (i)

r ]

for r = 1, . . . , k. Thus, detZr = 1, and so

∏̀
s=1

µnr,s
r,s = 1 (3.8)

in the quotient A of F∗ by its torsion subgroup.
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Since, by relation (IV) in the presentation of Γ, the ρ(x′i), ρ(y′i) commute with ρ(f ′),

each of the former preserves the eigenspaces of ρ(f ′). Thus, by a similar argument to the

one given above, and by relation (VI) in the presentation of Γ, we have

k∏
r=1

(λcrµ
d
r,s)

nr,s = 1 (3.9)

in A for s = 1, . . . , `. Switching to additive notation within A, we obtain from (3.7),

(3.8), (3.9) the equations

aλ1 + bµ1,s = . . . = aλk + bµk,s for s = 1, . . . , `, (3.10)∑̀
s=1

nr,sµr,s = 0 for r = 1, . . . , k, (3.11)

k∑
r=1

nr,s(cλr + dµr,s) = 0 for s = 1, . . . , `. (3.12)

We now set A = Z and show that, in this context, equations (3.11), (3.12), and (3.10)

imply that if c = 0 (resp., c > 0) then µr,s = 0 whenever nr,s > 0 (resp., then λr = 0

for r = 1, . . . , k). By Lemma 3.1.4, the same statements will hold in the original torsion-

free abelian group A, thus completing the proof.

Suppose first that c = 0. Note that since | detB| = 1, this implies that a = d = 1, so

that equations (3.10), (3.12) are reduced to

λ1 + bµ1,s = . . . = λk + bµk,s for s = 1, . . . , `, (3.13)

k∑
r=1

nr,sµr,s = 0 for s = 1, . . . , `. (3.14)

We show by induction on k + ` that, in this case, µr,s = 0 if nr,s > 0. The base

case k + ` = 2 is trivial. By the symmetry of equations (3.11), (3.14), (3.13), we may

assume that µk,1 ≥ µr,s for all r and s, and that µk,1 ≥ . . . ≥ µk,`. Note that the

former implies that in particular µk,1 ≥ µr,1, so we obtain from (3.13) that µk,` ≥ µr,`

for r = 1, . . . , k. If µk,` ≥ 0, then since
∑`

s=1 nk,sµk,s = 0, we must have

nk,1µk,1 = . . . = nk,`µk,` = 0.
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This implies that µk,s = 0 if nk,s > 0, so we may apply the induction hypothesis to the

system of equations

λ1 + bµ1,s = . . . = λk−1 + bµk−1,s for s = 1, . . . , `,∑̀
s=1

nr,sµr,s = 0 for r = 1, . . . , k − 1,

k−1∑
r=1

nr,sµr,s = 0 for s = 1, . . . , `.

Now suppose that µk,` < 0. Since µk,` ≥ µr,` for r = 1, . . . , k and
∑k

r=1 nr,`µr,` = 0, we

have that n1,`µ1,` = . . . = nk,`µk,` = 0. This implies that µr,` = 0 if nr,` > 0, so we may

apply the induction hypothesis to the system of equations

λ1 + bµ1,s = . . . = λk + bµk,s for s = 1, . . . , `− 1,

`−1∑
s=1

nr,sµr,s = 0 for r = 1, . . . , k,

k∑
r=1

nr,sµr,s = 0 for s = 1, . . . , `− 1.

This completes the proof for the case c = 0.

We assume for the remainder of the proof that c > 0. Define

N =


n1,1 . . . nk,1

...
. . .

...

n1,` . . . nk,`

 , u =


aλ1 + bµ1,1

...

aλ1 + bµ1,`

 , w =


cλ1

...

cλk

 ,

and let Nr be the rth column of N . We have

uTNr = (aλr + bµr,1, . . . , aλr + bµr,`)Nr

= (aλr, . . . , aλr)Nr + b(µr,1, . . . , µr,`)Nr

= (aλr, . . . , aλr)Nr

=
∑̀
s=1

nr,saλr,

where the first equality follows from (3.10) and the third follows from (3.11). Thus,

uTNw =

(∑̀
s=1

n1,saλ1, . . . ,
∑̀
s=1

nk,saλk

)
w =

∑
r,s

nr,sacλ
2
r. (3.15)
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On the other hand, we have

Nw =


∑k

r=1 nr,1cλr
...∑k

r=1 nr,`cλr

 = −


∑k

r=1 nr,1dµr,1
...∑k

r=1 nr,`dµr,`

 ,

where the second equality follows from (3.12). It follows that

−uTNw = uT


∑k

r=1 nr,1dµr,1
...∑k

r=1 nr,`dµr,`

 =
∑
r,s

nr,s(aλ1 + bµ1,s)dµr,s =
∑
r,s

nr,s(aλr + bµr,s)dµr,s,

(3.16)

where the last equality follows from (3.10). Combining (3.15) and (3.16), we obtain

0 =
∑
r,s

nr,sacλ
2
r +

∑
r,s

nr,s(aλr + bµr,s)dµr,s =
∑
r,s

nr,s(bdµ
2
r,s + adλrµr,s + acλ2

r). (3.17)

We claim that bdµ2
r,s + adλrµr,s + acλ2

r ≥ 0 for any r and s. If d = 0, this is clear.

Otherwise, we may view bdµ2
r,s + adλrµr,s + acλ2

r as a quadratic polynomial in µr,s with

positive leading coefficient bd and discriminant

∆r = (ad− 4bc)adλ2
r = (detB − 3bc)adλ2

r.

Since | detB| = 1, we have that ∆r ≤ 0, and so bdµ2
r,s + adλrµr,s + acλ2

r ≥ 0.

Now let r ∈ {1, . . . , k}. We show that λr = 0. Indeed, we have nr,s > 0 for some s

since
∑k

s=1 nr,s = nr > 0. Thus, by (3.17) and the previous paragraph, we have

bdµ2
r,s + adλrµr,s + acλ2

r = 0.

If d = 0, this immediately implies that λr = 0. Now suppose d, λr > 0. Then ∆r < 0 and

so bdµ2
r,s + adλrµr,s + acλ2

r > 0, a contradiction.

Remark 3.2.3. Note that if c, d > 0, we also obtain that µr,s = 0 whenever nr,s > 0, so

that ρ(z) is also a virtually unipotent matrix. Thus, if all the entries of a gluing matrix

for a manifold M ∈ E are nonzero, then any element of π1(M) representing a curve on

the JSJ torus of M is VU.
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Conclusion

To conclude, we summarize and contextualize the content of the previous chapters, and

suggest some future directions.

4.0.1 Unipotent-free right-angled Coxeter groups

Let Σ1 be a finite simplicial graph with vertex set S, thought of as a Coxeter scheme in the

classical sense with only bold edges, let W be the right-angled Coxeter group on Σ1, and

let V be the free real vector space on S. For this discussion, we may assume that |S| ≥ 3

and that Σ1 is connected. In the proof of Theorem 1.0.1, we considered certain defor-

mations σd : W → GL(V ) of the Tits canonical representation σ1 of W ; the σd were the

Tits–Vinberg representations of W associated to the deformations Σd of Σ1, where Σd is

the Coxeter scheme obtained from Σ1 by replacing each edge with a dotted edge labeled

by d ≥ 1. We showed that for certain d > 1, the discrete representation σd can be Galois

conjugated to a precompact one. In particular, for such d, the image of σd contains no

nontrivial unipotents. It appears the following question is open.

Question 4.0.1. Does Wd := σd(W ) lack nontrivial unipotents for each d > 1?

The set of all d > 1 for which the answer to Question 4.0.1 is positive is certainly

dense in (1,∞), since σd can be “Galois conjugated” to a precompact representation for

any transcendental d > 1 by an argument similar to the proof of Theorem 1.0.1 (indeed,

61
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this was Agol’s original argument [Ago18]). However, the trick of Galois conjugation does

not apply in the case of interest where d is an integer larger than 1.

Let X be the symmetric space for GL(V ) and let ωd : W → X be the composition of σd

with some fixed orbit map GL(V )→ X. Since all cyclic subgroups of W are undistorted

(by Corollary 2.3.1, for instance), an affirmative answer to the following question would

provide one for Question 4.0.1.

Question 4.0.2. Is ωd a quasi-isometric embedding for each d > 1?

If it happens that the Gram matrix Md of Σd has precisely one negative eigenvalue,

then, for the correct choice of GL(V )-invariant metric on X, the group Wd preserves an

isometrically embedded copy of Hp in X (where p is the number of positive eigenvalues

of Md) on which Wd acts as a discrete reflection group with fundamental chamber C a

right-angled polyhedron (see [Vin85] for a more general discussion). If moreover d > 1,

then no two walls of C are asymptotic, so that the map ωd is indeed a quasi-isometric

embedding (see, for instance, [DH13, Theorem 4.7]; it is enough to check this condition

only for the codimension-1 faces of C because C is right-angled). Since it admits a convex

cocompact action on Hp, the group W is necessarily Gromov hyperbolic in this case. More

generally, Danciger, Guéritaud, and Kassel [DGK18] show that the representation σd is

Anosov whenever d > 1 and W is Gromov hyperbolic; in particular, the answer to

Question 4.0.2 is positive for such W .

A group is said to be compact special if it is the fundamental group of a compact

nonpositively curved cube complex that is A-special in the sense of Haglund and Wise

[HW08, Definition 3.2]. Haglund and Wise show that such a cube complex Y admits a

local isometry f : Y → Y ′ into a compact nonpositively curved cube complex Y ′ whose

fundamental group is a right-angled Artin group. The map f lifts to a π1(Y )-equivariant

embedding of the universal cover Ỹ of Y as a convex subcomplex of the universal cover Ỹ ′

of Y ′. It thus follows from compactness of Y that the map π1(Y ) → π1(Y ′) induced

by f embeds π1(Y ) as an undistorted (i.e., quasi-isometrically embedded) subgroup of

the right-angled Artin group π1(Y ′). Since a finitely generated right-angled Artin group

embeds as a finite-index, hence undistorted, subgroup of a finitely generated right-angled



63

Coxeter group [DJ00], and since for n ≥ 3 any orbit map GLn(Z) → Xn given by the

action of GLn(Z) on the symmetric space Xn of GLn(R) is a quasi-isometric embedding

[LMR00, Theorem A], we obtain that a positive answer to Question 4.0.2 (even just for

some integer d ≥ 2) implies one for the following question suggested to us by Konstantinos

Tsouvalas.

Question 4.0.3. Does every virtually compact special group embed as an undistorted

subgroup of GLn(Z) for some n?

4.0.2 Precompact embeddings of rank-one lattices

We showed in Chapter 2 that a finitely generated subgroup Γ of a compact Lie group

acts properly by semisimple isometries on a complete CAT(0) space (Corollary 2.0.3).

The classical examples of groups possessing the latter property are fundamental groups

of closed nonpositively curved Riemannian manifolds. However, even among such exam-

ples can be found groups that do not embed into compact Lie groups. Indeed, it is a

consequence of Margulis superrigidity that there are closed nonpositively curved locally

symmetric spaces of real rank at least 2 whose fundamental groups do not admit infinite-

image morphisms into compact Lie groups (see, for instance, [Mor15, Warning 16.4.3]).

However, the following question appears to be unresolved.

Question 4.0.4. Is there an irreducible symmetric space X of real rank 1 and a cocompact

lattice Γ in Isom(X) such that Γ does not embed in a compact Lie group?

Note that if we drop the cocompactness assumption, then we may take X to be a

complex hyperbolic space of complex dimension at least 2 and Γ to be any noncocom-

pact lattice in Isom(X) since such Γ contain non-virtually-abelian nilpotent subgroups,

whereas solvable subgroups of compact Lie groups are virtually abelian (the most efficient

way to conclude the latter is to apply the Lie–Kolchin–Malcev theorem; see, for instance,

[KM79, Theorem 21.1.5]).

We remark briefly on the case X = Hn, where Hn is the real hyperbolic space of

dimension n. Recall the remarkable fact that all cocompact lattices in Isom(H3) are
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virtually special (see Remark 1.2.7) and hence embed in compact Lie groups (prior work of

Wise [Wis09] showed that the noncocompact lattices are also virtually special). Bergeron

and Wise [BW12] showed that many arithmetic lattices in Isom(Hn) for arbitrary n are

virtually special. Indeed, Wise has conjectured that all cocompact lattices in Isom(Hn) for

any n are cocompactly cubulated [Wis14, Conjecture 13.52], and hence virtually special

by Agol’s theorem [AGM13].

In the case that X is a quaternionic hyperbolic space of quaternionic dimension at

least 2, all lattices in Isom(X) are arithmetic [Cor92, GS92] and all cocompact lattices

in Isom(X) may be Galois conjugated into compact Lie groups [EK18, Prop. 2.8]. We

expect the same is true in the case that X is the Cayley hyperbolic plane. This suggests

that, if Question 4.0.4 has an affirmative answer, it would perhaps be useful to examine

the case that X is a complex hyperbolic space CHn of complex dimension n ≥ 2. By a

result of Py [Py13], cocompact lattices in Isom(CHn) are not virtually special. Perhaps

there are cocompact lattices Γ in Isom(CHn) that are “superrigid” in a strong enough

sense to imply that Γ admits no infinite-image morphisms to compact Lie groups, as is

the case for some higher-rank lattices.

4.0.3 Unipotents and Q-linearity

By Theorem 2.0.2, any finitely generated subgroup Γ < SLn(C) containing no nontrivial

unipotents acts properly on a finite product of Euclidean buildings Bi and symmetric

spaces of noncompact type. In the case that the entry field of Γ is a number field, one

can moreover choose each of the Bi to be locally finite via an embedding of Γ in an S-

arithmetic lattice. That being said, we are not aware of a unipotent-free finitely generated

subgroup of SLn(C) that does not embed as a unipotent-free subgroup of SLm(Q).

Question 4.0.5. Let Γ be a finitely generated subgroup of SLn(C) lacking nontrivial

unipotents. Is Γ linear over Q? Does Γ even embed as a subgroup of SLm(Q) without

nontrivial unipotents for some m?

Remark 4.0.6. We remark that Q-linearity is the same as Q-linearity for finitely gen-

erated groups. Indeed, if Γ is a finitely generated subgroup of SLn(Q) then the entry
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field E of Γ is a number field of degree, say, d over Q. We now have an embedding

ρ : SLn(E) → GLnd(Q) given by restriction of scalars. This map can be chosen so

that ρ(SLn(OE)) ⊂ GLnd(Z), where OE is the ring of integers of E. Moreover, given

g ∈ GLn(E), each eigenvalue of g appears as an eigenvalue of ρ(g) (since, for instance,

the minimal polynomial of ρ(g) annihilates g), so that if g is not unipotent, neither is ρ(g).

Question 4.0.5 is motivated in part by the observation that certain classical exam-

ples of finitely generated unipotent-free matrix groups satisfy some notion of stability

that implies that they may be realized as unipotent-free matrix groups with algebraic

entries. For instance, if Γ < SL2(C) is convex cocompact, then there is a neighborhood U

of the inclusion Γ → SL2(C) in Hom(Γ, SL2(C)) consisting entirely of faithful convex

cocompact representations [Mar74, Sul85]. Now Hom(Γ, SL2(C)) may be viewed as an

algebraic variety defined over Q whose Q-points correspond to those representations with

image in SL2(Q), so that representations of the latter kind are topologically dense in

Hom(Γ, SL2(C)) (see, for instance, [BG08, Lemma 3.2]). It follows that there is a rep-

resentation ρ ∈ U such that ρ(Γ) ⊂ SL2(Q), and since ρ ∈ U , we have that ρ maps no

nontrivial element of Γ to a unipotent.

Remark 4.0.7. One can replace SL2(C) in the previous paragraph with SLn(C) and

“convex cocompact” with “Anosov”; stability in this context was established by Guichard

and Wienhard [GW12, Theorem 1.2]. (To be more precise, Guichard and Wienhard show

that the subset of Hom(Γ, SLn(C)) consisting of the Anosov representations is open. Since

Anosov representations have finite kernel, since finite subgroups of SLn(C) are locally

rigid, and since Gromov hyperbolic groups possess finitely many conjugacy classes of

finite subgroups [BG95], we obtain that any representation Γ→ SLn(C) sufficiently close

to the inclusion is simultaneously faithful and Anosov.) The Anosov subgroups of SLn(C)

include, for instance, the convex cocompact subgroups of SU(n − 1, 1) (this is apparent

from, say, Corollary 2.20 in [GGKW17] together with characterization (4) of Anosovity in

Theorem 1.3 of the same paper), which in turn include all convex cocompact subgroups

of SO(n− 1, 1).

Remark 4.0.8. It is worth pointing out that all convex cocompact—indeed, all geo-
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metrically finite—subgroups of SL2(C) are virtually special; see [Wis21, Section 17.c]

and Remark 1.2.7. Hence, such groups can even be realized as unipotent-free groups

of integer matrices by the proof of Theorem 1.0.1 and Remark 4.0.6. (By the density

conjecture [NS12], we in fact need not require geometric finiteness, only discreteness and

finite generation.)

As an example of a finitely generated C-linear group that is not Q-linear, consider

the subgroup T < SL2(C) generated by the matrices1 1

0 1

 ,

t 0

0 t−1

 ,

where t ∈ C is transcendental. The group T has infinite cohomological dimension as

its upper unitriangular subgroup is free abelian of infinite rank, and hence T is not lin-

ear over Q [Ser71, Théorème 5]. The existence of finitely generated abelian unipotent

subgroups of arbitrarily large rank is in fact the only obstruction to finite virtual coho-

mological dimension for finitely generated subgroups of SLn(C) [AS82].

Button observed that, by an argument of Shalen [Sha79], a free product of two

unipotent-free subgroups of SLn(C) embeds as a unipotent-free subgroup of SLn+1(C)

[But17a, Proposition 2.5(iv)] . However, this argument employs transcendentals. We

propose the following subquestion of Question 4.0.5.

Question 4.0.9. Is SO5(Z[1
5
]) ∗ (Z/2) linear over Q? Does SO5(Z[1

5
]) ∗ (Z/2) embed as

a unipotent-free subgroup of SLn(Q) for some n?

We have chosen the factor SO5(Z[1
5
]) because it is not virtually special (see Remark

1.2.10). Recall that a free product of two virtually special groups is again virtually special

(Lemma 1.2.4) and hence can be realized as a unipotent-free group of integer matrices.

Question 4.0.9 may also be regarded as a subquestion of the following question.

Question 4.0.10. Let K be a field and Γ1,Γ2 finitely generated subgroups of SLn(K).

If K ′ is an extension of K and m ≥ n, regard the Γi also as subgroups of SLm(K ′) by

adding 1’s on the diagonal, and given g ∈ GLm(K ′), let ρg : Γ1 ∗ Γ2 → SLm(K ′) be the
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representation whose restriction to the factor Γ1 is the inclusion and whose restriction

to the factor Γ2 is the inclusion postconjugated by the element g. Is there an algebraic

extension K ′ of K, some m ≥ n, and an element g ∈ GLm(K ′) such that ρg(γ) is not

unipotent for any element γ ∈ Γ1 ∗ Γ2 not conjugate into either of the Γi?

4.0.4 Type-N elements

We suggest the following definition.

Definition 4.0.11. An element γ of a group Γ is of type N (for “neutral”) if |γ|X = 0

for every isometric action of Γ on a complete π-visible CAT(0) space X.

We will mainly be interested in the case where Γ is finitely generated.

We record several facts about type-N elements (compare the discussion on VU ele-

ments in the introduction of Chapter 3).

(1) If γ ∈ Γ is of type N, then any element of Γ that is conjugate to γ is also of type N

since translation length is constant on conjugacy classes. If M is a connected

manifold and c is a closed curve in M , we will say c is of type N if some (hence

every) element of π1(M) representing c is of type N.

(2) If γ, γ′ ∈ Γ are commensurable, then γ is of type N if and only if the same holds

for γ′. This is a direct consequence of Lemma 2.1.1.

(3) An abelian subgroup of Γ generated by type-N elements consists entirely of type-N

elements [Duc15, Lemma 6.3].

(4) If H is a finite-index subgroup of Γ and γ ∈ Γ is of type N in Γ, then a generator γ0

of 〈γ〉 ∩ H is of type N in H. Indeed, assume first that H is normal in Γ, let

n = [Γ : H], and suppose H acts isometrically on a complete π-visible CAT(0)

space X. We may induce the action of H on X to an action of Γ on Xn whose

restriction to H is diagonal and contains the original action of H on X as a factor

[KL96, Section 2.1]. Thus, if γ ∈ Γ acts neutrally on Xn, then so does γ0, and so γ0

must act neutrally on the factor X. This justifies our claim in the case that H is
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normal; for an arbitrary finite-index subgroup H < Γ, we may pass to the normal

core of H in Γ to reduce to the above case, and then apply (2).

(5) Finite-order elements are of type N. This is clear from Lemma 2.1.1. Indeed, by

the Bruhat–Tits fixed point theorem [Bro98, Section VI.4], it is even true that any

finite-order isometry of a complete CAT(0) space fixes a point in the space.

(6) If Γ is finitely generated and γ ∈ Γ generates a distorted subgroup of Γ, then γ is an

infinite-order element of type N in Γ. This follows from Lemma 2.1.1 and the fact

that if Γ acts on a metric space X, then any orbit map Γ→ X is Lipschitz (here Γ

is endowed with the word metric induced by any finite generating set for Γ).

We are interested in type-N elements because of the following observation.

Proposition 4.0.12. A type-N element of a finitely generated group is VU.

Proof. This follows immediately from Theorem 2.0.2, but here is a more direct argument.

Let Γ be a finitely generated group and suppose γ ∈ Γ is not VU. Then there is some

algebraically closed field F and a representation ρ : Γ → SLn(F) such that ρ(γ) has an

eigenvalue λ of infinite order in F∗. Since Γ is finitely generated, we have that ρ(Γ) ⊂

SLn(F′) for some finitely generated subfield F′ ⊂ F, and we may assume F′ contains the

eigenvalues of ρ(γ). By [Tit72, Lemma 4.1], we can embed F′ in a local field K endowed

with an absolute value | · | such that |λ| 6= 1. Now Γ acts on the symmetric space or

Bruhat–Tits building X associated to SLn(K) via SLn(F′) ⊂ SLn(K), and the element γ

acts ballistically on X. We conclude that γ is not of type N.

In particular, a finitely generated group containing an infinite-order type-N element

does not embed in a compact Lie group, nor is such a group linear over a field of positive

characteristic (see Remarks 2.0.4 and 3.0.8, respectively).

Many of the examples of VU elements discussed in the introduction of Chapter 3 are in

fact of type N. The following proposition is implicit in the proof of [Bri10, Theorem 2.6];

it implies for instance that a Seifert fiber of the unit tangent bundle of a closed hyperbolic

surface, and Dehn twists in (most) mapping class groups, are of type N.
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Proposition 4.0.13. Let X be a complete CAT(0) space and suppose γ ∈ Isom(X) is

contained in [ZIsom(X)(γ),ZIsom(X)(γ)]. Then |γ|X = 0.

Proof. Suppose |γ|X > 0. Denote by ξ the canonical attracting fixed point of γ on ∂X,

by Isom(X)ξ the stabilizer of ξ in Isom(X), and by βξ : Isom(X)ξ → R the Busemann

character associated to ξ (see [CM09, page 673]). We have that ZIsom(X)(γ) ⊂ Isom(X)ξ

and |βξ(γ)| = |γ|X 6= 0. Since βξ is a homomorphism to the abelian group R, this implies

that γ /∈ [ZIsom(X)(γ),ZIsom(X)(γ)].

The preceding discussion implies that a closed aspherical 3-manifold M admitting a

Thurston geometry is NPC if and only if M does not possess an essential type-N curve.

Question 4.0.14. Are the VU elements identified in the proof of Theorem 3.0.7 in fact

of type N?

We can even ask the following bolder question.

Question 4.0.15. Is a closed aspherical 3-manifold NPC if and only if it lacks an es-

sential type-N curve?

This amounts to asking whether each non-NPC graph manifold contains an essential

type-N curve.

In [But17a, Theorem 4.5], Button shows that if g, h are commuting elements of a

group Γ such that h, gh, and g2h are all conjugate, then g is VU in Γ. He uses this to

show that Gersten’s free-by-cyclic group H contains a nontrivial (hence infinite-order) VU

element. We prove that, under the same conditions, the element g is of type N in Γ. By

Proposition 4.0.12, this implies Button’s result in the case that Γ is finitely generated.

Our argument resembles Gersten’s proof that the group H does not act properly and

cocompactly on a CAT(0) space [Ger94, Proposition 2.1].

Proposition 4.0.16. Let X be a complete π-visible CAT(0) space and g, h commuting

isometries of X. If h, gh, and g2h are all conjugate within Isom(X), then |g|X = 0.

Lemma 4.0.17. Let Z be a CAT(0) space and g, h commuting isometries of Z with |g|Z = 0.

Then |h|Z = |gh|Z.
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Proof. Fix z ∈ Z and observe that for each positive integer n, we have

d((gh)nz, z) = d(gnhnz, z) ≤ d(gnhn, gnz) + d(gnz, z) = d(hnz, z) + d(gnz, z)

and

d(hnz, z) = d(gnhn, gnz) ≤ d(gnhn, z) + d(z, gnz) = d((gh)nz, z) + d(z, gnz)

so that

d(hnz, z)− d(gnz, z) ≤ d((gh)nz, z) ≤ d(hnz, z) + d(gnz, z). (4.1)

Dividing (4.1) by n and taking limits as n → ∞ gives the desired identity by Lemma

2.1.1.

Proof of Proposition 4.0.16. Suppose |g|X > 0. Then there is a closed convex sub-

space Y ⊂ X and a decomposition Y = Z × R as in the statement of Theorem 2.1.2,

giving maps ZIsom(X)(g) → Isom(Z) and ZIsom(X)(g) → R. For any γ ∈ ZIsom(X)(g),

denote by γZ and γR the images of γ under the first and second maps, respectively. We

have

|h|2X = |hZ |2Z + h2
R,

|gh|2X = |gZhZ |2Z + (gR + hR)2,

|g2h|2X = |g2
ZhZ |2Z + (2gR + hR)2,

and these quantities are all equal since h, gh, and g2h are all conjugate within Isom(X).

Moreover, since g and h commute and |gZ |Z = 0, we have

|hZ |Z = |gZhZ |Z = |g2
ZhZ |Z

by Lemma 4.0.17. Thus, we have h2
R = (gR + hR)2 = (2gR + hR)2, and so 0 = |gR| = |g|X ,

a contradiction.

Remark 4.0.18. Piotr Przytycki has suggested that it might be possible to dispense with

the π-visibility assumption in Proposition 4.0.16 by replacing the action of ZIsom(X)(g)

on Y with the so-called horoaction of Isom(X)ξ ⊃ ZIsom(X)(g), where ξ ∈ ∂X is the

canonical attracting fixed point of g (see [CM13, Section 3.1]). We have not pursued this

here.
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Type-N elements are not the only examples of VU elements of finitely generated

groups. Indeed, if Γ is a Burger–Mozes group [BM97], then every element of Γ is VU

since all finite-dimensional linear representations of Γ are trivial, but Γ is a torsion-

free group acting properly and cocompactly on a product X of two trees, so that each

nontrivial element of Γ acts ballistically (indeed, hyperbolically) on X. However, we are

not aware of an answer to the following question.

Question 4.0.19. Is there a finitely generated linear group containing a VU element that

is not of type N?
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Coxeter, Compositio Mathematica 140 (2004), no. 5, 1357–1366.

[BdlHV08] Bachir Bekka, Pierre de la Harpe, and Alain Valette, Kazhdan’s property

(T), New Mathematical Monographs, vol. 11, Cambridge University Press,

Cambridge, 2008. MR 2415834
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[BH99] Martin R Bridson and André Haefliger, Metric Spaces of Non-Positive Cur-

vature, vol. 319, Springer, 1999.

[BHC62] Armand Borel and Harish-Chandra, Arithmetic subgroups of algebraic

groups, Ann. of Math. (2) 75 (1962), 485–535. MR 147566

73



Bibliography 74

[BK95] Sergey V Buyalo and Viktor L Kobel’skii, Geometrization of graph-manifolds.

II. Isometric geometrization, Algebra i Analiz 7 (1995), no. 3, 96–117.

[BL20] Samuel A Ballas and Darren D Long, Constructing thin subgroups of SL(n+

1,R) via bending, Algebr. Geom. Topol. 20 (2020), no. 4, 2071–2093. MR

4127090

[BM97] Marc Burger and Shahar Mozes, Finitely presented simple groups and

products of trees, Comptes Rendus de l’Académie des Sciences-Series I-

Mathematics 324 (1997), no. 7, 747–752.

[Bor60] Armand Borel, Density properties for certain subgroups of semi-simple groups

without compact components, Ann. of Math. (2) 72 (1960), 179–188. MR

123639

[Bri10] Martin R Bridson, Semisimple actions of mapping class groups on CAT(0)

spaces, Geometry of Riemann surfaces 368 (2010), 1–14.

[Bro98] Kenneth S Brown, Buildings, Springer Monographs in Mathematics,

Springer-Verlag, New York, 1998, Reprint of the 1989 original. MR 1644630

[BTD85] Theodor Bröcker and Tammo Tom Dieck, Representations of Compact Lie

Groups, vol. 98, Springer, 1985.

[But17a] Jack O Button, Free by cyclic groups and linear groups with restricted unipo-

tent elements, Groups Complexity Cryptology 9 (2017), no. 2, 137–149.

[But17b] , Properties of linear groups with restricted unipotent elements, arXiv

preprint arXiv:1703.05553 (2017).

[But19] , Aspects of non positive curvature for linear groups with no infinite

order unipotents., Groups, Geometry, and Dynamics 13 (2019), no. 1, 277–

293.

[BW12] Nicolas Bergeron and Daniel T Wise, A boundary criterion for cubulation,

American Journal of Mathematics 134 (2012), no. 3, 843–859.



75 Bibliography

[Cas86] John W S Cassels, Local fields, London Mathematical Society Student Texts,

vol. 3, Cambridge University Press, Cambridge, 1986. MR 861410

[CF19] Daryl Cooper and David Futer, Ubiquitous quasi-Fuchsian surfaces in cusped

hyperbolic 3-manifolds, Geom. Topol. 23 (2019), no. 1, 241–298. MR 3921320

[CM09] Pierre-Emmanuel Caprace and Nicolas Monod, Isometry groups of non-

positively curved spaces: structure theory, J. Topol. 2 (2009), no. 4, 661–700.

MR 2574740

[CM13] , Fixed points and amenability in non-positive curvature, Math. Ann.

356 (2013), no. 4, 1303–1337. MR 3072802

[Cor92] Kevin Corlette, Archimedean superrigidity and hyperbolic geometry, Ann. of

Math. (2) 135 (1992), no. 1, 165–182. MR 1147961

[Dav08] Michael W Davis, The geometry and topology of Coxeter groups, London

Mathematical Society Monographs Series, vol. 32, Princeton University

Press, Princeton, NJ, 2008. MR 2360474
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[Wei60] André Weil, On discrete subgroups of Lie Groups, Annals of Mathematics 72

(1960), no. 2, 369–384.

[Wei62] , On discrete subgroups of Lie groups (II), Annals of Mathematics 75

(1962), no. 3, 578–602.

[Wis09] Daniel T Wise, Research announcement: the structure of groups with a qua-

siconvex hierarchy, Electronic Research Announcements 16 (2009), 44.



81 Bibliography

[Wis14] , The cubical route to understanding groups, Proceedings of the In-

ternational Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon

Sa, Seoul, 2014, pp. 1075–1099. MR 3728653

[Wis21] , The structure of groups with a quasiconvex hierarchy, Annals of

Mathematics Studies, vol. 209, Princeton University Press, Princeton, NJ,

[2021] c©2021. MR 4298722

[Yau71] Shing Tung Yau, On the fundamental group of compact manifolds of non-

positive curvature, Annals of Mathematics (1971), 579–585.


	Introduction
	Precompact embeddings of right-angled Coxeter groups
	Thin right-angled Coxeter groups
	Precompact embeddings of 3-manifold groups

	Proper CAT(0) actions of unipotent-free matrix groups
	Preliminaries
	Complete CAT(0) spaces
	Isometries of complete CAT(0) spaces
	Thick flats

	Lemmata
	Proofs of Theorems 2.0.2 and 2.0.6

	VU curves in some non-NPC graph manifolds
	Preliminaries
	Definitions
	Basic lemmas

	Proof of Theorem 3.0.7

	Conclusion
	Unipotent-free right-angled Coxeter groups
	Precompact embeddings of rank-one lattices
	Unipotents and Q-linearity
	Type-N elements



