A HYPERBOLIC LATTICE IN EACH DIMENSION WITH ZARISKI-DENSE SURFACE SUBGROUPS

SAMI DOUBA

ABSTRACT. For each integer $n \geq 3$, we exhibit a nonuniform arithmetic lattice in SO(n, 1) containing Zariski-dense surface subgroups.

It follows from a straightforward ping pong argument that any lattice in SO(n, 1), $n \geq 2$, contains a Zariski-dense copy of a noncocompact discrete subgroup of SO(2, 1), namely, a Zariski-dense free subgroup (this may also be seen as a consequence of the Borel density theorem [Bor60, Corollary 4.3] and [Tit72, Theorem 3]). It is thus natural to look for Zariski-dense subgroups of lattices in SO(n, 1) that are isomorphic to cocompact discrete subgroups of, that is, uniform lattices in, SO(2, 1); the latter are virtually fundamental groups of closed hyperbolic surfaces. We refer to fundamental groups of such surfaces as surface groups.

While nonuniform lattices in SO(2, 1) are virtually free and hence do not possess surface subgroups, it is expected that any lattice in SO(n, 1) for $n \ge 3$ contains surface subgroups, and even Zariski-dense such subgroups. This has been established for n = 3 by Cooper, Long, and Reid [CLR97] in the nonuniform case (see also [CF19, KW21]) and by Kahn and Markovic [KM12] in the uniform case; and for odd $n \ge 3$ by Hamenstädt [Ham15] (see also [KLM18]) in the uniform case. However, while some standard constructions of closed arithmetic hyperbolic manifolds of arbitrary dimension contain immersed totally geodesic surfaces (see, for instance, [Ben04, Example 8]), the author was not aware of an example in the literature of a lattice in SO(n, 1) for each $n \ge 3$ containing Zariski-dense surface subgroups. The purpose of this note is to present such an example in each dimension.

Theorem 1. For each $n \ge 3$, there is a nonuniform arithmetic lattice in SO(n, 1) containing Zariski-dense surface subgroups.

Before we proceed, we fix some notation. Given an integer $n \geq 1$, a subdomain $D \subset \mathbb{R}$, and a symmetric matrix $Q \in M_{n+1}(D)$ of signature (n, 1), we denote by O(Q; D) (resp., SO(Q; D)) the set of all matrices $g \in GL_{n+1}(D)$ (resp., $g \in SL_{n+1}(D)$) satisfying $g^T Q g = Q$. The hypersurface of \mathbb{R}^{n+1} consisting of all $x \in \mathbb{R}^{n+1}$ satisfying $x^T Q x = -1$ is a two-sheeted hyperboloid; we denote by O'(Q; D) the subgroup of O(Q; D) preserving each sheet. When Q is the standard form diag $(1, \ldots, 1, -1)$, we write O(n, 1) (resp., SO(n, 1), O'(n, 1)) in the place of $O(Q; \mathbb{R})$ (resp., $SO(Q; \mathbb{R})$, $O'(Q; \mathbb{R})$). We view O'(n, 1) as the isometry group of n-dimensional real hyperbolic space \mathbb{H}^n via the hyperboloid model of the latter.

We now proceed to the examples. For $m \geq 3$, let $K_m \in M_m(\mathbb{Z})$ be the matrix all of whose entries are equal to 1; let $B_m \in M_m(\mathbb{Z})$ be the matrix with 2's on the

The author was supported by a public grant as part of the Investissement d'avenir project, FMJH, by LabEx CARMIN, ANR-10-LABX-59-01, and by the National Science Centre, Poland UMO-2018/30/M/ST1/00668.

SAMI DOUBA

diagonal, 1's on the superdiagonal and subdiagonal, and 0's everywhere else; and let $Q_m = B_m - K_m$. What follows is the key observation of this note.

Lemma 2. The symmetric matrix Q_{n+1} has signature (n, 1) for $n \ge 3$.

Proof. The author is grateful to Yves Benoist for the following efficient argument. For m > 0, let $v_m := (1, \ldots, 1)^T \in \mathbb{R}^m$ and let H_{m-1} be the orthogonal complement of $\langle v_m \rangle$ in \mathbb{R}^m with respect to the standard inner product on \mathbb{R}^m . Now let $n \ge 3$. Then $v_{n+1}^T Q_{n+1} v_{n+1} = -n^2 + 2n + 1 < 0$, so it suffices to show that the restriction of Q_{n+1} to H_n is positive-definite. Indeed, since the restriction of the form K_{n+1} to H_n is trivial, we have that the forms Q_{n+1} and B_{n+1} have the same restriction to H_n , so that it is enough to show that B_{n+1} is positive-definite. This is true since we may view B_{n+1} as the matrix representation of the standard inner product on \mathbb{R}^{n+2} restricted to H_{n+1} with respect to the basis $((-1)^{i+1}(e_i - e_{i+1}))_{i=1}^{n+1}$ of H_{n+1} , where (e_1, \ldots, e_{n+2}) is the standard basis for \mathbb{R}^{n+2} .

Proof of Theorem 1. Let $n \geq 3$. By the Borel-Harish-Chandra theorem [BHC62] (and by Lemma 2), we have that $\Lambda_n := O'(Q_{n+1}; \mathbb{Z})$ is a lattice in $O(Q_{n+1}; \mathbb{R})$. As will become clear in the course of the proof, the lattice Λ_n is nonuniform. We show that Λ_n contains a Zariski-dense subgroup isomorphic to a cocompact lattice in O'(2, 1) generated by the reflections in the sides of a hyperbolic right-angled 2ngon. This will complete the proof since Q_{n+1} has signature (n, 1) by Lemma 2.

To that end, let $(W_n, (s_1, \ldots, s_{n+1}))$ be the right-angled Coxeter system associated to the matrix Q_{n+1} ; that is, let W_n be the right-angled Coxeter group given by the presentation with generators s_1, \ldots, s_{n+1} subject to the relations $s_i^2 = 1$ for $i = 1, \ldots, n+1$ and $[s_i, s_j] = 1$ whenever the $(i, j)^{\text{th}}$ entry of Q_{n+1} is 0 (in our case, the latter happens exactly when |i-j| = 1). The image Γ_n of the Tits representation $\rho_n : W_n \to \text{SL}_{n+1}^{\pm}(\mathbb{R})$ associated to the Coxeter system $(W_n, (s_1, \ldots, s_{n+1}))$ lies in Λ_n and is Zariski-dense in $O(Q_{n+1};\mathbb{R})$ [BdlH04]. Interpreting $O'(Q_{n+1};\mathbb{R})$ as the group of conformal diffeomorphisms of $\mathbb{S}^{n-1} = \partial \mathbb{H}^n$ by conjugating $O(Q_{n+1};\mathbb{R})$ to O(n, 1) within $\text{GL}_{n+1}(\mathbb{R})$, we have that $\gamma_i := \rho_n(s_i)$ is an inversion in a (round) hypersphere S_i of \mathbb{S}^{n-1} for $i = 1, \ldots, n+1$. Moreover, we have that S_i is orthogonal to S_{i+1} for $i = 1, \ldots, n$, and that S_i and S_j are tangent for $1 \le i < j - 1 \le n$. The latter follows from the fact that $\gamma_i \gamma_j$ is nontrivial and unipotent, hence parabolic, for such i and j.

We now visualize \mathbb{S}^{n-1} via stereographic projection onto \mathbb{R}^{n-1} from the tangency point ∞ of S_1 and S_{n+1} . Under this projection, the hyperspheres S_1 and S_{n+1} are parallel hyperplanes of \mathbb{R}^{n-1} , while the remaining hyperspheres are contained in some ball $B \subset \mathbb{R}^{n-1}$. Since the stabilizer $\operatorname{Stab}_{\Lambda_n}(\infty)$ of ∞ in Λ_n contains the reflections γ_1 and γ_{n+1} in the parallel Euclidean hyperplanes S_1 and S_{n+1} , respectively, and since Λ_n is a lattice in $O'(Q_{n+1};\mathbb{R})$, we must have that $\operatorname{Stab}_{\Lambda_n}(\infty)$ is a lattice in $\operatorname{Isom}(\mathbb{R}^{n-1})$ by the Margulis lemma (see, for instance, [BP92, Prop. D.2.6]). In particular, there is some translation $\sigma \in \operatorname{Stab}_{\Lambda_n}(\infty)$ with nontrivial S_1 -component, and so $\tau := (\gamma_1 \sigma \gamma_1) \sigma$ is a nontrivial translation parallel to S_1 (and S_{n+1}). We now replace τ with a sufficiently high power so that $B \cap \tau(B) = \emptyset$. Appropriately defined, the common exterior of the hyperspheres S_1, \ldots, S_{n+1} and their images under τ produce a Coxeter polytope in \mathbb{H}^n with the correct dihedral angles so that $\langle \Gamma_n, \tau \Gamma_n \tau^{-1} \rangle < \Lambda_n$ is isomorphic to the right-angled 2n-gon group (see, for example, the introduction of [Vin85]).

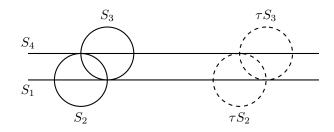


FIGURE 1. Visualizing the case n = 3. The sphere \mathbb{S}^2 is stereographically projected onto the plane from the tangency point of the circles S_1 and S_4 , so that S_1 and S_4 project to parallel lines. Up to a Euclidean similarity, the circles S_i are as in the figure. Zariskidensity in $O(Q_4; \mathbb{R})$ of the subgroup Γ_3 can be deduced from the fact that no vertical line is orthogonal to both S_2 and S_3 . Any lattice in O'(3, 1) containing the inversions in the S_i also contains inversions in two circles resembling the dashed circles above; the latter represent the images of S_2 and S_3 under a horizontal translation τ of large magnitude. The subgroup of O'(3, 1) generated by the inversions in the above six circles is (abstractly) a right-angled hexagon group. Extending each circle S_i to a sphere S'_i in \mathbb{S}^3 orthogonal to the page, and denoting by S'_5 the Euclidean plane parallel to the page and resting on top of S'_2 and S'_3 , we have that the subgroup of O'(4, 1) generated by the inversions in S'_1, \ldots, S'_5 is (conjugate to) the right-angled pentagon group Γ'_4 in Remark 7.

Remark 3. A ping pong argument following [Mas88, Section VII.E] demonstrates that in fact $\langle \Gamma_n, \tau \rangle < \Lambda_n$ decomposes as the HNN extension $\Gamma_n *_{\langle \gamma_1, \gamma_{n+1} \rangle}$ given by the identity map on $\langle \gamma_1, \gamma_{n+1} \rangle$.

Remark 4. The surface subgroups produced above are geometrically finite but are not convex cocompact since they contain parabolics. They are also automatically thin in the sense of Sarnak [Sar14] since a surface group cannot be realized as a lattice in O'(n, 1) for $n \ge 3$ (for instance, because the outer automorphism group of such a lattice is finite by Mostow–Prasad rigidity [Mos68, Pra73]).

Remark 5. In this remark, we use the language of Coxeter schemes following [Vin85, Section II.5]. To justify Zariski-density of Γ_n , and hence $\langle \Gamma_n, \tau \Gamma_n \tau^{-1} \rangle$, in $O(Q_{n+1}; \mathbb{R})$, we appealed to the general result of Benoist and de la Harpe [BdlH04], which asserts in particular that if the Gram matrix Q of a finite connected Coxeter scheme Σ with no dotted edges is nondegenerate, then the Tits representation of the associated Coxeter group is Zariski-dense in $O(Q; \mathbb{R})$. When Q has a single negative eigenvalue (as is the case for $Q = Q_{n+1}, n \geq 3$, by Lemma 2), so that Q is the Gram matrix of a hyperbolic Coxeter polytope [Vin85, Theorem 2.1], this also follows from the fact that, for $n \geq 2$, if $P \subset \mathbb{H}^n$ is an irreducible Coxeter polytope with finitely many bounding hyperplanes Π_i , then the subgroup of O'(n, 1) generated by the reflections in the Π_i is Zariski-dense in O(n, 1) if and only if the Π_i do not all share a point in $\mathbb{H}^n \cup \partial \mathbb{H}^n$ or a common orthogonal hyperplane in \mathbb{H}^n (see, for instance, [DSO01, Theorem 1.3]), which holds if and only if the Gram matrix of P has rank n + 1 [Vin85, Section I.1].

SAMI DOUBA

We remark that if all the edges of the Coxeter scheme Σ are bold (in other words, if the entries of Q are contained in $\{-1, 0, 1\}$, as is true for $Q = Q_{n+1}$), then the argument of Benoist and de la Harpe simplifies. For an outline of their argument in this case, see the proof of Lemma 2 in [Dou22].

Remark 6. Let $n \geq 4$. We have demonstrated that Λ_n contains a Zariski-dense copy of the right-angled 2n-gon group, but it is even true that Λ_n contains a Zariski-dense copy of the right-angled 2(n-1)-gon group. Indeed, by Lemma 2 and Remark 5, there is a unique hypersphere $S \subset \mathbb{S}^{n-1}$ that is simultaneously orthogonal to S_1, \ldots, S_n . We visualize \mathbb{S}^{n-1} via stereographic projection onto \mathbb{R}^{n-1} from the tangency point of S_1 and S_n . Under this projection, the hyperspheres S, S_1 , and S_n are hyperplanes of \mathbb{R}^{n-1} , while S_2, \ldots, S_{n-1} are Euclidean (n-2)-spheres. As in the proof of Theorem 1, there is some Euclidean translation in Λ_n that is not parallel to S, and hence some Euclidean translation in Λ_n that is not parallel to S. For a sufficiently high power τ' of the latter translation, we have that $\langle \gamma_1, \gamma_2, \ldots, \gamma_n, \tau' \gamma_{n-1} \tau'^{-1}, \tau' \gamma_{n-2} \tau'^{-1}, \ldots, \tau' \gamma_2 \tau'^{-1} \rangle < \Lambda_n$ is a right-angled 2(n-1)-gon group. Moreover, by Remark 5, this subgroup of Λ_n is Zariski-dense in O(n, 1) since there is no hypersphere in \mathbb{S}^{n-1} that is simultaneously orthogonal to $S_1, S_2, \ldots, S_n, \tau' S_{n-1}, \tau' S_{n-2}, \ldots, \tau' S_2$.

Remark 7. There are more efficient examples in even dimensions. Indeed, let $n \geq 4$, and $Q'_{n+1} \in \mathcal{M}_{n+1}(\mathbb{Z})$ be the matrix obtained from Q_{n+1} by replacing the top-right and bottom-left entries with 0's. Let $(W'_n, (t_1^{(n)}, \ldots, t_{n+1}^{(n)}))$ be the right-angled Coxeter system associated to Q'_{n+1} , so that W'_n is a right-angled (n+1)-gon group. The associated Tits representation $\rho'_n : W'_n \to \mathrm{SL}^\pm_{n+1}(\mathbb{R})$ realizes W'_n as a subgroup Γ'_n of $\mathcal{O}(Q'_{n+1};\mathbb{Z})$ in $\mathcal{O}(Q'_{n+1};\mathbb{R})$. If n is even, then Q'_{n+1} has signature (n,1) [Dou22, Example 4], and so again by [BdlH04] (or Remark 5), we have that Γ'_n is Zariskidense in $\mathcal{O}(Q'_{n+1};\mathbb{R})$. In this manner (alternatively, via Remark 6), one for instance obtains a nonuniform arithmetic lattice in $\mathrm{SO}(4,1)$ containing a Zariski-dense copy of the fundamental group of a closed orientable genus-2 surface.

Now suppose instead that n is odd. Then Q'_{n+1} has signature (n-1,1,1), with kernel spanned by the vector $u_{n+1} := ((-1)^i)_{i=0}^n \in \mathbb{R}^{n+1}$. Note that Γ'_n is contained in the stabilizer G_n of u_{n+1} in $O(Q'_{n+1};\mathbb{R})$. Denoting by V_n the quotient of \mathbb{R}^{n+1} by the span of u_{n+1} , by $\overline{Q'_{n+1}}$ the form induced on V_n by Q'_{n+1} , and by $O(\overline{Q'_{n+1}})$ the group of linear automorphisms of V_n preserving the form $\overline{Q'_{n+1}}$, we have a natural map $G_n \to O(\overline{Q'_{n+1}})$. Since Q_n is the matrix representation of the form $\overline{Q'_{n+1}}$ with respect to the basis $(\overline{e_1}, \ldots, \overline{e_n})$ for V_n , where $\overline{e_i}$ is the image in V_n of the *i*th standard basis vector for \mathbb{R}^{n+1} , we may identify $O(\overline{Q'_{n+1}})$ with $O(Q_n;\mathbb{R})$ to obtain a map $\pi_n : G_n \to O(Q_n;\mathbb{R})$; explicitly, this map sends a matrix $A = (a_{i,j})_{i,j} \in G_n$ to the matrix obtained from A by first adding $a_{n+1,j}u_{n+1}$ to the *j*th column for $1 \leq j \leq n$ and then deleting the final row and column. In particular, we have that $\pi_n(\Gamma'_n) \subset O(Q_n;\mathbb{Z})$ and that $\pi_n(\rho'_n(t_i^{(n)})) = \rho_{n-1}(s_i)$ for $i = 1, \ldots, n$. Moreover, the map π_n is injective on Γ'_n ; see [dC12] and the references therein. The conclusion is that Γ_m is in fact contained in a right-angled (m+2)-gon subgroup of $O(Q_{m+1};\mathbb{Z})$, namely, $\pi_{m+1}(\Gamma'_{m+1})$, for $m \geq 4$ even.

Acknowledgements. I thank Yves Benoist for the proof of Lemma 2. I am grateful to Pierre Pansu for his hospitality during my stay at Université Paris-Saclay, where this note was written, and to Konstantinos Tsouvalas for helpful discussions.

References

- [BdlH04] Yves Benoist and Pierre de la Harpe. Adhérence de Zariski des groupes de Coxeter. Compositio Mathematica, 140(5):1357–1366, 2004.
- [Ben04] Yves Benoist. Five lectures on lattices in semisimple Lie groups. Géométries à courbure négative ou nulle, groupes discrets et rigidités, 18:117–176, 2004.
- [BHC62] Armand Borel and Harish-Chandra. Arithmetic subgroups of algebraic groups. Ann. of Math. (2), 75:485–535, 1962.
- [Bor60] Armand Borel. Density properties for certain subgroups of semi-simple groups without compact components. Ann. of Math. (2), 72:179–188, 1960.
- [BP92] Riccardo Benedetti and Carlo Petronio. Lectures on hyperbolic geometry. Universitext. Springer-Verlag, Berlin, 1992.
- [CF19] Daryl Cooper and David Futer. Ubiquitous quasi-Fuchsian surfaces in cusped hyperbolic 3-manifolds. Geom. Topol., 23(1):241–298, 2019.
- [CLR97] Daryl Cooper, Darren D Long, and Alan W Reid. Essential closed surfaces in bounded 3-manifolds. J. Amer. Math. Soc., 10(3):553–563, 1997.
- [dC12] Yves de Cornulier. Semisimple Zariski closure of Coxeter groups. arXiv preprint arXiv:1211.5635, 2012.
- [Dou22] Sami Douba. Thin right-angled Coxeter groups in some uniform arithmetic lattices. Bulletin of the London Mathematical Society, 2022.
- [DSO01] Antonio J Di Scala and Carlos Olmos. The geometry of homogeneous submanifolds of hyperbolic space. Math. Z., 237(1):199–209, 2001.
- [Ham15] Ursula Hamenstädt. Incompressible surfaces in rank one locally symmetric spaces. Geom. Funct. Anal., 25(3):815–859, 2015.
- [KLM18] Jeremy Kahn, François Labourie, and Shahar Mozes. Surface groups in uniform lattices of some semi-simple groups. arXiv preprint arXiv:1805.10189, 2018.
- [KM12] Jeremy Kahn and Vladimir Markovic. Immersing almost geodesic surfaces in a closed hyperbolic three manifold. Ann. of Math. (2), 175(3):1127–1190, 2012.
- [KW21] Jeremy Kahn and Alex Wright. Nearly Fuchsian surface subgroups of finite covolume Kleinian groups. Duke Math. J., 170(3):503–573, 2021.
- [Mas88] Bernard Maskit. Kleinian groups, volume 287 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1988.
- [Mos68] George D Mostow. Quasi-conformal mappings in *n*-space and the rigidity of hyperbolic space forms. *Publications Mathématiques de l'IHÉS*, 34:53–104, 1968.
- [Pra73] Gopal Prasad. Strong rigidity of Q-rank 1 lattices. Inventiones mathematicae, 21(4):255– 286, 1973.
- [Sar14] Peter Sarnak. Notes on thin matrix groups. In Thin groups and superstrong approximation, volume 61 of Math. Sci. Res. Inst. Publ., pages 343–362. Cambridge Univ. Press, Cambridge, 2014.
- [Tit72] Jacques Tits. Free subgroups in linear groups. J. Algebra, 20:250–270, 1972.
- [Vin85] È. B. Vinberg. Hyperbolic reflection groups. Uspekhi Mat. Nauk, 40(1(241)):29–66, 255, 1985.

McGill University, Department of Mathematics and Statistics $E\text{-}mail \ address: sami.douba@mail.mcgill.ca$