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Lattice models have been introduced as discrete models for real life
experiments. These models have been used to model a large variety of
phenomena, ranging from ferroelectrics to lattice gas. They also provide
discretizations of Euclidean and Quantum Field Theories and are as such
important from the point of view of theoretical physics. While the orig-
inal motivation came from physics, they later appeared to be extremely
complex and rich mathematical objects, whose study provided an area of
cross-fertilization between different fields of mathematics (Algebra, Com-
binatorics, Probability, Complex Analysis, Spectral Theory to cite a few)
and physics (Quantum Field Theory, Condensed Matter Physics, Confor-
mal Field Theory).

The zoo of lattice models is very diverse: it includes models of spin-
glasses, quantum chains, random surfaces, spin systems, interacting per-
colation systems, percolation models, polymers, etc. The special class of
models interesting us here is a family of models of interfaces defined on
planar lattices. These models undergo a phase transition, at which an ex-
traordinary rich behavior occurs. Through two fundamental examples, we
try to illustrate an approach combining probabilistic techniques and ideas
coming from analysis on graphs to describe this behavior.

A first example: the Self-Avoiding-Walk (SAW) The SAW model
was first introduced by Orr in 1947 as a combinatorial puzzle. In 1953,
Nobel prize winner Paul Flory popularized (and rediscovered) SAWs by
proposing it as a mathematical model for the spatial position of polymer
chains. While very simple to define, the SAW has turned out to be a very
interesting model, leading to a rich mathematical theory helping develop
techniques that found applications in many other domains of statistical
physics. To name but a few examples of tools that emerged from the
study of SAWs, the lace expansion technique was developed to understand
the SAW in dimension d > 5, and the Schramm-Loewner Evolution was
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Figure 1: A typical 1000 steps self-avoiding walk.
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Figure 2: A loop configuration in Ê (Ω, a, z) with an interface from a to z.
The dots correspond to the boundary of Ω.

introduced to describe the scaling limit of the 2D loop erased random-walk,
a model directly motivated by the SAW.

Let us describe the model more formally (see [MS93] for more details
and references). Consider the hexagonal lattice H (one may also work with
the square lattice, but some results presented below use some integrability
properties of the model that is specific to the hexagonal lattice). A path is
a sequence of neighboring vertices γ1, . . . , γn. It is self-avoiding if the map
k ↦ γk is one-to-one. For each n, the model is defined by assigning equal
probability to all self-avoiding paths with n vertices starting from 0.

Originally, Flory was interested in the geometric properties of the ran-
dom path. In particular, he focused on the average distance ∥γn∥ between
γn and 0. Via a clever argument, he predicted that this average distance
grows with n roughly like n3/4. This prediction was very important since
it conjectures a behavior which is very different from the random walk.
Interestingly, Flory’s prediction was based on two assumptions which are
not satisfied by the SAW. Nevertheless, destiny can be sweet and the ac-
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tual behavior is indeed n3/4: the two mistakes made by Flory (one for each
assumptions) miraculously cancel each other.

Before discussing the question of the mean-displacement further, let us
step back and focus on Orr’s original contribution to the problem at hand.
In his article, Orr computed the number of SAW (on the square lattice) of
length less or equal to 6. With today’s computers and clever algorithms,
one may be able to enumerate SAWs on the hexagonal lattice up to length
105, but no exact formula giving the number of SAWs of length n in terms
of n seems to emerge from such computations. Nevertheless, some non
trivial things can still be said about the number of SAWs. For instance, a
simple sub-multiplicativity argument (the number of SAWs of length n+m
is smaller than the number of SAWs of length n times the number of SAWs
of length m) implies that the number of SAWs grows exponentially fast,
with a specific rate of growth µc depending on the lattice, and called the
connective constant of the lattice. Much more elaborated physics arguments
provided by the Coulomb gas formalism or Conformal Field Theory refine
this prediction, and suggest that this number is roughly n11/32 ⋅ µnc . Inter-
estingly, µc will not be the same for the square lattice as for the hexagonal
lattice. Nonetheless, the polynomial correction n11/32 is present in both
cases: the exponent 11/32 is universal.

Despite the precision of the previous predictions, the best results are
very far from tight. Hammersley and Welsh proved that the number of
SAWs of length n is between µnc and eO(

√
n)µnc without computing the con-

stant µc (their argument dealt originally with the square lattice but it
can easily be generalized to the hexagonal lattice). Concerning the mean-
displacement, it is not rigorously known whether the average distance to
the origin grows faster than n1/2. Worse, while the radius of a SAW of
length n is obviously larger than n1/2, it does not imply much on the end-
point, and it is in fact unknown whether the average of ∥γn∥ is larger than
a constant times n1/2, a statement most of us would consider tautologi-
cal. Concerning upper bounds, it was proved only recently [DH13] that
the SAW is sub-ballistic, in the sense that the average of ∥γn∥ behaves like
o(n) as n tends to infinity. We encourage the reader to try to improve
these results on his own (for instance to provide any type of quantitative
upper bound). This should illustrate the intrinsic difficulty of the model.

The previous contributions on SAWs are relying on techniques that
were developed roughly fifty years ago. Since then, very few new tools
have been discovered in two dimensions, with a notable exception that we
want to mention now. This idea combines combinatorial techniques that
are reminiscent from the original approach with intuition from the theory of
discrete holomorphic functions. The main object of interested is a certain
observable of the model, i.e. the average of a certain random variable. Let
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us spend some time to define it properly.
From now on, a discrete domain will be a collection of half-edges in-

tersecting a family of faces of the hexagonal lattice forming the closure of
a simply connected domain of the plane; see Fig. 2 (disregard the defini-
tion of Ê (Ω, a, z), it will become relevant only later). Half-edges have two
endpoints: one vertex of H and one mid-edge. From now on, a SAW will
systematically run between two mid-edges (it boils down to extending the
SAW by two half-edges).

Let Ω be a discrete domain and a be a mid-edge on the boundary,
i.e. at the end of only one half-edge in Ω (see Fig. 2). Fix x,σ ≥ 0 to be
determined later. For a mid-edge z ∈ Ω, define the parafermionic observable
via the formula

F (z) = FΩ,a,x,σ(z) ∶= ∑
ω

exp(−iσWω(a, z)) x# vertices inω,

where the summation runs over SAWs from a to z staying in Ω. In the
definition above, Wω(a, z) is the winding or total rotation of the direction
in radians when the SAW ω is oriented from a to z. In other words, it
is equal to π/3 times the difference between the number of left and right
turns of ω.

The term involving Wω(a, z) may appear as an unnecessary complica-
tion. Indeed, for σ = 0, we obtain the generating function of the SAWs in Ω
from a to z which seems like a very natural object to consider. The advan-
tage of this term is that, when σ and x are tuned properly, F satisfies nice
local relations as a function of z. Namely, let v be a vertex in the interior
of Ω and p, q and r be the three mid-edges next to v. We identify v, p, q, r
with their complex affixes. If

x = 1√
2 +
√

2
and σ = 5

8
,

then F satisfies

(p − v)F (p) + (q − v)F (q) + (r − v)F (r) = 0. (1)

The set of equations (1) indexed by vertices v in Ω has a beautiful
interpretation in terms of discrete contour integrals. Indeed, fix a sequence
Γ ∶= (f0, . . . , fk = f0) of adjacent faces of Ω and define the discrete contour
integral of F along Γ by the formula

∮
Γ
F (z)dz =

k−1

∑
i=0

(fi+1 − fi)F (zi) = 0,

where fi denotes the affix of the center of the corresponding face, and zi
the center of the edge between the faces fi and fi+1.
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Equation (1) corresponds to the fact that the integral of F along the
“triangular” contour composed of the three faces around the vertex v is
equal to 0. Since any contour integral can be written as the sum of the
triangular contours inside it, the relations (1) imply that the integral of
F along any discrete contour vanishes. This property is reminiscent of a
classical property of holomorphic functions. For this reason, one may think
of F as a discrete version of a holomorphic function.

A word of caution: imagine for a moment that we wish to determine
F using only its boundary values and the relations (1). We have one un-
known variable F (z) by mid-edge, and one relation per vertex. For generic
domains, this is vastly insufficient, and we are therefore apparently facing
a dead end: the fact that the discrete contour integrals vanish is providing
little information on the observable F . In conclusion, a function satisfying
the relations (1) can be seen as some kind of weakly discrete holomorphic
function, but the relations do not allow us to do as much as the standard
notion of holomorphicity does.

Fortunately, the property above is not meaningless. A careful analysis
of contour integrals going along the boundary of well chosen domains Ω

implies that the value
√

2 +
√

2 mentioned above has to be the connective
constant of H. We refer to [DS12b] for the proof of this result. Let us
mention that the value of the connective constant was predicted by Nienhuis
in [Nie82, Nie84] using completely different techniques. The fact that µc
has such a simple form can almost be considered as an anomaly. Except for
trees and one dimensional lattices, the connective constant is not predicted
to have any special form (except for the 3.122 lattice, which is obtained
from the hexagonal lattice by a simple transformation). As an example,
the connective constant of the square lattice can be approximated but no
prediction currently exists concerning its exact value. In fact, it is even
unknown whether it should be rational or algebraic for instance.

Computing the connective constant should be considered as a stepping
stone towards a bigger goal since physicists and mathematicians are ulti-
mately interested in the critical behavior of the model. Let us depart from
our combinatorial question (counting SAWs) to enter the realm of phase
transitions in statistical physics.

Consider a simply connected domain Ω together with two points a and
b on its boundary. Also consider the graph Ωδ = Ω∩δH for δ > 0. Let aδ and
bδ be two mid-edges on the boundary of Ωδ close to a and b. We think of
the family of triplets (Ωδ, aδ, bδ) as more and more refine (as δ ↘ 0) discrete
approximations of (Ω, a, b). Let us assume that the graphs Ωδ are discrete
domains1. We define a model of random interface γ(Ωδ,aδ,bδ) as follows:

1Even though they obviously have no reason to be, one may easily alter the definition
of Ωδ so that the next discussion is still valid. We therefore prefer to ignore this difficulty.
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SAWs from aδ to bδ in Ωδ have probability proportional to x# vertices while
other paths have probability zero.

If x is too small, the SAW is too penalized by its length, and γ(Ωδ,aδ,bδ)
converges in law to the geodesic between a and b in Ω. On the other
hand if x is too large, then the SAW is not penalized enough and γ(Ωδ,aδ,bδ)
converges to a space-filling curve. The phase transition between these two
possible behaviors occurs exactly at the value xc = 1/µc. While the previous
statements about x ≠ xc are now mathematical theorems, the behavior at
the “critical value” xc is still conjectural. Let us describe briefly what is
expected to happen at this special value.

At x = xc, Conformal Field Theory predicts that γ(Ωδ,aδ,bδ) converges
in the scaling limit (i.e. as δ tends to 0) to a random, continuous, fractal,
simple curve γ(Ω,a,b) from a to b staying in Ω. Furthermore, the family
of random curves γ(Ω,a,b) indexed by the triplets (Ω, a, b) is expected to
be conformally invariant in the following sense: for any (Ω, a, b) and any
conformal (i.e. holomorphic and one-to-one) map ψ ∶ Ω→ C,

ψ(γ(Ω,a,b)) has the same law as γ(ψ(Ω),ψ(a),ψ(b)).

This prediction can be rephrased as follows: the random curve obtained
by taking the scaling limit in (ψ(Ω), ψ(a), ψ(b)) has the same law as the
image by ψ of the random curve obtained by taking the scaling limit in
(Ω, a, b). This is clear for a transformation corresponding to a symmetry of
the lattice (for instance the rotation by k 2π

3 for some k ∈ Z), but this claim
implies that the result is true for any conformal transformation (therefore
in particular for a rotation by any angle).

The emergence of these additional symmetries in the scaling limit has
tremendous implications. In particular, Schramm [Sch00] managed to iden-
tify a natural candidate for the possible conformally invariant family of
continuous non self-crossing curves. Together with Lawler and Werner
[LSW04], he was thus able to predict that γ(Ω,a,b) should be the Schramm-
Loewner Evolution (SLE) of parameter 8/3. This object, which is directly
related to many other lattice models in dimension 2 (in particular sim-
ple random walks), is very well understood. Proving the convergence of
γ(Ωδ,aδ,bδ) to SLE(8/3) would therefore provide deep insight into the behav-
ior of the model at xc, and as a byproduct into the behavior of the uniformly
sampled SAW for large n (the two models are closely related). In particu-
lar, it would probably enable one to determine the critical exponents 11/32
and 3/4.

The previous discussion on conformal invariance seems to have car-
ried us away from our original discussion concerning parafermionic ob-
servables, but in fact the two discussions are deeply related. Indeed, the
parafermionic observable is expected to have a conformally covariant scal-
ing limit. Namely, set Fδ for the observable in the domain Ωδ with a = aδ,
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and fδ = Fδ(⋅)/Fδ(bδ) (which depends on Ωδ, aδ and bδ). Smirnov conjec-
tured that if σ = 5/8 and x = xc, then

lim
δ→0

fδ = (ψ′)5/8 , (2)

where ψ is the conformal map from Ω to the upper half-plane sending a to
infinity, b to 0, and with ψ′(b) = 1 (conformal covariance follows readily).
Above, the convergence is uniform on any compact of the domain Ω. To
come back to the discussion about the fact that the observable shared the
property of vanishing contour integrals with holomorphic maps, we see
that it is in fact expected to converge (when properly renormalized) in the
scaling limit to such a holomorphic map.

In fact the previous conjecture represents the main step in a program
dedicated to the proof of convergence of γ(Ωδ,aδ,bδ) to SLE(8/3). From
this point of view, [DS12b] is indeed a first step towards a bigger goal.
Unfortunately, proving convergence of the observable seems out of reach
at the moment. Nevertheless, a similar program has been carried out for
a different model, and we propose to switch now to this model to discuss
parafermionic observables further. While the connection to the story above
will not be immediately apparent, it will become clearer as the discussion
progresses.

A second example: the Ising model The Ising model was introduced
by Lenz in 1920 to model Curie’s temperature. It has been used to model
a wide variety of phenomena in physics, ranging from ferromagnetism to
spin glasses. In fact, the Ising model finds new applications in other fields
of science (such as biology, neuroscience, etc) every single day. We will
focus on the nearest-neighbor ferromagnetic Ising model on the hexagonal
lattice. Let G = (V,E) be a finite subgraph of H. Define the Hamiltonian
HG(σ) of a configuration σ = (σu ∶ u ∈ V ) of spins σu ∈ {±1} by the formula

HG(σ) ∶= − ∑
{u,v}∈E

σuσv.

For β > 0 and f ∶ {±1}V Ð→ R, let

⟨f⟩G,β ∶=
∑

σ∈{±1}V
f(σ)e−βHG(σ)

∑
σ∈{±1}V

e−βHG(σ)
.

The measure ⟨⋅⟩G,β is called the Ising measure on the graph G at inverse-
temperature β > 0.
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When working with the Ising model, one is usually interested in quan-
tities of the form ⟨∏u∈A σu⟩, where A ⊂ V . The operator σu associated to
a vertex u characterizes the phase transition and is as such an order oper-
ator. From the point of view of Field Theory, it is convenient to consider
a different type of operators associated to faces, which is corresponding to
disorder operators. Let f, g be two faces and introduce a cut C from f to g,
i.e. a sequence of adjacent faces starting from f and ending at g. Consider
µfµg to be the operator reversing the value of the coupling constants of the
edges between successive faces of the cut (we identify the cut with this set
of edges). In other words,

µf(σ)µg(σ) ∶= exp ( − 2β ∑
{u,v}∈C

σuσv).

Observe that the operator depends on the cut C and on β. The use of such
disorder operators goes back as far as the original exact solutions to the 2D
Ising model and is fundamental in the study of the critical behavior of the
model (since it pops up everywhere, we do not give a specific reference).

We would like to manipulate order and disorder operators. To do this,
we consider the high-temperature expansion of the Ising model, which we
present briefly now. As observed by van der Waerden, the identity

exp(βσuσv) = cosh(β)(1 + tanh(β)σuσv)

allows to express the partition function of the Ising model as follows

∑
σ∈{±1}V

e−βHG(σ) = cosh(β)∣E∣ ∑
σ∈{±1}V

∏
e={u,v}∈E

(1 + tanh(β)σuσv)

= cosh(β)∣E∣ ∑
ω⊂G

(∏
e∈ω

tanh(β)) (∑
u∈ω

σ
∣{v∶{u,v}∈ω}∣
u ).

For any u ∈ V , associating the configuration σ with the same configuration
except that the spin at u is flipped implies that the last sum is equal to

⎧⎪⎪⎨⎪⎪⎩

2∣V (G)∣ if ω ∈ E (G),
0 otherwise,

where E (G) denotes the set of even subgraphs of G, that is, the set of
subgraphs ω of G such that every vertex of G is incident to an even number
of edges of ω. Note that on a subgraph of the hexagonal lattice, ω ∈ E (G)
is the disjoint union of self-avoiding loops. We deduce that

∑
σ∈{±1}V

e−βHG(σ) = cosh(β)∣E∣ 2∣V ∣ ∑
ω∈E (G)

x∣ω∣, (3)
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where x ∶= tanh(β). A similar computation shows that for A ⊂ V ,

∑
σ∈{±1}V

(∏
u∈A

σu)e−βHG(σ) = cosh(β)∣E∣ 2∣V ∣ ∑
ω∈E (G,A)

x∣ω∣,

where E (G,A) denotes the set of subgraphs ω of G such that every vertex
not in A (resp. in A) is incident to an even (resp. odd) number of edges in
ω. Altogether, we get

⟨∏
u∈A

σu⟩G,β =
∑ω∈E (G,A) x∣ω∣

∑ω∈E (G) x∣ω∣
.

In other words, correlations between order operators can be expressed
in terms of ratios of weighted sums over subgraphs of G. But what hap-
pens when one mixes order and disorder operators? Let us take a specific
example. Consider a discrete domain Ω and a vertex u on its boundary.
Also consider a vertex v ∈ Ω and a cut C between a face f outside Ω and
bordered by u and a face g bordered by v. When doing the same expansion
as above, one obtains that

⟨σuσv µfµg⟩G,β =
∑ω∈E (G,{u,v})(−1)∣ω∩C ∣x∣ω∣

∑ω∈E (G) x∣ω∣
. (4)

Since ω ∈ E (G,{u, v}) is the disjoint union of self-avoiding loops and a
self-avoiding path from u to v, the loops do not surround v and therefore
contribute an even number to ∣ω ∩ C ∣. As a consequence, only the self-
avoiding path from u to v can contribute an odd number, which corresponds
modulo 2 to the number of turns that the path does around the face f .

Now, Smirnov introduced an observables at mid-edges by considering
the following quantity: let Ω be a discrete domain, a a mid-edge on its
boundary and z a mid-edge inside. Consider the set Ê (Ω, a, z) of “subgraphs
of Ω” obtained as the union of disjoint self-avoiding loops plus a SAW from
a to z avoiding the loops. Let ∣ω∣ be the number of vertices in ω (note that
it is also the number of vertices, if the two half-edges arriving at a and z
contribute 1/2). Also set Wω(a, z) for the winding of the SAW from a to
z. Then define

F (z) = FΩ,a,x(z) ∶= ∑
ω∈Ê (Ω,a,z)

exp(− i
2Wω(a, z)) x∣ω∣.

The observable has a structure similar to the one of the SAW, with σ = 1/2
instead of σ = 5/8 and the sum on SAWs replaced by a sum on subgraphs ω ∈
Ê (Ω, a, z). Consider the specific case of configurations for which the SAW
arrives from one endpoint (say v) of the edge corresponding to z. In such
case, the term corresponding to the winding contributes −λ or λ depending
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on the parity of the number of turns around the mid-edge z. A small leap
of faith (or a small computation using the previous observation, which we
leave to the reader) shows that F is in fact a complex linear combination
of quantities of the form (4), where v is one of the two endpoints of the
edge of z, and g one of the two faces bordered by z. To summarize, an
observable similar to the parafermionic observable for SAWs can be defined
in the Ising model as a linear combination of order-disorder operators.

The similarity between the observables for SAW and Ising is uncanny.
It does not come as a surprise that for a certain value xc of x, the Ising
observable also satisfies the relations (1). This value is in fact equal to
1/
√

3 = tanh(βc), where βc is the critical inverse-temperature of the Ising
model on H. Exactly as in the case of the SAW, one may ask whether, when
considering a sequence (Ωδ, aδ, bδ) approximating (Ω, a, b), fδ = Fδ(⋅)/Fδ(bδ)
converges.

The Ising model has a tactical advantage compared to SAWs. The value
of σ is 1/2 instead of 5/8. This apparently small difference was harvested
by Chelkak and Smirnov to prove that the observable fδ satisfies additional
relations, and that it is now discrete holomorphic in the standard sense,
not only weakly. In particular, fδ is determined uniquely by its boundary
conditions and these relations. Let us mention that discrete holomorphic-
ity goes far back. Discrete holomorphic functions have also found several
applications in geometry, analysis, combinatorics, and probability. We re-
fer the interested reader to [DS12a] for more references on this beautiful
theory.

Anyway, Chelkak and Smirnov [CS12] were able to describe fδ as the
solution of a discrete “Riemann-Hilbert” Boundary Value Problem. With
some additional work, they also showed that such a solution must converge
to the holomorphic solution of the corresponding continuous Riemann-
Hilbert Boundary Value Problem. As a consequence, they were able to
rigorously prove that

lim
δ→0

fδ =
√
ψ′,

where ψ was defined in (2).
Using a program similar to the one that could potentially be used for

SAW, interfaces of the Ising model with Dobrushin boundary conditions
were proved to converge to SLE(3) in [CDH+14]. In other words, conformal
invariance of interfaces can be proved rigorously in the case of the Ising
model.

Let us conclude this part by mentioning that since the breakthrough
of [CS12], conformal invariance of many observables of the Ising model
has been derived: crossing probabilities [BDH14], energy and spin fields
[HS13, Hon10, CI13, CHI15]), etc.
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n

xc(n) =
1√

2+
√
2−n

x̃c(n) =
1√

2−
√
2−n

CLE( 4π
2π−arccos(−n/2))

CLE( 4π
arccos(−n/2))

Figure 3: Phase diagram of the loop O(n) model on the hexagonal lattice.

The parallel between the stories of the SAW and the high-temperature
expansion of the Ising model leaves little doubt about a connection between
the two models. A model indeed interpolates between the two examples
above, and we propose to discuss it briefly below.

The loop O(n)-model The high-temperature expansion of the Ising
model and the SAW are both part of a wider family of statistical models,
called the loop O(n)-model. In this model, a configuration ω is an element
of E (G) and the probability of ω is proportional to x# edgesn# loops. For
n = 0 and n = 1, we recover the SAW and the high-temperature expan-
sion of the Ising model respectively. The phase diagram (Fig. 3) of the
loop O(n) model on the hexagonal lattice was predicted by Nienhuis in
[Nie82, Nie84]:

1. For n ≤ 2 and x = xc(n) ∶= 1/
√

2 +
√

2 − n, the probability of having a
loop of length ` passing through the origin decays as an inverse power
of `. Furthermore, the scaling limit of the loops is described by a
conformally invariant family of simple loops called CLE(κ) (where κ
depends on n and ranges from 8/3 to 4).

2. For n ≤ 2 and x > xc(n), the probability of having a loop of length
` passing through the origin decays as an inverse power of `. Fur-
thermore, the scaling limit of the loops is described by a conformally
invariant family of self-touching loops called CLE(κ) (where κ de-
pends on n but not on x > xc(n) and ranges from 4 to 8). Except for
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n = 2, the exponent in the inverse power is not the same as the one
at xc(n).

3. Otherwise, the probability decays exponentially fast. In particular,
for n > 2 the probability of having large loops is always decaying
exponentially fast.

Most of the previous diagram is still conjectural. Nevertheless, a general-
ization of the previous observables provides some understanding on what
is going on. Exactly like in the examples of the SAW and Ising, one may
introduce an observable

F (z) = FΩ,a,x,n,σ(z) ∶= ∑
ω∈Ê (Ω,a,z)

exp(−iσWω(a, z)) x# edges n# loops.

For n ≤ 2, two values of (x,σ) play a special role in the sense that the
corresponding observable has vanishing contour integrals. The first one
is for x = xc(n) and σ = σ(n) (the value is irrelevant here). The other
value is at x = x̃c(n) = 1/

√
2 −
√

2 − n and σ̃ = σ̃(n). One expects that the
observable fδ defined as above would converge to (ψ′)σ for (xc(n), σ) and
(ψ′)σ̃ for (x̃c(n), σ̃). The values of σ and σ̃ allow to predict the dependency
of the value κ of the CLE(κ) on n (see Fig. 3 for the precise values).
Furthermore, proving convergence of the observable represents the main
step towards a proof of conformal invariance for the whole family of loops.

Interestingly, no good observable seems to be available for n > 2. It is
therefore unclear how to prove that there is exponential decay at every x for
n > 2. Nevertheless, we should mention a recent result proving this for n≫
1 [DPSS14]. This result should be compared to a conjecture of Polyakov
concerning the spin O(n) models, that yields that spin-spin correlations
decay exponentially fast at every inverse temperature in the 2D spin O(n)
model as soon as n > 2. While the previous result does not answer this
conjecture, it is worth noting that the loop O(n) model can be seen as
an approximative high-temperature expansion of the spin O(n) model for
integer values of n.

Conclusion The go home message is the following: the order-disorder
operators of the Ising model give rise, when written in terms of the high-
temperature expansion, to discrete holomorphic observables. As a con-
sequence, one may prove that they converge in the scaling limit to con-
formally invariant objects, a fact which leads to conformal invariance of
interfaces. Certain generalizations of these quantities to loop models are
still discretizations of conformal maps. Proving their convergence in the
scaling limit would imply conformal invariance of loops in the correspond-
ing model, but unfortunately, in basically any case except the Ising model,
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the properties of the observables are insufficient to derive rigorously the
convergence. Still, weaker properties of the observables can be used to
derive interesting features such as critical points and bounds for critical
exponents.

Let us conclude by mentioning that the name parafermionic observable
was coined in [FK80], were these observables were introduced initially.

Let us mention that parafermionic observables are not restricted to
the loop O(n) model and can be used in many other models. Maybe the
most notable example is provided by the Fortuin-Kasteleyn percolation and
Potts models, where they were used to determine the order of the phase
transition, see [DST15].

References
[BDH14] S. Benoist, H. Duminil-Copin, and C. Hongler, Conformal

invariance of crossing probabilities for the Ising model with free
boundary conditions, arXiv:1410.3715, 2014.

[CDH+14] D. Chelkak, H. Duminil-Copin, C. Hongler, A. Kemppainen, and
S. Smirnov, Convergence of Ising interfaces to Schramm’s SLE
curves, C. R. Acad. Sci. Paris Math. 352 (2014), no. 2, 157–161.

[CHI15] Dmitry Chelkak, Clément Hongler, and Konstantin Izyurov,
Conformal invariance of spin correlations in the planar Ising
model, Ann. of Math. (2) 181 (2015), no. 3, 1087–1138. MR
3296821

[CI13] Dmitry Chelkak and Konstantin Izyurov, Holomorphic spinor
observables in the critical Ising model, Comm. Math. Phys. 322
(2013), no. 2, 303–332. MR 3077917

[CS12] Dmitry Chelkak and Stanislav Smirnov, Universality in the 2D
Ising model and conformal invariance of fermionic observables,
Invent. Math. 189 (2012), no. 3, 515–580. MR 2957303

[DH13] H. Duminil-Copin and A. Hammond, Self-avoiding walk
is sub-ballistic, Communications in Mathematical Physics 324
(2013), no. 2, 401–423.

[DPSS14] H. Duminil-Copin,R. Peled,W. Samotij, andY. Spinka,Exponential
decay of loop lengths in the loop o(n) model with large n,
arXiv:1412.8326, 12 2014.

[DS12a] H. Duminil-Copin and S. Smirnov, Conformal invariance of
lattice models, Probability and statistical physics in two and

13



more dimensions, Clay Math. Proc., vol. 15, Amer. Math. Soc.,
Providence, RI, 2012, pp. 213–276. MR 3025392

[DS12b] H. Duminil-Copin and S. Smirnov, The connective constant of
the honeycomb lattice equals

√
2 +
√

2, Ann. of Math. (2) 175
(2012), no. 3, 1653–1665. MR 2912714

[DST15] H. Duminil-Copin,V. Sidoravicius, andV. Tassion,Continuity of
the phase transition for planar random-cluster and Potts models
with 1 ≤ q ≤ 4, arXiv:1505.04159, 2015.

[FK80] Eduardo Fradkin and Leo P Kadanoff, Disorder variables and
para-fermions in two-dimensional statistical mechanics, Nuclear
Physics B 170 (1980), no. 1, 1–15.

[Hon10] C. Hongler, Conformal invariance of Ising model correlations,
Ph.D. thesis, université de Genève, 2010, p. 118.

[HS13] Clément Hongler and Stanislav Smirnov, The energy density in
the planar Ising model, Acta Math. 211 (2013), no. 2, 191–225.
MR 3143889

[LSW04] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, On
the scaling limit of planar self-avoiding walk, Fractal geometry
and applications: a jubilee of Benoît Mandelbrot, Part 2, Proc.
Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence,
RI, 2004, pp. 339–364. MR MR2112127 (2006d:82033)

[MS93] Neal Madras and Gordon Slade, The self-avoiding walk, Proba-
bility and its Applications, Birkhäuser Boston Inc., Boston, MA,
1993. MR 1197356 (94f:82002)

[Nie82] Bernard Nienhuis, Exact Critical Point and Critical Exponents
of O(n) Models in Two Dimensions, Physical Review Letters
49 (1982), no. 15, 1062–1065.

[Nie84] B. Nienhuis, Coulomb gas description of 2D critical behaviour,
J. Statist. Phys. 34 (1984), 731–761.

[Sch00] Oded Schramm, Scaling limits of loop-erased random walks and
uniform spanning trees, Israel J. Math. 118 (2000), 221–288.
MR 1776084 (2001m:60227)

14


