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Abstract. We study the critical probability for the metastable phase transition of the
two-dimensional anisotropic bootstrap percolation model with (1, 2)-neighbourhood and
threshold r = 3. The first order asymptotics for the critical probability were recently
determined by the first and second authors. Here we determine the following sharp second
and third order asymptotics:

pc
(
[L]2,N(1,2), 3

)
=

(log logL)2

12 logL
− log logL log log logL

3 logL
+

(
log 9

2
+ 1± o(1)

)
log logL

6 logL
.

We note that the second and third order terms are so large that the first order asymptotics

fail to approximate pc even for lattices of size well beyond 10101000 .
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1. Introduction

1.1. Motivation and statement of the main result. Bootstrap percolation is a general
name for the dynamics of monotone, two-state cellular automata on a graph G. Bootstrap
percolation models with different rules and on different graphs have since their invention
by Chalupa, Leath and Reich [20] been applied in various contexts and the mathematical
properties of bootstrap percolation are an active area of research at the intersection between
probability theory and combinatorics. See for instance [1,2,4,5,8,23,34] and the references
therein.

Motivated by applications to statistical (solid-state) physics such as the Glauber dynamics
of the Ising model [27, 37] and kinetically constrained spin models [17], the underlying
graph is often taken to be a d-dimensional lattice, and the initial state is usually chosen
randomly.

Although some progress has recently been made in the study of very general cellular
automata on lattices [12,14,25], attention so far has mainly focused on obtaining a very
precise understanding of the metastable transition for specific simple models [4, 8, 9, 18, 23,
31,34].

In this paper we will provide the most detailed description so far for such a model;
namely, the so-called anisotropic bootstrap percolation model, defined as follows: First,
given a finite set N ⊂ Zd \ {0} (the neighbourhood) and an integer r (the threshold), define
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the bootstrap operator

B(S) := S ∪
{
v ∈ Zd : |(v +N ) ∩ S| > r

}
(1.1)

for every set S ⊂ Zd. That is, viewing S as the set of “infected” sites, every site v that
has at least r infected “neighbours” in v +N becomes infected by the application of B.
For t ∈ N let B(t)(S) = B(B(t−1)(S)), where B(0)(S) = S, and let 〈S〉 = limt→∞ B(t)(S)
denote the set of eventually infected sites. For each p ∈ (0, 1), let Pp denote the probability

measure under which the elements of the initial set S ⊂ Zd are chosen independently at
random with probability p, and for each set Λ ⊂ Zd, define the critical probability on Λ to
be

pc
(
Λ,N , r

)
:= inf

{
p > 0 : Pp

(
Λ ⊂ 〈S ∩ Λ〉

)
> 1/2

}
. (1.2)

If Λ ⊂ 〈S ∩ Λ〉 then we say that S percolates on Λ. We remark that since we will usually
expect the probability of percolation to undergo a sharp transition around pc, the choice
of the constant 1/2 in the definition (1.2) is not significant.

The anisotropic bootstrap percolation model is a specific two-dimensional process in the
family described above. To be precise, set d = 2 and

N(1,2) :=
{

(−2, 0), (−1, 0), (0,−1), (0, 1), (1, 0), (2, 0)
}

or graphically,

•
N(1,2) = • • 0 • •

•
and set r = 3. N(1,2) is sometimes called the “(1, 2)-neighbourhood” of the origin. See
Figure 1 for an illustration of the behaviour of the anisotropic model.

The main result of this paper is the following theorem:1

Theorem 1.1. The critical probability of the anisotropic bootstrap percolation model
satisfies

pc
(
[L]2,N(1,2), 3

)
=

log logL

12 logL

(
log logL− 4 log log logL+ 2 log

9e

2
± o(1)

)
. (1.3)

To put this theorem in context, let us recall some of the previous results obtained for
bootstrap processes in two dimensions. The archetypal example of a bootstrap percolation
model is the “two-neighbour model”, that is, the process with neighbourhood

N(1,1) :=
{

(−1, 0), (0,−1), (0, 1), (1, 0)
}

1 Throughout this paper we will use the standard Landau order notation: either for all x sufficiently
large or sufficiently small, depending on the context,

• f(x) = O(g(x)) if there exists C > 0 such that |f(x)| 6 Cg(x),
• f(x) = Ω(g(x)) if there exists c > 0 such that |f(x)| > cg(x),
• f(x) = Θ(g(x)) if f(x) = O(g(x)) and f(x) = Ω(g(x)),
• f(x) = o(g(x)) if |f(x)|/|g(x)| → 0.
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Figure 1. On the left: a final configuration of the anisotropic model on [40]2.
Note that not all stable shapes are rectangles. On the right: a final configuration
on [200]2 with p = 0.085, where the color of each site represents the time it became
infected. Blue sites became infected first, red sites last.

and r = 2. The strongest known bounds are due to Gravner, Holroyd, and Morris [29,31,38],
who, building on work of Aizenman and Lebowitz [4] and Holroyd [34], proved that

pc
(
[L]2,N(1,1), 2

)
=

π2

18 logL
−Θ

(
1

(logL)3/2

)
. (1.4)

The anisotropic model was first studied by Gravner and Griffeath [28] in 1996. In 2007,
the second and third authors [26] determined the correct order of magnitude of pc. More
recently, the first and second authors [23] proved that the anisotropic model exhibits a
sharp threshold by determining the first term in (1.3).

The “Duarte model” is another anisotropic model that has been studied extensively
[13,22,39]. The Duarte model has neighbourhood

NDuarte =
{

(−1, 0), (0,−1), (0, 1)
}

and r = 2. The sharpest known bounds here are due to the Bollobás, Morris, Smith, and
the first author [13]:

pc
(
Z2
L,NDuarte, 2

)
=

(log logL)2

8 logL
(1± o(1)).

Although the Duarte model has the same first order asymptotics for pc as the anisotropic
model (up to the constant), the behaviour is very different. In particular, the Duarte model
has a “drift” to the right: clusters grow only vertically and to the right. This asymmetry
has severe consequences for the analysis of the model (especially for the shape of critical
droplets).
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The “r-neighbour model” in d dimensions generalises the standard (two-neighbour)
model described above. In this model, a vertex of Zd is infected by the process as soon as it
acquires at least r already-infected nearest neighbours. Building on work of Aizenman and
Lebowitz [4], Schonmann [41], Cerf and Cirillo [18], Cerf and Manzo [19], Holroyd [34] and
Balogh, Bollobás and Morris [9, 10], the following sharp threshold result for all non-trivial
pairs (d, r) was obtained by Balogh, Bollobás, Morris, and the first author [8]: for every
d > r > 2, there exists an (explicit) constant λ(d, r) > 0 such that

pc
(
[L]d,N(1,...,1), r

)
=

(
λ(d, r)± o(1)

log(r−1) L

)d−r+1

.

(Here, and throughout the paper, log(k) denotes a k-times iterated logarithm.)
Finally, we remark that much weaker bounds (differing by a large constant factor)

have recently been obtained for an extremely general class of two-dimensional models
by Bollobás, Morris, Smith, and the first author [12], see Section 1.3, below. Moreover,
stronger bounds (differing by a factor of 1 + o(1)) were proved for a certain subclass of
these models (including the two-neighbour model, but not the anisotropic model) by the
first author and Holroyd [25].

Although various other specific models have been studied (see e.g. [15, 16, 35]), in each
case the authors fell very far short of determining the second term.

1.2. The bootstrap percolation paradox. In [34] Holroyd for the first time determined
sharp first order bounds on pc for the standard model, and observed that they were very far
removed from numerical estimates: π2/18 ≈ 0.55, while the same constant was numerically
determined to be 0.245± 0.015 on the basis of simulations of lattices up to L = 28800 [3].
This phenomenon became known in the literature as the bootstrap percolation paradox, see
e.g. [2, 21,29,32].

An attempt to explain this phenomenon goes as follows: if the convergence of pc to
its first-order asymptotic value is extremely slow, while for any fixed L the transition
around pc is very sharp, then it may appear that pc converges to a fixed value long before
it actually does.

This indeed appears to be the case. The first rigorisation of the “extremely slow conver-
gence” part of this argument appears in [29], for a model related to bootstrap percolation.
Theorem 1.1 gives another unambiguous illustration of extremely slow convergence for a
bootstrap percolation model: the second term in (1.3) is actually larger than the first while

4 log log logL > log logL,

which holds for all L in the range 66 < L < 102390. Moreover, the second term does not

become negligible (smaller than 1% of the first term, say) until L > 10101403 . On relatively
small lattices, even the third term makes a significant contribution to pc: it is larger than
the first term when L < 1060 and larger than the second term when L < 1013.

The “sharp transition” part of the argument has also been made rigorous: for the
standard model, an application of the Friedgut-Kalai sharp-threshold theorem [7] tells us
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that the “ε-window of the transition”2 is

p1−ε([L]2,N(1,1), 2)− pε([L]2,N(1,1), 2) = O

(
log logL

log2L

)
.

So the ε-window is much smaller than the second order asymptotics in (1.4).
For the anisotropic model a similar analysis [11] yields that the ε-window satisfies

p1−ε([L]2,N(1,2), 3)− pε([L]2,N(1,2), 3) = O

(
log3 logL

log2 L

)
,

which is again much smaller than the second and third order asymptotics in Theorem 1.1.
So our analysis supports the above explanation of the bootstrap percolation paradox.

1.3. Universality. Recently, a very general family of bootstrap-type processes was in-
troduced and studied by Bollobás, Smith and Uzzell [14]. To define this family, let
U = {X1, . . . , Xm} be a finite collection of finite subsets of Zd \ {0}, and define the
corresponding bootstrap operator by setting

BU(S) = S ∪
{
v ∈ Zd : v +X ⊂ S for some X ∈ U

}
for every set S ⊂ Zd. It is not hard to see that all of the bootstrap processes described above
can be encoded by such an ‘update family’ U , and in fact this definition is substantially
more general. The key discovery of [14] was that in two dimensions the class of such
monotone cellular automata can be elegantly partitioned3 into three classes, each with
completely different behaviour. More precisely, for every two-dimensional update family U ,
one of the following holds:

• U is “supercritical” and has polynomial critical probability.

• U is “critical” and has poly-logarithmic critical probability.

• U is “subcritical” and has critical probability bounded away from zero.

We emphasise that the first two statements were proved in [14], but the third was proved
slightly later, by Balister, Bollobás, Przykucki and Smith [6]. Note that the critical class
includes the two-neighbour, anisotropic and Duarte models (as well as many others, of
course). For this class a much more precise result was recently obtained by Bollobás,
Morris, Smith, and the first author [12]. In order to state this result, let us first (informally)
define a two-dimensional update family to be “balanced” if its growth is asymptotically
two-dimensional4 (like that of the two-neighbour model), and “unbalanced” if its growth
is asymptotically one-dimensional (like that of the anisotropic and Duarte models). The
following theorem was proved in [12].

2The ε-window denotes the difference between the value of pε where [L]2 is internally filled with
probability ε, and the value p1−ε where this probability equals 1− ε. In other words, the ε-window tells us
how sharp the metastable transition is.

3This is the partitioning: We say a direction u ∈ S1 is stable if Hu, the discrete half-plane that is
orthogonal to u, satisfies 〈Hu〉 = Hu. A family is supercritical if there exists an open semicircle in S1

containing no stable direction, and it is subcritical if every open semicircle contains an infinite number of
stable directions. It is critical otherwise.

4In other words, in a balanced model the critical droplet is a polygon, all of whose sides have the same
length up to a constant factor. For the precise definition, which is somewhat more technical, see [12].
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Theorem 1.2. Let U be a critical two-dimensional bootstrap percolation update family.
There exists α = α(U) ∈ N such that the following holds:

(a) If U is balanced, then5

pc
(
Z2
L,U

)
= Θ

(
1

(logL)1/α

)
.

(b) If U is unbalanced, then

pc
(
Z2
L,U

)
= Θ

(
(log logL)2

(logL)1/α

)
.

Theorem 1.2 thus justifies our view of the anisotropic model as a canonical example of
an unbalanced model.

1.4. Internally filling a critical droplet. As usual in (critical) bootstrap percolation,
the key step in the proof of Theorem 1.1 will be to obtain very precise bounds on the
probability that a “critical droplet” R is internally filled6 (IF), i.e., that R ⊂ 〈S ∩R〉. We
will prove the following bounds:

Theorem 1.3. Let p > 0 and x, y ∈ N be such that 1/p2 6 x 6 1/p5 and 1
3p log 1

p 6 y 6
1
p log 1

p , and let R be an x× y rectangle. Then

Pp
(
R is internally filled

)
= exp

(
− 1

6p

(
log

1

p

)2

+

(
1

3
log

8

3e
± o(1)

)
1

p
log

1

p

)
.

The alert reader may have noticed the following surprising fact: we obtain the first three
terms of pc([L]2,N(1,2), 3) in Theorem 1.1, despite only determining the first two terms of
logPp(R is IF) in Theorem 1.3. We will show how to formally deduce Theorem 1.1 from
Theorem 1.3 in Section 7, but let us begin by giving a brief outline of the argument.

To slightly simplify the calculations, let us write

C1 :=
1

12
and C2 :=

1

6
log

8

3e
.

We claim (and will later prove) that pc = pc([L]2,N(1,2), 3) is essentially equal to the value
of p for which the expected number of internally filled critical droplets in [L]2 is equal
to 1 (the idea being that a critical droplet with size as in Theorem 1.3 will keep growing
indefinitely with probability very close to one). We therefore have

L2 ≈ exp

(
2C1

pc

(
log

1

pc

)2

− 2C2

pc
log

1

pc

)
,

and hence

pc ≈
C1

logL

(
log

1

pc

)2

− C2

logL
log

1

pc
.

5Here Z2
L denotes the discrete two-dimensional L × L torus, and pc

(
Z2
L,U

)
is defined as in (1.2). We

consider the torus since in general undesirable complications may arise due to boundary effects or strongly
asymmetrical growth.

6This notion is often referred to as “internally spanned” (especially in the older literature).
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Iterating the right-hand side gives

pc ≈
C1

logL

(
log logL− 2 log log

1

pc
− logC1

)2

− C2

logL

(
log logL− 2 log log

1

pc

)
.

Upon using the approximation log log(1/pc) ≈ log log logL and multiplying out, this
reduces to

pc ≈
C1(log logL)2

logL
− 4C1 log logL log log logL

logL
−
(
C2 + 2C1 logC1

) log logL

logL
,

which is what we hope to prove. Thus we obtain three terms for the price of two.

1.5. A generalisation of the anisotropic model. One natural way to generalise the
anisotropic model is to consider, for each b > a > 1, the neighbourhood

N(a,b) =
({

(0, y) ∈ Z2 : −a 6 y 6 a
}
∪
{

(x, 0) ∈ Z2 : −b 6 x 6 b
})
\ {(0, 0)}.

It follows from Theorem 1.2 that

pc
(
Z2
L,N(a,b), r) = Θ

(
(log logL)2

(logL)1/α

)
,

where α = r − b, for each b + 1 6 r 6 a + b.7 The arguments developed in [23] can be
applied to prove that the leading order behaviour of pc for the (1, b)-model is8

pc
(
[L]2,N(1,b), b+ 1

)
=

(
(b− 1)2

4(b+ 1)
± o(1)

)
(log logL)2

logL
.

Combining the techniques of [23] with those introduced in this paper, it is possible to
prove the following stronger bounds:

Theorem 1.4. Given b > 2, set

C(b) =
2

b− 1
log

((
2b
b

)
− 2b−1

b+1

(
2b−2
b

)
− 1 +

(
2b
b−1

)
−
(

2b−2
b−3

)
(b+ 1)e

)
+ 2 log

(
(b− 1)2

4(b+ 1)

)
.

Then

pc
(
[L]2,N(1,b), b+ 1

)
=

(b− 1)2

4(b+ 1)

log logL

logL

(
log logL− 4 log log logL−C(b)± o(1)

)
. (1.5)

Note that in the case b = 2 this reduces to Theorem 1.1. We remark that Theorem 1.4
follows from a corresponding generalisation of Theorem 1.3, with the constants 1

6 and
1
3 log 8

3e replaced by

(b− 1)2

2(b+ 1)
and

b− 1

b+ 1
log

((
2b
b

)
− 2b−1

b+1

(
2b−2
b

)
− 1 +

(
2b
b−1

)
−
(

2b−2
b−3

)
(b+ 1)e

)
,

respectively.

7The value of α follows from [12, Definition 1.2]. Furthermore, if r 6 b then the model is supercritical, so
pc
(
Z2
L,N(a,b), r) 6 L−c for some c > 0, and if r > a+b then the model is subcritical, so pc

(
Z2
L,N(a,b), r) > c′

for some c′ > 0.
8This is contrary to the claim in [23, Section 1]. See also [24], the erratum to [23].
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Figure 2. On the left: the three relative positions of an infected site that can
cause horizontal growth of the grey rectangle. On the right: the 8 pairs of sites
(up to shifts) that can cause vertical growth of the grey rectangle.

We will not prove Theorem 1.4, since the proof is conceptually the same as that in the
case b = 2, but requires several straightforward but lengthy calculations that might obscure
the key ideas of the proof. It is, however, not too hard to see where the numerical factors
come from:

A droplet grows horizontally in the (1, b)-model as long as it does not occur that the
b+ 1 consecutive columns to its left and/or right do not contain an infected site. And it
grows vertically as long as there are b sites in a “growth configuration” somewhere above
and/or below. There are(

2b

b

)
− 2b− 1

b+ 1

(
2b− 2

b

)
− 1 +

(
2b

b− 1

)
−
(

2b− 2

b− 3

)
(1.6)

such configurations. Indeed, there are
(

2b
b

)
different ways of finding b infected sites inside

N(1,b) \ ({(0,−1), (0, 1)}). Of these,
∑b

i=2

(
2b−i
b

)
+ 1 = 2b−1

b+1

(
2b−2
b

)
+ 1 are right-shifts of

another configuration (e.g. for N(1,2) the choices • ◦ 0 • ◦ and ◦ • 0 ◦ • count as a single
growth configuration), so their contribution must be subtracted. If (0, 1) is occupied, there

are
(

2b
b−1

)
ways of placing the other b− 1 sites in N(1,b) \ ({(0,−1), (0, 1)}). None of these

are shift invariant, but some of them cannot grow to fill the entire row. Indeed, when
b > 3, configurations where (−b, 0), (0, 1), and (b, 0) are infected do not cause the row to

fill up. Therefore, we must subtract
(

2b−2
b−3

)
. This explains (1.6). See Figure 2 for growth

configurations of the case b = 2. Finally, it takes b− 1 more infected sites for a rectangle
to grow a row than it does to grow a column, which explains the remaining factors b− 1
in (1.5).

1.6. Comparison with simulations. One might be tempted to hope that the third-order
approximation of pc in Theorem 1.1 is reasonably good already for lattices that a computer
might be able to handle. Simulations indicate that this is not the case. Indeed, for lattices
with L 6 10,000, the third-order approximation is even farther from to the simulated
values than the first-order approximation (and recall that the second-order approximation
is negative here). We believe that this should not be surprising, because it is not at all
obvious that the fourth order term should be significantly smaller: careful inspection of our
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proof suggests that the o(1
p log 1

p) term in Theorem 1.3 is at most O(1
p log log 1

p). Although

we do not prove this, we have no reason to believe that a correction term of that order
does not exist. Even if we suppose that the third order correction in Theorem 1.3 can be
sharply bounded by C3/p, say, so that we would have the bound

Pp
(
R is internally filled

) ?
= exp

(
−2C1

p

(
log

1

p

)2

+
2C2

p
log

1

p
+
C3 ± o(1)

p

)
,

for critical droplets instead, then a computation like the one in Section 1.4 above suggests
that this would yield

pc([L]2,N(1,2), 3)
?
=

(log logL)2

12 logL
− (log logL)(log log logL)

3 logL
+

(
log 9

2 + 1
)

log logL

6 logL

+
(log log logL)2

3 logL
−

(log 9
2 + 1) log log logL

3 logL

+
C3 + log 1

12

(
2 + log 27

16

)
± o(1)

12 logL
,

so the fourth, fifth, and sixth order terms of pc would also be comparable to the first
for moderately sized lattices. Moreover, because of the extremely slow decay of these
correction terms (e.g. (log log 1010)2 ≈ 10), it might be too optimistic to expect that one
would be able to determine C3 by fitting to the simulated values of pc, if indeed C3 exists.

1.7. Comparison with the two-neighbor model. Comparing Theorem 1.1 with the
analogous result for the two-neighbor model, (1.4), it may seem remarkable how much
sharper the former is than the latter. We believe the following heuristic discussion goes a
way towards explaining this difference.

Both approximations of pc are proved using essentially the same critical droplet heuristic
described above. Once a critical droplet has formed, the entire lattice will easily fill up. But
filling a droplet-sized area is exponentially unlikely: it is essentially a large deviations event.
The theory of large deviations tells us that if a rare event occurs, it will occur in the most
probable way that it can. For filling a droplet, this means that one should find an optimal
“growth trajectory”: a sequence of dimensions from which a very small infected area (a
“seed”) steadily grows to fill up the entire droplet. For the anisotropic model, in [23], the

first and second authors determined this trajectory to be close to x = e3py

3p , where x and y

denote the horizontal and vertical dimensions of the seed as it grows. This approximation
was enough to yield the first term of pc. In the current paper we establish tighter bounds

of optimal trajectory around x = e3py

3p , allowing us to give the sharper estimate for the

probability of filling a droplet in Theorem 1.3. As we showed in Section 1.4 above, this
correction is enough to obtain the first three terms of pc for the anisotropic model.

For the two-neighbor model, however, finding this optimal growth trajectory is not at
all the challenge: by symmetry it is trivially x = y. The correction to pc that Gravner,
Holroyd, and Morris determined in [29, 31, 38], is instead due to the much smaller entropic
effect of random fluctuations around this trajectory (see also the introduction of [30] for a
more detailed explanation of this effect). We believe that such fluctuations also influence pc
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for the anistropic model, but that their effect will be much smaller than the improvements
that can still be made in controlling the precise shape of the optimal growth trajectory.

1.8. About the proofs. The proof of Theorem 1.1 uses a rigorisation of the iterative
determination of pc in Section 1.4 above, combined with Theorem 1.3 and the classical
argument of Aizenman and Lebowitz [4].

The lower bound in Theorem 1.3 is a refinement of the computation in [23].
Most of the work of this paper goes into the proof of the upper bound of Theorem 1.3.

Like many recent entries in the bootstrap percolation literature, our proof centers around
the “hierarchies” argument of Holroyd [34]. In particular, we sharpen the argument of [23]
by incorporating the idea of “good” and “bad” hierarchies from [31], and by using very
precise bounds on horizontal and vertical growth of infected rectangular regions.

The main new contributions of this paper (besides the iterative determination of pc) can
be found in Sections 3 and 6.

In Section 3, we introduce the notion of spanning time (Definition 3.3), which charac-
terises to a large extent the structure of configurations of vertical growth. We show that if
the spanning time is 0, then such structures have a simple description in terms of paths
of infected sites, whereas if the spanning time is not 0, then this description can still be
given in terms of paths, but these paths now also involve more complex arrangements of
infected sites. We call such arrangements infectors (Definition 3.7), and show that they
are sufficiently rare that their contribution does not dominate the probability of vertical
growth.

In Section 6 we generalise the variational principle of Holroyd [34] to a more general
class of growth trajectories. This part of the proof is intended to be more widely applicable
than the current anisotropic case, and is set up to allow for precise estimates.

1.9. Notation and definitions. A rectangle [a, b]× [c, d] is the set of sites in Z2 contained
in the Euclidean rectangle [a, b]× [c, d]. For a finite set Q ⊂ Z2, we denote its dimensions by
(x(Q),y(Q)), where x(Q) = max{a1 − b1 + 1 : {(a1, a2), (b1, b2)} ∈ Q×Q}, and similarly,
y(Q) = max{a2 − b2 + 1 : {(a1, a2), (b1, b2)} ∈ Q × Q}. So in particular, a rectangle
R = [a, b]× [c, d] has dimensions (x(R),y(R)) = (|[a, b] ∩ Z|, |[c, d] ∩ Z|). Oftentimes, the
quantities that we calculate will only depend on the size of R, and be invariant with respect
to the position of R. In such cases, when there is no possible confusion, we will write R
with x(R) = x and y(R) = y as [x] × [y]. A row of R is a set {(m,n) ∈ R : n = n0}
for some fixed n0. A column is similarly defined as a set {(m,n) ∈ R : m = m0}. We
sometimes write [a, b] × {c} for the row {(m, c) ∈ Z2 : m ∈ [a, b] ∩ Z}, and use similar
notation for columns.

We say that a rectangle R = [a, b] × [c, d] is horizontally traversable (hor-trav) by a
configuration S if

R ⊂ 〈(R ∩ S) ∪ ([a− 2, a− 1]× [c, d])〉.
That is, R is horizontally traversable if the rectangle becomes infected when the two
columns to its left are completely infected. Under Pp, this event is equiprobable to the
event that R ⊂ 〈(R ∩ S)∪ ([b+ 1, b+ 2]× [c, d])〉, and more importantly, it is equivalent to
the event that R does not contain three or more consecutive columns without any infected
sites and the rightmost column contains an infected site.
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We say that R is up-traversable (up-trav) by S if

R ⊂ 〈(R ∩ S) ∪ ([a, b]× {c− 1})〉.

That is, R becomes entirely infected when all sites in the row directly below R are infected.
Similarly, we say that R is down-traversable by S if R ⊂ 〈(R ∩ S) ∪ ([a, b] × {d + 1})〉.
Again, under Pp up and down traversability are equiprobable, so we will only discuss up-
traversability. If S is a random site percolation, then we simply say that R is horizontally-
or up- or down-traversable.

Given rectangles R ⊂ R′ we write {R⇒ R′} for the event that the dynamics restricted
to R′ eventually infect all sites of R′ if all sites in R are infected, i.e., for the event that
R′ = 〈(S ∩R′) ∪R〉.

We will frequently make use of two standard correlation inequalities: The first is the
Fortuin-Kasteleyn-Ginibre inequality (FKG-inequality), which states that for increasing
events A and B, Pp(A∩B) > Pp(A)Pp(B). The second is the van den Berg-Kesten inequality
(BK-inequality), which states that for increasing events A and B, Pp(A ◦B) 6 Pp(A)Pp(B),
where A ◦B means that A and B occur disjointly (see [33, Chapter 2] for a more in-depth
discussion).

1.10. The structure of this paper. In Section 2 we state two key bounds, Lemmas 2.2
and 2.3, giving primarily lower bounds on the probabilities of horizontal and vertical
growth of an infected rectangular region, and we use them to prove the lower bound of
Theorem 1.3. In Section 3 we prove a complementary upper bound on the vertical growth
of infected rectangles, Lemma 3.1. In Section 4 we prove Lemma 4.1, which combines the
upper bounds on horizontal and vertical growth from Lemmas 2.2 and 3.1. This lemma is
crucial for the upper bound of Theorem 1.3. We prove the upper bound of Theorem 1.3
in Section 5, subject to a variational principle, Lemma 5.9, that we prove in Section 6.
Finally, in Section 7 we use Theorem 1.3 to prove Theorem 1.1.
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in the earlier stages of the project, and for the many crucial insights he provided. We
thank the anonymous referee for their careful reading and comments. The third author
would like to thank Robert Fitzner for useful discussions about computer simulations.
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NCCR SwissMap funded by the Swiss NSF.
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(NWO) through Gravitation-grant networks-024.002.003.

2. The lower bound of Theorem 1.3

Recall that C1 = 1
12 and C2 = 1

6 log 8
3e .

Proposition 2.1. Let p > 0 and 1
p2
6 x 6 1

p5
and 1

3p log 1
p 6 y 6

1
p5

. Then

Pp([x]× [y] is IF) > exp

(
−2C1

p
log2 1

p
+ (2C2 − o(1))

1

p
log

1

p

)
.
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Note that the upper bound on y is different from the bound in Theorem 1.3.
For the proof it suffices to show that there exists a subset of configurations that has the

desired probability. We choose a subset of configurations that follow a typical “growth
trajectory”: configurations that contain a small area that is locally densely infected (a
seed). We bound the probability that such a seed will grow a bit (which is likely), and
then a lot more (which is exponentially unlikely), until the infected region reaches a size
where the growth is again very likely, because the boundary of the infected region is large
and the dynamics depend only on the existence of infected sites on the boundary, not on
their number.

To prove this proposition we will need bounds on the probability that a rectangle
becomes infected in the presence of a large infected cluster on its boundary. We state two
lemmas that achieve this, which are improvements upon [23, Lemmas 2.1 and 2.2].

Lemma 2.2. For any rectangle [x]× [y],

e−xf(p,y) 6 Pp ([x]× [y] is hor-trav) 6 e−(x−2)f(p,y),

where f(p, y) := − log(α(1− (1−p)y)) and where α(u) is the positive root of the polynomial

X3 − uX2 − u(1− u)X − u(1− u)2. (2.1)

Moreover, f(p, y) satisfies the following bounds:

(a) when p→ 0 and py →∞,

f(p, y) = e−3py + Θ(e−4py),

(b) when y > 2
p log log 1

p ,

f(p, y) = e−3py
(
1 + Θ

(
log−2(1/p)

))
,

(c) when p→ 0, y →∞, and (1− p)y → 1,

f(p, y) > 1
2py − 3p2y2.

Proof. From [23, Lemma 2.1]9 we know that

α (1− (1− p)y)x 6 Pp ([x]× [y] is hor-trav) 6 α (1− (1− p)y)x−2 .

When u is close to 1, X = e−(1−u)3 is an approximate solution for the positive root, since

e−3(1−u)3 − ue−2(1−u)3 − u(1− u)e−(1−u)3 − u(1− u)2 = Θ((1− u)4).

So, as p→ 0 and py →∞,

− logα(1− (1− p)y) = (1− p)3y + Θ((1− p)4y) = e−3py + Θ(e−4py).

This establishes (a) and (b) simply follows.

To prove (c), recall Rouché’s Theorem (see e.g. [40, Theorem 10.43]), which states that if
two functions g(z) and h(z) are holomorphic on a bounded region U ⊂ C with continuous
boundary ∂U and satisfy |g(z)− h(z)| < |g(z)| for all z ∈ ∂U , then g and h have an equal
number of roots on U . Applying Rouché’s Theorem with h(z) = a0 + a1z + a2z

2 + a3z
3

and g(z) = a0, it follows that the moduli of the roots of h(z) are all bounded from below

9Note that in the proof of [23, Lemma 2.1] there are a number of (unimportant) sign errors.
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by |a0|/(|a0|+ max{|a1|, |a2|, |a3|}). Applying this bound to (2.1) we find that when u > 0
is sufficiently small,

α(u) >
u(1− u)2

u(1− u)2 + 1
> u− 3u2,

where the second inequality is due to a series expansion around u = 0. (We remark that an
explicit computation gives α(u) > u− 3u2 for all u > 0, but without relying on a computer
this may take several pages to verify.) Since we assumed (1− p)y → 1 we thus have

f(p, y) > (1− (1− p)y)− 3(1− (1− p)y)2 > 1
2py − 3p2y2,

where we used 1
2py 6 1− (1− p)y 6 py for p sufficiently small. �

Lemma 2.3. (a) If p2x is sufficiently small, then we have, for any rectangle [x]× [y],

Pp ([x]× [y] is up-trav) > exp
(
y log(8p2x)

(
1 +O(p2x+ p)

))
.

(b) As long as 8p2x
5 ≤ 1 we have

Pp([x]× [y] is up-trav) >

(
8p2x

5e

)y
.

Proof. We say that a rectangle is North-traversable (N-trav) if the intersection of every
row with R contains a site (a, b) such that ((a, b) +N(1,2)) \ {(a, b− 1)} contains at least
two infected sites. Observe that North-traversability implies up-traversability, so

Pp([x]× [y] is up-trav) > Pp([x]× [y] is N-trav).

We can similarly define South-traversability by requiring that the intersection of every row
with R contains a site (a, b) such that ((a, b) +N(1,2)) \ {(a, b+ 1)} contains at least two
infected sites. South-traversability implies down-traversability. Again, from a probabilistic
point of view North- and South-traversability are equivalent, so we will henceforth only
discuss North-traversability.

If [x]× [y] is North-traversable then for each of the y rows there must exist an infected
pair of sites u and v and a site z in the row such that u, v ∈ z + N(1,2). By the FKG
inequality we thus have the lower bound

Pp([x]× [y] is N-trav) > Pp(∃ an infected pair for a row of length x)y.

For the proof of (a) we apply Janson’s inequality [36]. The expected number of infected
pairs immediately above an infected rectangle of width x is at least µ = (8x − 16)p2.
To see this, consider that up to translations there are 8 possible pairs of infected sites
above the rectangle that can infect the whole row, see Figure 2 above. The variance is10

∆ = O(p3x)� µ, so the probability that some pair is infected is at least

1− exp (−µ+ ∆/2) >
(
8p2x−O(p3x+ p4x2)

)
,

using the inequality 1− e−x > x− x2 for x > 0.

10For two positive sequences an and bn we write an � bn when an/bn → ∞ and an � bn when
an/bn → 0.
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For the proof of (b) we use a cruder approximation: For (a, b) ∈ [x]× [y] let A(a,b) be
the event that (a, b) is the leftmost site of an infected pair as in Figure 2. These pairs all
have width at most 5, so the probability that a row of length x does not have an infected
pair can be bounded from above by

(1− 8p2)bx/5c 6 exp

(
−8p2x

5

)
6 1− 8p2x

5e

when 8p2x
5 6 1. The claim follows. �

Proof of Proposition 2.1. We start by constructing a seed. Let r := b2
p log log 1

pc and infect

sites (1, 2i) and (2, 2i+ 1) for 2i ≤ r. The probability that a rectangle [2]× [r] is a seed is
pr. Note that the infected sites internally fill [2]× [r].

The growth of the seed to a rectangle of arbitrary size can be divided into three stages:

Stage 1. By Lemma 2.2(a) the probability of finding a seed of size r that will grow to
size

[
e3rp/(3p)

]
× [r] is about the same as the probability of just finding the seed, i.e.,

pr · exp

(
−e3rp

3p
·
(
e−3rp +O

(
e−4rp

)))
> pre−O(1/p). (2.2)

Stage 2. Next we bound the probability that the infected rectangle grows to size

R :=

[
1

3p2

]
×
[

1

3p
log

1

p

]
,

that is, we want to bound

Pp
([

e3rp

3p

]
× [r]⇒

[
e3mp

3p

]
× [m]

)
, (2.3)

where m := 1
3p log 1

p . This is the bottleneck for the growth dynamics. We bound (2.3) by

considering the growth in many small steps. In each such step, the rectangle will either
infect an entire row above or below it, or it will infect an entire row to the left or right of it
(with the help of infected sites on the boundary of the rectangle). Because vertical growth
is less probable than horizontal growth, we will consider sequences where the rectangle
grows by one vertical step, from height ` to ` + 1, followed by horizontal growth that
infects many columns successively, with the rectangle growing from width x` to x`+1 where

x` := e3`p

3p . That this choice is close to optimal can be seen in Section 6 below, where a

variational principle for the upper bound of Theorem 1.3 is derived.
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Having divided the growth into steps, we can bound (2.3) from below using the FKG-
inequality:

Pp

([
e3rp

3p

]
× [r]⇒

[
e3mp

3p

]
× [m]

)
>

m∏
`=r

Pp ([x`]× [`]⇒ [x`+1]× [`])

×
m−r∏
`=r

Pp ([x`]× [`]⇒ [x`]× [`+ 1])

×
m∏

`=m−r+1

Pp ([x`]× [`]⇒ [x`]× [`+ 1]) .

(2.4)

We bound these three products separately.
It follows from Lemma 2.2(a) that the horizontal growth from width x` to x`+1 occurs

with probability approximately 1/e, i.e.,

Pp
(
[x`]× [`]⇒ [x`+1]× [`]

)
> exp

(
− 1

3p

(
e3(`+1)p − e3`p

)
e−3`p

(
1 +O

(
log−4/3(1/p)

)))
> e−1−o(1).

(2.5)

Therefore,

m∏
`=r

Pp
(
[x`]× [`]⇒ [x`+1]× [`]

)
> e−m(1+o(1)). (2.6)

When ` 6 m− r, then p2x` 6 log−2 1
p , so we can apply Lemma 2.3(a) to bound

Pp([x`]× [`]⇒ [x`]× [`+ 1]) > 8p2x` e
O
(

log−4/3 1
p

)
.

Therefore we can bound the second product in (2.4) from below by

m−r∏
`=r

8p2x`e
O
(

log−4/3 1
p

)
>

(
8p

3

)m−2r

exp

(
3p

m−r∑
`=r

`

)
e

(m−2r)O
(

log−4/3 1
p

)

=

(
8p

3

)m−2r

exp

(
3p

2

(
(m− r)(m− r + 1)− (r − 1)r)

))
eo(m)

= p−r
(

8p

3

)m−r
exp

(
3p

2

(
m2 − 2mr +m

))
eo(m)

= p−r
(

8p

3

)m−r
exp

(
3p

2
(m2 − 2mr)

)
eo(m).

(2.7)
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Using Lemma 2.3(b) we can similarly bound the third product from below by

m∏
`=m−r+1

8p2x`
5e

=

(
8p

15e

)r
exp

(
m∑

`=m−r+1

3`p

)

>

(
8p

3

)r
exp

(
3p

2

(
m(m+ 1)− (m− r)(m− r + 1)

))( 1

5e

)r
=

(
8p

3

)r
exp

(
3p

2
2mr

)
eo(m).

(2.8)

Multiplying the bounds (2.6), (2.7), and (2.8), and using that m = 1
3p log 1

p , we get

Pp
([

e3rp

3p

]
× [r]⇒

[
e3mp

3p

]
× [m]

)
> p−r

(
8p

3

)m
exp

(
3p

2
m2 −m

)
eo(m)

= p−r exp

(
3p

2
m2 −m log

1

p
+m log

8

3
−m

)
eo(m)

= p−r exp

(
− 1

6p
log2 1

p
+ (1− o(1))

1

3p
log

8

3e
log

1

p

)
.

(2.9)

Stage 3. The infected region can grow from [ 1
3p2

] × [m] to arbitrary size with good

probability. Indeed, we claim that

Pp
([

1

3p2

]
× [m]⇒ R

)
> e−O(1/p). (2.10)

This bound is proved in [23, proof of Proposition 2.4]. We do not repeat the proof here,
but let us indicate how this bound is established: Consider the case where the cluster first
grows horizontally to width 1/p2. By Lemma 2.2(b) we have

Pp
([

1

3p2

]
× [m]⇒

[
1

p2

]
× [m]

)
> exp

(
− 2

3p2
· p(1 + o(1))

)
= e−O(1/p).

Now consider the case where it grows vertically, this time to height 3m. This also occurs
with probability at least e−O(1/p). As the infected region gets larger, the probability that
it keeps growing converges to 1. The result is that (2.10) holds for any rectangle R that is
large enough, as long as the dimensions of R are sufficiently balanced (which is guaranteed
by the assumptions on x and y).

Now, by the FKG-inequality, we can multiply the bounds from the three stages (i.e.,
(2.2), (2.9), and (2.10)) to complete the proof of Proposition 2.1. �

3. An upper bound on the probability of up-traversability

The following bound is crucial for the proof of the upper bound of Theorem 1.3. Recall
from (1.1) the definition of the bootstrap operator B, and recall that B(t)(S) is the t-th

iterate of B with initial set S, and that 〈S〉 = limt→∞ B(t)(S). Recall that a rectangle
R = [1, x]× [1, y] is said to be up-traversable by a set S if R ⊂ 〈(S ∩R)∪ ([1, x]×{0})〉, and
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that we write Pp to indicate that the elements of S are chosen independently at random
with probability p.

Lemma 3.1. Let 1 6 k � p−2/5 and let R be a rectangle with dimensions (x, y) such that
y < x. Then, for p sufficiently small,

Pp
(
R is up-traversable

)
6

{
p−key/k(24pk2 + 8p)y if x < 3k2

p ,

p−key/k
(
8p2x+ 8p

)y
if 3k2

p 6 x 6
1
p2
.

We will apply this lemma with 1
p � y � 1

p log6 1
p 6 x and k = log2 1

p . Note that in this

case the upper bound given by the lemma is not much larger than the lower bound given
by Lemma 2.3. In particular, for these choices of x, y and k, the bound given by the lemma
is of the form

(
(8 + o(1))p2x

)y
.

We begin the proof of Lemma 3.1 with the following simple but important definition:
let us say that a pair of sites P is a spanning pair for the row [a, b]× {c} if

[a, b]× {c} ⊂ 〈P ∪ [a, b]× {c− 1}〉. (3.1)

That is, P is a spanning pair for [a, b] × {c} if the row becomes infected when P and
the row below it are infected. Note that for each spanning pair P = {u, v} there exists
z ∈ [a, b]× {c} such that u, v ∈ z + (N(1,2) \ {(0,−1)}), and thus that any spanning pair is
a translate of one of the eight pairs on the right-hand side of Figure 2.

Lemma 3.2. Let R be a rectangle such that R has x(R) > 2 and y(R) > 1, and let S ⊂ R.
Then R is up-traversable by S if and only if 〈S〉 contains a spanning pair for every row
of R.

Proof. Suppose that R = [a, b]× [c, d] with b− a > 1 and d− c > 0. It is easy to see that
if 〈S〉 contains a spanning pair for every row of R, then R is up-traversable by S: if 〈S〉
contains a spanning pair for the bottom row of R, then the whole row becomes infected,
i.e., [a, b]× {c} ⊂ 〈S ∪ [a, b]× {c}〉. And given that the bottom row is infected, the row
above the bottom row must also become infected, since 〈S〉 also contains a spanning pair
for it, i.e., [a, b]× {c+ 1} ⊂ 〈S ∪ [a, b]× {c}〉. This argument can be repeated for all rows.

It will therefore suffice to prove that the converse holds. To do that, let j ∈ [c, d] be
the smallest j such that 〈S〉 does not contain a spanning pair for the row [a, b]× {j}. We
claim that the set (

〈S ∪ [a, b]× {j − 1}〉 \ 〈S〉
)
∩ ([a, b]× {j})

is empty. Indeed, suppose that for some t > 1 there exists a site v such that

v ∈ B(t)
(
S ∪ ([a, b]× {j − 1})

)
∩ ([a, b]× {j}),

Then there must be a pair of already-infected sites in N(1,2)(v) ∩ ([a, b]× [j, j + 1]) at time
t − 1. But this pair lies in 〈S〉, and thus is a spanning pair for the row [a, b] × {j}, a
contradiction. Now, since 〈S〉 does not contain a spanning pair for [a, b]× {j}, this implies
that R * 〈S ∪ ([a, b]× {c− 1})〉, as required. �

We now make another important definition.
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Figure 3. Five configurations (the red and black sites) that do not have a spanning
pair for the row above the dark grey row at time t = 0, but that create a spanning
pair (the red and blue sites) at some time t > 0 by iteration with B. The light
grey sites indicate which sites must become infected to create the spanning pair.
Note that in each case these sets have minimal cardinality (i.e., if we remove any
black site, then iteration of B will not create the spanning pair).

Definition 3.3. For each rectangle R such that x(R) > 2 and y(R) > 1, and each set
S ⊂ R such that R is up-traversable by S, let A(S) ⊂ S be a minimum-size subset such
that R is up-traversable by A(S). (If more than one such subset exists, then choose one
according to some arbitrary rule.) Define the spanning time

τ = τ(R,S) := min
{
t > 0 : B(t)(A(S)) contains a spanning pair for each row of R

}
.

In words, the spanning time τ is the first time t such that B(t)(A(S)) spans all rows
of R. Since R is up-traversable by A(S), it follows by Lemma 3.2 that τ must be finite.
However, we emphasise that it is possible that τ > 0, see Figure 3 for some examples.

The central idea in the proof of Lemma 3.1 is to consider the cases τ = 0 and τ > 0
separately. When τ = 0, the structure is significantly simpler than when τ > 0, which
allows for a very sharp estimate. When τ > 0 more complex structures are possible, but
more infected sites are required, and this allows us to use a less precise analysis.

3.1. The case τ = 0. Given a rectangle R, let F0(R) and F+(R) denote the families of all
minimal sets A ⊂ R such that R is up-traversable by A and τ(R,A) = 0 and τ(R,A) > 0,
respectively. Let us write U0(R) and U+(R) for the upsets generated by F0(R) and F+(R),
respectively, i.e., the collections of subsets of R that contain a set A ∈ F0(R) or A ∈ F+(R),
respectively.

The following lemma gives a precise estimate of the probability that a rectangle is
up-traversable and τ = 0.

Lemma 3.4. Let R be a rectangle with dimensions (x, y), and let p ∈ (0, 1). Then

Pp
(
S ∩R ∈ U0(R)

)
6 (8p2x+ 8p)y. (3.2)

We will prove Lemma 3.4 using the first moment method. To be precise, we will show
that the expected number of members of F0(R) that are contained in S is at most the
right-hand side of (3.2). This will follow easily from the following lemma.
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Figure 4. On the left: an up-traversable rectangle. On the right: a minimal
set A. Note that A is sufficient for up-traversability, that A spans every row (so
τ = 0), and that A consists of 8 paths (so r = 8).

Lemma 3.5. Let R be a rectangle with dimensions (x, y), and let p ∈ (0, 1). Then

|F0(R)| 6
y∑
r=1

8y
(
y − 1

r − 1

)
xr.

To count the sets in F0(R), we will need to understand their structure. We will show
that each set A ∈ F0(R) can be partitioned into “paths” as follows:

Lemma 3.6. Let R be a rectangle with dimensions (x, y), and let A ∈ F0(R). Then there
exists a partition A = A1 ∪ · · · ∪Ar, where r = |A| − y, with the following property: For
each j ∈ [r], there exists an ordering (u1, . . . , u|Aj |) of the elements of Aj such that

ui − ui−1 ∈
{

(±2, 1), (±1, 1)
}
,

for each 2 6 i < |Aj |, and

u|Aj | − u|Aj |−1 ∈
{

(±4, 0), (±3, 0), (±2, 0), (±1, 0), (±2, 1), (±1, 1)
}
.

See Figure 4 for an illustration.

Proof. SinceA is a minimal subset of R such that R is up-traversable byA, and τ(R,A) = 0,
it follows from Definition 3.3 that A contains a spanning pair for each row of R, and hence
(by minimality of A) it follows that A consists exactly of a union of spanning pairs (one
pair for each row) and no other sites. Let these pairs be P1, . . . ,Py, and define a graph on
[y] by placing an edge between i and j if Pi ∩ Pj is non-empty. The sets A1, . . . , Ar are
simply (the elements of A corresponding to) the components of this graph.

Let the components of the graph be C1, . . . , Cr, and note first that each component is a
path, since a spanning pair for row [a, b]× {c} is contained in [a, b]× [c, c+ 1]. Moreover,
it follows immediately from this simple fact that if Pi ∩ Pj is non-empty then Pi and Pj
must be spanning pairs for adjacent rows (say, [a, b]× {c} and [a, b]× {c+ 1}), and that
their common element must lie in [a, b]× {c+ 1}.

Now, consider a component C` = {i1, . . . , is}, set A` =
⋃s
j=1 Pij , and note that |A`| =

s+1. Let A` = {u1, . . . , us+1}, and assume (without loss of generality) that Pij = {uj , uj+1}
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for each j ∈ {1, . . . , s}. It now follows from the comments above, and the definition of a
spanning pair in (3.1), that

ui − ui−1 ∈
{

(±2, 1), (±1, 1)
}
,

for each 2 6 i 6 s, and that

us+1 − us ∈
{

(±4, 0), (±3, 0), (±2, 0), (±1, 0), (±2, 1), (±1, 1)
}
,

as claimed. Finally, note that |A| = y + r, since |A`| = |C`|+ 1 for each ` ∈ {1, . . . , r}. �

Proof of Lemma 3.5. To count the sets A ∈ F0(R), let us first fix |A|, and the sizes of the
sets A1, . . . , Ar given by Lemma 3.6. Recall that r = |A| − y and that A = A1 ∪ · · · ∪Ar is
a partition, and note that |Aj | > 2 for each j ∈ {1, . . . , r}, since Aj is a union of spanning
pairs. It follows that there are exactly (

y − 1

r − 1

)
ways to choose the sequence (|A1|, . . . , |Ar|), where we order the sets Aj so that if i < j
then the top row of Ai is no higher than the bottom row of Aj . (Note that this is possible
because each Ai is a union of spanning pairs for some set of consecutive rows of R.) Now,
we claim that there are at most

x · 8|Aj |−1

ways of choosing the elements of |Aj |, given Aj−1 and |Aj |. Indeed, given Aj−1 we can
deduce which is the bottom row of Aj , and we have at most x choices for the left-most
element u1 of Aj in that row. If |Aj | = 2 then (given u1) there are then exactly 8 choices
for the other element u2, since u2 − u1 ∈

{
(4, 0), (3, 0), (2, 0), (1, 0), (±2, 1), (±1, 1)

}
. On

the other hand, if |Aj | > 3, then there are at most 4|Aj |−2 · 12 6 8|Aj |−1 choices for the
remaining elements of Aj (given u1), by Lemma 3.6, as required.

Now, multiplying together the (conditional) number of choices for each set Aj , it follows
that

|F0(R)| 6
y∑
r=1

∑
|A1|,...,|Ar|

r∏
j=1

(
x · 8|Aj |−1

)
6

y∑
r=1

8y
(
y − 1

r − 1

)
xr,

as claimed, since
∑r

j=1(|Aj | − 1) = y. �

Lemma 3.4 now follows by Markov’s inequality:

Proof of Lemma 3.4. Define a random variable X to be the number of sets A ∈ F0(R)
that are entirely infected at time zero, i.e., that are contained in our p-random set S. By
Markov’s inequality and Lemma 3.5, we have

Pp
(
S ∩R ∈ U0(R)

)
6 Ep[X] 6

y∑
r=1

8y
(
y − 1

r − 1

)
xrpy+r

=

y∑
r=1

(
y − 1

r − 1

)
(8p2x)r(8p)y−r =

px

1 + px
(8p2x+ 8p)y

as required. �
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3.2. The case τ > 0. In this section we analyse the event S ∩ R ∈ U+(R). If R is
up-traversable by S, then let A again denote a subset of S of minimal cardinality such
that R is up-traversable by A. By Lemma 3.2 above we know that if R is up-traversable
by A, then there must exist a time t at which there is spanning pair in B(t)(A) for each
row in R. The following definition isolates the sites that are responsible for the creation of
such spanning pairs.

Definition 3.7. Given S and a row `, we say that M⊂ S is an infector of the row ` if

• there exists a t > 0 such that B(t)(M) contains a spanning pair for the row `, and
• there does not exist a subset M′ ⊂ M such that there exists a t′ > 0 such that
B(t′)(M′) contains a spanning pair for the row ` .

We call the bottom-most left-most site in M the root of M. Given S we write M(S, R)
for the set of all infectors contained in S for a row of R.

Note that spanning pairs are infectors, but that many other configurations are possible:
see Figure 3 for a few examples.

Lemma 3.8 (A property of the union of infectors). Suppose R = [1, x] × [1, y] is up-
traversable by S and that A is a subset of S of minimal cardinality with the same property.
For each ` ∈ {1, . . . , y} there exists an infector M` of row ` in S such that

y⋃
`=1

M` = A.

Proof. Let A′ be a subset of S such that R is up-traversable by A′ and such that A′
is a set with minimal cardinality for this property. By Lemma 3.2, the event that R is
up-traversable by A′ is equivalent to the event that there exists a spanning pair for each row
of R after some finite number of iterations of A′ by the bootstrap operator B. This means
that for each row A′ contains at least one infector. Note that it is a priori possible that
the infectors in M(A′, R) overlap partially or that an infector for some row ` is contained

in an infector for a row `′ 6= `. Write (M(i))
|M(A′,R)|
i=1 for some (arbitrary) ordered list of

the infectors, and, for 1 6 s 6 |M(A′, R)| write

M[(s) :=

s−1⋃
i=1

M(i) ∪
|M(A′,R)|⋃
i=s+1

M(i)

for the union of the sites of all the infectors except those of M(s). Now suppose that there
exist 1 6 s < t 6 |M(A′, R)| such thatM(s),M(t) are both infectors of the same row ` and

suppose that M(s) \M[(s) 6= ∅ and M(t) \M[(t) 6= ∅. Then, since M(s) is an infector for

row ` and the sites in M(t) \M[(t) are not needed to create a spanning pair for any other

row, R is also up-traversable by the set A′ \ (M(t) \M[(t)), whose cardinality is strictly
smaller than A′. This gives a contradiction. Hence, for each row ` there must exist at
most one infector M(s) with the property that M(s) \M[(s) 6= ∅. Taking their union we
obtain A (i.e., A = A′). �
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Recall that for any set Q ⊂ Z2 we write x(Q) and y(Q) for the horizontal and vertical
dimensions of that set. We split the event {S ∩R ∈ U+(R)} according to whether there
exists an infector M` with x(M`) > 6k2 or not.

Lemma 3.9 (Wide infectors). Let R = [1, x]× [1, k] with k > 3 such that k � p−1, and x
such that k5 � x 6 p−2, then

Pp
(
S ∩R ∈ U+(R),

k
max
`=1

x(M`) > 6k2
)

= o((8p2x+ 8p)k). (3.3)

Proof. Write Mj for the first infector such that x(Mj) > 6k2. Since Mj ⊂ [1, x]× [1, k],
y(Mj) 6 k. Moreover, Mj is the minimal set responsible for the creation of the spanning
pair in row j, so it must be the case that Mj does not have a gap of more than three
consecutive columns. There are at most xk possible positions for the root of the infector.
We thus bound (3.3) for the range of x and our choice of k from above by

xk(1− (1− p)3k)2k2 6 xk(3pk)2k2 � (3pk)6k−3 �
(
800p3k3

)k � (8p2x+ 8p)k. �

Lemma 3.10 (Small infectors). There exist no infectors that are not a single spanning
pair that intersect precisely one row, and there exist precisely two infectors that are not a
single spanning pair that intersect precisely two rows, up to translations. The cardinality
of these infectors is 4, and they span both rows they intersect.

Proof. Let Mj be the infector for some row j. Write v for an element of the spanning
pair for row j that becomes infected due to the bootstrap dynamics on Mj . (It is easy
to see that only one element of a spanning pair can arise after time t = 0, but we do not
use this fact.) Suppose t is the first time such that B(t)(Mj) contains a spanning pair.
Because Mj is not a spanning pair, t > 1. Since v becomes infected at time t, it must

be the case that |N(1,2)(v) ∩ B(t−1)(Mj)| > 3. Any configuration of three sites in N(1,2)(v)
contains a spanning pair for the row that v is in, so v cannot be in row j. By the definition
of spanning pairs, (3.1), a site can either span the row that it is in, or the row below it, so
v is in row j + 1. We conclude that there are no infectors that are not a spanning pair
that intersect precisely one row.

By the same argument, if t > 2, then Mj must contain a site in row j + 2, so only
infectors that intersect two rows can have t = 1.

One can easily verify that the only infectors with t = 1 that intersect two rows are trans-
lations of the configurations {(0, 0), (0, 1), (3, 1), (4, 1)} and {(0, 0), (0, 1), (−3, 1), (−4, 1)}
(see the configuration in the bottom-left corner of Figure 3). These infectors both have
cardinality 4, and span both rows they intersect. �

To analyse Pp(S ∩R ∈ U+(R)) we again divide A into the maximal number of disjoint,
“causally independent” pieces, to which we may apply the BK-inequality. We have seen
that when τ = 0 these pieces can be described as paths. When τ > 0 this is still the case,
but now the path structure can be found at the level of the infectors. We partition A as
follows: let r be the largest integer such that there exist sets B1, . . . , Br that partition
A (i.e., Bi ∩ Bj = ∅ for all i 6= j and A =

⋃r
i=1Bi) and such that there exist r pairs of

integers {(ai, bi)}ri=1 such that

• 1 = a1 6 b1 6 a2 6 b2 6 · · · 6 ar 6 br = k, and
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• the event

{[1, x]× [a1, b1] is up-trav by B1} ◦ · · · ◦ {[1, x]× [ar, br] is up-trav by Br}
occurs.

Lemma 3.11 (Path structure of B1, . . . , Br). Let R = [1, x]× [1, y] and suppose that R
is up-traversable by S. Let A be the subset of S with minimal cardinality such that R is
up-traversable by A. Let B1, . . . , Br be the division of A into disjointly occurring pieces
described above. Then the following hold:

(a) For any row ` ∈ {1, . . . , y} there exists a unique i ∈ {1, . . . , r} such that M` ⊆ Bi.
(b) If Bi spans rows `, . . . , `+m, then Bi = ∪`+mj=` Mj.

(c) If Mj ⊆ Bi and j < bi, then at least one of the following holds: Mj = Bi; or there
exists a j′ < j such that Mj ⊂Mj′ ⊆ Bi; or Mj ∩Mj+1 6= ∅.

(d) If Mj ⊆ Bi and j = bi, then at least one of the following holds: Mj = Bi; or there
exists a j′ < j such that Mj ⊂Mj′ ⊆ Bi; or Mj−1 ∩Mj 6= ∅.

Proof. (a) By construction, A = ∪ri=1Bi, and Bi ◦ Bj occurs if i 6= j. By Lemma 3.8,

A = ∪k`=1M`. Suppose that there exists an ` such thatM` ∩Bi 6= ∅ andM` ∩Bj 6= ∅ for
some i 6= j. Without loss of generality, we can further assume that ai 6 ` 6 bi. Since M`

is the minimal set to create a spanning pair for row `, and that M` ∩Bi is a strict subset
of M` (since the latter intersects Bj , which is disjoint from Bi by assumption), we deduce
that 〈M` ∩Bi〉 cannot contain a spanning pair for row `. By Lemma 3.2, this means that
[1, x]× [ai, bi] is not up-traversable by Bi, which is a contradiction.

(b) By Lemma 3.8, A = ∪ki=1Mi. Combined with (a) this gives (b).
(c) Suppose that Bi spans rows `, . . . , `+m and suppose that there exists a j < bi such

that neither Mj = Bi nor Mj ⊂ Mj′ for some j′ < j, and such that Mj ∩Mj+1 = ∅.
Then we can partition

Bi =

(
j⋃
s=`

Ms

)
t

 `+m⋃
t=j+1

Mt

 =: Bi,1 t Bi,2.

It then follows that

{[1, x]× [`, j] is up-trav by Bi,1} ◦ {[1, x]× [j + 1, `+m] is up-trav by Bi,2}
occurs. This gives a contradiction, since by construction the sets B1, . . . , Br are the
maximal partition of A with this property, so such a j does not exist. So we conclude that
if Mj ⊂ Bi but Mj 6= Bi and Mj *Mj′ for some j′ < j, then Mj ∩Mj+1 6= ∅.

(d) The proof is identical to that of (c), mutatis mutandis. �

For all k, `,m, x ∈ N, let E`+1,`+m denote the event that a configuration of infected sites
S has the following properties:

• S ∩ ([1, x]× [`+ 1, `+m]) ∈ U+([1, x]× [`+ 1, `+m]),
• the minimal subset A of S such that [1, x]× [`+ 1, `+m] is up-traversable by A

cannot be divided into two or more disjointly occurring pieces, i.e., A = B1 in the
construction described above.
• maxmj=`+1 x(Mj) < 6k2.
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Lemma 3.12. For k > 3, `+m 6 k and all p ∈ [0, 1],

Pp(E`+1,`+m) 6 4p2x(12pk2 + 7p)m−1.

Proof. There is at least one infected site in row `+ 1, and it can be at x positions.
By Lemma 3.11, the event E`+1,`+m implies that A is the union of infectors that are

not disjoint. Since, moreover, none of the infectors are wider than 6k2 − 1, for each of
the rows `+ 2, . . . , `+m we then need to have at least 1 infected site in the line-segment
[−6k2 − 3, 6k2 + 3] directly above the infected site of the row below it. Finally, row `+m
must also be spanned, and by Lemma 3.10 its spanning pair must already be present at
time t = 0, so there must be another infected site in that row, in one of the four positions
that can create a spanning pair for line `+m. We thus bound

Pp(E`+1,`+m) 6 px · (p(12k2 + 7))m−14p. �

Write
Va,b :=

{
[1, x]× [a, b] is up-traversable

}
and

V+
a,b :=

{
S ∩ ([1, x]× [a, b]) ∈ U+([1, x]× [a, b])

}
∩
{ b

max
j=a

x(Mj) 6 6k2
}
.

The following lemma states the key inequality for the induction:

Lemma 3.13. For k > 2,

Pp(V+
1,k) 6

k∑
m=2

k−m∑
`=0

Pp(V1,`)Pp(E`+1,`+m)Pp(V`+m+1,k).

Proof. Since V+
1,k occurs, [1, x] × [1, k] is up-traversable. Let A be the minimal subset

of S such that [1, x] × [1, k] is up-traversable with respect to A. Let B1, . . . , Br be the
subdivision of A described above. Let u ∈ A and v ∈ 〈A〉 \ A be such that {u, v} form a
spanning pair for the row i, while A does not contain a spanning pair for row i. At least
one such pair must exist since V+

1,k occurs. Let j be such that Mi ⊆ Bj (we can find such

a Bj by Lemma 3.11(a)). Suppose that Bj spans exactly the rows `+ 1, . . . , `+m (i.e.,
aj = `+ 1 and bj = `+m). Then, by the construction of B1, . . . , Br and E`+1,`+m we know
that

V1,` ◦ E`+1,`+m ◦ V`+m+1,k

occurs for S. Applying the BK-inequality and summing over ` and m gives the asserted
inequality. The sum over m starts at 2 because by Lemma 3.10, Bj must span at least two
rows. �

3.3. The proof of Lemma 3.1. To begin, assume that 3k2

p 6 x 6 1
p2

. We start by

proving Lemma 3.1 for the cases where y 6 k. More precisely, we will prove that

Pp(V1,k) 6 e(8p2x+ 8p)k, (3.4)

holds for k � p−1. We use induction. The inductive hypothesis is that (3.4) holds
for k′ 6 k − 1 and k5 � x 6 p−2. To initialise the induction we observe that when
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k = 1 there exist four spanning pairs up to translations that intersect one row, so
Pp(V1,1) 6 4p2x < e(8p2x+ 8p). When k = 2 we use Lemma 3.10 to bound

Pp(V+
1,2) = 2xp4, (3.5)

which, combined with Lemma 3.4 yields that

Pp(V1,2) 6 (8p2x+ 8p)2 + 4xp4 6 e(8p2x+ 8p)2

when p is sufficiently small.
When 3 6 k � p−1, by (3.5), Lemmas 3.4, 3.9, 3.12, and 3.13, and the induction

hypothesis (3.5), when p is sufficiently small,

Pp(V1,k) 6(8p2x+ 8p)k +
e− 1

3
(8p2x+ 8p)k + 2xp4(k − 1)e2(8p2x+ 8p)k−2

+ 4e2xp2k
k∑

m=3

(8p2x+ 8p)k−m+1(12pk2 + 7p)m−1,
(3.6)

where the second term on the right-hand side is due to Lemma 3.9, and the third and
fourth correspond to the m = 2 and m > 3 terms in Lemma 3.13.

It is not difficult to show that

k∑
m=3

ak−m+1bm−1 =
b2ak−1 − abk

a− b
.

When 3k2

p 6 x we have 12pk2 + 7p 6 1
2(8p2x+ 8p), so this implies that

4e2xp2k
k∑

m=3

(8p2x+ 8p)k−m+1(12pk2 + 7p)m−1 6 8e2xp2(12pk2 + 7p)2(8p2x+ 8p)k−2.

Inspecting (3.6), it follows that the desired bound (3.4) holds if the following two inequalities
hold for p sufficiently small:

2e2xp4(k − 1) <
e− 1

3
(8p2x+ 8p)2,

8e2xp2k(12pk2 + 7p)2 <
e− 1

3
(8p2x+ 8p)2.

The first inequality holds because k � x. It is easy to verify that the second inequality
holds when k5 � x 6 p−2. Substituting the above inequalities into (3.6) proves the claim
of Lemma 3.1 for y 6 k.

Now we consider R = [1, x] × [1, y] for y such that k < y < x (still assuming that
3k2

p 6 x 6 1
p2

). We cover R with dy/ke rectangles of height k. If y is not divisible by

k the covering “overshoots”: it includes at most k − 1 rows that are not in R. If R is
up-traversable, and if the overshoot contains a connected upward path, then all these
rectangles are also up-traversable. The probability that there is a connected path in the
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overshoot is at least pk. It thus follows by the BK-inequality that

Pp (R is up-trav) 6 p−k
dy/ke∏
n=1

Pp(V(n−1)k+1,nk)

6 p−key/k(8p2x+ 8p)y,

(3.7)

where these bounds again hold for p sufficiently small. This completes the proof of

Lemma 3.1 for the case 3k2

p 6 x 6
1
p2

.

The case x < 3k2

p is now easy. Note that if [1, x]× [1, y] is up-traversable by S, then also

[1, x+ a]× [1, y] for any a > 1 is up-traversable by S (i.e., up-traversability is a monotone
increasing event in the width of the rectangle). Hence, Pp([x]× [y] is up-trav) is a monotone

increasing function in x. The bound thus follows by choosing x = 3k2

p and applying the

bound for the case 3k2

p 6 x 6
1
p2

. �

4. The probability of simultaneous horizontal and vertical growth

The lemma below states an upper bound on the probability of an infected rectangle
growing both vertically and horizontally, i.e., an upper bound on Pp(R⇒ R′) for certain
R ⊂ R′.

Let

ξ :=

⌈
log2 1

p

⌉
, and δξ := 1− 2/ξ.

Recalling Lemma 3.1 and the bound on f(p, y) in Lemma 2.2 above, let

ψ(x) := −
(
log(24pξ2 + 8p) + ξ−1

)
1{x< 3ξ2

p
} −

(
log(8p2x+ 8p) + ξ−1

)
1{ 3ξ2

p
6x6 1

p2
}, (4.1)

and let

φ(y) := e−3py
1{y> 4

p
log log 1

p
}. (4.2)

For two rectangles R ⊂ R′ with dimensions (x, y) and (x+ s, y + t), let

Up(R,R′) := δξ (tψ(x+ s) + sφ(y + t)). (4.3)

Observe that ψ and φ are both positive, decreasing, and convex functions (where they are
not zero).

Lemma 4.1. Let R ⊂ R′, with dimensions (x, y) and (x+ s, y + t) respectively. Assume
that t 6 1

p log−4 1
p . Then, for p sufficiently small,

Pp(R⇒ R′) 6 2p−ξ exp
(
−Up(R,R′)

)
.

The proof uses a similar strategy as [23, Proof of Proposition 3.3]. Roughly speaking
this strategy entails that we “decorrelate” the horizontal and vertical growth events needed
for {R⇒ R′}.
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Rw Re

Rn

Rs

R

R′

H

a1 c1 c2 a2
b1

d1

d2

b2

Figure 5. The rectangles Rw and Re are hatched red and the rectangles Rn and
Rs are hatched blue. The regions where these four rectangles overlap, collectively
called H, are cross hatched purple.

Proof. If y+t 6 4
p log log 1

p and x+s > 1/p2, then we use the trivial bound Pp(R⇒ R′) 6 1,

corresponding to Up(R,R′) = 0, as required.
If y + t 6 4

p log log 1
p and x+ s 6 1/p2, then we apply Lemma 3.1 (with k = ξ), again

giving the required bound.
Therefore, we assume henceforth that y + t > 4

p log log 1
p and x+ s 6 1

p2
.

To start, suppose that (1− δξ)tψ(x+ s) > δξsφ(y+ t), which corresponds to the vertical
growth component t being disproportionately large compared to the horizontal growth
component s. Then, we can simply ignore the horizontal growth and apply Lemma 3.1 to
bound

Pp(R⇒ R′) 6 p−ξ exp(−tψ(x+ s))

6 p−ξ exp(−δξtψ(x+ s)− δξsφ(y + t))

= p−ξ exp(−Up(R,R′)),

(4.4)

and we are done. Therefore, let us henceforth also assume that

(1− δξ)tψ(x+ s) 6 δξsφ(y + t). (4.5)

We identify five (intersecting) regions within the area R′ \R: the North, South, West,
and East regions Rn, Rs, Rw, and Re, and the corner region H: for R′ = [a1, a2]× [b1, b2]
and R = [c1, c2]× [d1, d2], such that a1 6 c1 < c2 6 a2 and b1 6 d1 < d2 6 b2, we define
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the sets

Rw := [a1, c1 − 1]× [b1, b2] and Re := [c2 + 1, a2]× [b1, b2],

Rn := [a1, a2]× [d2 + 1, b2] and Rs := [a1, a2]× [b1, d1 − 1],

H := R′ \ {(x, y) : x ∈ [c1, c2] or y ∈ [d1, d2]},

see Figure 5. Observe that

{R⇒ R′} ⊂ {Rn is up-trav} ∩ {Rs is down-trav} ∩ {Rw and Re are hor-trav}.

Let

E := {Rn is up-trav} ∩ {Rs is down-trav}.
Recall from Definition 3.7 above that we write M(S,Rn) and M(S, Rs) for the sets of
infectors of Rn and Rs (the latter being a set of infectors suitably defined for down-
traversability). By Lemma 3.8, we are able to determine whether E occurs by inspecting
only sites in M(S,Rn) and M(S, Rs). So the event that Rw and Re are horizontally
traversable only depends on E through the information about the intersection of these sets
with H, the region where the rectangles overlap. Define M[

H(S) as the set of all sites in
S ∩H contained in either M(S,Rn) or M(S, Rs). Let Y denote the number of columns in

H that contain at least one infected site in M[
H(S). We split

Pp(R⇒ R′) 6 Pp
(
{R⇒ R′} ∩ {Y 6 s/(2ξ)}

)
+ Pp(Y > s/(2ξ)). (4.6)

We start by bounding the first term in (4.6). Let F := {Y 6 s/(2ξ)}. We use Lemma 3.1
with k = ξ = dlog2 1

pe to bound

Pp({R⇒ R′} ∩ F ) 6 Pp(Re and Rw are hor-trav | E ∩ F )Pp(E)

6 Pp(Re and Rw are hor-trav | E ∩ F )p−ξe−tψ(x+s).
(4.7)

Let Rn denote the set of all sets of n subrectangles of Re ∪Rw with heights y + t, total
width n, and such that each pair of rectangles in a set r ∈ Rn are separated by at least

one column. I.e., for r = {ri}N(r)
i=1 ∈ Rn we have that r is a collection of N(r) strictly

disjoint subrectangles with
∑N(r)

i=1 x(ri) = n, and y(ri) = y + t for all 1 6 i 6 N(r). For

any r = {ri}N(r)
i=1 ∈ Rn define the following two events:

E1(r) := {∀1 6 i 6 N(r) : ri is horizontally traversable}

and

E2(r) :=

{
M[
H ∩

N(r)⋃
i=1

ri = ∅
}
∩
{
@r′ ∈ Rn : N(r′) < N(r) and M[

H ∩
N(r′)⋃
i=1

r′i = ∅
}

∩
{
@r′′ ∈ ∪n′′>nRn′′ : M[

H ∩
N(r′′)⋃
i=1

ri = ∅
}
, (4.8)

that is, E2(r) is the event that r is the partition into the least number of rectangles of total

width n that does not intersect M[
H , and that there is no partition of total width greater
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than n that also does not intersect M[
H . Observe that

{Re, Rw are hor-trav} ⊆
s⊔

m=0

⊔
r∈Rs−m

(E1(r) ∩ E2(r)).

Thus,

Pp(Re, Rw are hor-trav | E ∩ F )

6
s/(2ξ)∑
m=0

∑
r∈Rs−m

Pp(E1(r) | E2(r) ∩ E ∩ F )Pp(E2(r) | E ∩ F ), (4.9)

where we used that the sum may be restricted to m 6 s/(2ξ) by the conditioning on F .

Now note that the events E and F can be verified by inspecting only M[
H , which, on the

event E2(r) is contained in H \ r, while E1(r) by definition only depends on the sites in r,
so that conditionally on E2(r) the event E1(r) is independent of E and F . We may thus
write

Pp(E1(r) | E2(r) ∩ E ∩ F ) =
Pp(E1(r) ∩ E ∩ F | E2(r))

Pp(E ∩ F | E2(r))

=
Pp(E1(r) | E2(r))Pp(E ∩ F | E2(r))

Pp(E ∩ F | E2(r))
= Pp(E1(r) | E2(r)).

Observe that for any fixed r the event E1(r) is increasing. Indeed, adding more sites to
S can either make horizontal traversal occur when it did not before, or else, have no effect.
We claim that the event E2(r), on the other hand, is the intersection of three decreasing
events, and hence itself a decreasing event. To see this, observe that the first event in
(4.8) is decreasing because adding more sites to S cannot decrease the total width of M[

H ,
since it is the union of all infectors intersecting H (not only those of minimal cardinality

for a given row). The second event in (4.8) is likewise decreasing, because increasing M[
H

cannot decrease the minimal number of rectangles of a partition that does not intersect
M[
H , unless it also decreases the total width of that partition. The third event is decreasing

because increasing M[
H cannot decrease its total width. Therefore, we may apply the

FKG-inequality to obtain

Pp(E1(r) | E2(r)) 6 Pp(E1(r)),

and we may thus further bound the right-hand side of (4.9) by

s/(2ξ)∑
m=1

∑
r∈Rs−m

Pp(E1(r))Pp(E2(r) | E ∩ F ).
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Uniformly for any fixed r ∈ Rs−m with m 6 s/(2ξ), by Lemma 2.2,

Pp(E1(r)) =

N(r)∏
i=1

Pp(ri is hor-trav) 6 exp

−N(r)∑
i=1

(x(ri)− 2)f(p, y + t)


6 exp (−s(1− 1/ξ)f(p, y + t))

6 exp (−δξsφ(y + t)) ,

where the final inequality follows from Lemma 2.2(b) when p is sufficiently small. Inserting
this bound in (4.9), we proceed by using that the events E2(r) are mutually disjoint for all
r to bound

Pp(Re, Rw are hor-trav | E ∩ F ) 6 exp (−δξsφ(y + t))

s/(2ξ)∑
m=1

∑
r∈Rs−m

Pp(E2(r) | E ∩ F )

6 exp (−δξsφ(y + t)) .
(4.10)

Combining (4.7) and (4.10) we bound the first term in (4.6) by p−ξ exp(−Up(R,R′)).

Now we bound the second term in (4.6). If Y > s/(2ξ) then at least s/(2ξ) out of s
columns are non-empty. The probability that a column is non-empty is 1− (1− p)t 6 2pt
(when p is sufficiently small). Therefore, P(Y > s/(2ξ)) 6 P(Bin(s, 2pt) > s/(2ξ)). We use
Chernoff’s bound that P(Bin(n, p) > q) 6 e−q when q > np to estimate

Pp(Y > s/(2ξ)) 6 exp(−s/(2ξ))

(here we used that t 6 1
p log−4 1

p). Observe that since ξ = dlog2 1
pe, δξ = 1 − ξ−1, and

φ(y + t) > log−12 1
p by our assumption that y + t > 4

p log log 1
p , we have

exp(−s/(2ξ)) 6 exp

(
−

δξ
1− δξ

sφ(y + t)

)
.

Now recall our assumption (4.5) that (1 − δξ)tψ(x + s) 6 δξsφ(y + t). Applying this
inequality twice, it follows that

δξ
1− δξ

sφ(y + t) > tψ(x+ s) > δxtψ(x+ s) + δξsφ(y + t).

We thus have Pp(Y > s/(2ξ)) 6 exp(−Up(R,R′)), as required.
Applying the bounds for the two cases to (4.6) completes the proof (using the crude

upper bound p−ξ + 1 6 2p−ξ for p sufficiently small). �

5. The upper bound of Theorem 1.3

Proposition 5.1. Let p > 0 and 1
3p log 1

p 6 y 6
1
p log 1

p and 1
p2
6 x 6 1

p5
. Then

Pp([x]× [y] is IF) 6 exp

(
−2C1

p
log2 1

p
+ (2C2 + o(1))

1

p
log

1

p

)
.
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5.1. Notation and definitions. Before we proceed with the proof, we must introduce
some more notation and a few definitions. Our proof uses hierarchies. The notion of
hierarchies is due to Holroyd [34], and is common to much of the bootstrap percolation
literature since. Here we use a definition of a hierarchy that is similar to the one in [23]:

Definition 5.2 (Hierarchies). .

(a) Hierarchy, seed, normal vertex, and splitter: A hierarchy H is a rooted
tree with out-degrees at most three11 and with each vertex v labeled by non-empty
rectangle Rv such that Rv contains all the rectangles that label the descendants
of v. If the number of descendants of a vertex is 0, we call the vertex a seed.12 If
the vertex has one descendant, we call it a normal vertex, and we write u 7→ v to
indicate that u is a normal vertex with (unique) descendant v. If the vertex has two
or more descendants, we call it a splitter vertex. We write N(H) for the number
of vertices in the tree H.

(b) Precision: A hierarchy of precision Z (with Z > 1) is a hierarchy that satisfies
the following conditions:
(1) If w is a seed, then x(Rw) > 2 and y(Rw) < 2Z, while if u is a normal vertex

or a splitter, then y(Ru) > 2Z.
(2) If u is a normal vertex with descendant v, then y(Ru)− y(Rv) 6 2Z.
(3) If u is a normal vertex with descendant v and v is either a seed or a normal

vertex, then y(Ru)− y(Rv) > Z.
(4) If u is a splitter with descendants v1, . . . , vi and i ∈ {2, 3}, then there exists

j ∈ {1, . . . , i} such that y(Ru)− y(Rvj ) > Z.
(c) Presence: Given a set of infected sites S we say that a hierarchy H is present in
S if all of the following events occur disjointly:
(1) For each seed w, Rw = 〈Rw ∩ S〉 (i.e., Rw is internally filled by S).
(2) For each normal u and every v such that u 7→ v, Ru = 〈(Rv ∪ S) ∩Ru〉 (i.e.,

the event {Rv ⇒ Ru} occurs on S).
(d) Goodness: Similar to [31], we say that a seed w is large if Z/3 6 y(Rw) 6 Z.

We call a hierarchy good if it has at most log11 1
p large seeds, and we call it bad

otherwise.

5.2. Outline of the proof of Proposition 5.1. In this section we give the proof of
Proposition 5.1 subject to Lemma 5.9 below. We prove Lemma 5.9 in Section 6.

Let HZ,R denote a hierarchy with root R and precision Z. Let HZ,R denote the set of
all HZ,R. Likewise, let Hgood

Z,R and Hbad
Z,R denote the subsets of good and bad hierarchies in

11In the original construction of a hierarchy by Holroyd [34] for the standard model, hierarchies have
out-degree at most two. The fact that we need out-degree three corresponds to the fact that the anisotropic
model requires three infected sites in a neighbourhood. As a result, it is possible that a rectangle is
internally filled by a set of three but not two disjoint internally filled smaller rectangles. Our definition of
hierarchies reflects this. See also [23].

12Note that although similar, this definition of a seed is different than the one used in the previous
section.
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HZ,R. Lastly, given a set of hierarchies H and a rectangle R, define the event

X (R;H) := {S ∈ {0, 1}Z2
: ∃H ∈ H such that H is present in S ∩R}.

Lemma 5.3. Let R be a rectangle with x(R) > 2 and let Z > 3. If R is internally filled,
then there exists a hierarchy HZ,R ∈ HZ,R that is present, i.e., X (R;HZ,R) occurs.

The proof of this lemma is the same as the proof of [23, Proposition 3.8] so we do not
repeat it here. (But note that it does not matter that our definition of hierarchies uses
“internally filled” rather than “k-occurs”.)

Throughout this paper, let

Zp :=
1

p
log−8 1

p
.

Conform the hypothesis of Proposition 5.1 we restrict ourselves to hierarchies with root
label Rp of dimensions (x, y) such that

1

p2
6 x 6

1

p5
and

1

3p
log

1

p
6 y 6

1

p
log

1

p
.

For the sake of simplicity we often suppress subscripts Zp and Rp.
We bound the good and bad hierarchies separately:

Pp(Rp is IF) 6 Pp(X (Rp;Hgood)) + Pp(X (Rp;Hbad)). (5.1)

We bound the second term with the following lemma:

Lemma 5.4. As p tends to 0 we have

Pp(X (Rp;Hbad)) 6 exp

(
−Ω

(
1

p
log3 1

p

))
.

Proof. We claim that if R is a large seed, i.e., Zp/3 6 y(R) 6 Zp, then

Pp(R is IF) 6 exp

(
−Ω

(
1

p
log−8 1

p

))
.

To see that this is indeed the case we consider the cases x > 1/p and x < 1/p separately.
For the case x > 1/p, the bound follows from Lemma 2.2(c):

Pp(R is IF) 6 Pp(R is hor-trav) 6 exp
(
−(x− 2)

(
1
2py − 3p2y2

))
6 exp

(
−
(

1

p
− 2

)(
1
2p ·

1

3p
log−8 1

p
− 3p2 · 1

p2
log−16 1

p

))
6 exp

(
−Ω

(
1

p
log−8 1

p

))
.
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For the case x < 1/p, the bound follows from Lemma 3.1 with k = 2 and p sufficiently
small:

Pp(R is IF) 6 Pp(R is up-trav) 6 p−2ey/2(104p)y

= exp

(
2 log

1

p
+
y

2
+ y log(108)− y log

1

p

)
= exp

(
−(1 + o(1))y log

1

p

)
= exp

(
−Ω

(
1

p
log−8 1

p

))
.

Now consider the event X (Rp;Hbad). This event implies that there exists a hierarchy H
that is present and bad, which by definition means that more than log11 1

p rectangles of

size between Zp/3 and Zp are internally filled disjointly. Since Rp contains at most 1
p6

log 1
p

sites, the probability of this event is smaller than(
1

p6
log

1

p
· e−

c
p

log−8 1
p

)log11 1
p

6 exp

(
−Ω

(
1

p
log3 1

p

))
. �

We bound the first term of (5.1) as follows:

Pp(X (Rp;Hgood)) 6 |Hgood| max
H∈Hgood

Pp(H is present). (5.2)

Now we apply the following lemma.

Lemma 5.5. The number of good hierarchies satisfies

|Hgood| 6 eO(1/p).

Proof. We start by observing that any good hierarchy H ∈ Hgood has root Rp such that

x 6 1
p5

and y(Rp) 6 1
p log 1

p and precision Zp = 1
p log−8 1

p , so its height h(H) is bounded

from above by

h(H) 6
y(Rp)

Zp
6 log9 1

p
.

Moreover, since there are at most log11 1
p large seeds in a good hierarchy, the number of

vertices NH in the hierarchy H obeys

NH 6 log11 1

p
· log9 1

p
= log20 1

p
. (5.3)

Each vertex of a hierarchy has 0, 1, 2 or 3 descendants, so there are at most 4
log20 1

p

unlabelled trees corresponding to the good hierarchies. Finally, since each vertex of a
hierarchy is labelled by a sub-rectangle of Rp with x(Rp) 6 p−5, the number of choices for
each label is bounded from above by

x(Rp)
2 · y(Rp)

2 6 p−10 · 1

p2
log2 1

p
6 p−13,

so

|Hgood| 6
(
4p−13

)log20 1
p = e

13 log21 1
p

+log 4 log20 1
p 6 eO(1/p). �
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By Lemma 5.5 it suffices to give a uniform bound on the probability that a given
hierarchy is present, if the hierarchy is good. Indeed, it remains to show that

max
H∈Hgood

Pp(H is present) 6 exp

(
−2C1

p
log2 1

p
+ (2C2 + o(1))

1

p
log

1

p

)
.

Before we proceed, let us deal with a small technical issue: the possibility of “wide”
seeds (Lemma 5.9 below does not work in their presence). Observe that if the hierarchy H
that maximises the probability of being present contains a seed with label Rs such that
x(Rs) >

1
3p log12 1

p (i.e., the seed is extremely wide), then the probability that H is present

is bounded by the probability that Rs is horizontally traversable, which, by Lemma 2.2(c)
can be bounded as follows:

Pp(Rs is IF) 6 Pp(Rs is hor-trav)

6 exp
(
−(x(Rs)− 2)

(
1
2py(Rs)− 3p2y(Rs)

2
))

6 exp

(
−
(

1

p
log12 1

p
− 2

)(
1
2 log−8 1

p
− 3 log−16 1

p

))
= exp

(
−Ω

(
1

p
log3 1

p

))
,

where for the third inequality we used the assumption on x(Rs) and that y(Rs) < 2Z =
2
p log−8 1

p . Proposition 5.1 thus holds for hierarchies with wide seeds. Let us therefore

assume from here on that x(Rs) 6 1
3p log12 1

p for all seeds.

By the BK-inequality we have

Pp(H is present) 6
∏
u seed

Pp(Ru is IF)
∏
v 7→w

Pp (Rv ⇒ Rw) (5.4)

(we ignore here the contributions from splitter vertices).
The following lemma is used to determine a bound for the product of the seeds:

Lemma 5.6. Given a hierarchy HZ,R, let Nseed denote the number of seeds of the hierarchy
HZ,R, and let u1, . . . , uNseed

be an arbitrary ordering of the seeds of HZ,R. Then∏
u seed

Pp(Ru is IF) ≤
Nseed∏
n=1

Pp
(
R̃n ⇒ R̃n+1

)
where

R̃n = [1,x(Ru1) + · · ·+ x(Run)]× [1,y(Ru1) + · · ·+ y(Run)] .

Proof. For any p > 0 and any rectangle R′ with dimensions (x, y) with min{x, y} > 2 and
any a > 2, b > 1, we have

Pp(R′ is IF) 6 Pp([1, a]× [1, b]⇒ [1, a+ x]× [1, b+ y]). (5.5)

Indeed, if the rectangle [a + 1, a + x] × [b + 1, b + y] is internally filled, then the event
{[1, a]× [1, b]⇒ [1, a+ x]× [1, b+ y]} occurs. An application of the FKG-inequality thus
gives (5.5).

Any seed of a hierarchy must have dimensions at least (2, 1) by definition, so an iterated
application of (5.5) completes the proof. �
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Recall the definition of Up(R,R′) in (4.3) above. We use Lemmas 4.1 and 5.6 to bound
the first product on the right-hand side of (5.4):

∏
u seed

Pp(Ru is IF) 6
Nseed∏
n=1

Pp(R̃n ⇒ R̃n+1)

6 2p−ξNseed exp

(
−
Nseed∑
n=0

Up(R̃n, R̃n+1)

)
,

where R̃0 = [1]× [1].
To bound the second product of (5.4), we use the following lemma:

Lemma 5.7. Let p > 0. Let Nsplitter denote the number of splitter vertices of the hierar-

chy H. Then there exists an integer N̂ = N̂(H) > 1 and a sequence of nested rectangles

R̂0 ⊂ · · · ⊂ R̂N̂ with the following properties:

• R̂0 = R̃Nseed
(with R̃Nseed

as defined in Lemma 5.6 above),

• R̂N̂ has dimensions larger than R,

• y(R̂n+1)− y(R̂n) 6 1
p log−8 1

p for every 0 6 n 6 N̂ − 1,

• for p sufficiently small,

∏
v 7→w

Pp(Rw ⇒ Rv) 6 2p−ξNsplitter

N̂−1∏
n=0

exp
(
−Up(R̂n, R̂n+1)

)
.

The proof of this lemma goes by induction, using Lemma 4.1, and it is essentially the
same as the proof of [23, Lemma 3.11], so we omit it here.

We use Lemma 5.7 to determine that there exist rectangles R̂1 ⊂ · · · ⊂ R̂N̂ satisfying
the conditions of the lemma such that∏

v 7→w
Pp(Rv ⇒ Rw) 6 2p−ξNsplitter

N̂−1∏
n=0

exp
(
−Up(R̂n, R̂n+1)

)
.

Using Lemmas 4.1 and 5.7 and writing (Rn)Nn=0 for the concatenation of the sequences

(R̃n)Nseed
n=0 and (R̂n)N̂n=0, i.e.,

(Rn)Nn=0 := (R̃0, R̃1, . . . , R̃Nseed
, R̂1, . . . , R̂N̂ )

with N := Nseed + N̂ , we bound

Pp(H is present) 6 4p−ξ(Nseed+Nsplitter) exp

(
−
N−1∑
n=0

Up(Rn, Rn+1)

)
. (5.6)

To bound the first factor in (5.6) we use the following lemma:

Lemma 5.8. Any good hierarchy satisfies

4p−ξ(Nseed+Nsplitter) 6 eO(1/p).
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Proof. By (5.3) there are at most log20 1
p vertices in a good hierarchy, and ξ = dlog2 1

pe, so

for any H ∈ Hgood,

4p−ξ(Nseed+Nsplitter) 6 4p
−dlog 1

p
e22

= 4
(

e
log 1

p

)dlog 1
p
e22
6 eO(1/p). �

The final ingredient of the proof is the following lemma:

Lemma 5.9. Let RN = {Rn}Nn=0 be a sequence of increasing, nested rectangles such that

• R0 = [1]× [1],
• y1 6 2

p log−8 1
p and 1

3p log 1
p 6 yN 6

1
p log 1

p ,

• x1 6 1
3p log12 1

p and xN > 1
p2

.

Then

exp

(
−
N−1∑
n=0

Up(Rn, Rn+1)

)
6 exp

(
−2C1

p
log2 1

p
+ (2C2 + o(1))

1

p
log

1

p

)
.

The proof involves a longer computation, so we defer it to Section 6.

Proof of Proposition 5.1 subject to Lemma 5.9. We combine the above lemmas and the
bounds derived in the discussion to conclude that

Pp(R is IF) 6 Pp(X (Rp;Hgood)) + Pp(X (Rp;Hbad)) [Lemma 5.3 & (5.1)]

[(5.2) & Lemma 5.4] 6 |Hgood| max
H∈Hgood

Pp(H is present) + e
−Ω

(
1
p

log3 1
p

)

[(5.4) & Lemma 5.5] 6 eO(1/p)
∏
u seed

Pp(Ru is IF)
∏
v 7→w

Pp (Rv ⇒ Rw) + e
−Ω

(
1
p

log3 1
p

)

[Lemma 5.6] 6 eO(1/p)
Nseed∏
n=1

Pp
(
R̃n ⇒ R̃n+1

) ∏
v 7→w

Pp (Rv ⇒ Rw) + e
−Ω

(
1
p

log3 1
p

)

[Lemmas 4.1 & 5.7] 6 eO(1/p)2p−ξNseed exp

(
−
Nseed∑
n=0

Up(R̃n, R̃n+1)

)

× 2p−ξNsplitter exp

− N̂−1∑
n=0

Up(R̂n, R̂n+1)

+ e
−Ω

(
1
p

log3 1
p

)

[Lemma 5.8] 6 eO(1/p) exp

(
−
N−1∑
n=0

Up(Rn, Rn+1)

)
+ e
−Ω

(
1
p

log3 1
p

)

[Lemma 5.9] 6 exp

(
−2C1

p
log2 1

p
+ (2C2 + o(1))

1

p
log

1

p

)
,

as claimed. �

It remains to prove Lemma 5.9. We do this in the upcoming section.
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6. Variational principles: proof of Lemma 5.9

To prove Lemma 5.9 we will start by setting up some variational principles, similar
to [34, Section 6]. We start with a few general lemmas.

Assume throughout this section that f(x) and g(y) are positive, non-increasing, convex,
Riemann-integrable functions. Let R+ = (0,∞) and for a = (a1, a2) ∈ R2

+ and b =
(b1, b2) ∈ R2

+, write a 6 b if a1 6 b1 and a2 6 b2. For a, b ∈ R2
+ with a 6 b and any path γ

from a to b, define

wf,g(γ) :=

∫
γ

f(x)dy + g(y)dx, (6.1)

and

Wf,g(a, b) := inf
γ : a→b

∫
γ

f(x)dy + g(y)dx. (6.2)

To start, an elementary lemma:

Lemma 6.1. If a 6 b 6 c, then Wf,g(a, b) +Wf,g(b, c) >Wf,g(a, c).

The proof is easy (see [34, Section 6]).

Let

∆f,g := {(x, y) ∈ R2
+ : f ′(x) 6= 0, g′(y) 6= 0, f ′(x) = g′(y)}. (6.3)

Note that since f(x) and g(y) are assumed to be convex decreasing functions, ∆f,g describes
a simple curve in [a, b] × [c, d] ⊂ R2

+ if f ′(x) 6= 0 for all x ∈ [a, b] and g′(y) 6= 0 for all
y ∈ [c, d].

For sets A,B ⊆ R2
+ we say that A lies Northwest of B and we write A < B if for any

a ∈ A and any b ∈ B that satisfy a1 + a2 = b1 + b2 we have a2 > b2.

Lemma 6.2. If γ1 and γ2 are paths from a to b, and we have either γ1 < γ2 < ∆f,g or
∆f,g < γ2 < γ1, then wf,g(γ1) > wf,g(γ2).

Proof. To start, assume that γ1 < γ2 < ∆f,g. Let H be the region between γ1 and γ2:

H := {u : a 6 u 6 b and γ1 < {u} < γ2}.

By Green’s Theorem in the plane we have

wf,g(γ1)− wf,g(γ2) =

∫∫
H

(
g′(y)− f ′(x)

)
dxdy.

Now, since γ1 < γ2 < ∆f,g we have H < ∆f,g, and since moreover f and g are convex
decreasing functions, we have g′(y) − f ′(x) > 0 for all (x, y) ∈ H. It follows that
wf,g(γ1)− wf,g(γ2) > 0.

By the same reasoning we have wf,g(γ1)− wf,g(γ2) > 0 when ∆f,g < γ2 < γ1. �

Lemma 6.3. For a, b ∈ ∆f,g with a 6 b, let γ0 := ∆f,g ∩ ([a1, b1] × [a2, b2]), then
Wf,g(a, b) = wf,g(γ0).
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Proof. Suppose by contradiction that γ1 6= γ0 is a minimiser of Wf,g(a, b), and γ0 is not.
Then γ1 must intersect γ0 in at least two points (counting a and b as intersection points as
well). So we can find a set of disjoint curves {η1

i } with η1
i ⊂ γ1 and a set of disjoint curves

{η0
i } with η0

i ⊂ γ0 so that γ1 \ ∪iη1
i = γ0 \ ∪iη0

i and η1
i < η

0
i < ∆f,g or ∆f,g < η0

i < η
1
i for

each i, and so that η0
i and η1

i have the same end-points. By Lemma 6.2, replacing the curve
η1
i by η0

i in γ1 does not increase the value of the line integral. Repeating this procedure
for each such interval, we end up replacing the minimiser γ1 by γ0 without increasing the
value of the integral, contradicting the assumption that γ0 was not a minimiser. �

Given a set of points {a(i)}, with a(i) ∈ R2
+, we write a(1) → a(2) → · · · → a(n) for the

path that linearly interpolates between successive points a(i) and a(i+1). Given a path γ

and two points a, b ∈ γ, we write a
γ→ b for the part of γ between a and b.

Lemma 6.4. If g(y) = c for some constant c > 0 and f(x) is a positive, monotone
decreasing function, then for a 6 b,

Wf,g(a, b) = c(b1 − a1) + f(b1)(b2 − a2),

and the path from a to b that minimises Wf,g(a, b) is a→ (b1, a2)→ b.

Proof. This follows directly from the definition of Wf,g and the assumptions on f and g. �

Recall the definitions of ψ(y) and φ(x) from (4.1) and (4.2), and the definition of ∆f,g

in (6.3). Observe that

ψ′(x) =
1

x
1{ 3ξ2

p
6x6 1

p2
} and φ′(y) = −3pe−3py

1{y> 4
p

log log 1
p
},

so ψ′(x) = φ′(y) is solved by

x(y) =
e3py

3p
and y(x) =

1

3p
log(3px)

when both ψ(x) 6= 0 and φ(y) 6= 0. Observe that

y

(
3ξ2

p

)
=

1

3p
log(9ξ2) <

4

p
log log

1

p
,

y

(
1

p2

)
=

1

3p
log

3

p
,

x

(
4

p
log log

1

p

)
=

1

3p
log12 1

p
.

We can thus write

∆ψ,φ =
{

(x, y) ∈ R2
+ : ψ′(x) 6= 0, φ′(y) 6= 0, ψ′(x) = φ′(y)

}
=

{(
e3py

3p
, y

)
: y ∈

(
4

p
log log

1

p
,

1

3p
log

3

p

]}
.

The leftmost and rightmost points of ∆ψ,φ are given by

u =

(
1

3p
log12 1

p
,

4

p
log log

1

p

)
and v =

(
1

p2
,

1

3p
log

3

p

)
. (6.4)
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a

c
u

l

r

d

v

b

∆ψ,φ

γ

(a)
a

u

v

b

∆ψ,φ

γ

f

g

(b)

Figure 6. The partitioning of γ used in Lemma 6.5 for the case γ ∩∆ψ,φ 6= ∅ in
(a), and for the case γ ∩∆ψ,φ = ∅ in (b).

Lemma 6.5. Let u and v be as in (6.4), and let a be such that a 6 u, and let b be such
that v 6 b. Then

Wψ,φ(a, b) = Wψ,φ(a, u) +Wψ,φ(u, v) +Wψ,φ(v, b).

Proof. By Lemma 6.1, the right-hand side is an upper bound on Wψ,φ(a, b). It remains to
prove that it is also a lower bound.

Since ψ and φ are decreasing, positive, continuous functions, any path that minimises
Wψ,φ(a, b) must be a coordinate-wise increasing path. Fix a coordinate-wise increasing
path γ ⊂ R2

+ from a to b. Then either

(a) γ ∩∆ψ,φ 6= ∅, or
(b) γ ∩∆ψ,φ = ∅.
Consider first case (a). Write c ∈ γ for the first point in γ such that either c1 = u1 or

c2 = u2 and d ∈ γ for the first point in γ such that either d1 = v1 or d2 = v2. Write l and r
for the first and last point along γ where γ and ∆ψ,φ intersect. Since γ is coordinate-wise
increasing we have a 6 c 6 l 6 r 6 d 6 b. See Figure 6(a). We split the integral along γ
into five parts:

wψ,φ(γ) = wψ,φ(a
γ→ c) + wψ,φ(c

γ→ l) + wψ,φ(l
γ→ r) + wψ,φ(r

γ→ d) + wψ,φ(d
γ→ b).

Using Lemma 6.3 we split the minimising integral from u to v into three parts:

Wψ,φ(u, v) = wψ,φ
(
u

∆ψ,φ−→ l
)

+ wψ,φ
(
l

∆ψ,φ−→ r
)

+ wψ,φ
(
r

∆ψ,φ−→ v
)
.

By Lemma 6.4,

wψ,φ(a
γ→ c) > wψ,φ(a→ (c1, a2)→ c).

By Lemma 6.2 and the fact that either

c
γ→ l < c→ u

∆ψ,φ−→ l < ∆ψ,φ or ∆ψ,φ < c→ u
∆ψ,φ−→ l < c

γ→ l,
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we have

wψ,φ(c
γ→ l) > wψ,φ(c→ u) + wψ,φ

(
u

∆ψ,φ−→ l
)
.

By Lemma 6.1,

wψ,φ(a→ (c1, a2)→ c) + wψ,φ(c→ u) = wψ,φ(a→ (c1, a2)→ c→ u) >Wψ,φ(a, u).

Moreover, by Lemma 6.3,

wψ,φ(l
γ→ r) > wψ,φ

(
l

∆ψ,φ−→ r
)
.

By Lemma 6.2 and the fact that either

r
γ→ d < r

∆ψ,φ−→ v → d < ∆ψ,φ or ∆ψ,φ < r
∆ψ,φ−→ v → d < r

γ→ d,

we have

wψ,φ(r
γ→ d) > wψ,φ

(
r

∆ψ,φ−→ v
)

+ wψ,φ(v → d).

And finally, since v → d
γ→ b is a path from v to b,

Wψ,φ(v, b) 6 wψ,φ(v → d) + wψ,φ(d
γ→ b).

Combining the above inequalities we obtain

wψ,φ(γ) >Wψ,φ(a, u) + wψ,φ
(
u

∆ψ,φ−→ l
)

+ wψ,φ
(
l

∆ψ,φ−→ r
)

+ wψ,φ
(
r

∆ψ,φ−→ v
)

+ wψ,φ(v → d) +Wψ,φ(v, b)− wψ,φ(v → d)

>Wψ,φ(a, u) +Wψ,φ(u, v) +Wψ,φ(v, b).

(6.5)

Now we consider case (b), that γ ∩∆ψ,φ = ∅. Let f be the first point on γ such that
f1 = u1, and let g be the first point on γ such that g1 = v1. See Figure 6(b). We divide
the integral along γ into three parts:

wψ,φ(γ) = wψ,φ(a
γ→ f) + wψ,φ(f

γ→ g) + wψ,φ(g
γ→ b).

By Lemma 6.4,

wψ,φ(a
γ→ f) > wψ,φ(a→ (f1, a2)→ f) = wψ,φ(a→ (u1, a2)→ u) + wψ,φ(u→ f)

= Wψ,φ(a, u) + wψ,φ(u→ f).

Since γ ∩∆ψ,φ = ∅, either f2 > u2 and g2 > v2 or f2 6 u2 and g2 6 v2, so that either

u→ f
γ→ g → v < ∆ψ,φ or ∆ψ,φ < u→ f

γ→ g → v.

It thus follows by Lemmas 6.2 and 6.3 that

wψ,φ(f
γ→ g) >Wψ,φ(u, v)− wψ,φ(u→ f)− wψ,φ(g → v).

Finally, since v → g
γ→ b is a path from v to b,

Wψ,φ(v, b) 6 wψ,φ(v → g) + wψ,φ(g
γ→ b).
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Combining the above inequalities we obtain

wψ,φ(γ) >Wψ,φ(a, u) + wψ,φ(u→ f) +Wψ,φ(u, v)− wψ,φ(u→ f)

− wψ,φ(g → v) +Wψ,φ(v, b)− wψ,φ(v → g)

= Wψ,φ(a, u) +Wψ,φ(u, v) +Wψ,φ(v, b).

(6.6)

From (6.5) and (6.6) we conclude that the lower bound wψ,φ(γ) >Wψ,φ(a, u)+Wψ,φ(u, v)+
Wψ,φ(v, b) holds uniformly for any path γ, and therefore, it also holds for the infimum,
completing the proof. �

The following lemma now states the crucial bound:

Lemma 6.6. Let u and v be as in (6.4), and let a 6 u, a2 = o(1/p), and b > v. Then

Wψ,φ (a, b) >
1

6p
log2 1

p
− (1 + o(1))

1

3p
log

(
8

3e

)
log

1

p
.

Proof. Since we assumed a 6 u and b > v, Lemma 6.5 gives

Wψ,φ(a, b) >Wψ,φ(a, u) +Wψ,φ(u, v). (6.7)

Recall that we have set ξ = dlog2 1
pe and δξ = 1− 2/ξ. We use Lemma 6.4, that a1 6 u1,

and that a2 = o(1/p) to bound

Wψ,φ(a, u) >−
(
log(8p2u1 + 8p) + 1/ξ

)
(u2 − a2)

=
4

p
log

1

p
log log

1

p
− o

(
1

p
log

1

p

)
.

(6.8)

Now we bound Wψ,φ(u, v). It follows by Lemma 6.3 that

Wψ,φ (u, v) =

1
3p

log 3
p∫

4
p

log log 1
p

ψ(x(y))dy + φ(y)x′(y)dy

>

1
3p

log 1
p∫

4
p

log log 1
p

(
− log

(
8p

3
e3py

)
− 1/ξ + e−3py · e3py

)
dy

>

1
3p

log 1
p∫

4
p

log log 1
p

(
1− 3/ξ − log

(
8p

3

)
− 3py

)
dy.

(6.9)

The integral on the right-hand side evaluates to(
1− 3/ξ − log

8p

3

)[
y
] 1

3p
log 1

p

4
p

log log 1
p

−
[

3py2

2

] 1
3p

log 1
p

4
p

log log 1
p

=
1

6p
log2 1

p
− 4

p
log

1

p
log log

1

p
− (1 + o(1))

1

3p
log

8

3e
log

1

p
.
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(Observe that the first term in the first integral in (6.9) thus gives a complementary bound
to (2.7), while the second term is complementary to (2.6).) It follows that

Wψ,φ (u, v) >
1

6p
log2 1

p
− 4

p
log

1

p
log log

1

p
− (1 + o(1))

1

3p
log

8

3e
log

1

p
. (6.10)

Substituting (6.8) and (6.10) into (6.7) completes the proof. �

Proof of Lemma 5.9. Given a sequence of increasing rectangles (Rn)Nn=0, let (xn, yn) ∈ R2
+

denote the dimensions of Rn. Construct the path γ ⊂ R2
+ by linearly interpolating between

successive points (xn, yn), i.e.,

γ = (x0, y0)→ (x1, y1)→ · · · → (xN , yN ).

Recall the definition of Up(R,R′) from (4.3) and recall that δξ = 1− log−2 1
p . It follows

from Lemma 6.1 that

N−1∑
n=0

Up(Rn, Rn+1) > δξWψ,φ ((x0, y0), (xN , yN )) ,

and it follows from Lemma 6.6 that the right-hand side is bounded from below by

1

6p
log2 1

p
− (1 + o(1))

1

3p
log

(
8

3e

)
log

1

p
,

completing the proof. �

7. The critical probability: proof of Theorem 1.1

We start with the upper bound. From [23] we know that if L� ep
−1+ε

for any ε > 0,

then Pp([L]2 is IF) = o(1), so we assume that L > ep
−1+ε

. Let m = p−5. The probability
that [L]2 is internally filled is bounded from below by the probability that [L]2 contains
exactly one internally filled translate of [m]2, and that {[m]2 ⇒ [L]2} occurs. Indeed, let
R(i,j) = [(i− 1)m+ 1, im]× [(j − 1)m+ 1, jm], and let

A(i,j) := {R(i,j) is IF} ∩ {∀(i′, j′) 6= (i, j) : R(i′,j′) is not IF} ∩ {R(i,j) ⇒ [L]2}.

Then

{[L]2 is IF} ⊇
bL/mc⊔
i,j=1

A(i,j),

so that

Pp([L]2 is IF) >
bL/mc∑
i,j=1

(
Pp(R(i,j) is IF)−

(
1− Pp(R(i,j) ⇒ [L]2)

)
−
bL/mc∑
i′,j′=1:
i′ 6=i,j′ 6=j

Pp(R(i,j) and R(i′,j′) are IF)

)
. (7.1)
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To bound Pp(R(i,j) ⇒ [L]2), observe that if every horizontal and vertical line segment of
length p−5 intersecting [L]2 contains a pair of adjacent infected sites, then it must be the
case that {R(i,j) ⇒ [L]2} occurs. We can bound the probability of this event from below by

(1− (1− p2)
m
2 )4L2

= exp
(
4L2e

− 1
2p3

(1+o(1)))
> exp(ce−c

′p−3
),

for some c, c′ > 0 and p sufficiently small. Note that by Proposition 2.1, the right-hand
side is 1− o(Pp([m]2 is IF)). Inserting this bound into (7.1) and summing over the indices,
we obtain

Pp([L]2 is IF) >
L2

m2

(
Pp([m]2 is IF)−

(
1− exp(ce−c

′p−3
)
)
− L2

m2
Pp([m]2 is IF)2

)
>

L2

2m2
Pp([m]2 is IF)

(
1− 2L2

m2
Pp([m]2 is IF)

)
,

where the second inequality holds for p sufficiently small. Taking minus the logarithm
on both sides and applying the above bound and Proposition 2.1 again we obtain the
inequality

− log(Pp([L]2 is IF)) 6 2C1
1

p
log2 1

p
− 2C2

1

p
log

1

p
− 2 logL+ 10 log

1

p
+ log 2

− log

(
1− 2L2

p10
exp

(
− 2C1

1

p
log2 1

p
+ (2C2 − o(1))

1

p
log

1

p

))
.

Observe that if the right-hand side tends to 0 from above when we let p → 0, then
Pp
(
[L]2 is IF

)
→ 1. To make the right-hand side vanish we will fix L to be equal to Λ,

where

Λ = Λ(p) := exp

(
C1

p
log2 1

p
− C2 − ηu

p
log

1

p

)
,

where ηu := p(10 + log 2 log−1 1
p) = o(1). Indeed, with this choice all the leading order

terms cancel, and we obtain

− log(Pp([L]2 is IF)) 6 − log

(
1− 4 exp

(
− o
(1

p
log

1

p

)))
→ 0 as p→ 0,

as desired.
Now we invert Λ(p) to find pu = pu(L), an asymptotically minimal sequence in p such

that

Ppu(L)([L]2 is IF)→ 1 as L→∞.
We can express pu and 1/pu in terms of Λ:

pu =
C1 log2 1

pu
− (C2 − ηu) log 1

pu

log Λ
, (7.2)

and
1

pu
=

log Λ

C1 log2 1
pu
− (C2 − ηu) log 1

pu

. (7.3)
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Substituting (7.3) into (7.2), we get

pu =
1

log Λ

(
C1

(
(log log Λ)− log

(
C1 log2 1

pu
− (C2 − ηu) log

1

pu

))2

− (C2 − ηu)

(
(log log Λ)− log

(
C1 log2 1

pu
− (C2 − ηu) log

1

pu

)))
.

For sufficiently large Λ (and hence for small pu) and δ > 0, the following inequalities hold:

1

pu
6 log Λ 6

1

p1+δ
u

, and log
1

pu
6 log log Λ 6 (1 + δ) log

1

pu
.

Whence we obtain the asymptotic formula

pu =
C1(log log Λ)2

log Λ
− 4C1 log log Λ log log log Λ

log Λ
+

(C2 + 2C1 logC1 + δ) log log Λ

log Λ
,

for δ > 0, giving the upper bound in Theorem 1.1.

Now we prove the lower bound. Again let m = p−5 and let n = 1
p log 1

p and let

L � m,n. Let R denote the set of all rectangles R ⊂ [L]2 with dimensions (x, y) such
that m/3 6 x 6 m and n/3 6 y 6 n. It is a straightforward consequence of the proof
of [23, Lemma 3.7] that if [L]2 is internally filled, then there must exist a rectangle R ∈ R
such that {R⇒ [L]2} occurs.13 The number of rectangles in R is bounded by mnL2, so
by Proposition 5.1,

Pp
(
[L]2 is IF

)
= Pp

( ⋃
R∈R
{R is IF} ∩

{
R⇒ [L]2

})
6 mnL2 exp

(
− 2C1

1

p
log2 1

p
+ (2C2 + ζ)

1

p
log

1

p

)
for any ζ > 0. Taking the logarithm of both sides gives

logPp
(
[L]2 is IF

)
6 2 logL− 2C1

1

p
log2 1

p
+ 2(C2 + η`)

1

p
log

1

p
,

where η` := p log(mn) + ζ. Observe that if the upper bound tends to −∞ as p→ 0, then
Pp
(
[L]2 is IF

)
→ 0. To minimise the right-hand side, we will fix L to be equal to λ, where

λ = λ(p) := exp

(
C1

p
log2 1

p
− C2 + η`

p
log

1

p

)
.

Again, we invert λ(p), now to find p` = p`(L), an asymptotically maximal sequence in p
such that

Pp`(L)([L]2 is IF)→ 0 as L→∞.

13This follows if we stop the algorithm in the proof of [23, Lemma 3.7] when a set S such that 〈S〉 ⊂ R
is first constructed, and by observing that if [L]2 is internally filled, then we must construct such a set S.
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Using the same steps as we used in the proof of the upper bound, we can now determine
that p` satisfies

p` =
C1(log log λ)2

log λ
− 4C1 log log λ log log log λ

log λ
+

(C2 + 2C1 logC1 − δ) log log λ

log λ

for some δ > 0 that can be chosen arbitrarily small but depends on ζ. This concludes the
proof of Theorem 1.1. �
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