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Abstract

In this note, we discuss a generalization of Schramm’s locality conjecture to the
case of random-cluster models. We give some partial (modest) answers, and present
several related open questions. Our main result is to show that the critical inverse
temperature of the Potts model on Zr × (Z/2nZ)d−r (with r ≥ 3) converges to the
critical inverse temperature of the model on Zd as n tends to infinity. Our proof relies
on the infrared bound and, contrary to the corresponding statement for Bernoulli
percolation, does not involve renormalization arguments.

1 Motivation

In [BS96], Benjamini and Schramm initiated the theory of Bernoulli percolation on gen-
eral transitive graph, thus motivating many new questions and problematics in the field.
Among them, one conjecture, now known under the name of Schramm’s locality conjec-
ture, was asked in [BNP11]. Roughly speaking, it can be stated as follows: the critical
parameter of Bernoulli percolation is continuous in the local topology on transitive locally
finite graphs with pc < 1 (see below for a formal definition in the context of random-cluster
models). Since the formulation of the conjecture, a number of results have been proved
[BNP11, MT17, SXZ14], yet a final answer is still lacking.

We would like to advertise that Schramm’s conjecture can be extended to random-
cluster model and the associated Potts models. This paper contains the proofs of two
results in that direction. The results are modest but we believe that they open some
interesting questions. Even though we will not discuss it here, let us mention that in
recent years, Schramm’s conjecture was also stated for self-avoiding walks in [Ben13], and
that some partial results were obtained in [GL14, GL15].

2 About Schramm’s conjecture for random-cluster models

Random-cluster model on transitive graphs Through this note, all the graphs
are assumed to be connected and locally-finite. Consider an infinite transitive graph
G = (V,E) (recall that a graph is said to be transitive if its group of automorphisms acts
transitively on V). We call one of the vertex the origin and denote it by 0. A percolation
configuration ω on a finite subgraphG = (V,E) ofG is a subset of E, which will be seen as a
subgraph of G = (V,E) with vertex-set V and edge-set ω. Let ∣ω∣ be the number of edges in
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ω and k1(ω) the number of connected components in ω, when all connected components
intersecting the vertex boundary ∂G ∶= {x ∈ V ∶ ∃y ∈ V ∖ V such that {x, y} ∈ E} are
counted as one.

For p ∈ [0,1] and q > 0, the random-cluster measure on G with edge-weight p and
cluster-weight q is defined by the formula

φ1
G,p,q[ω] =

1

Z1(G,p, q)
( p

1 − p
)∣ω∣qk1(ω),

where Z1(G,p, q) is such that the measure has mass one.
The model may be extended to G by taking weak limits of measures on finite subgraphs

G tending to G; see [Gri06, Thm 4.19]. From now on, set φ1
G,p,q for the measure on G.

Below, we write 0 ←→∞ to denote the event that the connected component of 0 in ω
is infinite. Define the critical point of the model on G by the formula

pc(G, q) ∶= inf{p ∈ [0,1] ∶ φ1
G,p,q[0←→∞] > 0}.

Local convergence and Schramm’s conjecture Given an infinite transitive graph
G, we consider the ball of radius R (for the graph distance) around the origin 0. Up to
isomorphism of rooted graphs, it does not depend on the choice of the origin, and we
simply refer to it as the ball of radius R in G. We say that a sequence of infinite transitive
graphs (Gn) converges (locally) to an infinite transitive graph G if for any R > 0, there
exists N = N(R) > 0 such that for all n ≥ N , the balls of radius R in Gn and G are
isomorphic (as rooted graphs). Schramm’s conjecture for random-cluster models can be
stated as follows.

Conjecture 1 (Schramm’s conjecture for random-cluster model) Fix q > 0 and
consider a sequence of infinite transitive Gn converging to G. If pc(Gn, q) < 1 for all n,
then,

lim
n→∞

pc(Gn, q) = pc(G, q). (1)

For Bernoulli percolation Pete [Pet15, Section 14] noticed that

lim inf
n→∞

pc(Gn, q) ≥ pc(G, q) (2)

can be deduced from the mean-field lower bound. This inequality can be obtained in a
number of other (elementary) ways for Bernoulli percolation; see e.g. [Tas14, Thm 5.3] or
[DT16, Sec 1.2] for finite criteria approaches. The same inequality was also known in the
q = 2 case; see [DT16].

For random-cluster models with q ≥ 1, the mean-field lower bound was recently estab-
lished by the authors and Aran Raoufi [DRT17]. The first result of this note is to derive
(2) from the mean-field lower bound.

Proposition 1 Fix q ≥ 1. Consider a sequence of infinite transitive graphs Gn converging
to G. Then,

lim inf
n→∞

pc(Gn, q) ≥ pc(G, q).

Proof Fix q ≥ 1 and drop it from the notation. In [DRT17] (see also [Dum17] for a
statement in the nearest neighbor case), one proves that for an infinite transitive graph
G, any q ≥ 1 and p ∈ [0,1],

φ1
G,p[0←→∞] ≥ c(p − pc(G)), (3)
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where the constant c > 0 depends a priori on p and G, but can be bounded uniformly
from below as p remains away from 0 and 1, and the degree of G remains bounded (c also
depends on q but q is fixed here). If the liminf is equal to 1, there is nothing to prove and
we now choose p such that

1 > p > lim inf
n→∞

pc(Gn) =∶ p̃.
For any fixed R > r > 0, pick n large enough such that the ball BR of size R in Gn is the
same as in G. By comparison between boundary conditions for the random-cluster model
[Gri06, Lemma 4.14], we deduce that

φ1
BR,p

[0←→ ∂Br] ≥ φ1
Gn,p[0←→ ∂Br] ≥ φ1

Gn,p[0←→∞] ≥ c(p − pc(Gn)).
(Above, Br denotes the ball of size r around the origin.) In the last inequality, we used
(3) together with the observation that for every n large enough, the ball of size 1 in Gn is
isomorphic to the ball of size 1 in G, and therefore the degrees of Gn and G are the same.
As a consequence, the constant c > 0 can be chosen independent of n.

Taking the liminf implies that

φ1
BR,p

[0←→ ∂Br] ≥ c(p − p̃).
Letting R tend to infinity, the convergence of φ1

BR,p
to φ1

G,p implies that

φ1
G,p[0←→ ∂Br] ≥ c(p − p̃).

Letting r tend to infinity concludes that

φ1
G,p[0←→∞] ≥ c(p − p̃) > 0,

which implies that p ≥ pc(G). The claim follows. ◻

Exactly as in the case of Bernoulli percolation, the difficult part is to prove that

lim sup
n→∞

pc(Gn, q) ≤ pc(G, q).

In particular, this raises the following natural question.

Question 1 Extend the locality results known for Bernoulli percolation to the random-
cluster model with cluster-weight q ≥ 1.

In particular, the highly non-amenable case would be of great interest.

Quotient graphs Quotient graphs appear naturally when studying local limits of graphs.
Let Γ be a normal subgroup of a group of automorphisms of G = (V,E) acting transitively
on V. The quotient graph G/Γ is the (transitive, locally-finite) graph with vertex-set given
by the equivalence classes {Γv ∶ v ∈ V} and edge-set given by the {Γu,Γv} such that there
exist u0 ∈ Γu and v0 ∈ Γv with {u0, v0} ∈ E.

In [BS96], Benjamini and Schramm mentioned several questions regarding inequalities
between the critical parameters of a graph and its quotient. We would like to highlight
the fact that here the inequalities are not obvious at all in our case.

Question 2 Is it always the case that pc(G, q) ≤ pc(G/Γ, q)? If not, find a counter-
example. If yes, when is the inequality strict?

In order to go back to our question on locality, notice that we may produce sequences
of graphs converging to G by considering quotients by smaller and smaller groups of
automorphisms. Actually, when restricted to Cayley graphs of finitely presented groups,
the local convergence is always by quotient (this is explained in detail in [MT17] for abelian
groups). For this reason, understanding the relation between percolation on a graph and
its quotient is important toward a better understanding of Schramm’s locality conjecture.
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3 A special case of Schramm’s conjecture

A simple example of sequence (Gn) converging to a graph G is provided by the graphs
Zr × (Z/nZ)d−r that converge to Zd as n tends to infinity. For this graph, we obtain the
following result.

Theorem 2 Fix an integer q ≥ 2 and d > r ≥ 3, then

lim
n→∞

pc(Zr × (Z/2nZ)d−r, q) = pc(Zd, q).

On the one hand, there are two noteworthy restrictions to our theorem: we do not treat the
natural case of r = 2, and more importantly we are bound to integer values of q ≥ 2. This
second restriction is important. Indeed, the random-cluster models with integer values
of q ≥ 2 enjoy some additional properties that are wrong for Bernoulli percolation. We
believe these additional properties to be very interesting, and we would therefore like to
encourage the reader to pursue potential applications (see the discussion below the proof
of the theorem).

On the other hand, the proof of the theorem is very short. This is quite surprising since
the similar result for Bernoulli percolation (i.e. q = 1) is not that simple to obtain: it relies
on Grimmett and Marstrand’s celebrated result [GM90] (see [DeLS11] for the explanation
of how this result implies the one above for q = 1).

This also suggests that Schramm’s locality conjecture may be simpler to obtain for
integer values of q ≥ 2 than for q = 1. This immediately raises the following question.

Question 3 Is Schramm’s locality conjecture for a certain value of q ≥ 1 implying the
conjecture for other values of q?

To motivate this question, let us mention that Benjamini and Schramm [BS96] mentioned
several questions regarding the existence of a phase transition for Bernoulli percolation on
general graphs, i.e. whether pc(G,1) < 1 or not. It can be easily proved using monotonocity
arguments (see [Gri06, Eq. (5.5)]) that for all q > 0, pc(G,1) < 1 if and only if pc(G, q) < 1.
In this case, the original questions of [BS96] can be translated directly into equivalent
questions for random-cluster models.

4 Proof of Theorem 2

We will rely heavily on the connection between the random-cluster model with integer
cluster-weight and the Potts model. The Potts model is one of the most fundamental
examples of a lattice spin model and studying its properties near its phase transition is
an active topic of research; see e.g. [Dum17] for a recent account. Fix an integer q ≥ 2 and
introduce a polyhedron Ω ⊂ Rq−1 with q elements (often interpreted as colors) satisfying
that for any a,b ∈ Ω, a ⋅ b is equal to 1 if a = b and −1/(q − 1) otherwise, where ⋅ denotes
the scalar product on Rq−1.

Let G = (V,E) be a finite subgraph of G and β > 0. The q-state Potts model on G
at inverse-temperature β > 0 with monochromatic boundary conditions b ∈ Ω is defined as
follows. The energy of a configuration σ = (σx ∶ x ∈ G) ∈ ΩV is given by the Hamiltonian

Hb
G(σ) ∶= − ∑

x,y∈V
{x,y}∈E

σx ⋅ σy − ∑
x∈V,y∉V
{x,y}∈E

σx ⋅ b
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and the probability measure ⟨⋅⟩b
G,β,q is defined by

⟨X⟩b
G,β,q ∶=

∑
σ∈ΩV

X(σ) exp[−βHb
G(σ)]

∑
σ∈ΩV

exp[−βHb
G(σ)]

for every X ∶ ΩV Ð→ R.
The Potts model on G can be defined by taking the weak limit of measures on a

nested sequence of finite graphs, exactly as for the random-cluster model. The infinite-
volume measure is denoted by ⟨⋅⟩b

G,β,q. The model undergoes a phase transition between
absence/existence of long-range order at the so-called critical inverse temperature βc(G, q)
defined by

m(β,G, q) ∶= ⟨σ0 ⋅ b⟩b
G,β,q

⎧⎪⎪⎨⎪⎪⎩

= 0 if β < βc(G, q),
> 0 if β > βc(G, q).

The Potts model is coupled to the random-cluster model, see [Gri06, Sec 1.4] in such a
way that

m(β,G, q) = φ1
G,p,q[0←→∞]

when β = − q−1
q log(1 − p). We therefore deduce that

βc(G, q) ∶= − q−1
q log(1 − pc(G, q)) (4)

so that Theorem 2 follows from the following result.

Theorem 3 For integers q ≥ 2 and d > r ≥ 3,

lim
n→∞

βc(Zr × (Z/2nZ)d−r, q) = βc(Zd, q).

The main tool used for the proof of this theorem is the so-called infrared bound.
Define TN,n ∶= (Z/2NZ)r×(Z/2nZ)d−r. Following [Bis09, Eq. (3.18)], introduce the Green
function GN,n on the torus TN,n by

∀x, y ∈ TN,n GN,n(x, y) ∶=
1

∣TN,n∣
∑

k∈T∗N,n∖{0}

ek⋅(x−y)

1 − φ(k) , (5)

where φ(k) = 1
d ∑

d
j=1 cos(kj) is the characteristic function associated with the simple ran-

dom walk in dimension d, and

T∗N,n ∶= [2π
N (Z/2NZ)]r × [2π

n (Z/2nZ)]d−r.

Lemma 4 Consider β > 0 and two integers n and N . For any v ∈ RTN,n with ∑x vx = 0,

∑
x,y∈TN,n

vxvy ⟨σx ⋅ σy⟩TN,n,β ≤ q−1
2β ∑

x,y∈TN,n

vxvy GN,n(x, y).

This inequality follows from reflection positivity. It originated in the works [FSS76, FS81]
and has since then been extremely useful in statistical physics. We do not include the
proof of this result nor discuss it any further. We refer to [Bis09] for a good review on the
subject.

Note that the fact that the widths of the torus in the previous lemma have to be
even is the reason why our theorem is restricted to Zr × (Z/2nZ)d−r and not simply to
Zr × (Z/nZ)d−r.

Even though we do not use them here, we mention for completeness that [Aba17]
provides bounds on GN,n(x, y) that are valid for finite N and n.
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Proof of Theorem 3 We use the notation TN,n from above and set T∞,n ∶= Zr ×
(Z/2nZ)d−r. Below, we fix β and q and drop them from the notation.

Fix a finite subset E of Zd and see E as a subset of TN,n provided that N and n are
sufficiently large to contain it (injectively). Similarly, we see 0 as a vertex of TN,n.

Note that

∑
y∈TN,n

GN,n(⋅, y) = ∑
x∈TN,n

GN,n(x, ⋅) = 0 and ∑
y∈TN,n

⟨σ0 ⋅ σy⟩TN,n
= ∑
y∈TN,n

⟨σx ⋅ σy⟩TN,n

for every x, y ∈ TN,n. We may therefore apply Lemma 4 in TN,n to v ∈ RTN,n defined for
every x ∈ TN,n by

vx =
1

∣TN,n∣
− 1

∣E∣1[x ∈ E]

to get that

1

∣E∣2 ∑x,y∈E
⟨σx ⋅ σy⟩TN,n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SN,n

− 1

∣TN,n∣
∑

y∈TN,n

⟨σ0 ⋅ σy⟩TN,n

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
TN,n

≤ q−1
2β

1

∣E∣2 ∑x,y∈E
GN,n(x, y)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
UN,n

. (6)

We first wish to take the limit of (6) as N and n tend to infinity. We start by the
terms on the left. Since E is fixed, the terms SN,n and TN,n can be treated by taking
limits term by term. It will be easier to use the random-cluster model to understand the
different dominations. Set p such that

β = − q−1
q log(1 − p).

Let φTN,n
be the random-cluster model on TN,n and φ0

Zd be the random-cluster measure
on Zd with free boundary conditions (both with parameters p and q) [Gri06, Thm 4.19].
Note that by coupling (see again [Gri06, Sec 1.4]) we have

⟨σx ⋅ σy⟩TN,n
= φTN,n

[x←→ y].

Any sub-sequential limit (as n and N tend to infinity) of the family (φTN,n
) is a limit-

random-cluster measure on Zd [Gri06, Def 4.15] and is therefore stochastically dominating
φ0
N,n [Gri06, Thm 4.19]. As a consequence, we obtain that

lim inf
n→∞

lim inf
N→∞

φTN,n
[x←→ y] ≥ φ0

Zd[x←→ y] ≥ φ0
Zd[x, y ←→∞] ≥ φ0

Zd[0←→∞]2,

where in the third inequality we used the uniqueness of the infinite-connected component
[Gri06, Theorem 4.33], and in the last, the FKG inequality [Gri06, Thm 3.8] and the
invariance under translation of φ0

Zd [Gri06, Thm 4.19]. Since this is true for every x, y ∈ E,
we deduce that

lim inf
n→∞

lim inf
N→∞

SN,n ≥ φ0
Zd[0←→∞]2, (7)

For the limit of TN,n, we use again the random-cluster model. Fix n. For every y in
TN,n at graph distance larger than 2R ≤ N from 0, the comparison between boundary
conditions [Gri06, Lem 4.14] gives

φTN,n
[x←→ y] ≤ φ1

BR
[0←→ ∂BR] × φ1

B′R
[x←→ ∂B′

R] ≤ φ1
BR

[0←→ ∂BR]2,
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where we recall that BR is the ball of radius R around 0 in T∞,n and B′

R is its translate
by y. Bounding φTN,n

[0←→ y] using the inequality above when 0 and y are at a distance
larger than 2R, and otherwise by 1 for remaining values of y, gives

1

∣TN,n∣
∑

y∈TN,n

φTN,n
[0←→ y] ≤ ∣BR∣

∣TN,n∣
+ φ1

BR
[0←→ ∂BR]2.

Taking the limit as N tends to infinity (recall that φ1
BR

tends to φ1
Zd), and then letting R

tend to infinity, gives

lim sup
N→∞

1

∣TN,n∣
∑

y∈TN,n

⟨σ0 ⋅ σy⟩TN,n
≤ φ1

T∞,n
[0←→∞]2.

Taking the limit as n tends to infinity gives that

lim sup
n→∞

lim sup
N→∞

TN,n ≤ lim sup
n→∞

φ1
T∞,n

[0←→∞]2. (8)

Let us now turn to UN,n on the right-hand side. As N tends to infinity, the torus Green
function GN,n(x, y) converges to the “slab” Green function G∞,n(x, y) associated with the
random walk in T∞,n (as a Riemann sum, the right hand side of (5) converges to the
Fourier representation of G∞,n(x, y), this uses that r ≥ 3 since one needs the walk in the
slab to be transient). Then, the limit of G∞,n(x, y) converges as n tends to infinity to the
Green function G associated to the simple random walk in Zd. Therefore

lim
n→∞

lim
N→∞

UN,n =
1

∣E∣2 ∑x,y∈E
G(x, y). (9)

We can now plug (7), (8) and (9) in (6) to get that for every E,

φ0
Zd[0←→∞]2 − lim sup

n→∞
φ1
T∞,n

[0←→∞]2 ≤ 1

∣E∣2 ∑x,y∈E
G(x, y). (10)

Now, the random walk in Zd is transient, so that G(x, y) tends to 0 as x and y become
far apart. We deduce that, as ∣E∣ tends to infinity, the right-hand side tends to 0. Overall,
we find

φ0
Zd[0←→∞] ≤ lim sup

n→∞
φ1
T∞,n

[0←→∞]. (11)

Since pc(Zd) is also defined as the supremum of the values of p for which φ0
Zd,p

[0←→∞] = 0

[Gri06, (5.4)], this immediately implies that

pc(Zd) ≥ lim sup
n→∞

pc(T∞,n)

or equivalently by (4),
βc(Zd) ≥ lim sup

n→∞
βc(T∞,n).

Since the inequality βc(Zd) ≤ lim inf βc(T∞,n) is given by Proposition 1, this concludes
the proof. ◻

Note that the estimate given by the infrared bound is absolutely crucial here and that
we do not know how to go around it for non-integer values of q. This perfectly illustrates
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that the random-cluster models associated with the Ising and Potts models may be simpler
to handle than Bernoulli percolation in some cases. Other instances of such a phenomenon
include proofs of conformal invariance in two dimensions for the random-cluster model with
cluster-weight q = 2 on the square lattice [Smi10] (the corresponding result is still open
for Bernoulli percolation) or the proof of continuity of the phase transition for the Ising
model in dimension 3 and therefore the random-cluster model with q = 2 in dimension
3 [ADS15] (the corresponding statement is one of the main conjectures in the theory of
Bernoulli percolation).

We wish to advertise the following question, which would require to find an argument
not relying on the infrared bound:

Question 4 Prove that pc(Zr×(Z/2nZ)d−r, q) converges to pc(Zd, q) for any (non-necessarily
integer valued) q ≥ 1 and any d > r ≥ 2.

5 Comparison with the slab percolation threshold

In this section, we link the previous result to the Grimmett-Marstrand result [GM90].
Define the random-cluster model on the infinite graph Zr × J0, nKd−r. Even though this
graph is not transitive, a non-ambiguous notion of a critical point can be defined as
before (asking for the smallest value of p for which 0 is connected to infinity with positive
probability).

Question 5 Show that pc(Zr × J0, nKd−r, q) converges to pc(Zd, q) for q ≥ 1 and d > r ≥ 2.

Even for integers q ≥ 2 and r ≥ 3, this question, first raised in [Pis96], is open. Note
that combined with the following simple proposition, it would imply that finite connected
components have exponential tails for p > pc(Zd) (when d = 2, this result follows from
duality and [BD12]).

Proposition 5 ([Gri06, Thm. 5.104]) Fix q ≥ 1 and d > r ≥ 2. If pc(Zr × J0, nKd−r, q)
converges to pc(Zd, q), then for any p > pc(Zd, q), there exists c = c(p, q) > 0 such that

φ1
Zd,p,q[0←→ x,0 /←→∞] ≤ exp(−c∥x∥).

Let us conclude that the convergence of pc(Zr × J0, nKd−r, q) to pc(Zd, q) is equivalent
to the convergence of βc(Zr × J0, nKd−r, q) to βc(Zd, q) as n tends to infinity. This result
was proved for q = 2 (i.e. for the Ising model) in [Bod05]. In this paper, Bodineau obtained
a slightly stronger result related to the slab percolation threshold β̂c(Zd) of the Ising model
defined by

β̂c(Zd) ∶= inf {β for which ∃n ≥ 0 such that inf
N

inf
x,y∈ΛN,n

⟨σx ⋅ σy⟩Λ(2N,n),β,2 > 0},

where ΛN,n ∶= J−N,NKd−1 × J−n,nK and ⟨⋅⟩Λ(2N,n),β,2 is the q = 2 Potts measure on ΛN,n
with free boundary conditions (we omit the definition here).

This notion, introduced by Pisztora in [Pis96], enables one to perform a powerful renor-
malization scheme to derive a number of properties of the regime β > β̂c(Zd). Motivated
by [Pis96], we propose to enhance Question 5 into the following one. One can easily extend
the notion of the slab percolation threshold to Potts model by replacing q = 2 with an
arbitrary integer q ≥ 2.
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Question 6 Show that β̂c(Zd) is equal to βc(Zd) for integer values of q ≥ 3.

Let us recall for completeness that despite the fact that the regime β > β̂c(Zd) is well
understood, several fundamental questions remain open even under this additional as-
sumption on β (and sometimes even in the case of the Ising model): to mention but a
few, the continuity of the magnetization parameter, exponential decay of truncated cor-
relations, description of the translational invariant Gibbs states (see [Bod06] and [Rao17]
for the case of the Ising model), etc. Investigating these questions further is of prime
importance.
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