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Abstract. In this short note, we revisit a number of classical results on long-
range 1D percolation, Ising model and Potts models [FS82, NS86, ACCN88,
IN88]. More precisely, we show that for Bernoulli percolation, FK percolation
and Potts models, there is symmetry breaking for the 1/r2-interaction at large
β, and that the phase transition is necessarily discontinuous. We also show,
following the notation of [ACCN88] that β∗(q) = 1 for all q ≥ 1.

1 Setting

Long-range models on the 1D line have a rich history in physics and mathematical
physics. Historically, Dyson, motivated by predictions of Anderson [AYH70] and
Thouless [Tho69] as well as connections with the Kondo problem, initiated in [Dys69]
the rigorous analysis of long-range Ising models on Z with coupling constants given
by Ji−j ∼ |i−j|−s with s ∈ (1, 2). Fröhlich and Spencer analysed in [FS82] the “scale-
invariant” case where the coupling constants are given by 1

|i−j|2 . Later, Aizenman,
Chayes, Chayes and Newman proved in [ACCN88] the discontinuity of the phase
transitions which had been anticipated by Thouless for all q ≥ 1. In this paper, we
revisit these classical results.

We begin by treating the case of Bernoulli percolation and then consider the
random-cluster model and its applications to the Ising and Potts models. Note
that historically, the Ising model was studied before Bernoulli percolation, but our
renormalization technique is simpler to present in the Bernoulli percolation setting.

Our notation/setup will follow in part [NS86, ACCN88]. In the whole paper, we
consider Ji,j = J(i− j) = 1/|i− j|2 for every i 6= j. For β, λ > 0, we define

pi,j(β, λ) :=

{
1− exp[−βJi,j ] if |i− j| ≥ 2,

1− exp[−λ] if |i− j| = 1.
(1)

For simplicity, we will only consider the most interesting case where the point-to-point
interaction will decay as 1/|i− j|2 but our methods easily extends to J(x) ∼ 1/x2

for x ≥ 1, and allows one to recover easily the results for directed percolation for
s ∈ (1, 2), see Remark 1.

Let us point out that the renormalization argument in this paper follows the
same setup as in our work [DGT20] except that the 1D setting here makes things
simpler.

2 Long-range Bernoulli percolation

2.1 Statement of the result. Consider the long-range Bernoulli percolation
measure Pβ,λ on Z defined by the property that each unordered pair {i, j} (also called
edge) is open with probability pi,j(β, λ), and closed with probability 1− pi,j(β, λ),
independently for every edge {i, j} ⊂ Z. Let θ(β, λ) be the probability that 0 is
connected to infinity by a path of open edges.

Theorem 1. We have the following two properties:
1
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(i) For β > 1, θ(β, λ) > 0 for λ <∞ large enough.
(ii) For every β, λ > 0, θ(β, λ) > 0 implies βθ(β, λ)2 ≥ 1.

The fact that for large β, (i) is true was obtained by Newman and Schulman in
[NS86]. The extension to every β > 1 was proved in [IN88]. On the other hand, (ii)
is the object of [AN86]. Note that (ii) implies that θ(β, λ) = 0 if β ≤ 1, and that
for each fixed λ > 0, β 7→ θ(β, λ) is continuous only if it is identically equal to 0
(hence the conclusion that the phase transition is necessarily discontinuous which it
occurs). As such, using the notations in [ACCN88], by combining (i) and (ii), this
proves β∗(q = 1) = 1.

2.2 Notation. In the proofs below, we will use the notion of K-block

BiK = [K(i− 1),K(i+ 1)), i ∈ Z, K ∈ Z+.

For simplicity we write BK instead of B0
K . Let us point out that in this framework,

consecutive blocks BiK and Bi+1
K are overlapping on half of their length. This will

be a key property in the proof below. Let S ⊂ Z. We call a cluster in S a connected
component C ⊂ S of the graph with vertex set S and open edges with both endpoints
in S.

A K-block BiK is is said to be θ-good if there exists a cluster in it of cardinality
at least 2θK. When a block is not θ-good, we call it θ-bad and we define

pβ,λ(K, θ) := Pβ,λ[BK is θ-bad].

2.3 Proof of Theorem 1(i). The proof of Theorem 1(i) relies on the idea that
clusters at scale K and local density θ will merge and with high probability create
new clusters at scale CK of local density θ′ = θ −O(1/C) slightly smaller than θ
(this slight loss of density allows us to lose a few clusters at scale K in the process).
More precisely, we prove the following renormalization inequality.

Lemma 2. Let β > 1 and θ∞ ∈ ( 3
4 , 1) satisfying θ2∞β > 1. There exist C0 ≥ 1

large enough (depending on θ∞, β) such that the following holds. For every λ > 0,
θ ≥ θ∞, and for every integers C ≥ C0 and K ≥ 2,

pβ,λ(CK, θ − C0/C) ≤ 1
100 pβ,λ(K, θ) + 2C2 pβ,λ(K, θ)2. (2)

Proof. In the proof, we focus on the K-blocks included in BCK . Given such a block
BiK , we write C(BiK) for the largest cluster in BiK . Notice that C(BiK) has size at
least 2θK when the block is θ-good, and it is the unique cluster in BiK with this
property when θ > 3/4.

Let C0 > 0 to be a large constant to be chosen later (more precisely, the constant
C0 will be chosen in such a way that the second inequality of (10) holds, and
this choice depends on β and θ∞ only) and set θ′ := θ − C0/C. For |i| ≤ C,
let Ei be the event that BiK is θ-bad and all the blocks BjK are θ-good for j ∈
[−C + 1, C − 1] \ {i− 1, i, i+ 1}, and set

Fi = Ei ∩ {BCK is θ′-bad}. (3)

Observe that if all K-blocks BjK , −C + 1 ≤ j ≤ C − 1, are θ-good, then the
assumption that θ > 3/4 and the overlapping property between subsequent K-
blocks guarantees that all the clusters C(BjK) are connected together in BCK , which
implies the existence of a cluster in BCK with cardinality larger than 2θCK. In
particular, if BCK is θ′-bad, then either there exist (at least) two disjoint θ-bad
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K-blocks, or there exists i such that Fi occurs. The union bound implies

pβ,λ(CK, θ′) ≤
C−1∑

i=−C+1

Pβ,λ[Fi] + Pβ,λ[there are two disjoint θ-bad K-blocks]. (4)

By independence and the union bound, we have

Pβ,λ[there are two disjoint θ-bad K-blocks] ≤
(

2C − 1

2

)
pβ,λ(K, θ)2. (5)

It remains to bound the first term in (4), which is the object of the end of the
proof. If all K-blocks BjK with |j| ≤ C − C0 are θ-good, the same argument as
above implies that BCK is θ′-good, therefore Fi = ∅ whenever |i| ≤ C − C0.

Now, let |i| ≤ C − C0. Since Pβ,λ[Ei] ≤ pβ,λ(K, θ), we deduce that

Pβ,λ[Fi] ≤ pβ,λ(K, θ) · Pβ,λ[BCK is θ′-bad | Ei]. (6)

In order to bound the conditional probability above, define C− (resp. C+) as the
union of all the clusters C(Bj), j ≤ i − 2 (resp. j ≥ i + 2). Let us examine the
properties of these two sets when the event Ei occurs. First, the goodness property
of the K-blocks at the left of Bi−1K and the right of Bi+1

K imply that C− and C+ are
two connected sets. Second, writing Ki > x1 > x2 > · · · (resp. Ki < y1 < y2 < · · · )
for the ordered elements of C− (resp. C+), the θ-density in each K-block implies
that for every a, b ≥ 1,

xa ≥ Ki− 3K − a− 1

θ
and yb ≤ Ki+ 3K +

b− 1

θ
. (7)

Furthermore, if BCK is θ′-bad, then C− and C+ cannot be connected together.
Conditioning on C− and C+ provides no information on edges {x, y} with x ∈ C−

and y ∈ C+ since the definition of C− and C+ involves only edges with endpoints
within a distance 2K of each other. Therefore, the conditional probability that C−
and C+ are not connected by an edge is equal to

P (C−,C+) :=
∏
x∈C−

∏
y∈C+

e−βJx,y = exp
[
− β

|C−|∑
a=1

|C+|∑
b=1

Jxa,yb

]
.

Using that |C−|, |C+| ≥ A := θK(C − |i| − 2) together with (7), we find that

P (C−,C+) ≤ exp
[
− β

∑
1≤a,b≤A

1

(6K + (a+ b− 2)/θ)2

]
≤ exp

[
− βθ2

∫
0≤x,y≤A−1

dx dy

(6Kθ2 + x+ y)2

]
≤
( 12

C − |i|

)βθ2
. (8)

Integrating over all possible choices of C− and C+, we get

Pβ,λ[BCK is θ′-bad | Ei] ≤
( 12

C − |i|

)βθ2
. (9)

Plugging this estimate in (6), we finally obtain that provided C0 is large enough,

C∑
i=−C

Pβ,λ[Fi] ≤ pβ,λ(K, θ)

C−C0∑
i=C0−C

( 12

C − |i|

)βθ2
≤ 1

100 pβ,λ(K, θ). (10)

Plugging (10) and (5) in (4) concludes the proof. 2
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Proof of Theorem 1(i). Fix β > 1. Let θ∞ ∈ ( 3
4 , 1) such that βθ2∞ > 1. Choose

θ1 < 1 and C1 ≥ C0(β, θ∞) (where C0 is provided by Lemma 2) such that the
sequences {

Cn+1 = (n+ 1)
3
C1,

θn+1 := θn − C0

Cn+1
,

for n ≥ 1

satisfy θn ≥ θ∞ for every n ≥ 1. Now, set λ > 0 so large that

pβ,λ(C1, θ1) ≤ Pβ,λ[∃{x, x+ 1} ⊂ BC1 closed] ≤ C1e
−λ ≤ 1

400C2
1

.

and consider the sequence of scales defined by{
K1 = C1,

Kn+1 = Cn+1Kn n ≥ 1.
(11)

(note that it givesKn = (n!)3Cn1 for all n ≥ 1). Applying Lemma 2 to (λ, β, θn, Cn,Kn),
we see that the sequence un := pβ,λ(Kn, θn) satisfies

∀n ≥ 1, un+1 ≤ 1
100un + 2C2

n+1u
2
n.

By induction, we obtain that un ≤ 1
400C

−2
n for every n ≥ 1, and therefore,

Pβ,λ[BKn θn-good] ≥ 1− 1
400C

−2
n ≥ 1

2 .

First using the estimate above and then translation invariance, we get that for
every n ≥ 1,
3

4
Kn ≤ E[|C(BKn)|·1{BKn is 3

4 -good}] ≤ 2KnPβ,λ[0 is in a cluster of size at least 3
2Kn].

(12)
Dividing both sides by 2Kn, we obtain

Pβ,λ[0 is in a cluster of size at least 3
2Kn] ≥ 3

8 ,

which by measurability implies that the probability that 0 is connected to infinity is
larger than or equal to 3

8 . 2

Remark 1. When considering Ji,j = 1/|i − j|s with s ∈ (1, 2), the estimate in (8)
becomes of the order of exp[−c(β, θ)((C − |i|)K)2−s] and one can easily deduce the
existence, for every β > 0, of λ = λ(β) > 0 large enough so that percolation occurs.
Let us remark that in this case pβ,λ(Kn, θn) decays stretched-exponentially fast in
Kn (while it decays polynomially fast in the case of s = 2).

2.4 Proof of Theorem 1(ii). We say that a block Bi3K is K-crossed if there
exist x < 3Ki− 3K and y ≥ 3Ki+ 3K such that x is connected to y using open
edges of length at most K. Introduce

pβ,λ(K) = 1− P[B3K is K-crossed].

The proof is based on the following inequality (a similar inequality was obtained for
another quantity in [DMT20]).

Lemma 3. Let β, λ, θ > 0 such that βθ2 < 1 and θ(β, λ) < θ. Then, there exists
C0 = C0(β, λ, θ) such that for every integers C,K ≥ C0,

pβ,λ(CK) ≥ C1−βθ2

9e
min{pβ,λ(K), C−1}. (13)

Proof. Let us fix β, λ, θ and drop them from the notation. Fix R ≥ 1 and K ≥ 2R
such that

P[0↔ Z \BR]2 + |BR|2e−β(K−2R) ≤ θ2. (14)
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Call an edge {x, y} a bridge if it is open and in ω \ {x, y}, both x and y are
connected to distance R. Call a 3K-block Bi3K bridged if there is bridge {x, y} with
K < y− x ≤ CK and either x < 3K(i+ 1) or y ≥ 3K(i− 1) (otherwise it is said to
be unbridged). Let B = B(ω) be the set of unbridged 3K-blocks Bi3K ⊂ BCK with
i divisible by 3 (note that the blocks are subsets of the box BCK and not B3CK).

Assume that the block B3CK is CK-crossed, then all of the 3K-blocks in BCK
must be either bridged or K-crossed. In particular, all the 3K-blocks B ∈ B must
be K-crossed. This implies that

1− pβ,λ(CK) ≤ Pβ,λ
[
∀B ∈ B, B is K-crossed

]
. (15)

Now, we consider a random variable X = (η, E) defined as follows.
• η = ω|{{x,y} :K<y−x≤CK} is the configuration restricted to all the edges of

length between K + 1 and CK; write V (η) for the set of endpoints of these
edges that are open;

• for each u ∈ V (η), consider the cluster C(u, ω) of u in [u−R, u+R) and
let now E be the set of all the edges with one endpoint in one of the C(u, ω)
for some u ∈ V (η).

First, observe that the set B of unbridged blocks is measurable with respect to X,
and conditionally on X, whether a block B ∈ B is K-crossed or not is independent
of the other blocks in B (since they are at a distance at least K of each other).
Therefore, the right hand side in (15) is equal to

Eβ,λ
[ ∏
B∈B

Pβ,λ[B is K-crossed |X]
]
. (16)

Also, the conditioning on X only brings negative information on the fact that
a 3K-block B ∈ B is K-crossed (since K > 2R). Hence, each term in the product
above is smaller that 1− pβ,λ(K), and we get that

pβ,λ(CK) ≥ 1− E[(1− pβ,λ(K))|B|]. (17)

Setting t = min{pβ,λ(K), C−1}, we have

(1− pβ,λ(K))|B| ≤ (1− t)|B| ≤ e−t|B| ≤ 1− e−1t|B|, (18)

where the last inequality uses t|B| ≤ 1. Taking the expectation and plugging it in
(17), we deduce that

pβ,λ(CK) ≥ e−1E[|B|] min{pβ,λ(K), C−1}. (19)

To conclude, it remains to bound E[|B|] from below. We do it by summing on i the
following estimate for 3K-blocks Bi3K ⊂ BCK ,

P[BiK unbridged] ≥
∏

x<K(i+1),
y≥K(i−1),
K<y−x≤CK

P[{x, y} not a bridge] ≥ 1
2C
−βθ2 , (20)

where the first inequality is due to the FKG inequality, and the second to a sum-
integral comparisons (together with the assumption that C is large enough) using
the following estimate

P[{x, y} is a bridge] ≤ (1− e−βJx,y )(P[0↔ Z \BR]2 + |BR|2e−β(K−2R))

≤ (1− e−βJx,y )θ2. (21)

The first inequality is due to the fact that either there is an open edge in ω \ {x, y}
between [x−R, x+R) and [y −R, y +R), or the two events are independent.The
second is due to the choice of R given by (14). 2



6 HUGO DUMINIL-COPIN, CHRISTOPHE GARBAN, VINCENT TASSION

Proof of Theorem 1(ii). Fix β, λ, θ > 0 such that θ(β, λ) < θ and βθ2 < 1. Let C0

as in Lemma 3, and pick C ≥ C0 such that

C1−βθ2

9e
≥ 1 and pβ,λ(C0) ≥ C−1.

Setting Kn := CnC0 (n ≥ 0), (13) applied to K = Kn and C implies that for every
n ≥ 0,

pβ,λ(Kn+1) ≥ min(pβ,λ(Kn), C−1). (22)

By induction, we deduce that pβ,λ(Kn) ≥ C−1 for every n ≥ 1.
Now, let A(Kn) be the event that there exists x ∈ B3Kn connected to y /∈ B9Kn ,

and B(Kn) be the event that all the edges of length strictly larger than Kn with
one endpoint in B9Kn are closed. Notice that if B(Kn) occurs and neither B−23Kn

nor B2
3Kn

is Kn-crossed, then A(Kn) does not occur. Hence, by independence, we
have that

Pβ,λ[B(Kn)]pβ,λ(Kn)2 ≤ 1− P[A(Kn)]. (23)

Since Pβ,λ[B(Kn)] ≥ c1(β) > 0 (by a computation very similar to (20)), we deduce
that for every n ≥ 0,

Pβ,λ[A(Kn)] ≤ 1− c1(β)/C2.

We obtained the above estimate by assuming θ(β, λ) < θ with βθ2 < 1. We see
from this estimate that it is not possible to also have θ(β, λ) > 0. Indeed, otherwise,
this would contradict measurability since the probability that there exists x ∈ BKn
connected to infinity, which is itself included in A(Kn), would have a probability
tending to 1 in this case. 2

3 Long-range Fortuin-Kasteleyn percolation and its
applications to the Ising and Potts models

3.1 Statement of the results. Here, we define the Fortuin-Kasteleyn percola-
tion [For71, FK72] (we also refer to [Gri06] for a manuscript and [Dum17] for recent
results on (finite-range) FK percolation). Let S ⊂ T be two finite subsets of Z, let ξ
be a partition of the vertices T \ S. The FK percolation measure on edges included
in T with at least one endpoint in S, with boundary conditions (b.c.) ξ, is defined
by the formula

PξS,T,β,λ,q[ω] =
qk(ω

ξ)

Z

∏
{i,j}⊂T :{i,j}∩S 6=∅

pi,j(β, λ)ωi,j (1− pi,j(β, λ))1−ωi,j ,

where ωi,j = 1 if {i, j} is open and 0 is it is closed, ωξ is the graph obtained from ω
by wiring all the vertices outside S belonging to the same element of the partition ξ.
Let ξ = 1 (resp. ξ = 0) be the wired (resp. free) boundary conditions corresponding
to the partitions equal to {T \ S} (resp. only singletons).

Given a partition ξ of Z\S, define PξS,β,λ,q as the limit of the measure PξKS,BK ,β,λ,q
as K tends to infinity, where ξK denotes the partition induced by ξ on BK \ S.
Let P1

β,λ,q be the measure on Z defined as the limit as K tends to infinity of the
measures P1

BK ,β,λ,q
and θ(q, β, λ) be the P1

β,λ,q-probability that 0 is connected to
infinity by a path of open edges1.

Theorem 4. For q ≥ 1,
(i) For β > 1, there exists λ <∞ large enough so that θ(q, β, λ) > 0.
(ii) For β, λ > 0, θ(q, β, λ) > 0 implies βθ(q, β, λ)2 ≥ 1.

1The proof that these limits exist for any partition ξ of Z proceeds as usual by monotony.
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The result above covers a certain number of results, including [NS86] for (i) and
Aizenman, Chayes, Chayes and Newman [ACCN88] for (ii). In its current form, the
result (i) corresponds to a paper of Imbrie and Newman [IN88].

Using the coupling between FK percolation and Potts models (see e.g. [Gri06]),
the previous theorem has the following corollary for the long-range 1D Ising and
Potts models (see the beginning of the paper for the corresponding history and
references). We do not define the models there and simply introduce the parameter
m(q, β, λ) corresponding to the magnetization of the Potts model.

Corollary 5. Fix an integer q ≥ 2,
(i) For β > 1, there exists λ <∞ large enough so that m(q, β, λ) > 0.
(ii) For β, λ > 0, m(q, β, λ) > 0 implies βm(q, β, λ)2 ≥ 1.

3.2 Proof of Theorem 4(i). The proof is very similar to the proof of Theo-
rem 1(ii) and we simply explain how the proof is modified. Define

pq,β,λ(K, θ) := max
ξ b.c. on Z\BK

PξK,β,λ,q[BK is θ-bad]

(note that by monotonicity it is achieved for free boundary conditions ξ = 0 but we
will not use this fact). In the proof of Lemma 2, all the deterministic observations
are the same. Also, (5) can be obtained in the same way as before using the spatial
Markov property (since pq,β,λ(K, θ) is expressed in terms of the maximum over
boundary conditions).

The only step that requires care is the proof of (8). Indeed, the first difference is
that the states of the edges {x, y} with x ∈ C− and y ∈ C+ are not independent
of the conditioning on C− and C+, and second that the state of edges are not
independent of each other. Still, we now show that the estimate (8) holds for every
q > 0.

Condition on C−, C+, and every edge that is not linking x ∈ C− and y ∈ C+.
Consider the graph G composed of vertices in C− ∪C+ and edges between x ∈ C−

and y ∈ C+ and observe that the previous conditioning does not reveal the state
of these edges. Let ξ be the boundary condition induced by this conditioning and
let PξG be the associated FK percolation on G. Note that all the vertices in C−

(resp. C+) are wired together.
At this stage it is unclear whether the vertices in C− are wired to those in C+ or

not by ξ. If they are, then the probability that each edge {x, y} is closed is e−βJx,y
independently of the other edges and the same computation as in the Bernoulli case
holds true. Otherwise, consider an intermediate constant R ∈ [1, C) and define A
(resp. B) as the event that all the edges in G with {x, y} ⊂ BRK are closed (resp. all
the remaining edges of G).

Notice that

PξG[A ∩B] ≤
PξG[B|Ac]
PξG[Ac|B]

. (24)

Let us analyze first the numerator P ξG[B|Ac]. Thanks to the conditioning on Ac, we
may work with products over edges of e−βJx,y instead of the less convenient quantity

e−βJx,y ∨ q e−βJx,y

1− e−βJx,y + q e−βJx,y
(25)

which would arise from the probability 1−p
p+(1−p)q that an edge e = {x, y} is closed

knowing that its endpoints are not connected in ω|G\e. This is the reason why
we introduced the event A on the mesoscopic scale RK � CK. Recall that the
argument assumes that the K-blocks Bjk, j /∈ {i−1, i, i+ 1} are θ-good which implies
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that the intensity of C− and C+ are at least θ on both sides. The above observation
that the weight on each edge is e−βJx,y knowing Ac now implies (provided R is
chosen large enough, and then C even larger), by following the same sum/integral
analysis as for the estimate (8), that

P ξG[B|Ac] ≤ O(1) exp
[
− βθ2

CK∑
r,s=RK

1

(r + s− 1)2

]
≤ O(1)

(R
C

)βθ2
. (26)

Now, for the denominator PξG[Ac|B], start by noticing that if R is large enough and
if q ≥ 1, then the FK weight in (25) for any e = {x, y} in G is at most

q e−βJx,y

1− e−βJx,y + q e−βJx,y
= e−βJx,y

1

1− q−1
q (1− e−βJx,y )

≤ e−βJx,y
(

1 + q−2/3
q (1− e−βJx,y )

)
≤ e−βJx,ye

q−1/2
q βJx,y

= e−
β
2q Jx,y .

If on the other hand 0 < q ≤ 1, this is simpler as the weights in (25) are then smaller
than e−βJx,y .

As such, modulo the same analysis as for estimate (8), this gives us an upper
bound for PξG[A|B] of order

PξG[A|B] ≤ O(1) exp
[
− βθ2(1 ∧ 1

2q
)

RK∑
r,s=K

1

(r + s− 1)2

]
≤ O(1) exp(−Ω(1) logR) ≤ 1

2
,

if R is chosen large enough. By plugging this estimate together with (26) into (24)
and choosing R = Cδ with C large enough, this gives us

PξG[A ∩B] ≤ O(1)C−βθ
2(1−δ) ,

for any small exponent δ. This ends the proof of the analog of estimate (8) for FK
percolation. (Note that we have written the proof for the central block B0

K , but the
same analysis would give an upper bound of O(1) (C − |i|)−βθ

2(1−δ) for the block
Bik).

Remark 2. Notice that remarkably, the proof of Theorem 4(i) works for every q > 0.

3.3 Proof of Theorem 4(ii). Define

pq,β,λ(K, θ) := 1− max
S⊂B3K

ξ b.c. on Z\B3K

PξS,β,λ,q[B3K is K-crossed].

(the maximum is achieved for S = B3K and for wired boundary conditions ξ = 1 but
we will not use this fact here). Then, the proof of Lemma 3 is the same except in two
places. First, the states of edges in different unbridged boxes are not independent
anymore so to derive (17), we replace independence by the spatial Markov property
and the fact that pq,β,λ(K, θ) is defined as a minimum over boundary conditions.

The rest of the proof is the same (we can use the FKG inequality since q ≥ 1),
except in the proof of (21). There, we use that conditioned on the configuration
outside of {x, y}, the probability that {x, y} is open is smaller than 1 − e−βJx,y
(since q ≥ 1), as well as the observation that we can pick R such that

max
ξ

PξBR,β,λ,q[0↔ Z \BR]2 + |BR|2e−β(K−2R)/q ≤ θ2



LONG-RANGE MODELS IN 1D REVISITED 9

since the maximum is reacher for ξ = 1 and that the quantity converges to θ(q, β, λ)
as R tends to infinity.
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