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Abstract. In this paper, we investigate the behaviour of statistical physics
models on a book with pages that are isomorphic to half-planes. We show
that even for models undergoing a continuous phase transition on Z2, the
phase transition becomes discontinuous as soon as the number of pages is
sufficiently large. In particular, we prove that the Ising model on a three pages
book has a discontinuous phase transition (if one allows oneself to consider
large coupling constants along the line on which pages are glued). Our work
confirms predictions in theoretical physics which relied on renormalization
group, conformal field theory and numerics ([11, 23, 38]) some of which were
motivated by the analysis of the Renyi entropy of certain quantum spin systems.

1 Introduction

Consider the N -pages book BN obtained by gluing N copies of an upper-half
plane H := Z × N along the bottom line Z × {0}, which is identified with Z, see
Figures 1 and 3. We call these copies the pages H1, . . . ,HN of the book and identify
H1 with H.

Our goal is to explore the behaviour of classical statistical physics systems on a
N -pages book. Of prime interest to us will be the family of Potts models as well as
their corresponding graphical representations named Fortuin-Kasteleyn percolations.

Figure 1. Critical site percolation on the book B4 (or rather
its triangular lattice version here). The precise way of gluing the
pages together does not impact our results.
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1.1 Potts model on the book. The Potts models are archetypical examples of
statistical physics systems undergoing a phase transition in two dimensions. Fix
an integer q ≥ 2. For G = (V,E) a finite graph of an infinite graph G = (V,E)
(we sometimes write x ∼ y if xy ∈ E), attribute a spin variable σx belonging to
a certain set Σ := {1, 2, . . . , q} to each vertex x ∈ V . When q = 2, one speaks
of the Ising model and use {−,+} instead of {1, 2} for Σ. A spin configuration
σ = (σx : x ∈ V ) ∈ ΣV is given by the collection of all the spins. Introduce the
Hamiltonian of σ for free boundary conditions defined by

Hf
G(σ) := −

∑
xy∈E

1[σx = σy] (1)

corresponding to a ferromagnetic nearest-neighbor interaction. For τ ∈ Σ, we also
define the Hamiltonian for monochromatic τ boundary conditions:

Hτ
G(σ) := Hf

G(σ)−
∑

x∈V,y∈V\V :x∼y

1[σx = τ ]. (2)

The above Hamiltonian corresponds to a ferromagnetic nearest-neighbor interaction.
The Gibbs measure on G at inverse temperature β ≥ 0 with # (where # is either
free or monochromatic free) boundary conditions is defined by the formula

µ#
G,β [f ] :=

∑
σ∈ΣV

f(σ) exp[−βH#
G (σ)]∑

σ∈ΣV

exp[−βH#
G (σ)]

(3)

for every f : ΣV → R.
When G = Z2 or BN , one may define the Gibbs measure on G at inverse-

temperature β ≥ 0 with # boundary conditions by taking the limit as G↗ G of the
previous measures. In infinite volume, the model undergoes a phase transition on Z2

and BN at some common βc = βc(q) = 1
2 log(1 +

√
q) [8] in the following sense. If

mG(β, q) := µτG,β [σ0 = τ ]− 1
q (4)

is the spontaneous magnetization of the model, then mG(β, q) is equal to 0 if β < βc
and is strictly positive if β > βc.

When G = Z2(= B2), whether the phase transition is continuous (i.e. mG(βc, q) =
0) or discontinuous (i.e. mG(βc, q) > 0) has been the object of much interest in the
past fifty years. It was proved in [33, 41] that the phase transition of the Ising model
is continuous on Z2. More generally, it was predicted by Baxter [5] that the phase
transition of the Potts model on Z2 is continuous for q ∈ {2, 3, 4} and discontinuous
for q > 4. See [14, 22] for a proof of this statement (see also [34] for a short proof in
the case q > 4).

In this paper, we investigate the question on BN and prove the following result.

Theorem 1. There exists N0 < ∞, such that for every q ∈ {2, 3, 4}, the q-Potts
model undergoes a first-order phase transition on BN0

. Equivalently, for every
N ≥ N0 and every q ∈ {2, 3, 4},

mBN (βc, q) > 0.

As we shall explain below, it is natural in several respects to allow ourselves to
strengthen the coupling constants along the edges of the gluing line Z.

For J ≥ 0 and G ⊂ G, we then introduce the modified measure µG,β,J where Hτ
G

is replaced by the Hamiltonian



LONG-RANGE ORDER FOR CRITICAL BOOK-ISING AND BOOK-PERCOLATION 3

Hτ
G,J(σ) = Hτ

G(σ)− (J − 1)
∑

x∼y∈V ∩Z
1[σx = σy]

(corresponding to changing coupling constants along the line Z from 1 to J) and
the associated quantities µτG,β,J , µ

τ
G,β,J and mG(β, J, q).

To motivate the introduction of the parameter J , let us briefly mention the
slightly related problem of long-range Potts model on Z. The previous procedure is
the analog of strengthening the coupling-constants between adjacent vertices in this
context: As an example, in [2], coupling-constants are defined as Jx,y = Jx,y(J) :=
J 1x∼y + 1

|x−y|2 1|x−y|≥2 and the following critical point is introduced ([2, 24], see
also our recent work [15]),

β∗(q) := inf{β s.t. ∃J <∞ for which there is long-range order for {Jx,y(J))}x,y}.
In our present context, motivated by the predictions from [11, 23, 38, 39] (see

Subsection 1.3 below), and by analogy with β∗(q), we define below a notion of
“optimal” number of pages N∗(q) needed to create a first-order phase transition.
The advantage of the notions β∗(q) and N∗(q) comes from the fact that they are
universal: they do not depend on the particular way of gluing pages together (as far
as the glue is finite-range, say) or even the underlying lattice (it could be triangular
or hexagonal for instance). For any q ∈ [1, 4], define

N∗(q) := min{N ∈ N, ∃J <∞ so that mBN (βc, J, q) > 0} . (5)

We obtain the following result on the behavior of the optimal number of pages
N∗(q) depending on q.

Theorem 2. We have the following:
(i) N∗(2) = 3
(ii) N∗(3) = 2
(iii) 1 ≤ N∗(q) ≤ 2 for all q ≥ 4.

We will discuss each of these items below, after Theorem 7 which is the analogous
statement for FK percolation with cluster-weight q ∈ [1,∞).

Remark 1. As we will explain further below, the case q = 2 turns out to be especially
interesting. Physicists which considered this question have predicted that the first-
order transition in fact arises as soon as the number of pages is “2 + ε”. See Remark
2 and Subsection 1.3.

Interestingly, in the case q = 2, the effect of this first-order phase transition is to
make the Ising model on each of the N -pages independent of each other in the
scaling limit. The statement below (written for N = 3, but it would also be valid for
large enough N and J = 1) makes this factorization property more precise. Below,
for a set A ⊂ V , write σA :=

∏
x∈A σx.

Theorem 3. Fix q = 2. Let J <∞ be large enough so that mB3
(βc, J, 2) > 0. For

any three sets A ⊂ H1, B ⊂ H2, and C ⊂ H3, containing a total of m vertices that
are all at a distance at least L of Z, we have the following factorization property of
m-point correlations across Z:

µfB3,βc,J
[σAσBσC ] = 1m∈2Z µ

+
H,βc [σA]µ+

H,βc [σB ]µ+
H,βc [σC ](1 +Om((logL)−c)) .

If + boundary conditions are prescribed instead, the condition on the parity of m
can be dropped and we get

µ+
B3,βc,J

[σAσBσC ] = µ+
H,βc [σA]µ+

H,βc [σB ]µ+
H,βc [σC ](1 +Om((logL)−c)) .

Let us mention that the error term (logL)−c can be improved by looking more
closely at our proof, but this is irrelevant for the conclusion of the paper.
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1.2 Fortuin-Kasteleyn percolation on the book. We now define the Fortuin-
Kasteleyn percolation [25, 26] (we also refer to [28] for a manuscript and [12] for
recent results). Let G = (V,E) be a subgraph of an infinite graph G, let ξ be a
partition of the vertices ∂G := {x ∈ V : ∃y ∈ G \ V : xy ∈ E}. A percolation
configuration is an element ω = (ωe : e ∈ E) ∈ {0, 1}E . If ωe = 1 we say that
the edge is open, otherwise it is closed. We often see ω as a subgraph of G with
vertex-set V and edge-set given by the set of open edges in ω.

The FK percolation measure on G with edge-weights (p, λ) and cluster-weight ξ
is defined by the formula

PξG,p,λ,q[ω] =
qk(ωξ)

Z

∏
xy∈E

pωee (1− pe)1−ωe ,

with pe = p if at least one endpoint is not in Z, and λ if both are, and where ωξ is
the graph obtained from ω by wiring all the vertices in ∂G belonging to the same
element of the partition ξ. Let ξ = 1 (resp. ξ = 0) be the wired (resp. free) boundary
conditions corresponding to the partitions equal to {∂G} (resp. only singletons).

Below, we will use the notation A ←→ B (in C) if there exists a path of open
edges between a vertex in A and a vertex in B (using vertices in C only). We also
write x instead of {x} when the set is a singleton, and x←→∞ to denote the fact
that there exists an infinite path starting from x.

We construct the FK percolation P1
G,p,λ,q and P0

G,p,λ,q on G with wired or free
boundary conditions by taking the limit as G ↗ G of the measures P1

G,p,λ,q and
P0
G,p,λ,q. We also define, for an infinite graph G containing the origin,

θG(p, λ, q) := P1
G,p,λ,q[0←→∞].

It was also proved that there exists pc = pc(q) =
√
q/(1 +

√
q) such that for

every integer N and λ ∈ (0, 1), θBN (p, λ, q) is equal to 0 if p < pc and is strictly
positive if p > pc. Again, the question of whether the phase transition is continuous
(i.e. θBN (pc, λ, q) = 0) or discontinuous (i.e. θBN (pc, λ, q) > 0) was answered in the
special case of G = Z2(= B2): when 1 ≤ q ≤ 4, it is continuous [22] and when q > 4,
it is discontinuous [14]. Here, we investigate this question on BN with N ≥ 3. Our
first result is as follows.

Theorem 4. For any 1 ≤ q ≤ 4, there exists N0 < ∞ such that FK percolation
undergoes a first-order phase transition on BN0

. I.e. for any N ≥ N0,

θBN (pc(q), q) = P1
BN ,pc(q),q[0←→∞] > 0 .

By choosing N0 sufficiently large, the result also holds for arbitrary small λ ∈ [0, 1)
and for free boundary conditions, i.e. for any N ≥ N0,

P0
BN ,pc(q),λ,q[0←→∞] > 0 .

Note that Theorem 1 follows easily from Theorem 4.

Proof of Theorem 1. Through the Edwards-Sokal coupling between the Potts model
and FK percolation (see e.g. [28]), we have that

mBN (βc, q, J) = q−1
q θBN (pc, q, 1− e−2βJ),

hence Theorem 1 is a direct consequence of Theorem 4. 2

As in the case of Potts models, we define for any q ≥ 1,

N∗(q) := min{N ∈ N, ∃λ < 1 so that θBN (pc(q), λ, q) > 0} .
The following result gives a precise picture of the optimal number of pages N∗(q)

depending on q ≥ 1. (See Fig. 2 for a plot of q 7→ N∗(q)). This extends Theorem 2
which was stated for Potts models (q ∈ N+).
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q

N ∗(q)

1 2 3 4

Figure 2. The lines and dots in dark blue show the precise
values proved for N∗(q). The light blue shows the possible range
of values for N∗(q) while the red color indicates where we expect
N∗(q) to be.

Theorem 5. We have that
a) 3 ≤ N∗(1) ≤ 4,
b) there exists N0 such that 3 ≤ N∗(q) ≤ N0 for every 1 ≤ q < 2,
c) N∗(2) = 3,
d) N∗(q) = 2 for all 2 < q < 4,
e) 1 ≤ N∗(q) ≤ 2 for all q ≥ 4.

We now comment on the different items in the above result.
a) The fact that N∗(1) ≤ 4 will follow readily from our proof of Theorem 4

using the known value of the one-arm critical exponent in H for critical
q = 1 percolation ([37, 32]). We expect that this is optimal, i.e. that
N∗(q = 1) = 4. The bound N∗(1) ≥ 3 will be shown using a second moment
argument in Section 4.

b) We provide a direct proof in Subsection 2.3 that sup1≤q≤4N
∗(q) <∞. The

fact that N∗(q) ≥ 3 when 1 < q < 2 will also be proved in Section 4 using
a second moment argument based on estimates on the one-arm critical
exponents from [20]. We expect that N∗(q) = 3 in this whole regime.

c) The case q = 2 is, arguably, the most interesting of all. As opposed to the
q = 1 case, this result will not be a straightforward consequence of (the
proof of) Theorem 4. Its proof will be organized as follows:
1) The proof that N∗(2) ≤ 3 will be the focus of Section 5. The argument

will be based on the random currents representation of the Ising model
([1, 13]). Random currents will indeed enable us to show that in the
graph B3, far from the middle line Z, the spin system behaves (nearly)
as if all edges along Z were wired together. This will be a key step of
the proof as the precise values of arm-exponents in H depend on what
are the boundary conditions induced along ∂H.

2) The second part of the proof is to show that N = 2 pages are not
sufficient to create an infinite cluster even if the edge-weights λ are
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arbitrary large on Z. Here, the second moment argument used for the
case 1 ≤ q < 2 is not sufficient and a detailed analysis of the effect of
a 1d defect-line for 2d critical Ising model is needed. This will be the
subject of the companion paper [16].

d) The proof that N∗(q) = 2 for any 2 < q < 4 will consist in showing that
a defect line Z with high coupling constants λ is sufficient in B2 = Z2 to
create on its own an infinite cluster. The proof is given in Section 4. It will
rely on the multiscale/renormalization argument built for Theorem 4 but
will be simpler due to the planarity of B2.

e) Finally, when q > 4, it follows from the first-order phase transition ([14, 34])
that N∗(q) ≤ 2 for all q > 4 (no strengthening λ along Z is needed in
that case) and we expect that N∗(q) = 1 in this regime. When q = 4, the
argument of item e) still works to ensure N∗(4) ≤ 2 but strong RSW is
missing to check that N∗(4) ≥ 2. We still expect though that N∗(4) = 2.

Remark 2. When q = 1 (resp. q = 2), it is not difficult to extend the analysis carried
in this paper to a Book with “N = 3 + ε” pages (resp “N = 2 + ε” pages) in the
following sense: consider the finite book with 3 pages (resp. 2 pages) of normal size
[0, n]× [0, n] and a fourth (resp third) page of size [0, n]× [0, nε]. These pages are
glued along [0, n]. We claim that by a slight adaptation of the multiscale proof in
this paper, we can show that if the coupling constant λ is chosen high enough along
[0, n], then with probability 1− o(1) as n→∞, there is a macroscopic cluster in the
“N = 3 + ε” book (resp long-range order in the “N = 2 + ε” book) with intensity
larger than 3

4 along the gluing line [0, n]. This is consistent with predictions from
[38, 39] (though with a different notion of “N = 2 + ε” pages).

In the whole paper, we focus on 1 ≤ q ≤ 4 and p = pc. We drop them from the
notation. In particular we write PξG,λ instead of PξG,pc,λ,q. It will happen that we
write PξG,pc , but we warn the reader that this means that the λ parameter is equal to
pc (as the p is always set to pc).

1.3 Motivations from replicas and quantum spin systems. Our results are
motivated by several works in theoretical physics. To our knowledge, the first works
which have considered the present gluing problem are the works [11, 23] by Cardy
and Iglói-Turban-Berche. These two works rely on a renormalization group analysis
in order to study the large N tends to infinity case. Based on this RG analysis,
both [11] and [23] suggest that if one glues an Ising model at βc on N > 2 pages
along a line, then the spins may spontaneously order near that line. The gluing of
several pages of Ising arises naturally in their works in forms of replicas for a model
with disorder, namely a 2d Ising model with quenched magnetic disorder along its
boundary ∂H.

More recently, in the works [38, 39] by Stéphan-Misguich-Pasquier and Stéphan,
the authors combine conformal field theory arguments with numerical computations
in order to give strong further support to these predictions. See also the simulations
in [27].

The goal behind [38, 39] is in some sense also driven by the replica-trick but for
a different underlying motivation than in [11, 23]. In these papers, the authors are
interested in the Shannon entropy of the groundstate |ψ〉 of the quantum Ising chain
(or quantum Ising chain in transverse field), which is given on ZL := Z/LZ by the
following Hamiltonian

HIsing Chain = −
∑

i∈Z/LZ

σxi σ
x
i+1 + hσzi .
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σ = + + ++ + +− − −

+ + ++ + +− − −

+ + ++ + +− − −

+ + ++ + +− − −

Figure 3. If pσ is the probability to find the configuration σ on
the middle line on the left, then the probability to find the same
σ at the bottom of the page in the middle is proportional to p1/2

σ

while the probability to find σ at the bottom of the Book-graph on
the right is proportional to p3

σ.

For this Ising chain, the most natural basis, denoted {|σ〉}σ∈{−1,1}L , of (C2)⊗Z/LZ is
given by the eigenstates of σxi which correspond to the actual spins in the classical
two-dimensional model. In this basis, and for the critical parameter h := hc = 1 in
the quantum Hamiltonian HIsing Chain, the ground state can be written as

|ψ〉 =
∑

σ∈{±1}L
p1/2
σ |σ〉 ,

where pσ denotes the probability for a classical Ising model1 in the infinite 2d cylinder
ZL × Z to generate at βc the configuration σ at the middle slice of the cylinder
ZL × {0}. The Shannon Entropy of the Quantum Ising chain in the basis is then
defined as

S = −
∑
σ

pσ log pσ .

The connection with Book-Ising goes as follows: one can express the entropy S as a
limit as n→ 1 of the so-called Renyi’s entropies Sn:

S = lim
n→1

Sn = lim
n→1

1

1− n log
(∑

σ

pnσ

)
.

Now, in the spirit of the celebrated Parisi replica’s trick, the idea in [38, 39] is to
analyze S via the analysis of the Renyi entropies {Sn}n∈N∗ . The link with Book-Ising
is that the measure on σ ∈ {−1, 1}L which assigns a weight on each configuration
σ proportional to pnσ can be realized as a Book-Ising on N = 2n pages (where
pages here are semi-infinite cylinders ZL × N). See Fig. 3 (with squares instead of
semi-infinite cylinders).

Organization of the paper. In Section 2, we present the preliminaries of the
paper and the important disconnection exponents. At the core of this section is the
statement of Proposition 7. Section 3 contains the proof of Proposition 7. Sections 4
and 5 contain the proofs of Theorem 5 for q 6= 2 and q = 2 respectively.

1For this correspondance to hold, the classical Ising model should not be on a Z2-grid but
rather on a Z×R lattice. We will not enter into these considerations here, but simply mention that
our study does extend to this more general framework using a similar renormalization framework
and the statement of [18] guaranteeing that the behaviour on Z2 is similar as the one on Z× R.
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2 Preliminaries and disconnection exponent on the Book

2.1 Disconnection exponent. In the rest of the paper, depending on the con-
text, ΛK will be either the box of size K in Z2. We will extensively rely through
this paper on the following event. For any 1 ≤ k ≤ K, let F (k,K) be the event that
there exists a page Hu in which ∂Λk is disconnected from ∂ΛK in Hu by a path in
ω. Let us mention that the complementary event F (k,K)c can also be interpreted
using the dual representation of the Fortuin-Kasteleyn percolation on the page,
where ω∗ is defined as follows. For each page Hu, let (Hu)∗ be the dual graph of Hu,
and set ω∗e∗ = 1− ωe, where e∗ is the unique dual edge that crossed e in its center.
Then, we speak of a dual-open path of dual-edges for a path in (Hu)∗ which is open
in ω∗ (we write A ∗←→ B for the existence of a dual connection between the sets A
and B). Then, F (k,K)c corresponds to the event that in each page, there exists a
dual-open path from ∂Λk to ∂ΛK , see Fig. 4.

∂Λk

∂ΛK

∂Λk

∂ΛK

Figure 4. The event F (k,K) is realized on the left while
F (k,K)c is realized on the right (the dashed lines correspond to
dual open paths). When F (k,K)c will hold, it will disconnect the
left side of the book from its right.

Below, we will speak of a critical exponent α∗ for a family of probabilities
(P[A(k,K)] : k ≤ K) as follows

α∗ := sup{α > 0 : ∃ρ0 s.t. ∀K ≥ 1, ρ ≥ ρ0, P[A(K, ρK)] ≤ ρ−α}.
Morally speaking, this critical exponent is ruling the speed of algebraic decay

– in (k/K) – of the probabilities P[A(k,K)]. In what follows, we expect the fami-
lies of probabilities (but this is currently unknown for most of the families under
consideration) exhibit a behaviour of the form

P[A(k,K)] = (k/K)α
∗+o(1),

where o(1) is a quantity that tends to 0 as k/K tends to 0, but this is currently
unknown for a number of them.

Definition 6. The disconnection exponent α(q,N) is defined as the critical exponent
of the family P0

BK ,pc,pc,q
[F (k,K)c].

This disconnection exponent will be of central importance in this work as its value
will exactly detect when (as N increases) the phase-transition becomes first-order
instead of second-order. Indeed the main ingredient for the proof of our main results.



LONG-RANGE ORDER FOR CRITICAL BOOK-ISING AND BOOK-PERCOLATION 9

Proposition 7. For every 1 ≤ q ≤ 4, if N ≥ 1 is such that α(q,N) > 1, then there
exists λ ∈ (0, 1) such that

θBN (pc, λ, q) > 0.

In other words, α(q,N) > 1 implies N∗(q) ≤ N .

2.2 Arm-exponents in H. The following three one-arm exponents in the upper-
half plane will help us obtain estimates on the disconnection exponent α(N, q)
uniformly in 1 ≤ q ≤ 4. As they are not known to exist, we define them like the
disconnection exponent (in the notation below we ignore the parameter λ as it is
set to pc):

• α+
free(q): the critical exponent for the family

a+
free(k,K, q) := P0

H,pc,q[∂Λk
∗←→ ∂ΛK ].

• α+
C (q) : the critical exponent for the family

a+
C (k,K, q) := P0

Z2,pc,q
[∂Λk

∗←→ ∂ΛK in H].

• α+
wired(q) : the critical exponent for the family

a+
C (k,K, q) := P1

H,pc,q[∂Λk
∗←→ ∂ΛK ].

Note that with these definitions, the following special cases are known:
i) α+

free(1) = α+
C (1) = α+

wired(1) = 1
3 as proved in [37, 32] respectively for

triangular and Z2 lattices.
ii) α+

wired(2) = 1
2 (see e.g. [17]).

For future reference (we will use these estimates later on), we write a+
#(K) instead

of a+
#(0,K).

Remark 3. Since the free (resp. wired) boundary conditions are helping (resp. dis-
advantaging) a dual connection, we have that α+

free(q) ≤ α+
C (q) ≤ α+

wired(q). We
will note use this fact, but for all 1 < q ≤ 4, one has α+

free(q) < α+
C (q) < α+

wired(q) .

2.3 Proof of Theorem 4 given Proposition 7. We first prove the following
uniform control on N∗(q).

Proposition 8. There exists N0 such that for every 1 ≤ q ≤ 4, N∗(q) ≤ N0.

Proof. Assuming Proposition 7 holds, it is enough to find an integer N0 large enough
so that α(q,N0) > 1 for every 1 ≤ q ≤ 4.

The most trivial bound on α(q,N) is obtained as follows. For F (k,K) not to occur,
it must be that in each page, ∂Λk is connected to ∂ΛK in the dual configuration ω∗;
see Fig. 4. Using the comparison between boundary conditions, one may split the
book into disconnected pages and use that this event has a probability smaller than
Cρ−α

+
free(q) in each page. This reasoning gives

α(q,N) ≥ Nα+
free(q).

It is known from [32, 37] that α0(1) = 1
3 , so we already obtain at this stage a proof

of the upper-bound in item a) of Theorem 5, i.e

N∗(1) ≤ 4.

For the remaining 1 < q < 4, it was proved in [22] that α+
free(q) > 0, thus giving

the existence of N = N(q) such that α(q,N) > 1. The problem with this bound is
that it deteriorates when q tends to 4, for which α+

free(4) is expected to be equal to
0. This reasoning would force us to choose a number of pages N(q) tending to ∞ as
q ↗ 4.
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A slightly better bound is obtained by observing that by successively conditioning
in each page, for all but the last page, the probability of having a dual path connecting
∂Λk is connected to ∂ΛK in a page is smaller than a+

C (k,K) since there exist at least
two undiscovered pages (and therefore by comparison between boundary conditions
the occurrence of the connection is smaller than the one under the full plane measure),
which explains why we introduced above the exponent α+

C (q). (This observation
will also be used in the proof of Lemma 12). This domination is valid as long as
there are at least two remaining pages so we get

α(q,N) ≥ (N − 1)α+
C (q).

This exponent is know from [22] to be larger than some constant c > 0 uniformly on
1 ≤ q ≤ 4. As a consequence, we deduce that N∗(q) ≤ N0 uniformly in 1 ≤ q ≤ 4
which thus proves the content of Proposition 8. 2

Remark 4. As we will obtain N∗(q) ≤ 2 by other means when q > 2 (in Section
4), we may have focused here only on the case 1 < q < 2 which is slightly simpler
since the bound α(q,N) ≥ Nα+

free(q) would already be sufficient. Yet we decided
to include the proof below which works uniformly in 1 ≤ q ≤ 4 because it highlights
well the different boundary conditions at work near the joint line Z and because the
exponent α+

C will also play a key role later (in the proof of the anchoring Lemma
12).

Remark 5. In fact, we expect that as soon as percolation occurs in BN , then

α(q,N) = Nα+
wired(q) .

This comes from the intuition that the infinite cluster at pc in BN is staying close to
the axis, and that this cluster acts as a wiring of vertices. We will turn this intuition
into a proof thanks to the random currents representation in the special case of
q = 2 in Section 5. As α+

wired(q) should be equal to 2
π arccos(

√
q/2) (see [36, 20]),

this is consistent with our results (and predictions) on N∗(q) in Theorem 5.

Proof of Theorem 4 given Proposition 8. To prove Theorem 4, it remains to treat
the general case where the edge-density on Z is an arbitrary number λ ≥ 0. (The
same argument also applies to the case where edges along Z have the same weight p
as the other edges). Consider N such that α(q,N) > 1 and N ′ such that the process
given by the pairs of neighboring edges x and x′ in Z that are connected to each
other in BN ′ is dominating a FK percolation of parameter λ∗ on Z (the existence
of this integer N ′ is easy using finite energy). Then, one can easily check that the
restriction to BN of FK percolation with parameter λ on BN+N ′ is dominating FK
percolation on BN with parameters pc and λ∗. This concludes the proof. 2

3 Proof of Proposition 7

3.1 Preliminaries. Let S ⊂ BN . We call a cluster in S a connected component
C ⊂ S of the graph with vertex-set S and open edges with both endpoints in S. We
will use the notion of K-block BiK to be the translate by the vector (iK, 0) of the
union, in each page, of the squares [−K,K)× [0,K]. For simplicity we write BK
instead of B0

K . Given a block BiK , we write C(BiK) for the cluster in BiK which has
the largest intersection with Z (when there is more than one, pick one according to
a deterministic rule).

We will need the following two definitions.

Definition 9 (θ-bad block). A K-block BiK is θ-good if |C(BiK)∩Z| ≥ 2θK. When
a block is not θ-good, we call it θ-bad. Introduce

pλ(K, θ) := P0
BK ,λ[BK θ-bad ].
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Definition 10 (bridged block). A K-block BiK is bridged in BCK if there exist
−C ≤ i− ≤ i− 2 and i+ 2 ≤ i+ ≤ C such that

• Bi−K and Bi+K are 3
4 -good.

• C(B
i−
K ) and C(B

i+
K ) are connected together in BCK \BiK .

Introduce
qλ(K,C, i) := P0

BCK ,λ[BiK not bridged in BCK ].

3.2 Bound on qλ(K,C, i). The core of the proof of our theorem will be the
following proposition.

Proposition 11. For every 1 ≤ q ≤ 4 and α < α(q,N), there exists D0(α) =
D0(α, q,N) > 0 such that

qλ(K,C, i) ≤ D0(α)

(C − |i|)α + 2Cpλ(K, θ) (6)

for every λ ≥ pc, N ≥ 1, θ > 3
4 , and K,C ≥ 2.

The proof of Proposition 11 is divided into two independent lemmata, referred to
as the anchoring lemma and the bridging lemma.

For M,K ≥ 2, introduce the set A(M,K) to be the union of the half-annulus
H ∩ Λ2MK \ ΛMK and the blocks BjK with j ∈ (M, 2M). For a set γ, introduce the
boundary condition γ to be the wired boundary condition on γ, and free elsewhere
(see Fig. 5).

Figure 5. A picture of A(M,K) and the path γ, as well as
the event under consideration in the next lemma. The boundary
condition γ corresponds to wired on the path γ and free on the
dashed area.

Lemma 12 (Anchoring Lemma). There exists canchor > 0 such that for every
λ ≥ pc, every integers K,M , every θ > 3

4 , and every path γ from ∂ΛMK to ∂Λ2MK

staying above (0,K) + Z,

PγA(M,K),λ[∃j ∈ (M, 2M) : BjK θ-good &C(BjK)↔ γ in H] ≥ canchor(1−pλ(K, θ))2.
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Proof. Consider the increasing coupling between random-cluster models (see e.g. [28]
for details) P between two configurations ω′ ≤ ω with

ω ∼ PγA(M,K),λ and ω′ ∼ PγA′(M,K),pc
,

where A′(M,K) is the restriction of A(M,K) to the first two pages (it is a subset
of the plane), defined as follows (see for example [21]). The coupled configuration
(ω′, ω) is written as an increasing function F of i.i.d. uniform variables in Ue ∈ [0, 1]
which are indexed by the edges of A(M,K). To define

F : [0, 1]E(A(M,K)) → {0, 1}E(A′(M,K)) × {0, 1}E(A(M,K)),

we proceed inductively: the variables (Ue : e ∈ A′(M,K)) are used one at a time to
sample ω′e ≤ ωe given the values of the former edges that have been fixed . Once all
edges e ∈ A′(M,K) have been fixed, the remaining variables (Ue : e /∈ A′(M,K))
are used to sample the remaining edges for ω.

Define now N to be the number of pairs (j, x) with j ∈ [ 5M
4 , 7M

4 ] and x ∈ Z such
that

• BjK is θ-good in ω;
• x ∈ C(BjK)(ω);
• x is connected to γ in ω′ ∩H.

The fact that F is increasing implies FKG property for (ω′, ω), which itself gives

E[N] =

7M/4∑
j=5M/4

∑
x∈Z

P[BjK θ-good in ω, x ∈ C(BjK)(ω), x←→ γ in ω′ ∩H]

≥
7M/4∑
j=5M/4

∑
x∈Z

P[BjK θ-good in ω, x ∈ C(BjK)(ω)]P[x←→ γ in ω′ ∩H].

On the one hand, standard crossing estimates and mixing properties of the critical
FK percolation with 1 ≤ q ≤ 4 give that there exists c0 > 0 such that

P[x←→ γ in ω′ ∩H] = PγD′ [x←→ γ in H] ≥ c0 a+
C (MK) .

On the other hand, the definition of θ-good K-blocks immediately gives that∑
x∈Z

P[BjK θ-good in ω, x ∈ C(BjK)(ω)] = EBjK [|C(BjK)(ω)|1BjK θ-good]

≥ 2θK(1− pλ(K, θ)).

Altogether, we deduce the following lower bound on the first moment of N:

E[N] ≥ c0θMKa+
C (MK)(1− pλ(K, θ)).

We now turn to a bound on the second moment. By dropping the first condition,
replacing the second by x ∈ BjK , and observing that each x belongs to at most 2
blocks, we obtain that

E[N2] ≤ 4
∑
x,y

Pmix
D′ [x, y ←→ γ in H].

A standard application of crossing probabilities and quasi-multiplicativity, see e.g. [?],
shows that

E[N2] ≤ C0MK

MK∑
k=1

a+
C (MK)2

a+
C (k,MK)

≤ C1(MK)2 a+
C (MK)2.

Cauchy-Schwarz inequality implies that the probability that N > 0 is bounded from
below by c1θ2(1− pλ(K, θ))2. Since N > 0 implies the event under consideration,
the claim is proved. 2
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Remark 6. At first sight, a natural way to try proving the Anchoring Lemma would
be to run a direct second moment argument on the number, say M, of points on
the middle line Z which are connected to γ in the first page H(= H1) instead of
considering the more complicated N. This works well in the q = 1 case, but as soon
as q > 1 this strategy seems difficult to implement. Indeed, the first moment E

[
M
]

would involve in this case the one-arm event in a page H but for the FK measure in
the full book graph BN . So far so good, but difficulties arise when controlling E

[
M2
]

as a quasi-multiplicativity statement for this arm event would be needed. One way
to achieve this would be to prove a version of the mixing lemma (as in [17] in the
plane) for the FK measure on the book BN . This does not seem straightforward as
different pages may interact via the joint line Z. This is the reason why we introduce
in the proof above a suitable coupling argument in order to transfer the problem to
a setting where one can apply a more standard second moment method.

We now turn to the Bridging lemma. For integers K,D, ρ > 0 and a small real
number η > 0, set Rk := K(2ρ)k and let F (K,DK, ρ, η) be the event that there are
at least η logD integers k ≥ 0 such that Rk+1 ≤ DK and F (Rk,

1
2Rk+1) occurs.

Lemma 13 (Bridging Lemma). For every α < α(q,N), there exist η = η(α) > 0
and an integer ρ = ρ(α) > 0 such that for every λ ≥ pc and K,D ≥ 2 large enough,

P0
BDK ,λ[F (K,DK, ρ, η)] ≥ 1− 1

Dα
.

Proof. By monotonicity, it suffices to show the result for λ = pc. Fix α(q,N) >
β > α. By definition of α(q,N), there exists ρ = ρ(β) such that for every K large
enough and k ≥ 0,

P0
BRk+1

,pc [F (Rk,
1
2Rk+1)c] ≤ ρ−β . (7)

By conditioning on the configuration outside BRk+1
, the spatial Markov property

and the comparison between boundary conditions combined with the previous
displayed equation implies that the probability that F (Rk,

1
2Rk+1) occurs is larger

than 1− ρ−β . In particular, the number of integers k with Rk+1 ≤ DK such that
F (Rk,

1
2Rk+1) occurs is dominating a binomial random variable Binom(n, p) with

parameters n = blog2ρ(D)c−1 and p = 1−ρ−β . We deduce that for η = η(β, ρ) > 0
small enough, the probability that there are fewer than η logD such k is smaller
than 1/Dα. 2

We are now ready to dive into the proof of Proposition 11.

Proof of Proposition 11. Fix θ > 3
4 and observe that if pλ(K, θ) ≥ 1

2 there is nothing
to do2. We therefore now assume the opposite. Since the box of size DK around
(Ki, 0) is included in BCK and being bridged is an increasing event, the comparison
between boundary conditions implies that it suffices to treat the case i = 0 in the
block BDK with D := C − |i|.

Fix α < α(q) and consider η = η(α) and ρ = ρ(α) given by the Bridging Lemma.
Also, write F := F (K,D, ρ, η). Thanks to the Bridging lemma and the comparison
between boundary conditions,

P0
BDK ,λ[F ] ≥ 1− 1

Dα

2At this stage one may wonder why we put 2Cpλ(K, θ) in the right-hand side of (6) instead of
simply 2pλ(K, θ). The reason comes from the conjecture that (7) can be obtained essentially in
terms of the probability of a dual connection with wired boundary conditions on Z, and that in
order to do that, one may want to assume that pλ(K, θ) < 1/C. We refer to Sections 4 and 5 for
details of such an application.
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and it suffices to show that there exists a universal constant c > 0 such that

P0
BDK ,λ[BiK bridged|F ] ≥ 1− exp[−c log(D)2].

Figure 6. A picture of the path Γu(k) as well as Bj
±

K and some
event E+(k, u, 3) and E−(k, u, 1). The set Ω is depicted in yellow.
Note that these sets do not intersect any of the BjK (in other words,
they remain at a distance K of Z).

We now introduce a few quantities (see Fig. 6). For k < blog2ρ(D)c, let Γ(k) be
the inner-most path in ω disconnecting ∂ΛRk and ∂Λ2−1Rk+1

in (0,K) + H (note
that it is a subset of (0,K) + H). Define Ω(k) to be the set of x in ((0,K) + H) ∩
(Λ2−1Rk+1

\ ΛRk) that are surrounding by Γ(k), with the convention that the set is
((0,K) + H) ∩ (Λ2−1Rk+1

\ ΛRk) when Γ(k) does not exist. Similarly, define Γu(k)
and Ωu(k) as the corresponding quantities in Hu. Finally, consider the set

Ω :=
⋃

(k,u)

Ωu(k).
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as well as the set I = I(ω) of pairs (k, u) for which Γu(k) exists, and the set J = J(ω)
of triplets (k, u, i) with (k, u) ∈ I and 1 ≤ i < blog2Rkc.

Now, condition on the states of the edges in Ω and let ξ be the boundary conditions
that they induce on BN \ Ω. Note that it can be done without revealing any edge
outside of Ω and that I(ω) is measurable in terms of the states of these edges.
For each (k, u) ∈ I(ω), say that Γu(k) ends in Bj−K and Bj+K on the left and right
respectively. For (k, u, i) ∈ J, let E+(k, u, i) be the event that there exists j with
2i−1 < j − j+ < 2i such that BjK is θ-good and C(BjK) is connected to Γu(k) in
Hu. Similarly, define E−(k, u, i) on the left. The comparison between boundary
conditions and the anchoring lemma imply that

PξBN\Ω,λ[BK bridged|F ]

≥ PξBN\Ω,λ[∃(k, u, i) ∈ J such that both E±(k, u, i) occur|F ]

≥ 1− EξBN\Ω,λ
[ ∏

(k,u,i)∈J

(
1−

[
canchor(1− pλ(K, θ))2

]2)∣∣∣F]
≥ 1− (1− c)η′(logD)2 ,

where in the last line we used the fact that on F , |J(ω)| ≥ η′(logD)2, and that the
assumptions that θ > 3

4 and pλ(K, θ) ≤ 1
2 guarantee the existence of c > 0. 2

3.3 Proof of Proposition 7. The proof of Proposition 7 relies on the idea that
clusters at scale K and local density θ will merge and with high probability create
new clusters at scale CK of local density θ′ = θ −O(1/C) slightly smaller than θ
(this slight loss of density allows us to lose a few clusters at scale K in the process).
More precisely, we prove the following renormalization inequality.

Lemma 14. Let N > 1 such that α(q,N) > 1 and θ > 3
4 . There exist C0 ≥ 1 large

enough (depending on θ and N) such that the following holds. For every λ > 0 and
for every integers C ≥ C0 and K ≥ 2,

pλ(CK, θ − C0/C) ≤ 1
100 pλ(K, θ) + 6C2 pλ(K, θ)2. (8)

Proof. Fix 1 < α < α(q,N). Let C0 > 0 be a large constant to be chosen later and
set θ′ := θ − C0/C. For |i| ≤ C, let Ei be the event that BiK is θ-bad and all the
blocks BjK are θ-good for j ∈ [−C,C] \ {i− 1, i, i+ 1}, and set

Fi = Ei ∩ {BCK is θ′-bad}. (9)

Observe that if all K-blocks BjK , −C ≤ j ≤ C, are θ-good, then the assumption
that θ > 3/4 imposes that all the clusters C(BjK) are connected together in BCK ,
which implies the existence of a cluster in BCK with cardinality larger than 2θCK.
In particular, if BCK is θ′-bad, then either there exist two disjoint θ-bad K-blocks,
or there exists i such that Ei occurs. The union bound implies

pλ(CK, θ′) ≤
C∑

i=−C
P0
BCK ,λ[Fi] + P[there are at least two disjoint θ-bad K-blocks].

(10)
By the spatial Markov property and the comparison between boundary conditions,
we have

P0
BCK ,λ[there are at least two disjoint θ-bad K-blocks] ≤

(
2C − 1

2

)
pλ(K, θ)2.

(11)
It remains to bound the first term in (10), which is the object of the end of the

proof. If all K-blocks BjK with |j| ≤ C − C0 are θ-good, the same argument as
above implies that BCK is θ′-good, therefore Fi = ∅ whenever |i| ≥ C − C0. Now,
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let |i| ≤ C − C0. Note that if BiK is bridged in BCK , then BCK is also θ′-good.
Furthermore, when BiK is not bridged (this event does not depend on edges in BiK),
for Ei to occur then BiK must be θ-bad. As a consequence, the spatial Markov
property and the comparison between boundary conditions implies that

P[Fi] ≤ P[Ei|BiK not bridged]P[BiK not bridged]

≤ pλ(K, θ)qλ(K,C, i)

≤ D0(α) pλ(K, θ)

(C − |i|)α + 2Cpλ(K, θ)2, (12)

where in the last line we invoked Proposition 11 for α. Select C0 so large that∑
|i|≤C−C0

2D0(α)

(C − |i|)α ≤
1

100 .

Plugging (12) and (11) in (10) concludes the proof. 2

Proof of Proposition 7. Let N satisfying α(q,N) > 1. Choose θ1 < 1 and C1 ≥ C0

(where C0 is provided by Lemma 14) such that the sequences{
Cn+1 = (n+ 1)3C1,

θn+1 := θn − C0

Cn+1
,

for n ≥ 1

satisfy θn > 3
4 for every n ≥ 1. Now, set λ∗ ≥ pc so large that

pλ∗(C1, θ1) ≤ Pλ∗ [∃{x, x+ 1} ⊂ BC1
∩ Z closed] ≤ C1

1− λ∗
q − (q − 1)λ∗

≤ 1

1200C2
1

.

and consider the sequence of scales defined3 by{
K1 = C1,

Kn+1 = Cn+1Kn n ≥ 1.
(13)

Applying Lemma 14 to (N, θn, Cn,Kn), we see that the sequence un := pλ∗(Kn, θn)
satisfies

∀n ≥ 1, un+1 ≤ 1
100un + 6C2

nu
2
n.

By induction, we obtain that un ≤ 1
1200C

−2
n for every n ≥ 1, and therefore,

Pλ∗ [BKn 3/4-good] ≥ 1− un ≥ 1− 1
1200C

−2
n ≥ 1

2 .

First using the estimate above and then translation invariance, we get that for
every n ≥ 1,

3
4Kn ≤ Eλ∗ [|C(BKn) ∩ Z|1BKn 3/4-good]

≤ 2KnPλ∗ [0 is in a cluster of size at least 3
2Kn]. (14)

Dividing both sides by 2Kn, we obtain

Pλ∗ [0 is in a cluster of size at least 3
2Kn] ≥ 3

8 ,

which by measurability implies that the probability that 0 is connected to infinity is
larger than or equal to 3

8 . 2

3Note that it gives Kn = (n!)3Cn1 for all n ≥ 1.



LONG-RANGE ORDER FOR CRITICAL BOOK-ISING AND BOOK-PERCOLATION 17

4 Proof of Theorem 5 for q 6= 2

In this section, we prove the following two claims of Theorem 5: first we show that
N∗(q) ≥ 3, when q ∈ [1, 2) and second, we prove that N∗(q) = 2 for all 2 < q < 4
and that N∗(4) ≤ 2. The more subtle case of q = 2 will be analyzed in the next
section with the help of random currents.

We start with the following proposition corresponding to the first claim.

Proposition 15. For every 1 ≤ q < 2, there exists c = c(q) > 0 such that for every
n ≥ 1 and λ ∈ (0, 1),

P1
B2,λ[Λn horizontally crossed] ≤ 1− (1− λ)c.

In particular, P1
B2,λ

[0←→∞] = 0.

The proof is based on a second-moment argument.

Proof. Define the number N of edges e ⊂ [−n/2, n/2] such that the endpoints of
e∗ are respectively dual connected to the top of Λn in the upper half-plane, and to
the bottom of Λn in the lower half-plane. Under P1

B2,1
(for which Z is completely

wired), both pages behave independently and we immediately get that

E1
B2,1[N] ≥ c0na+

wired(n)2.

In the other direction, the second moment gives, using classical quasi-multiplicativity
estimates

E1
B2,1[N2] ≤ C0n

n∑
k=1

a+
wired(n)4

a+
wired(k, n)2

≤ C1n
2a+
wired(n)4,

where in the last inequality we used a result from [20] stating the existence of
c1 = c1(q) > 0 such that for every k ≤ n,

a+
wired(k, n) ≥ c1( kn )1/2−c1 . (15)

Overall, we get by comparison between boundary conditions and Cauchy-Schwarz
that

P1
B2,λ[N > 0] ≥ P1

B2,1[N > 0] ≥ c2.
Now, on {N > 0} (which does not prescribe anything on edges in Z), Λn is not
crossed horizontally if any of the edges of Z such that the endpoints of e∗ are
dual-connected to top and bottom is in fact closed. Since there is at least one such
edge, we get that

P1
B2,λ[Λn horizontally crossed] ≤ 1− c2(1− λ).

This concludes the proof of the first part of the proposition. For the second part,
ergodicity gives that Ppc,λ,q[0←→∞] = 0 since otherwise the crossing probability
would tend to 1. 2

We now turn to the other claim, which we split in two.

Proposition 16. For any 2 < q ≤ 4, we have N∗(q) ≤ 2.

Proof. We wish to prove that for λ > 0 large enough, P1
B2,λ

[0↔∞] > 0. In order to
do that, we only need to prove the equivalent of Proposition 11, i.e. that for some
constant α > 1, there exists D0(α) > 0 such that

qλ(K,C, i) ≤ D0(α)

(C − |i|)α + 2Cpλ(K, θ) (16)

for every λ ≥ pc, N ≥ 1, θ > 3
4 , and K,C ≥ 2.

To do that, observe that for BiK not to be bridged in BCK ,
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• either there must be a θ-bad box BjK , an event which occurs with probability
smaller than 2Cpλ(K, θ),

• or all the boxes are θ-good, in which case if C is the cluster gathering all the
C(BjK), we have that BiK is dual connected to ∂BCK above and below C.

Yet, when working on B2 = Z2, one notices that C contains a crossing from left
to right in [−CK,CK]× [−K,K]. In particular, conditioned on the bottom-most
such crossing Γ and everything below it, the spatial Markov property together
with the comparison between boundary conditions of the model imply that the
probability that there exists a dual path from BiK to ∂BCK above Γ is bounded by
the probability that there exists a dual-connected path in [−CK,CK]× [−K,CK]
from BiK to ∂BCK , with free boundary conditions on ∂BCK and wired on the
bottom. In particular, it is bounded by C0awired(K, (C − |i|)K) using classical
mixing properties coming from [22]. Now, it was proved in [20] that for every
q < 2 ≤ 4 (it was not done for q = 4 but the same proof extends), there exists
c1 = c1(q) > 0 such that for every k ≤ n,

a+
wired(k, n) ≤ 1

c1
( kn )1/2+c1 . (17)

Altogether, we deduce that for some constant D1 > 0,

P1
B2,λ,q[B

i
K
∗↔ ∂BCK above C|BjK all good, BiK

∗↔ ∂BCK below C] ≤ D1

(C − |i|)1/2+c1
.

Similarly, one proves that

P1
B2,λ,q[B

i
K
∗↔ ∂BCK below C|BjK all good] ≤ D1

(C − |i|)1/2+c1
.

Combining this two displayed inequalities with the two bullets above gives (16) for
α := 1 + 2c1, a fact which concludes the proof. 2

Proposition 17. For any 2 < q < 4, we have N∗(q) ≥ 2.

Proof. The lower bound N∗(q) ≥ 2 is a straightforward consequence of the strong
RSW Theorem from [22], that implies that on H, the probability that there exists a
dual path from [−2n,−n] to [n, 2n] surrounding Λn in Λ2n is bounded from below
by a constant c0 > 0. This contradicts the fact that this probability should tend to
0 for 0 to be connected to infinity. 2

5 Book-Ising with three pages and random currents

The purpose of this section is to show that a first-order phase transition already
arises with only 3 pages for Book-Ising (q = 2). This corresponds to N∗(q = 2) ≤ 3
and our proof is consistent with the prediction from [38, 39]. The main technique
will involve random currents. To highlight the main ideas, before handling the graph
B3, we will start in the subsection below with an interesting question on its own
where a positive (i.i.d) density of sites along the middle line Z ⊂ B3 are oriented in
the + direction. We will only give a short sketch of proof for the toy-model and will
leave the detailed proof to the true Book-Ising (as such the former may be viewed
as an outline of proof of the second in a simpler setting).

5.1 A positive density of + is indistinguishable from a + boundary
condition. In this subsection, we will give a sketch of proof of the following result:
the decoupling property from Theorem 3 holds in the simpler setting of the half-
plane where a positive density of sites on Z are wired together. This will serve as a
useful toy model for Theorem 3. The reader comfortable with the random current
terminology may skip this section if needed. The statement above is a 2D version of
a result by Bodineau [10].
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Let us set some notations: ρ ∈ [0, 1] will denote the bias of our Bernoulli quenched
disorder along the line Z× {0}. Let η ∼ Bernoulli(ρ)⊗Z be i.i.d. Bernoulli random
variables attached to each site i on the middle line Z = Z× {0}. Given η, Hη will
denote the (random) graph where all points i ∈ Z for which ηi = 1 are wired together.
Finally, µ+

Hη,βc denotes the Ising measures on Hη with + boundary conditions.

Theorem 18. For any 0 < ρ < 1 and any m,L ∈ N, there exist c, C ∈ (0,∞)
so that for any set A made of m vertices at a distance at least L of Z, then with
probability at least 1− L−C in the quenched disorder η, we have

µ+
Hη,βc [σA] = µ+

H,βc [σA](1−Om(L−c)) .

Remark 7. Note that by Griffiths inequalities, we deduce that if we consider the
graph Bη

3 constructed like Hη but from B3 instead of H, we immediately get that
for every three sets A ⊂ H1, B ⊂ H2 and C ⊂ H3 made of vertices all at a distance
at least L from Z, we have that with probability at least 1− L−C in the quenched
disorder η, we have that

µ+
Bη3 ,βc

[σAσBσC ] = µ+
H,βc [σA]µ+

H,βc [σB ]µ+
H,βc [σC ](1−Om(L−c)) .

The proof of the theorem requires the introduction of another representation,
called the random-current representation. We refer to [1, 13] for details on this
representation and briefly define it here. A current n on G = (V,E) is a function
from E to N := {0, 1, 2, . . . }. A source of n = (nxy : xy ∈ E) is a vertex x for which∑
y∼x nxy is odd. The set of sources of n is denoted by ∂n. Also set

wβ(n) :=
∏
xy∈E

βnxy

nxy!
.

Currents are useful as they lead to the following expression for spin-spin correlations:

µfG,β [σxσy] =

∑
∂n={x,y}

wβ(n)

∑
∂n=∅

wβ(n)
. (18)

For more general spin-observable σA, A ⊂ V , one has the expression

µfG,β [σA] =

∑
∂n=A

wβ(n)∑
∂n=∅

wβ(n)
.

Also, a classical use of the switching lemma enables one to compare the spin-spin
correlations on two graphs H ⊂ G as follows:

µfH,β [σxσy] = µfG,β [σxσy]P
{x,y}
G,β ⊗P∅H,β [∃ path of n1 + n2 > 0 in H from x to y],

(19)
where PAG,β attributes a weight proportional to wβ(n) if ∂n = A and 0 otherwise,
and the sign ⊗ means that we take the product measure (see for example [3, Lemma
2.2]). For a general spin-observable σA, with A ⊂ H, the identity becomes

µfH,β [σA] = µfG,β [σA]PAG,β ⊗P∅H,β [n̂1 + n2|H ∈ FA],

where n̂ ∈ FA is the event that any cluster of n > 0 intersecting A must intersect A
at an even number of points.

We shall also need these expressions in the case of a graph G with + boundary
conditions. This means that some points (called the boundary of G) are connected
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to an extra vertex called the ghost vertex. (See [13] for a detailed exposition). In
such a case, the last expression for example reads as follows:

µ+
H,β [σA] = µ+

G,β [σA]PAG+,β ⊗P∅H+,β [n̂1 + n2|H ∈ FA],

where currents n1,n2 under PAG+,β and P∅H+,β are now allowed to go through the
ghost vertex and their boundary ∂n1, ∂n2 is only considered on all vertices but the
ghost (also FA is now the event that all the clusters which intersect A are either
connected to the ghost or intersect A at an even number of points).

Sketch of proof of Theorem 18. We will show that there exists c ∈ (0,∞) such that
for every A made of m vertices at a distance at least L from Z,

E
[
µ+
Hη,βc [σA]

]
≥ µ+

H,βc [σA](1−Om(L−c)).

For any largeM , letHη,+ be the finite random graph obtained from Hη by connecting
all the vertices i ∈ ∂H ∩ ΛM which are such that ηi = 1 to the ghost. We have

Hη,+ ⊂ G+ := H ∩ ΛM with all points in ∂H connected to the ghost .

Applying the above formula, it remains to bound from below (for any large M) the
following average with respect to η:

E
[
PAG+,β ⊗P∅Hη,+,β [n̂1 + n2|Hη,+ ∈ FA]

]
.

We proceed as follows:

Figure 7. The example of the graph Hη,+ with the additional
connections to the ghost (in green). We also depicted the current
n1 in red, as well as a bridge of n2 (in blue) guaranteeing that a
connection in Hη to the ghost.
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(1) Sample n1 according to PAG+,β . If n1 restricted to G \H is already in FA,
then whatever η and n2 are, we must have n̂1 + n2|Hη,+ ∈ FA.

(2) Suppose then that this is not the case. Then, there is at least one cluster of
n1 intersecting A and reaching ∂H (and there are of course at most m = |A|
such clusters). By union bound, let us focus on the case of only one point,
say x, and let us assume that n1 connects x with ∂H. Among all points in Z
which are connected to x via n1, choose u = (k, 0) to be, say, the furthest on
the left and to lighten the notation assume it is equal to the origin. Notice
that u is measurable with respect to n1 and that neither η nor n2 have been
sampled yet.

(3) Let then sample η so that the subgraph Hη,+ ⊂ G+ is now well defined.
(4) In order to match with the setup of Lemma 21 below, set r := L1/2, s := L1/4

and R := L ≤ dist(x,Z). As k has been localized before sampling η, we
can claim that with probability at least 1− exp(−cs), η will be sufficiently
dense in each s-interval included in [k −R, k − r] ∪ [k + r, k +R]. (We will
be more explicit in the proof of Lemma 21).

(5) Assuming η is sufficiently dense around u, the rest of the proof consists in
showing that with probability at least 1− r−c, the current n2 will create a
bridge from {i ∈ [k −R, k − r], ηi = 1} to {i ∈ [k + r, k +R], ηi = 1} which,
by planarity, will necessarily intersect n1. As such x will be connected to
the ghost via n̂1 + n2|Hη,+ as desired.

(6) Finally, the proof that the above bridging property holds with probability
1 − r−c relies on a coupling between sourceless random-current and FK
percolation with parameter q = 2. This coupling will be described before
the proof of Lemma 21; see Fig. 7.

2

We also discuss a slightly more difficult theorem, but which is closer to the one
in the next section. Let P1

Hη be the FK percolation measure where all the sites
{i ∈ Z, ηi = 1} are wired together.

Theorem 19. For any 0 < ρ < 1 and any 1 ≤ r ≤ R, there exist c, C ∈ (0,∞) so
that with probability at least 1−R exp(−c r−1/2) in the quenched disorder η, we have

P 1
Hη
[
Λr

∗←→ ∂ΛR
]
≤ C

[
( rR )1/2 + r−c

]
. (20)

Steck of proof of Theorem 18. Define the subsets of Z:
I− := {i ∈ [−R,−r] : ηi = 1} ⊂ [−R,−r] =: J−,

I+ := {i ∈ [r,R] : ηi = 1} ⊂ [r,R] =: J+.

Let Gη be the finite graph ΛR\Λr in which all vertices in I− are connected (wired)
to a ghost vertex g− and all vertices in I+ are connected (wired) to a different ghost
vertex g+ and where the rest of of the boundary is free. Let also Ḡ be the graph
where all vertices in J− are connected to g− while all vertices in J+ are connected
to g+ and where the rest of the boundary is free. The monotony properties of FK
percolation and the Edwards-Sokal coupling give that

1− P 1
Hη
[
Λr

∗←→ ∂ΛR
]
≥ 1− PGη

[
Λr

∗←→ ∂ΛR
]

= µGη,βc [σg+σg− ].

Notice that we have Gη ⊂ Ḡ. Similarly as in the above proof, we may now use the
switching lemma via the above identity (19) to obtain

µGη,βc [σg+σg− ]

= µḠ,βc [σg+σg− ]P
{g+,g−}
Ḡ,βc

⊗P∅Gη,βc [∃ path of n1 + n2 > 0 in Gη from g+ to g−] .

From now on, the proof can be concluded in two steps.
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(1) It can be extracted for instance from [17] that µḠ,βc [σg+σg− ] ≥ 1−C( rR )1/2 .
(2) The second step is very similar to the argument outlined above: under

P
{σ+,σ−}
Ḡ,βc

, n1 will connect at least a point u− ∈ J− to a point u+ ∈ J+. The
goal is thus to show that n2 will create with high probability 1− Cr−c a
bridge which will connect I− and I+ to n2. To prove this, we argue as above:
we set an intermediate scale s := r1/2 and we claim that with probability at
least 1−R exp(−c r1/2), the sets I− = I−(η) (resp I+) will be sufficiently
dense at scale s to create many bridges thanks a coupling between sourceless
random-current and FK percolation with parameter q = 2 (see the proof of
Lemma (21) for a detailed proof).

At this stage, there is a subtle but important difference compared to
the argument in the previous sketch of proof. It could be that the points
u− and u+ could be close to ∂Λr or ∂ΛR. In such case, one cannot really
use the argument described above. Yet, it can be proved in this case that
the probability that n1 itself is connected to a vertex of Z close (say at a
distance at most r3/4) to ∂Λr or ∂ΛR is bounded by Cr−c (see the next
section for details).

2

5.2 Proof of Theorem 2(i) The core of the proof will be the following result.

Proposition 20. There exist c0, C0 ∈ (0,∞) such that for every r and R such that
r divides R, every λ ≥ pc, every K ≥ 2, and every θ > 3

4 ,

P0
BKR [F (Kr,KR)c] ≤ C0

[( r
R

)N/2
+ r−c0 +R exp(−c1

√
r)
]

+ 2Rpλ(K, θ).

We start by explaining how to adapt the proof of Theorem 4 using Proposition 20
to obtain Theorem 2(i).

Proof of Theorem 2(i). Fix K and C and assume for a moment that K is chosen so
that pλ(K, θ) ≤ 1/(2C). When applied to Rk := K(2ρ)k, we see that the previous
proposition implies that

P0
BRk+1

[F (Rk,
1
2Rk+1)c]

≤ C0

[( 2Rk
Rk+1

)N/2
+
( K
Rk

)c0
+
Rk+1

K
exp

(
− c1

(Rk
K

)1/2)]
+
Rk+1

2KC

≤ C1

[
ρ−N/2 +

( K
Rk

)−c0]
+
Rk+1

2KC
.

From this, one can easily adapt the proof to reach the conclusion of the bridging
lemma with α(2, N) = N/2 (note that except for the first and last values of k, the
right-hand side is bounded by 2C1ρ

−N/2). After this, Proposition 11 follows in
the same way. Also, note that the assumption that pλ(K, θ) ≤ 1/C is harmless as
otherwise the statement of Proposition 11 is obvious. Once Proposition 11 has been
obtained, the rest of the proof of the theorem is the same as for Theorem 4. 2

We conclude our paper by the proof of Proposition 20.

Proof of Proposition 20. Set s :=
√
r. We may assume pλ(K, θ) < 1

2R as otherwise
the statement is obvious. Let E be the event that all the K-blocks BiK are θ-good
for |i| < R. By definition of pλ(K, θ),

P0
BKR [E] ≥ 1− 2Rpλ(K, θ). (21)

Below, we recommend to take a look at Fig. 8. Introduce B
j

K to be the set of
vertices at a `∞ distance at most K from BjK . Define Bu± to be the sets of indexes
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Figure 8. A picture of the path Γuj as well as C+, V+ and
W+ = V+ ∩ (BRK \BrK) respectively in red, yellow and green.

j ∈ [−R,R] divisible by 6, positive or negative depending on whether ± is + or −,
for which BjK is surrounded in B

j

K ∩Hu by a circuit in ω connecting C(Bj+2
K ) to

C(Bj−2
K ). Call the inner-most such circuit Γuj = Γuj (ω). Let

E′ :=
⋂
|i|≤R

u=1,...,N
a∈{±}

{
|Bua ∩ [is, (i+ 1)s]| ≥ c0s

}
.

Adapting the anchoring lemma and using that pλ(K, θ) ≤ 1
2 , we deduce that for

some c1, c2 > 0 small enough,

P0

B
j
K

[j ∈ Bua,∀u = 1, . . . , N ] ≥ c1(1− pλ(K, θ))2N ≥ c2.

Using the comparison between boundary conditions, we may compare to independent
random variables to get that |Bua ∩ [is, (i + 1)s]| dominates a binomial random
variable with parameters s and c1, so that for some constant c0 > 0 small enough
and independent of everything else,

P0
BRK [E′] ≥ 1− 2R exp[−c0s]. (22)

We deduce from (21) and (22) that it suffices to show that

P0
BKR [F (Kr,KR)c|E ∩ E′] ≤ C3

[( r
R

)N/2
+ r−c3

]
. (23)

We now focus on deriving this inequality.
On E ∩ E′, call C+ the union of the C(BjK) for 6 ≤ j ≤ R, which since θ > 3

4 is
made of one single cluster. From now on, let V+ = V+(ω) be the (random) subset
of BRK obtained as

• the union of all the BjK for 6 ≤ j ≤ R;
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• the vertices of Hu surrounded by the Γuj (ω) for every 6 ≤ j ≤ R divisible by
6 for which the path Γuj (ω) exists for every u;

• the union of the B
j

K for the remaining 6 ≤ j ≤ R which are divisible by 6.
Similarly, one defines C− and V− with −R ≤ j ≤ −6 instead of 6 ≤ j ≤ R. Also,
set E(ω) be the set of edges with both endpoints in V+ ∪V−.

Condition on ω|E(ω) = ξ for some configuration ξ ∈ {0, 1}E(ω) belonging to E∩E′
(by this we mean that any configuration coinciding with ξ on E(ω) is in E ∩ E′).
Let Ωu be the graph induced by the edges in (BRK ∩Hu) \ (BK ∪V+ ∪V−) and
ξu be the boundary condition on Ωu obtained from the configuration equal to ξ on
E(ω), and 0 on the remaining part of BRK \ Ωu.

The comparison between boundary conditions implies that for every ξ ∈ E ∩ E′,

P0
BKR [F (Kr,KR)c|ω|E(ω) = ξ] ≤

N∏
u=1

(1− Pξ
u

Ωu [C− ←→ C+]).

It therefore suffices to prove that each term on the right is smaller than C4(r/R)1/2.
From now on, we call a pair (Ω, ψ), with Ω a subset of H and ψ a boundary condition
on Ω possible if there exists ξ ∈ E ∩E′ and u such that Ω = Ωu and ψ = ξu. In this
case we write V± for the corresponding set (they can be read off from Ω and ψ in a
unique fashion).

Let W± be the intersection of V± with ΛRK \ ΛrK . Consider the boundary
condition ξ ∪ 1 obtained from ξ by wiring all the vertices in W+ together, and all
those in W− together. For every possible (Ω, ξ), going to the complement implies
that

Pξ∪1
Ω [W+ ←→W−] ≥ 1− a+

wired(rK,RK) ≥ 1− C(r/R)1/2.

The following lemma will therefore conclude the proof. 2

Lemma 21. There exist c, C ∈ (0,∞) independent of everything such that for every
possible (Ω, ξ),

PξΩ[C− ←→ C+] ≥ Pξ∪1
Ω [W+ ←→W−](1− Cr−c).

As in the case of Theorems 18 and 19 for which we sketched the proofs earlier,
the derivation of this lemma will rely on the random-current representation. A first
key property will be the identity (19) which follows from the switching lemma.

We will use also a second property of our model, which is a coupling between
sourceless random-current and FK percolation with parameter q = 2. More precisely,
consider the coupling φ obtained by considering n ∼ PAG,β and ω obtained from n
by setting

ωe = sup{1[n > 0], ηe},
where (ηe : e ∈ E) is an independent family of Bernoulli random variables of
parameter 1−e−β . Then, one has that under φ, ω ∼ P0

G,p,2[·|FA] with p := 1−e−2β .
While the recipe to get ω from n is obvious, let us mention that in the other direction,
for A = ∅, one may recover the edges on which n is odd by taking a uniform even
subgraph of ω (see [4, 29, 31]).

We are now in a position to prove the lemma.

Proof. Consider the graphs G obtained from Ω by identifying all the vertices in C±

into two vertices g±, and G obtained from G by identifying vertices in W± \C± to
g±. Note that G can be seen as a subgraph of G where the latter is obtained from
the former by adding edges with infinite coupling constants (or equivalently infinitely
many edges with standard coupling constant) between the vertices of W± \C± and
g±).
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We have that

PξΩ[C+ ←→ C−] = µG,βc [σg+σg− ],

P1
Ω[W+ ←→W−] = µG,βc [σg+σg− ],

so that (19) gives that
µG,βc [σg+σg− ]

µG,βc [σg+σg− ]
= P

{g+,g−}
G

⊗P∅G[∃ path of n1 + n2 > 0 in G from g− to g+]

and it therefore suffices to bound the probability on the right-hand side.
First, observe that the coupling between random-current and FK percolation

implies that

P
{g+,g−}
G

[∃j ∈ [r, r + r3/4] : BjK connected to distance rK in 1[n > 0] \ g+]

≤ P0
G,pc,2

[∃j ∈ [r, r + r3/4] : BjK connected to distance rK in G \ g+|g− ↔ g+]

≤ a+
C (r3/4K, rK)

P0
G,pc,2

[g− ↔ g+]
≤ Cr−c.

Similarly for R − r3/4 ≤ j ≤ R, −R ≤ j ≤ −R + r3/4, and −r − r3/4 ≤ j ≤ −r.
We therefore may restrict to realizations of n1 that necessarily contain a path γ of
n1(e) > 0 from g+ to g−, going say from B

i

K to B
j

K , with

−R+ r3/4 ≤ i ≤ −r − r3/4 and r + r3/4 ≤ j ≤ R− r3/4.

As a consequence, it suffices to prove that in n2, with large probability there exists
a path of n2(e) > 0 from vertices in C+ respectively on the left and right of B

j

K

(call the two parts L and R). The same estimate will also holds for −R ≤ i ≤ −r.
In order to do that, we write n instead of n2 and use the increasing coupling

φ between n and the random-cluster model ω described before the proof. It is
sufficient to prove that

PξΩ[there exists c0 log r disjoint clusters going from L to R] ≥ 1− 1/rc0 . (24)

Indeed, on this event, one may divide clusters in pairs, and observe that each pair of
clusters contains a loop (with one path in one cluster and the other in the other one)
of n > 0 connecting L to R with probability at least 1/2 thanks to the fact that
the odd part of n is obtained from ω by taking an even subgraph of ω uniformly at
random. Therefore, the probability that there exists no path at all will be smaller
than 1/rc0 + 2−(c0/2) log r.

To prove (24), first shift the whole configuration by (−Kj, 0) in order to recenter
everything around 0. On the one hand, crossing estimates imply that for k such
that s =

√
r ≤ 2k ≤ r3/4,

P1
Ω[Λ2kK ←→ ∂Λ2k+1K ] ≤ 1− c (25)

for some constant c independent of everything. On the other hand, if Ωk denotes
the intersection of Ω with the annulus Λ2k+1K \ Λ2kK , we want to prove that

P0
Ωk

[L ←→ R] ≥ c. (26)

This will conclude the proof by observing that (25) and (26) together with the
spatial Markov property and the comparison between boundary conditions easily
imply (24) by following a proof quite similar to the bridging lemma.

To prove (26), we use a second-moment method very similar to the proof of
the anchoring lemma. Let N be the number of pairs − 5

32k ≤ a ≤ − 4
32k and

4
32k ≤ b ≤ 5

32k+1 with Γa connected to Γb (recall the definition of these paths from
the previous section, and remember that the whole configuration has been shifted
by (Kj, 0)). Note that by definition of a possible pair (Ω, ξ) (since ξ belonged to
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E′), there are of order c0(2k)2 pairs of (a, b). Also, an easy comparison between
boundary conditions and use of crossing estimates implies that

P0
Ωk

[M] ≥ c0(2k)2 min
a,b

P0
Ωk

[Γa ←→ Γb] ≥ c1(2k)2a+
wired(K, 2

kK)2.

In the other direction, the comparison between boundary conditions and a standard
use of the quasi-mulitiplicativity property gives that

P0
Ωk

[M2] ≤
∑

a,a′,b,b′

P0
H[Γa ←→ Γb,Γa′ ←→ Γb′ ] ≤ C0(2k)4a+

wired(K, 2
kK)4.

2

5.3 Proof of Theorem 3.
The proof of the decoupling between the pages of B3 stated in Theorem 3 follows

easily by combining the proof of Proposition 20 together with the (sketch) of proof
of the decoupling property from Theorem 18. Let us shortly explain why we have an
error term 1−Om((logL)−c) in Theorem 3 versus 1−Om(L−c) in Theorem 18. To
prove Theorem 3, we rely on the multiscale framework used throughout the paper.
In particular, if all points {x1, . . . , xm} in A ⊂ B3 are at a distance at least L from
Z, consider n such that

Kn ≤ L < Kn+1 .

Recall (footnote below (13)) that Kn = (n!)3Cn1 . This implies in particular that
n ≥ (logL)1/2, when L is large enough. Let us now proceed as in the proof of
Theorem 18 and let u be the furthest point on the left of the joint line Z of an
n1 cluster emanating from, say the first point x1 ∈ A (other possible points being
connected to Z via n1 are handled similarly by union bound). We now consider
the blocks BKi

n−1
at scales n − 1 around the point u ∈ Z. From our inductive

proof, we know that each of these (n − 1)-block is good with probability at least
1− un−1 ≥ 1− 1

1000C2
n−1

. (See the estimates on un below (13)). This implies that

with probability at least 1 − 1
100Cn

, all (n − 1)-blocks BiKn−1
around the point u

and up to distance Kn = CnKn−1 ≤ L are good. We can now use this overlapping
chain of good blocks as in the proof of Lemma 21 to produce a bridging with the
random current n1 with probability at least 1 − O((Cn)−c) which is the same as
1−O((logL)−c̃) and thus concludes our proof. 2

Remark 8. Note that by going further into smaller scales Kn−` � Kn ≤ L < Kn+1

and by replacing the power-law control {un}n≥1 below (13) by an exponentially
decaying control in n, one may obtain if needed better correction terms in Theorem 3.
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