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Abstract

This is the first of two papers devoted to the proof of conformal invariance of the
critical double random current and the XOR-Ising models on the square lattice. More
precisely, we show the convergence of loop ensembles obtained by taking the cluster
boundaries in the sum of two independent currents with free and wired boundary condi-
tions, and in the XOR-Ising models with free and plus/plus boundary conditions. There-
fore we establish Wilson’s conjecture on the XOR-Ising model [81]. The strategy, which
to the best of our knowledge is different from previous proofs of conformal invariance,
is based on the characterization of the scaling limit of these loop ensembles as certain
local sets of the Gaussian Free Field. In this paper, we identify uniquely the possible
subsequential limits of the loop ensembles. Combined with [28], this completes the proof
of conformal invariance.

1 Introduction

1.1 Motivation and overview

The rigorous understanding of Conformal Field Theory (CFT) and Conformally Invariant
random objects via the developments of the Schramm-Loewner Evolution (SLE) and its
relations to the Gaussian Free Field (GFF) has progressed greatly in the last twenty-five
years. It is fair to say that once a discrete lattice model is proved to be conformally invariant
in the scaling limit, most of what mathematical physicists are interested in can be exactly
computed using the powerful tools in the continuum.

A large class of discrete lattice models are conjectured to have interfaces that converge in
the scaling limit to SLEκ type curves for κ ∈ (0, 8]. Unfortunately, such convergence results
are only proved for a handful of models, including the loop-erased random walk [68] and
the uniform spanning tree [49] (corresponding to κ = 2 and 8), the Ising model [19] and
its FK representation [77] (corresponding to κ = 3 and 16/3), Bernoulli site percolation on
the triangular lattice [76] (corresponding to κ = 6). Known proofs involve a combination of
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exact integrability1 enabling the computation of certain discrete observables, and of discrete
complex analysis to imply the convergence in the scaling limit to holomorphic/harmonic
functions satisfying certain boundary value problems that are naturally conformally covariant.

To upgrade the result from conformal covariance of these “witness” observables to the
convergence of interfaces in the system, one needs an additional ingredient. In some cases,
when properties of the discrete models are sufficiently nice (typically tightness of the family
of interfaces, mixing type properties, etc), a clever martingale argument introduced by Oded
Schramm enables to prove convergence of interfaces to SLEs and CLEs. This last step involves
the spatial Markov properties of the discrete model in a crucial fashion. We refer to the proofs
of conformal invariance of interfaces in Bernoulli site percolation, the Ising model, the FK
Ising model, or the harmonic explorer for examples. Unfortunately, the discrete properties
of the model are sometimes not sufficiently nice to implement this martingale argument and
there are still many remaining examples for which the scaling limit of the interfaces cannot
be easily deduced from the conformal invariance of certain observables – most notably for
the case of the double dimer model, for which an important breakthrough was performed by
Kenyon in [46], followed by a series of impressive papers [9, 23].

In [81], Wilson discussed conjectures concerning the critical XOR-Ising model obtained
by taking the product of two independent Ising models (see below for a formal definition).
While he did not provide any proof of conformal invariance in his paper, Wilson performed
advanced numerics and made a number of predictions for the behaviour of the interfaces in
the model. We point out that unlike the aforementioned models, the XOR-Ising model does
not satisfy any obvious spatial Markov property at the discrete level, thus making the classical
martingale argument unlikely to offer a convenient road to prove conformal invariance. This
makes it even more remarkable that its scaling limit does satisfy the spatial Markov property
(see the end of Section 1.2 for a more detailed discussion). In this paper, we prove convergence
of the critical XOR-Ising interfaces on the square lattice in the scaling limit to SLE4 type
curves. In the process of proving conformal invariance of XOR interfaces, we also obtain
similar results for the double random current model. The double random current model also
lacks spatial Markov property in the discrete (at the outer boundaries of the clusters: see
end of Section 1.3 for a more detailed discussion).

Convergence to SLE4 type curves were previously proved for the harmonic explorer [72],
contour lines of the discrete GFF [69], and cluster boundaries of a random walk loop-soup
with the critical intensity [12,54]. Nevertheless, all these models are discrete approximations
of objects defined in the continuum which are already known to be SLE4 type curves. In this
respect, the XOR-Ising and the double random current models are the first discrete lattice
models not having any a priori connection to SLE4 whose interfaces are proved to converge
to SLE4 type curves.

As mentioned above, our proof does not follow the martingale strategy. Instead, it relies
on a coupling between the XOR Ising model and a naturally associated height function and
can be decomposed into three main steps (see the next sections for more details):

(i) Proving the joint tightness of the family of critical XOR interfaces and the height
function, as well as certain properties of the joint coupling.

(ii) Proving convergence of the height function to the GFF.

1Only approximately for site percolation on the triangular lattice.
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(iii) In the continuum, identifying the scaling limit of XOR interfaces using properties of
the GFF.

Each of the three previous steps involves quite different branches of probability. The first
one extensively uses percolation-type arguments for dependent percolation models. The
second one concerns a height function studied already by Dubédat [22], and Boutilier and de
Tilière [11]. However, unlike in [11, 22], it harvests a link between a percolation model (the
double random current) and dimers. Moreover, it uses techniques introduced by Kenyon to
prove convergence of the dimer height function, but with a new twist as the proof relies heavily
on fermionic observables introduced by Chelkak and Smirnov to prove conformal invariance
of the Ising model, as well as a delicate result on the double random current model (see
below) helping identifying the boundary conditions. Finally, the last step relies on a deep
understanding of the so-called local sets of the GFF introduced by Schramm and Sheffield
[70], and follows a rather intricate strategy. It makes use of the two-valued sets introduced by
Aru, Sepúlveda and Werner [8], and further establishes new results on local sets including a
characterization of local sets with three values. A primary difficulty of this step is to find the
right strategy, in particular to single out a set of properties satisfied by every subsequential
limit of the discrete model which are both obtainable using techniques in the discrete and
also sufficient for proving the final results using techniques in the continuum. Interestingly,
some properties which seem inaccessible using discrete techniques can be cleanly established
using arguments from the continuum.

Part (i) of the proof is postponed to the second paper [28]. In this paper, we focus on (ii)
and (iii).

Let us finish this motivational part by mentioning that our proof is made possible by the
introduction of a new coupling between the XOR-Ising model and the double random current
model. We therefore also obtain conformal invariance results for this model.

The random current model has proved to be a very powerful tool to understand the
Ising model. Its applications range from correlation inequalities [36], exponential decay in
the off-critical regime [2, 29, 33], classification of Gibbs states [65], continuity of the phase
transition [5], etc. Even in two dimensions, where a number of other tools are available, new
developments have been made possible via the use of this representation [6, 27, 55]. For a
more exhaustive account of random currents, we refer the reader to [26].

We note that the coupling with the double random current extends to the family of
Ashkin-Teller models [51], and it is likely that our argument may generalize to other models
as well. More generally, we believe that invoking the connections between discrete height
function and loop-ensemble types models is a very promising tool to obtain conformal invari-
ance of other planar models at criticality.

In the remainder of this introduction, we will state our main results on the convergence
of the models. For simplicity, we first present results on each model individually, and not
on the related height function. In Section 2, we will describe our proof road-map and reveal
the role of the height function. In particular, we will present a range of further results on
the joint convergence of the interfaces and the height function. In the continuum, the height
function converges to the GFF, and the interfaces to its level lines. One feature of this work
is that we make use of couplings between various models in the discrete. A particularly nice
consequence of our approach is that the couplings in the discrete can be carried through to
the continuum limit:
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• The limits of interfaces of four models (the XOR-Ising models with free and plus/plus
boundary conditions and the double random currents models with free and wired bound-
ary conditions) can all be coupled with the same GFF as its level loops at different
heights. In particular, they do not cross each other and we fully understand their in-
teraction (i.e., nesting and intersecting behavior). The Edwards–Sokal type coupling
between the double random currents and XOR-Ising in the discrete also transforms to
a coupling in the continuum similar to CLE percolation [61].

• We naturally obtain a coupling between SLE3 type loops (which are the limit of Ising
interfaces) and SLE4 type loops (which are the limit of XOR-Ising interfaces). From
the Brownian loop-soup construction of CLE [75], we know that the union of two
independent copies of CLE3 gives rise to a CLE4. In comparison, our coupling comes
from the XOR operation acting in the discrete (it seems complicated to define such an
operation directly in the continuum).

While parts of Section 2 involve some background on continuum objects such as the GFF
and its local sets, the current section can be read without such knowledge.

Notation Consider a finite graph G = (V,E) with vertex set V and edge set E. For a
domain D ( C in the complex plane and δ > 0, introduce the graph Dδ to be the subgraph
of δZ2 induced by the vertices of δZ2 that are inside D.

Below, we will speak of convergence of random variables taking values in families of loops
contained in D, and distributions (generalized functions). While the latter is classical and
has a well-defined associated topology, we provide some details on the former. To this end,
let C = C(D) be the collection of locally finite families F of non-self-crossing loops contained
in D that do not intersect each other. Inspired by [3], we define a metric on C,

d(F ,F ′) ≤ ε ⇐⇒
( ∃f : Fε → F ′ one-to-one s.t. ∀γ ∈ Fε, d(γ, f(γ)) ≤ ε

and similarly when exchanging F ′ and F
)
,

where, Fε is the collection of loops in F with a diameter larger than ε, and for two loops γ1

and γ2, we set
d(γ1, γ2) := inf sup

t∈S1
|γ1(t)− γ2(t)|,

with the infimum running over all continuous bijective parametrizations of the loops γ1 and γ2

by S1.

1.2 Results for the XOR-Ising model

The Ising model with free boundary conditions on a finite graph G is defined as follows.
For a spin configuration σ = (σv : v ∈ V ) ∈ {−1,+1}V , introduce the nearest-neighbor
ferromagnetic Ising Hamiltonian with free boundary conditions

HG(σ) := −
∑

{v,v′}∈E

J{v,v′}σvσv′ ,

4



where J{v,v′} ≥ 0 are coupling constants, and the associated Gibbs measure given by

µG,β[X] :=
1

ZIsing
G,β

∑
σ∈{±1}V

X(σ) exp[−βHG(σ)] for every X : {−1,+1}V → C,

where ZIsing
G,β :=

∑
σ∈{±1}V exp[−βHG(σ)] is the partition function of the model.

Definition 1.1 (XOR-Ising model with free boundary conditions). Let PXOR
G,β be the law of

τ := σ×σ′ = (σv×σ′v : v ∈ V ), where σ and σ′ are two independent copies of the Ising model
spin configurations with free boundary conditions on G. The random variable τ is called an
XOR-Ising configuration on G with free boundary conditions.

We will always (except in Section 2.3 and Section 3 where we consider general Ising
models) take G = Dδ to be a subgraph of the square lattice, and we will set J{x,y} = 1 for
every pair {x, y} which is an edge of the lattice and 0 otherwise. Also, we fix β to be equal
to the critical inverse temperature βc = 1

2 log(1 +
√

2) of the square lattice and drop it from
the notation.

Define the dual graph G∗ = (U,E∗) as follows: the vertex set U is given by the set of
faces of G and the edge set E∗ is the set of unordered pairs {u, u′} with u, u′ ∈ U two faces
that are bordered by the same edge e of G. In this case, we often write {u, u′} = e∗. For
every spin configuration σ ∈ {−1,+1}V on G, define the contour configuration associated
with σ to be the collection of dual edges e∗ for which e = {v, v′} satisfies σv 6= σv′ . These
contours separate the pluses from the minuses. The decomposition of a contour configuration
in terms of loops is non-canonical on subgraphs of the dual square lattice (it is on graphs
of degree 3 such as the hexagonal lattice). We therefore consider a slightly different contour
configuration, that we call the (nested) outer boundaries contour configuration, and that we
denote by η = η(σ), defined as follows. For a connected component of constant spin in σ,
also called cluster C, call its outer boundary the loop made of dual edges e∗ where e = {v, v′}
with v ∈ C and v′ /∈ C is not encircled by C in the graph (C does not separate v′ from infinity).
Then, η is the set of all the loops corresponding to the outer boundaries of all clusters in σ
(both negative and positive).

The first theorem of this paper describes the scaling limit of the collection of nested outer
boundaries in the XOR-Ising model with free boundary conditions. To state it, we will need
the notion of two-valued sets A−a,b introduced in [8]. In a simply connected Jordan domain D
in the complex plane, A−a,b is the unique thin local set of the Gaussian free field in D with
boundary values −a and b. In this work, we use L−a,b to denote the collection of outer
boundaries (which are SLE4-type simple loops and level loops of the Gaussian free field) of
the connected components of D \ A−a,b. We refer to later parts (Sections 2.2.1 and 6) for
more details on two-valued sets and related objects.

Theorem 1.2 (Convergence of XOR-Ising interfaces with free boundary conditions). Let
D ( C be a simply connected Jordan domain. Let ηδ be the nested outer boundaries contour
configuration in the critical XOR-Ising model with free boundary conditions on Dδ. Then
as δ → 0, ηδ converges in distribution to a limit whose law is invariant under all conformal
automorphisms of D. More precisely, we have that (see Fig. 1.1 Left)

• The outer boundaries of the outermost negative clusters converge to L−(2
√

2+1)λ,λ in D.
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• If the outer boundary of a cluster converges to γ, then the outer boundaries of the
outermost clusters that are enclosed by this cluster with the opposite sign converge to
L−2λ,2

√
2λ in the domain encircled by γ.

We are also able to prove convergence of the outer boundaries contour configuration in
the XOR-Ising model obtained by taking the Ising model with monochromatic boundary
conditions. To this end, for a graph G, let ∂G be the set of vertices of G that lie on the
unbounded face of G. We define G+ to be the graph with vertex set V + := V ∪ {g} where
g is an additional vertex that lies in the unbounded face of G, and E+ := E ∪ {{x, g} : x ∈
∂G}. Now consider the nearest–neighbor ferromagnetic Ising Hamiltonian with plus boundary
conditions on G defined by

H+
G (σ) := HG(σ) +

∑
{v,g}∈E+

J{v,g}σv

and the associated Gibbs measure

µ+
G,β[X] :=

1

ZIsing,+
G,β

∑
σ∈{±1}V

X(σ) exp[−βH+
G (σ)] for every X : {−1,+1}V → C,

where ZIsing,+
G,β :=

∑
σ∈{±1}V exp[−βH+

G (σ)] is the partition function of the model.

Definition 1.3 (XOR-Ising model with plus/plus boundary conditions). Let P
XOR,+/+
G,β be

the law of τ = σ × σ′, where σ and σ′ are two independent copies of the Ising model spin
configuration on G with plus boundary conditions. The random variable τ is called an XOR-
Ising configuration on G with plus/plus boundary conditions.

As before, when G is a subgraph of the square lattice, we fix J{x,y} = 1 for all {x, y} ∈ E+,

set β = βc = 1
2 log(1 +

√
2), and drop it from the notation.

Remark 1.4. We will often consider the XOR-Ising model with free boundary conditions
on a graph G coupled together with the dual XOR-Ising model with plus/plus boundary
conditions on the dual graph G∗. To fit this setup into the definitions above, one can think
of the dual graph as G∗ = (G†)+, where G† is the weak dual graph that does not contain the
vertex corresponding to the unbounded face of G.

We are now in a position to state the second theorem of this section.

Theorem 1.5 (Convergence of XOR-Ising interfaces with plus/plus boundary conditions).
Let D ( C be a simply connected Jordan domain. Let ηδ be the nested outer boundaries
contour configuration in the critical XOR-Ising model with plus/plus boundary conditions on
Dδ. Then as δ → 0, ηδ converges in distribution to a limit whose law is invariant under all
conformal automorphisms of D. More precisely, we have that (see Fig. 1.1 Right)

• The outer boundaries of the outermost negative clusters converge to L−(
√

2+1)λ,(
√

2+1)λ

in D.

• If the outer boundary of a cluster converges to γ, then the outer boundaries of the
outermost clusters that are enclosed by this cluster with the opposite sign converge to
L−2λ,2

√
2λ in the domain encircled by γ.
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Figure 1.1: Left: XOR-Ising with free boundary conditions. The black loops represent the
outer boundaries of the outermost negative clusters. Some touch the boundary and some
stay in the interior. They are disjoint from each other. Right: XOR-Ising with plus/plus
boundary conditions. The black loops represent the outer boundaries of the outermost neg-
ative clusters which all stay in the interior of the domain. For both: We depict in red the
next layer of outer boundaries of outermost positive clusters encircled by the black loops.
Given each black loop, the law of the red loops is the same for both pictures (up to conformal
maps), and is equal to L−2λ,2

√
2λ. One can iteratively sample the nested layers of loops.

Comparing Theorems 1.2 and 1.5, we see that the outermost layer of interfaces have
different laws under different boundary conditions. However, the nested layers of interfaces
are given by nested L−2λ,2

√
2λ in both models. If we let the domain D tend to the entire

plane, then we obtain in the limit a full-plane version of L−2λ,2
√

2λ (this can be defined in
a similar way the full-plane CLE is defined [42, 62]). The full-plane XOR-Ising model was
studied by Boutillier and de Tilière [11] who showed, using the results of de Tilière [21], that
the associated height function converges to the full-plane GFF in the scaling limit. Given
this together with our results, it will not be difficult to prove that the full-plane XOR-Ising
interfaces converge to the full-plane L−2λ,2

√
2λ (we leave the details to the interested reader).

The latter consists of level loops of the full-plane GFF which is invariant under all Möbius
transformations of the Riemann sphere.

In [81], Wilson predicted a few properties of the scaling limit of XOR-Ising loops in the
bulk, i.e., when one zooms into the neighborhood of an interior point. Our results, together
with properties of the nested L−2λ,2

√
2λ, allow us to confirm these predictions:

• (Shape of the loops) The “shape” of each loop in the scaling limit of XOR-Ising in-
terfaces in the bulk is the same as the loops in CLE4, since they are all level loops of
the GFF. In [81], Wilson measured a few quantities of the XOR-Ising loops such as
Hausdorff dimension, winding angle variance and electrical thickness, and found them
to be equal to the same quantities for CLE4 loops.

• (Difference in log conformal radii) The difference of log conformal radii between two
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successive loops of the scaling limit of the XOR-Ising model surrounding the origin has
the same law as the first time that a standard Brownian motion exits [−π,

√
2π] (see

[8, Proposition 20]).

• (Number of loops) Let N(ε) be the number of loops in the scaling limit of the XOR-
Ising model in the unit disk surrounding the origin whose conformal radii with respect
to the origin are at least ε. We will show in Lemma 8.6 that

N(ε)/ log(ε−1) −→
ε→0

1√
2π2

a.s. (1.1)

The same quantity for CLE4 loops is equal to 1/π2. This confirms Wilson’s observation
that the number of loops in the scaling limit of the XOR-Ising model is

√
2 times sparser

than the CLE4 loops.

• (Hausdorff dimension of a cluster) Since the dimension of A−a,b is equal to 2−2λ2/(a+
b)2 by [67], the dimension of the scaling limit of an XOR-Ising cluster is equal to 1

2 +
√

2.

Let us conclude this section by discussing a conjecture that sheds light on the potential
difficulties one may encounter when trying to prove the results of this paper. The previous
statements imply that the scaling limit of the XOR-Ising interfaces satisfy the spatial Markov
property, even though this does not hold in the discrete. Indeed, in the continuum limit,
conditionally on the outer boundary γ of (the scaling limit of) an XOR-Ising cluster, the
(scaling limit of) the next layer of outermost clusters of the opposite sign is distributed as
L−2λ,2

√
2λ in the domain enclosed by γ, which is independent of the configuration outside

of γ as well as the boundary conditions of the model.
It is then very tempting to guess that L−2λ,2

√
2λ is the law of the outermost negative XOR-

Ising cluster boundaries in a domain with positive boundary condition (meaning that the
XOR-Ising model with free boundary conditions is conditioned to be positive on the boundary,
which is different from plus/plus boundary condition). Yet, we believe that this is not true.
In [81], Wilson simulated an XOR-Ising model in a bounded domain, conditioned to have
plus spin on one part of the boundary and minus spin on the other complementary part. He
conjectured that the interface between the plus and minus spin is an SLE4(1/

√
2−1, 1/

√
2−1).

This curve is not equal to SLE4, which is another evidence that the plus or minus boundary
conditions coming from an XOR-Ising interface in the interior of the domain act on the
remaining XOR-Ising model differently from the plus or minus boundary conditions coming
from the boundary of the domain. This offers an explanation why it is difficult to prove
Wilson’s conjecture by using the traditional approach: intuition or strategies based on the
spatial Markov property are very hard to implement.

We conjecture, based on Wilson’s observation, that for an XOR-Ising model in a domain
with positive boundary conditions, the outermost negative cluster boundaries are equal to
L−(1/

√
2+1)λ,(3/

√
2+1)λ, and given the first layer of outermost negative clusters, the next layers

of outer boundaries of clusters are again given by a nested L−2λ,2
√

2λ.

1.3 Results for the double random current

As mentioned in Section 1.1, we will also obtain new results for the so-called double random
current model. It will be a crucial step in our understanding of the XOR interfaces. Let
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us note that the double random current model is an important model on its own, and that
the following results are also of independent interest as they describe the scaling limit of a
very natural representation of the Ising model. In particular, as mentioned at the end of this
section, the scaling limit of the double random current gives access to the scaling limit of
spin-spin correlations.

Definition of the random current and the double random current A current con-
figuration n on G = (V,E) is an integer-valued function defined on the undirected edges
{v, v′} ∈ E. The current’s set of sources is defined as the set

∂n :=
{
v ∈ V :

∑
v′∈V :v′∼v

n{v,v′} is odd
}
, (1.2)

where v′ ∼ v means that {v, v′} ∈ E.
Let ΩΩΩB be the set of currents with the set of sources equal to B. When B = ∅, we speak of

a sourceless current. For the nearest-neighbor ferromagnetic Ising model on G, we associate
to a current configuration n the weight

wG,β(n) :=
∏

{v,v′}∈E

(βJ{v,v′})
n{v,v′}

n{v,v′}!
. (1.3)

Again, for now we focus on the critical parameters on the square lattice β = βc and J{v,v′} = 1
for every {v, v′} which is an edge of G, and 0 otherwise, and drop them from the notation.
General models will be considered in Section 2.3 and Section 3.

We introduce the probability measure on random currents with sources B ⊆ V given by

PB
G(n) :=

wG(n)

ZB(G)
, for every n ∈ ΩΩΩB, (1.4)

where ZB(G) is the partition function. The random variable n is called a random current
configuration on G with free boundary conditions and source-set B.

For future reference, let PA,B
G,H be the law of (n1,n2), where n1 and n2 are two independent

currents with respective laws PA
G and PB

H . We call a cluster of n a connected component
of the graph with vertex set V and edge set E(n) := {e ∈ E : ne > 0}. For a given
cluster C, we associate a loop configuration made of the edges e∗ where e = {v, v′} is such
that v ∈ C and v′ /∈ C. Note that this loop configuration is made of loops on the dual lattice
corresponding to the different connected components of Z2 \ C. The loop corresponding
to the unbounded component is called the outer boundary of the cluster, and the loops
corresponding to the boundaries of the bounded ones (sometimes referred to as holes) are
called the inner boundaries. Like for the XOR-Ising model, define the (nested) boundaries
contour configuration η(n) by considering the collection of outer and inner boundaries of the
clusters in n.

As before, we fix a simply connected Jordan domain D ( C and consider the double
random current on Dδ.

Theorem 1.6 (Convergence of double random current clusters with free boundary condi-
tions). Fix a simply connected Jordan domain D ( C, and let ηδ be the nested boundaries
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Figure 1.2: Left: We depict the outermost clusters in a double random current with free
boundary conditions. The outer boundaries of these clusters are in red (they form a CLE4).
The inner boundaries of the clusters are in black. Right: We depict the unique outermost
cluster in a double random current with wired boundary conditions. The inner boundaries
of this cluster are in black. For both: In each domain encircled by an inner boundary loop,
one has (the scaling limit of) an independent double random current with free boundary
conditions. This allows us to iteratively sample the nested interfaces.

contour configuration of nδ1 + nδ2 where (nδ1,n
δ
2) ∼ P∅,∅

Dδ,Dδ
. Then as δ → 0, ηδ converges in

distribution to a limit whose law is invariant under all conformal automorphisms of D (see
Fig. 1.2 Left). More precisely, we have that

• The outer boundaries of the outermost clusters converge to a CLE4 in D.

• If the outer boundary of a cluster converges to γ, then the inner boundaries of this
cluster converge to L−2λ,(2

√
2−2)λ in the domain encircled by γ.

• If a loop in the inner boundary of a cluster converges to γ, then the outer boundaries of
the outermost clusters enclosed by γ converge to a CLE4 in the domain encircled by γ.

We will also work with the random current model with wired boundary conditions on G
defined simply as the random current model on the augmented graph G+ (with free boundary
conditions on this graph). Accordingly, we introduce the measures PB

G+ and PA,B
G+,H+ as

before.
For technical reasons that will be discussed later, we focus on simply connected domains

D such that ∂D is C1.

Theorem 1.7 (Convergence of double random current clusters with wired boundary condi-
tions). Fix a simply connected domain D ( C such that ∂D is C1, and let ηδ be the nested

boundaries contour configuration of nδ1+nδ2 where (nδ1,n
δ
2) ∼ P∅,∅

(Dδ)+,(Dδ)+
. Then as δ → 0, ηδ

converges in distribution to a limit whose law is invariant under all conformal automorphisms
of D (see Fig. 1.2 Right). More precisely, we have that

10



• The inner boundaries of the unique outermost cluster converge to L−√2λ,
√

2λ in D.

• If the inner boundary of a cluster converges to γ, then the outer boundaries of the
outermost clusters enclosed by γ converge to a CLE4 in the domain encircled by γ.

• If the outer boundary of a cluster converges to γ, then the inner boundaries of this
cluster converge to L−2λ,(2

√
2−2)λ in the domain encircled by γ.

Theorems 1.6 and 1.7 have the following applications.

• The Hausdorff dimension of a double random current cluster in the scaling limit (for
both free and wired boundary conditions) is 7/4 ([67]).

• (Difference in log conformal radii) The difference of log conformal radii between two
successive loops that encircle the origin in the scaling limit of double random current
interfaces is equal to T1+T2, where T1 is the first time that a standard Brownian motion
exits [−π, (

√
2 − 1)π] and T2 is the first time that a standard Brownian motion exits

[−π, π] (see [8, Proposition 20]).

• (Number of clusters) Let N(ε) be the number of double random current clusters in
the unit disk surrounding the origin such that their outer boundaries have a conformal
radius w.r.t. the origin at least ε. We will show in Lemma 8.7 that almost surely,

N(ε)/ log(ε−1) −→
ε→0

1√
2π2

.

It seems a coincidence to us that this quantity is the same as (1.1), because this does
not result from any direct bijection between cluster of the double random current and
the XOR Ising interfaces (the coupling between the two is quite complicated and is
presented later in Section 2.3).

• (Scaling limit of the magnetization in domains) With a little bit of additional work,
one may derive from our results the conformal invariance of the n-point spin-spin cor-
relations of the critical Ising model already obtained in [18] as these correlations are
expressed in terms of connectivity properties of nδ1 + nδ2 (see for instance the proof of
Theorem 2.6). The additional technicalities would consist in relating the point-to-point
connectivity in nδ1 + nδ2 to the probabilities that the ε-neighborhoods of the points are
connected. Such reasonings have been implemented repeatedly when proving conformal
invariance, and we omit the details here as it would lengthen the paper even more. We
still wished to mention this corollary even though the result is already known as our
paper mostly uses the convergence of certain fermionic observables to obtain conver-
gence of the nesting field height function to the GFF (see Section 2). Such fermionic
observables convergence has been obtained for the Ashkin-Teller model (which is a com-
bination of two interacting Ising models) in [35] via renormalization arguments using
the crucial fact that the observables in question are local observables of the Grassmann
representation of the model. Notoriously, the spin-spin correlations are not of this kind,
which makes renormalization arguments much more difficult to implement. We believe
that the strategy of this paper may be of use to extend the universality results from
[35] to non-local Grassmann observables.
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We point out that the double random current model does not satisfy any obvious spatial
Markov property in the discrete at the outer boundaries of the clusters (it does satisfy spatial
Markov property at the inner boundaries of the clusters, namely inside each hole of a cluster,
one has an independent double random current configuration with free boundary conditions).
For example, for the double random current with free boundary conditions, given the outer
boundary γ of a cluster, the inner boundaries of this cluster is distributed as L−2λ,(2

√
2−2)λ.

On the other hand, for the outermost cluster of a double random current model with free
boundary conditions, its inner boundaries are distributed as L−√2λ,

√
2λ. This suggests that

the wired boundary condition coming from a double random current interface in the interior of
the domain act on the remaining model differently from the wired boundary condition coming
from the boundary of the domain itself.

2 Further results and proof road-map

In this section, we discuss further results, as well as our proof road-map. In particular, we
present results which are stronger than those in Section 1. Since the statements require more
background both from the discrete and continuous sides, we have postponed them here to
facilitate the reading. As we have mentioned in the introduction, our argument is based on
three pillars. The first one, which is the tightness of the models, is mainly dealt with in our
second paper [28]. We will focus on the other two pillars in this paper.

We start by discussing results and proofs for the double random current model. In
Section 2.1, we present the convergence of the associated height function, called the nesting
field, to the GFF. In Section 2.2, we state stronger results (and present their proof strategy)
on the joint convergence of double random current interfaces and the nesting field, which will
imply Theorems 1.6 and 1.7.

Then we will turn to the XOR-Ising model. In Section 2.3, we discuss a new coupling
between the double random current and the XOR-Ising model. It turns out that they are
related in the same way the FK-Ising model is related to the Ising model, meaning via an
Edwards–Sokal type coupling. The coupling also associates both the double random current
and XOR-Ising models with corresponding dual models, as well as a height function H. In
Section 2.4, we will state stronger results (and present their proof strategy) on the joint
convergence of XOR-Ising interfaces and the height function, which imply Theorems 1.2
and 1.5.

We stress that our proof is a complex combination of discrete and continuous arguments.
In Sections 2.2 and 2.4, we explain how the different pieces from the discrete and the contin-
uum are assembled together. In later sections of the paper, we have regrouped inputs from
the discrete and continuous sides separately so that they can be read independently.

A more detailed and complete strategy for the proofs of the main results can be found
in Sections 7 and 8. Indeed, the properties obtained on the discrete side that we single out
in the current section serve as inputs to the proofs of the main results in Sections 7 and 8.
In this section, we at some point include a brief introduction to the GFF and its local sets
to help the reader understand the statements in the continuum. However, the core of the
continuum part of the proofs, which heavily involves the GFF and local sets, is postponed to
Sections 7 and 8 – once we have made a more detailed review of the continuum background
in Section 6.
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In Section 2.5, we highlight the fact that our proofs allow us to carry the discrete coupling
established in Section 2.3 (between the primal and dual double random current and XOR-
Ising models) through to the continuum limit. The coupling in the continuum is similar to
CLE percolation, which is itself the continuum analogue of the Edwards–Sokal coupling [61].

Finally, in Section 2.6 we gather results from [28] that we will extensively use in this
paper.

2.1 Convergence of the nesting field of the double random current to the
Gaussian free field

As mentioned above, a central piece in our strategy is a new convergence result dealing with
the so-called nesting field of the double random current introduced by two of the authors
in [27]. Let G = (V,E) be a generic planar graph. Let nodd be the set of edges that have an
odd current in n. A nontrivial connected component of the graph (V,nodd) will be called a
contour. In particular, each contour C is contained in a unique cluster of n, and each cluster
C is associated to a contour configuration C ∩nodd. Each contour configuration gives rise to
a ±1 spin configuration on the faces of G, where the external unbounded face is assigned spin
+1, and where the spin changes whenever one crosses an edge of a contour. We call a cluster
C odd around a face u if the spin configuration associated with the contour configuration
C ∩ nodd assigns spin −1 to u.

For a current n, let C(n) be the collection of all clusters of n, and let (εC )C∈C(n) be i.i.d.
random variables equal to +1 or −1 with probability 1/2 indexed by C(n). These random
variables are called the labels of the clusters. The nesting field with free boundary conditions
of a current n on G evaluated at a face u of G is defined by

hG(u) :=
∑

C∈C(n)

1{C odd around u}εC . (2.1)

Analogously, the nesting field with wired boundary conditions of a current n on G+ (recall
the definition from Section 1.2) evaluated at a face u of G+ is defined by

h+
G+(u) := (1{Cg odd around u} − 1/2)εCg +

∑
C 6=Cg

1{C odd around u}εC , (2.2)

where Cg is the cluster containing the external vertex g, and where the sum is taken over
all remaining clusters of n. Here, whether Cg is odd around a face of G or not depends on
the embedding of the graph G+. However, one can see that the distribution of h+

G+(u) is
independent of this embedding.

Note that due to the term corresponding to Cg, the nesting field with wired boundary
conditions takes half-integer values, whereas the one with free boundary conditions is integer-
valued. Such definition is justified by the next result, and by the joint coupling of hG and h+

G∗

via a dimer model described in Section 3.1.3. The global shift of 1/2 between hG and h+
G∗

(which is the same as in the work of Boutilier and de Tilière [11]) is also the reason why the
level loops of the GFF corresponding to the outermost interfaces of the XOR-Ising model with
free boundary conditions (Theorem 1.2) have different height than those for the plus/plus
boundary conditions (Theorem 1.5): they are given by L−(2

√
2+1)λ,λ and L−(

√
2+1)λ,(

√
2+1)λ

respectively. Indeed, the shift of
√

2λ in the continuum corresponds to the shift of 1/2 in the
discrete as will become clear later on.
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The following is the main result of this part of the argument. We identify the function
hDδ defined on the faces of Dδ with a distribution on D in the following sense: extend hDδ
to all points in D by setting it to be equal to hDδ(u) at every point strictly inside the face u,
and 0 on the complement of the faces in D. Then, we view hDδ as a distribution (generalized
function) by setting

hDδ(f) :=

∫
D
f(x)hDδ(x)dx,

where f is a test function, i.e. a smooth compactly supported function on D. We proceed
analogously with the field h+

(Dδ)∗
and extend it to all points within the faces of (Dδ)∗.

The Gaussian free field (GFF) hD with zero boundary conditions in D is a random
distribution such that for every smooth function f with compact support in D, we have

E
[(∫

D
f(z)hD(z)dz

)2]
=

∫
D

∫
D
f(z1)f(z2)GD(z1, z2)dz1dz2, (2.3)

where GD is the Green’s function on D with zero boundary conditions satisfying ∆GD(x, ·) =
−δx(·), where δx denotes the Dirac mass at x. This normalization means e.g. that for the
upper half plane H, we have GH(x, y) = 1

2π log |(x− ȳ)/(x− y)|.

Theorem 2.1 (Convergence of the nesting field). Let D ( C be a bounded simply connected
Jordan domain and let Dδ ( δZ2 converge to D as δ → 0 in the Carathéodory sense. Denote
by hDδ the nesting field of the critical double random current model on Dδ with free boundary
conditions, and by h+

(Dδ)†
the nesting field of the critical double random current model on the

weak dual graph (Dδ)† with wired boundary conditions. Then

lim
δ→0

hDδ = lim
δ→0

h+
(Dδ)†

=
1√
π
hD,

where hD is the GFF in D with zero boundary conditions, and where the convergence is in
distribution in the space of generalized functions.

Moreover, hDδ and h+
(Dδ)†

can be coupled together as one random height function HDδ

defined on the faces of a planar graph CDδ (whose faces correspond to both the faces of Dδ

and (Dδ)†; see Fig. 3.1) in such a way that

lim
δ→0

HDδ =
1√
π
hD.

More properties of the coupling of hDδ and h+
(Dδ)†

are described in Section 2.3.

Our proof is based on the relationship between the nesting field of double random currents
on a graph G and the height function of a dimer model on decorated graphs Gd and CG
established in [27]. We will first explicitly identify the inverse Kasteleyn matrix associated
with these dimer models with the correlators of real-valued Kadanoff–Ceva fermions in the
Ising model [39]. This is valid for arbitrary planar weighted graphs, and can also be derived
from the bozonization identities of Dubédat [22]. For completeness of exposition, we choose
to present an alternative derivation that uses arguments similar to those of [27]. Compared
to [22], rather than using the connection with the six-vertex model, we employ the double
random current model. We then express the real-valued observables on general graph in terms
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of the complex-valued observables of Smirnov [77], Chelkak and Smirnov [19] and Hongler
and Smirnov [38]. This is a well-known relation that can be e.g. found in [17]. We also state
the relevant scaling limit results for the critical observables on the square lattice obtained
in [19,38,77].

All in all, we identify the scaling limit of the inverse Kasteleyn matrix on graphs CDδ as
δ → 0. This is an important ingredient in the computation of the limit of the moments of
the height function which is done by modifying an argument of Kenyon [43]. Another crucial
and new ingredient is a class of delicate estimates on the critical random current model from
[28] that allow us to do two things:

• to identify the boundary conditions of the limiting GFF to be zero boundary conditions;

• to control the behaviour of the increments of the height function between vertices at
small distances.

The first item is particularly important as handling boundary conditions directly in the dimer
model is notoriously difficult. Here, the identification of the limiting boundary conditions is
made possible by the connection with the double random current as well as the main result
of [28] stating that large clusters of the double random current with free boundary conditions
do not come close to the boundary of the domain (see Theorem 2.14 below). We see this
observation and its implication for the nesting field as one of the key innovation of our paper.

We stress the fact that Theorem 2.1 does not follow from the scaling limit results of Kenyon
[43, 44] as the boundary conditions considered in these papers are related to Temperley’s
bijection between dimers and spanning trees [47, 48, 79], whereas those considered in this
paper correspond to the double Ising model [11, 22, 27]. Moreover we note that the infinite
volume version of Theorem 2.1 was obtained by de Tilière [21]. Finally it can also be shown
that the hedgehog domains of Russkikh [66] are a special case of our framework, where the
boundary of Dδ makes turns at each discrete step.

2.2 Convergence of the double random current interfaces

Let us now present the proof strategy of our main results on the convergence of double random
current interfaces (Theorems 1.6 and 1.7).

In this subsection, we focus on the interplay between the discrete and continuous sides and
refer the reader to Section 7 for a proof road-map involving more details in the continuum.
Let us briefly mention that among other things we will prove a result (Theorem 7.8) on
the characterization of thin local sets with boundary values in {−µ, 0, µ} for µ ≥ 2λ (where
λ =

√
π/8). This is purely a result about local sets and GFF which is interesting in its

own right. Even though it is a crucial ingredient in the proof, we postpone its statement to
Section 7 since it is not the main purpose of this work.

In order to explain further results and strategy, we first recall some background in Sec-
tion 2.2.1. Throughout, let D ( C be a simply connected domain.

2.2.1 Background on SLE, CLE, Gaussian free field and two-valued sets

This is a short preliminary section aimed at giving a brief account of the continuous objects
involved in this work, while conveying as much intuition as possible. We refer to Section 6
for more detailed preliminaries.
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The Schramm-Loewner evolution (SLE) was introduced by Schramm in [68]. It is a family
of non self-crossing random curves which depend on a parameter κ > 0. For many discrete
models, free or wired/monochromatic boundary conditions force the interfaces to take the
form of loops. The loop interfaces are conjectured (and sometimes proved) to converge to
a conformal loop ensemble (CLE) in the continuum, which is a random collection of loops
contained in D that do not cross each other. The family of CLE was introduced by Sheffield
in [74] and further studied by Sheffield and Werner in [75]. It depends on a parameter
κ ∈ (8/3, 8) and can be constructed using variants of SLEκ.

In [69, 70], Schramm and Sheffield made the important discovery that level lines of the
discrete Gaussian free field (GFF) converge in the scaling limit to SLE4 curves, and that the
limiting SLE4 curves are coupled with the continuum GFF as its local sets (i.e., a set with
a certain spatial Markov property, see Section 6.2). More generally, the theory of local sets
developed in [70] allows one to couple SLEκ with the GFF for all κ ∈ (0, 8). The coupling
between SLEκ and GFF was further developed in [24,57–60] (also, see references therein).

In this work, we are only concerned with the case κ = 4. It was shown in [70] that
SLE4-type curves are coupled with the GFF with a height gap 2λ in such a way that they
are local sets of the GFF with boundary values respectively a− λ and a+ λ on the left- and
right-hand sides of the curve (see Section 6.2 for more details). A crucial property shown
in [70] is that such SLE4-type curves are deterministic functions of the GFF. We call these
curves level lines, to keep the same terminology as in the discrete. The value a ∈ R is called
the height of the level line. The coupling between SLE4 and GFF was extended to CLE4 and
GFF by Miller and Sheffield [56] (a more general coupling between CLEκ and GFF for all
κ ∈ (0, 8) was established in [61]; a proof for the case κ = 4 was also provided in [8]).

Let us fix some notation that will be used throughout this work. For any simply connected
domain U , we say that its boundary ∂U is a contour. If γ is a simple loop, then let O(γ)
denote the domain encircled by γ, which is equal to the unique bounded connected component
of C \ γ. Every simple loop is a contour, but a contour need not be a loop or a curve.2 Let
h be a zero boundary GFF in D. For every simply connected domain U ⊆ D, let h|U denote
the restriction of h to the domain U . If h|U is equal to a GFF in U with constant boundary
conditions, say equal to c, then let h0|U be the zero boundary GFF so that h|U is equal to
h0|U plus c. This constant c is also called the boundary value of U , or the inner boundary
value of ∂U when it is a simple loop.3 Let Γ denote a collection of simple loops which do not
cross each other. Let gask(Γ) denote the gasket of Γ, which is equal to D \ ∪γ∈ΓO(γ). Given
a connected set A ⊆ D such that ∂D ⊆ A, let L(A) denote the collection of outer boundaries
of the connected components of D \A.

The Miller-Sheffield coupling between the GFF and CLE4 states that h a.s. uniquely
determines a random collection Γ of simple loops which do not cross each other and satisfy
the following property (see Fig. 2.1, left): conditionally on gask(Γ), for each loop γ ∈ Γ,
there exists ε(γ) ∈ {−1, 1} such that h|O(γ) is equal to ε(γ)2λ plus a zero-boundary GFF.

2In this paper, we in fact only deal with contours which are or turn out in the end to be simple loops.
However, we distinguish the notions of contour and loop, because we will later prove general results about
local sets whose boundaries are not a priori known to be curves.

3We do not use the notion of “outer boundary value”. However, we emphasize “inner” in this terminology,
because we will often consider contours which are level loops (they are part of level lines) and each level line
has different boundary values at its two sides (with a height gap 2λ). The inner boundary value of a level
loop is also equal to the boundary value of this level line on the inner side.
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In addition, the fields h|O(γ) for different γ’s are (conditionally) independent of each other.
In other words, gask(Γ) is a local set of h with boundary values in {−2λ, 2λ}. It turns out
that Γ has the law of a CLE4. In addition, gask(Γ) carries no mass of the GFF: for all test
function f on D, we have∫

D
f(x)h(x)dx =

∑
γ∈Γ

∫
O(γ)

f(x)h|O(γ)(x)dx. (2.4)

Each loop γ in CLE4 is a level line (we also call it a level loop) of the GFF with boundary
value ε(γ)2λ on the inner side of the loop and 0 on the outer side of the loop (so it is at
height ε(γ)λ).

2λ

−2λ

2λ

2λ

−2λ

−2λ

2λ

−2λ

0

4λ

0

−4λ

0

−4λ

4λ

4λ

−4λ

0

4λ

0

0

−2λ
2λ

−2λ
2λ

Figure 2.1: Left: A sketch of CLE4 coupled with the GFF. The loops have inner boundary
values −2λ or 2λ. Right: We depict a few layers of the nested CLE4 coupled with the same
GFF. We mark in red the outermost loops that have boundary values −4λ or 4λ, which
belong to L−4λ,4λ.

It is also natural to consider level loops of h at other heights than those of CLE4. For
example, the previous coupling can be extended to the nested CLE4 (by sampling the CLE4

coupled to h0|O(γ) for each γ ∈ Γ), so that the further layers of CLE4 loops are at heights
(2k + 1)λ for k ∈ Z. For a ∈ (−λ, λ), the outermost level loops of h at height a are given by
boundary conformal loop ensembles (BCLE) [61] (a certain random collection of loops that
touch the boundary, see Section 6.3 for more details), and one can then also consider nested
versions of BCLE to obtain level loops of h at a continuum range of heights.

The gaskets of CLEs and BCLEs belong to a particular class of local sets called two-valued
sets introduced in [8]: a two-valued set is a thin local set (a terminology in [71] meaning that
the local set carries no mass of the GFF, described e.g. by (2.4)) with two boundary values
in {−a, b}, denoted by A−a,b. For example, the gasket of CLE4 is equal to A−2λ,2λ, and the
gaskets of BCLEs correspond to A−a,b with a + b = 2λ. It was shown in [8] that the sets
A−a,b exist for a, b > 0 with a + b ≥ 2λ, and are a.s. unique and determined by h. Let us
use L−a,b to denote L(A−a,b). Throughout, we denote by L+

−a,b (resp. L−−a,b) the set of loops
in L−a,b with inner boundary value b (resp. −a). We will also use notations like CLE4(h)
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and L−a,b(h) to represent these sets coupled to h (especially when there are different GFFs
involved).

The loops in L−a,b are composed of SLE4-type curves which are level lines of h, hence are
a.s. simple and do not cross each other (but can intersect each other). The law of L−a,b is
invariant under all conformal automorphisms from D onto itself, since h is invariant under
those conformal maps. The geometric properties of the loops in L−a,b are well understood
(see e.g. [7, 8, 67] and Section 6.4).

Let us now give a simple and intuitive explanation of the two-valued sets, and postpone
more details to Section 6.4. As pointed out in [8], A−a,b is a 2D analogue for GFF of the
stopping time of a 1D Brownian motion upon exiting [−a, b], and is intuitively the set of
points that are connected to the boundary by a path on which the values of h remain in
[−a, b]. Let us illustrate this by the following construction of A−2nλ,2nλ via iterated CLE4s
(see Fig. 2.1, right). For each point z ∈ D, the inner boundary values of the successive loops
that encircle z in the nested CLE4 perform a symmetric random walk with steps ±2λ. The
loops in L−2nλ,2nλ correspond to the first time that we obtain a nested CLE4 loop with inner
boundary value equal to −2nλ or 2nλ.

2.2.2 Scaling limit of outermost double random current clusters

To identify the scaling limit of double random current clusters (for both the free and wired
boundary conditions), the essential part is to understand the scaling limit of the outermost
clusters. From there, the law of the nested layers of interfaces can be identified thanks to the
spatial Markov property of the model at the inner boundaries of each cluster.

In this subsection, we state Theorem 2.2 below, which implies the statements of Theo-
rem 1.6 regarding the outermost double random current clusters. We emphasize that Theo-
rem 2.2 contains much more information, in particular since it states the joint convergence of
the double random current clusters, their labels and the height function, as well as it specifies
the joint law of their limits.

More precisely, let us consider the coupling PDδ between two independent copies nδ1 and nδ2
of sourceless currents on Dδ, i.e., (nδ1,n

δ
2) ∼ P∅,∅

Dδ,Dδ
, the labels εδ associated to the clusters

of nδ1 + nδ2, and the nesting field hδ. Let Bδ be the collection of outer boundaries of the
outermost double random current clusters on Dδ. For each loop ` ∈ Bδ, let εδ(`) be the
label of the double random current cluster C(`) with outer boundary `, and Aδ(`) be the
collection of loops corresponding to the inner boundary of C(`). Let Aδ := ∪`∈BδAδ(`). For
each γ ∈ Aδ(`), we say that it is the boundary of an odd hole if C(`) is odd around every face
encircled by γ (see definition in Section 2.1). Otherwise we say that γ is the boundary of an
even hole. We will prove the following theorem.

Theorem 2.2. Let D ( C be a simply connected Jordan domain; As δ → 0, the quadruple
(Bδ, Aδ, hδ, εδ) defined above converges in distribution to a limit (B,A, h, ε) satisfying (see
Fig. 2.2):

• h is a GFF with zero boundary conditions in D.

• The collection of loops B is equal to CLE4(h). For each ` ∈ B, h|O(`) is equal to an
independent zero-boundary GFF h0|O(`) plus the constant ε(`)2λ.
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Figure 2.2: We depicted the loops in B in blue. For each ` ∈ B, the loops in A(`) have inner
boundary value either 0 or ε(`)2

√
2λ. For two loops `1 and `2 in B with labels ε(`1) = 1 and

ε(`2) = −1, we depict the loops in A(`1) and A(`2). For i = 1, 2, we draw the loops in A(`i)
with inner boundary value 0 (resp. ε(`i)2

√
2λ) in red (resp. green). Each green (resp. red)

loop is the limit of the boundary of an odd (resp. even) hole. We say two loops are connected
if they touch each other. Then, loops of the same color are always connected to the outer
boundary of the cluster (i.e., a blue loop in B) via a chain of loops of the same parity. In
particular, only green loops can touch the outer boundary of the cluster, and loops of the
same color never touch each other.

• Every loop in A is encircled by a loop in B. For each loop ` ∈ B, let A(`) denote the
collection of loops in A that are encircled by `.

– If ε(`) = 1, then A(`) is equal to L−2λ,(2
√

2−2)λ(h0|O(`)).

– If ε(`) = −1, then A(`) is equal to L−(2
√

2−2)λ,2λ(h0|O(`)).

Moreover, for each loop γ ∈ A, if γ has inner boundary value 0, then it is the limit of the
boundary of an even hole, otherwise if it has inner boundary value in {−2

√
2λ, 2

√
2λ},

then it is the limit of the boundary of an odd hole.

The proof of Theorem 2.2 combines ingredients from both the discrete and the continuous
sides. We first need to gather the following geometric properties of the discrete system.

Proposition 2.3. Fix a simply connected Jordan domain D ( C and consider the double
random current on Dδ with free boundary conditions. The family (Bδ, Aδ, εδ, hδ)δ>0 is tight
for the topology of weak convergence and for every subsequential limit (B,A, ε, h), a.s.

1. h is a GFF with zero boundary conditions in D.

2. The sets A and B consist of simple loops which do not cross each other. Every loop in
A is encircled by some loop in B. The set A is not equal to {∂D}.
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3. (Local set) The set gask(A) is a thin local set of h, with boundary values in [−2
√

2λ, 2
√

2λ].
More precisely, for each loop ` ∈ B, for all γ ∈ A(`), h restricted to O(γ) is equal to an
independent GFF with boundary condition ε(`)c(γ) with c(γ) ∈ [0, 2

√
2λ]. Furthermore,

if there exists a finite sequence γ1, . . . , γk of loops in A(`) such that γ1 and γk respec-
tively intersect ` and γ, then c(γ) ∈ {0, 2

√
2λ}. If one can find such a sequence with k

even, then c(γ) = 2
√

2λ and γ is the limit of the boundary of an odd hole; otherwise if
k is odd, then c(γ) = 0 and γ is the limit of the boundary of an even hole.

4. The loops in A that have inner boundary value 0 do not touch the loops in B.

5. The loops in B are more exterior than CLE4 loops.

Let us make a few remarks about Proposition 2.3 and how it is used to prove Theorem 2.2.

• As usual, the first step is to establish the tightness of the quadruple (Bδ, Aδ, hδ, εδ),
and this is based on the results of [28]. Property 1 is a reformulation of Theorem 2.1.
Property 4 can be obtained from a theorem in [28]. Property 5 is a consequence of the
convergence of interfaces in the Ising model to CLE3 obtained in [10].

• Property 3 follows from the analysis of the structure of the discrete coupling together
with the joint convergence to (B,A, ε, h). The fact that gask(A) is a thin local set
is a consequence of the fact that the loops of Aδ satisfy the spatial Markov property
in the discrete. However, since gask(A) takes boundary values in a continuous range
[−2
√

2λ, 2
√

2λ], this property is far from enough to determine A.

In order to pin down the law of A, we rely on the additional geometric properties of A
and B stated in Properties 4 and 5 and we prove new results on local sets of the GFF.
In particular, we crucially use a result (Theorem 7.8) characterizing all thin local sets
with boundary values in {−µ, 0, µ} for µ ≥ 2λ (as indicated by Theorem 2.2, gask(A)
turns out in the end to take boundary values in {−2

√
2, 0, 2

√
2}).

• Contrarily to Aδ, the loops of Bδ do not satisfy spatial Markov property at the discrete
level. The proof that B is the CLE4 coupled to h – hence in particular it does satisfy the
spatial Markov property in the continuum – relies on the previously proved properties
of A and the interaction between the loops in A and B.

We now turn to wired boundary conditions. Fix a simply connected domain D ( C and
consider the double random current n with wired boundary conditions in Dδ. Let Âδ be the
collection of loops in the inner boundary of the cluster Ĉ of the outer boundary of Dδ in n.
For each γ ∈ Âδ, we say that it is the boundary of an odd hole if Ĉ is odd around every face
encircled by γ. Otherwise we say that γ is the boundary of an even hole. We will prove the
following result on the joint convergence of (Âδ, hδ)δ>0.

Below, we focus on simply connected domains D with C1-smooth boundary. The restric-
tion to such domains comes from a technical condition from Remark 7.3 of [28] which could
possibly be removed modulo some additional work.

Theorem 2.4. Consider a simply connected domain D ( C and such that ∂D is C1. Then
as δ → 0, (Âδ, hδ) converges in distribution to a limit (Â, h), where h is a GFF in D with
zero boundary conditions and Â = L−√2λ,

√
2λ(h). Moreover, if γ is the limit of the boundary
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of an even hole, then γ has inner boundary value −
√

2λ; if γ is the limit of the boundary of
an odd hole, then γ has inner boundary value

√
2λ.

To prove Theorem 2.4, we need to collect the following input from the discrete.

Proposition 2.5. Consider a simply connected domain D ( C and such that ∂D is C1. Then
the family (Âδ, hδ)δ>0 is tight for the topology of weak convergence defined above. Moreover,
for every subsequential limit (Â, h):

1. h is a GFF with zero boundary conditions in D,

2. (Local set) The set gask(Â) is a thin local set of h, with boundary values in [−
√

2λ,
√

2λ].
More precisely, for all γ ∈ Â, h restricted to O(γ) is equal to an independent GFF with
boundary condition c(γ) ∈ [−

√
2λ,
√

2λ]. Furthermore, if there exists a finite sequence
γ1, . . . , γk of loops in Â such that γ1 and γk respectively intersect ∂D and γ, then
c(γ) ∈ {−

√
2λ,
√

2λ}. If one can find such a sequence with k even, then c(γ) =
√

2λ and
γ is the limit of the boundary of an odd hole; otherwise if k is odd, then c(γ) = −

√
2λ

and γ is the limit of the boundary of an even hole.

For both the free and wired double random currents models, when one conditions on the
outermost cluster(s), the picture inside the holes of each outermost cluster is an independent
free boundary double random currents model. This spatial Markov property remains true in
the scaling limit (see Section 5.4). This, combined with Theorems 2.2 and 2.4 will allow us
to deduce the scaling limit of the nested interfaces, as stated in Theorems 1.6 and 1.7, as well
as their couplings with the limiting GFF.

2.3 A coupling between the double random current and the XOR-Ising
model

In this section we discuss one of the central constructions of this article, namely the joint
coupling of the double random current model and the XOR-Ising model (both their primal
and dual versions) together with a height function that restricts to both the nesting field of
the primal and the dual random current. In this coupling, the double random current and the
XOR-Ising models are related together in the same way the Fortuin–Kasteleyn percolation
with cluster-weight q = 2 is coupled to the Ising model in the Edwards–Sokal coupling [34].
Here, we state the results for a general inverse temperature β and coupling constants J . We
start with the Edwards–Sokal property of the coupling.

Theorem 2.6. Consider a finite (not necessarily planar) graph G = (V,E) and the coupling
PG,β between two independent currents n1 and n2, both with law P∅G,β, and a spin config-
uration obtained by sampling independently ±1-valued spins (τC : C ∈ C(n1 + n2)), where
C(n1 + n2) is the collection of clusters of n1 + n2. Define τ = (τv : v ∈ V ), where τv = τC
and C ∈ C(n1 + n2) the cluster containing v. Then, τ has the law of the XOR-Ising model
PXOR
G,β .

Proof. For every A ⊆ V , by definition of PG,β, we have

EG,β
[ ∏
v∈A

τv

]
= P∅G,β ⊗P∅G,β[n1 + n2 ∈ FA],
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where EG,β is the expectation with respect to PG,β, and where n ∈ FA is the event that each
cluster of n contains an even number of (possibly zero) vertices of A.

Now, the switching lemma [28, Lemma 2.1] gives that

P∅G,β ⊗P∅G,β[n1 + n2 ∈ FA] = µG,β

[ ∏
v∈A

σv

]2
= EXOR

G,β

[ ∏
v∈A

τv

]
.

Since the spins are ±1-valued, this implies that the law of τ under PG,β is the law of the
XOR-Ising model at inverse temperature β (e.g. one can look at the characteristic function
of the random vector τ and expand it into a finite sum of correlation functions as above).

An analogous coupling also holds for plus/plus boundary conditions, where this time one
has to consider the random current model with wired boundary conditions and the cluster of
the outer vertex g gets assigned spin +.

As mentioned, a stronger property, namely the following joint coupling of the primal
and dual models can be established. We will provide a proof of this result at the end of
Section 3.1.3 using a relation with the dimer model. In the statement we talk about the dual
double random current and XOR-Ising models. These are the models defined on the dual
graphs where the coupling constant J∗e∗ on a dual edge e∗ and the dual inverse temperature
β∗ are given by the Kramers–Wannier relation

exp(−2β∗J∗e∗) = tanh(βJe).

Recall that the critical inverse temperature βc on the square lattice with coupling constants
Je = 1 for all e ∈ E is self-dual, meaning that β∗c = βc.

Theorem 2.7 (Master coupling). One can couple the following objects:

1. a double random current model n with free boundary conditions on the primal graph
G = (V,E), together with i.i.d. ±1-valued spins (τC : C ∈ C(n)) associated to each
cluster of n,

2. the dual double random current model n† with wired boundary conditions on the weak
dual graph G† (equivalently with free boundary conditions on the full dual graph G∗ =

(U,E∗)) and with the dual coupling constants, together with i.i.d. ±1-valued spins (τ †C :
C ∈ C(n†)) associated with each cluster of n†,

3. a height function H defined on V ∪ U ,

in such a way that the following properties hold:

1. The spins τ = (τv : v ∈ V ), where τv = τC, with C being the cluster containing v, have
the law of the XOR-Ising model PXOR

G,β .

2. The spins τ † = (τ †u : u ∈ U), conditioned on the spin of the outer vertex g being +1,

have the law of the dual XOR-Ising model P
XOR,+/+

G†,β∗
.

3. The odd part of n is equal to the collection of interfaces of τ †, and the odd part of n†

is equal to the collection of interfaces of τ .
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4. For a face u ∈ U and a vertex v ∈ V incident on u, we have

H(u)−H(v) = 1
2τ
†
uτv.

It is clear that each cluster C of n (resp. n†) can be assigned a well-defined dual spin τ †C
(resp. τC). This is the spin assigned to any face of G (resp. G∗) incident on C from the
outside. With this definition, the height function H restricted to the faces of G (resp.
G∗) has the law of the nesting field of n with free boundary conditions (resp. n† with
wired boundary conditions) with labels associated to the clusters as in the definition (2.1)
given by

εC = τCτ
†
C . (2.5)

5. The configurations n and n† are disjoint in the sense that ne > 0 implies n†e∗ = 0 and

n†e∗ > 0 implies ne = 0, where e∗ is the dual edge of e.

Recall that in the definition of the nesting field (2.1), the labels are independent given
the current, and one can see that indeed the variables (εC)C∈C(n) as defined by (2.5) are inde-

pendent given n as τ †C is a deterministic function of n, and τC are independent by definition.
Although Property 5 will not be directly used in our arguments, it is an interesting

feature of the coupling on its own. Indeed, from our scaling limit results we know that all the
associated continuum interfaces do not cross, and Property 5 says that this holds already at
the discrete level (and for arbitrary, not necessarily critical Ising models). We stress that the
fact that the interfaces of τ and τ † are disjoint in the sense of Property 5 appears already
in the works of Dubédat [22], and Boutilier and de Tilière [11]. However, Property 5 is a
stronger statement as it concerns the full double random current, and not only its odd part.

Finally, an extension of this coupling to the Ashkin–Teller model can be found in the
works [51, 52] that appeared before but were based on the current article. Here we will
provide a different proof that uses the associated dimer model representation.

2.4 Scaling limit of the XOR-Ising interfaces

Let us now present the proof strategy of our main results on the convergence of XOR-Ising
interfaces. Here we focus on the interplay between the discrete and continuous sides. A more
detailed strategy in the continuum can be found in Section 8.

We first focus on the discussion of the proof for free boundary conditions (Theorem 1.2).
In practice, we will prove a stronger result (Theorem 2.8 below) which states the joint conver-
gence of the XOR-Ising model with free boundary conditions and the height function (coupled
as in Theorem 2.7). Theorem 2.8 implies Theorem 1.2, and is also the main input for the
proof of the scaling limit of the XOR-Ising interfaces with plus/plus boundary conditions.

Theorem 2.8. Let D ( C be a simply connected Jordan domain. Let ηδXOR be the outer
boundaries contour configuration of the XOR-Ising model with free boundary condition in Dδ.
Then as δ → 0, (ηδXOR, h

δ) (defined according to the coupling in Theorem 2.7) converges
in distribution to a limit (ηXOR, h). The collection of the outer boundaries of the outer-
most positive (resp. negative) XOR-Ising clusters in Dδ converges to L−(2

√
2+1)λ,λ(h) (resp.

L−λ,(2√2+1)λ(h)). More precisely, there are two types of outermost positive clusters 1, 3 and

two types of outermost negative clusters 2, 4 as follows (see Fig. 2.3 for an illustration):
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Figure 2.3: XOR-Ising with free boundary conditions. The black loops represent the outer
boundaries of the outermost positive clusters. The black loops that touch the boundary
correspond to those negative clusters of Type 2 (these loops all have inner boundary value
−λ). The black loops that do not touch the boundary correspond to the negative clusters of
Type 4 (these loops have inner boundary value −λ or (2

√
2 + 1)λ). We also depict in grey a

few (not all) outermost positive clusters. The grey cluster that touches the boundary belongs
to Type 1. The other grey clusters are encircled by one of the black loops and belong to
Type 3. We indicate the boundary values of these grey clusters in red.

1. The outermost positive clusters that are not encircled by any negative cluster.

2. The outermost negative clusters that are not encircled by any positive cluster.

3. The outermost positive clusters that are encircled by some negative cluster of Type 2.

4. The outermost negative clusters that are encircled by some positive cluster of Type 1.

The outer boundaries of the clusters of Types 1 and 2 respectively converge to L+
−λ,λ(h) and

L−−λ,λ(h).
For each limit γ of the outer boundary of an XOR-Ising cluster, γ is coupled with h in

a way that h|O(γ) is equal to a constant plus a zero-boundary GFF. Conditionally on γ, the
next layer of outermost clusters with the opposite sign in O(γ) are distributed as L−2λ,2

√
2λ

in O(γ).

In order to prove Theorem 2.8, we will first collect a number of results summarized in
Proposition 2.9. The proof of Theorem 2.8 crucially relies on the convergence of the double
random current (Theorem 2.2) and the coupling given in Theorem 2.7. Recall the notation
from Section 2.2.2. To each double random current cluster with outer boundary ` ∈ Bδ we
assign a spin sδ(`) which is equal to εδ(`). Let Cδ denote the collection of the outer boundaries
of the outermost XOR-Ising clusters (i.e., none of them is surrounded by any other XOR-Ising
cluster). For each γ ∈ Cδ, the XOR-Ising cluster corresponding to γ is associated with a spin
sδ(γ) ∈ {−1, 1} and let Sδ(γ) be the collection of loops in Bδ that intersect and are encircled
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Figure 2.4: We draw the boundary-touching XOR-Ising interfaces in purple. These interfaces
can be connected into loops in C. We also draw in blue the loops in S which are the loops
in B which touch the loops in C. By Theorem 2.2, we know that h restricted to the blue
loops have boundary conditions ±2λ. The loops in S̃ are boundaries of the blank regions
(not encircled by a blue loop) marked with 0, meaning that h restricted to a loop in S̃ has 0
boundary condition.

by γ. For each ` ∈ Sδ(γ), the double random current cluster corresponding to ` has the label
εδ(`) = sδ(γ). The connected components of O(γ) \ ∪`∈Sδ(γ)O(`) are all simply connected,

and we let S̃δ(γ) be the collection of loops which consists of the outer boundaries of these
connected components. Let Sδ (resp. S̃δ) be the union of the Sδ(γ) (resp. S̃δ(γ)) for γ ∈ Cδ.
See Fig. 2.4 for an illustration of these objects in the scaling limit (the next proposition states
that there exists a subsequential limit).

Proposition 2.9. Fix a simply connected domain D ( C and consider the measure PDδ .
Then the family (Cδ, sδ, Sδ, S̃δ, εδ, Bδ, Aδ, hδ)δ>0 is tight for the topology of weak convergence.
Moreover, for every subsequential limit (C, s, S, S̃, ε, B,A, ε, h):

1. (B,A, ε, h) satisfies the properties of Proposition 2.3. The sets S, S̃, C consist of simple
loops. The set C is not equal to {∂D}.

2. S ⊆ B and every loop in S ∪ S̃ is encircled by a loop in C. For each γ ∈ C, let S(γ) be
the collection of loops in S which are encircled by γ. Then S(γ) coincides with the set
of loops in B that intersect γ. In addition to this, for every loop ` ∈ S(γ),

ε(`) = s(γ). (2.6)

3. (Thin local set) For any test function f , we have∫
f(z)h(z)dz =

∑
`∈S∪S̃

∫
O(`)

f(z)h|O(`)(z)dz,
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where the h|O(`) are random distributions with support in O(`). Furthermore, the h|O(`)

with ` ∈ S̃ are independent GFF with boundary value 0.

4. For any loop in C, if we parametrize it as a curve in a continuous and injective way,
then its intersection with B does not contain any sub-curve of positive time length.

Let us make some comments on Proposition 2.9 and how it is used to prove Theorem 2.8.

• Again, tightness is a direct consequence of the second paper [28] and the first item
is simply Proposition 2.3. The second item is fairly straightforward, while the third
follows from the properties of the discrete coupling together with the joint convergence.
The fourth item on the other hand follows from delicate crossing estimates in fractal
domains that are obtained in [28].

• We remark that the interfaces of C do not satisfy the spatial Markov property in the
discrete. As we have mentioned earlier, this is also the main difficulty in identifying the
scaling limits of the XOR-Ising interfaces using conventional methods.

To identify C, the key lies in the set Sδ∪ S̃δ. The loops in S̃δ satisfy the spatial Markov
property in the discrete. The loops in S ⊆ B are proved to be part of CLE4(h) in
Theorem 2.2. Combined with Property 3, we can deduce that the gasket of S ∪ S̃ is a
thin local set with boundary values in {−2λ, 0, 2λ}. We are then in a position to apply
the characterization of thin local sets with boundary values in {−µ, 0, µ} (Theorem 7.8).
Again, we need to combine the properties of such local sets with the geometric properties
of the interfaces in C, S,B to pin down the joint law of (C, s, S, S̃, ε, B,A, ε, h).

• Proposition 2.9 only addresses the outermost double random current clusters. To un-
derstand the scaling limit of XOR-Ising interfaces (even just the outermost ones), we
need to look at the nested double random current clusters, in order to do so we rely on
the spatial Markov property of the loops in A(γ) for every γ ∈ S.

For the XOR-Ising on the dual graph which has plus/plus boundary conditions, we will
prove the following result.

Theorem 2.10. Let D ( C be a simply connected domain such that ∂D is C1. Let η̂δXOR

be the outer boundaries contour configuration of the dual XOR-Ising model on (Dδ)† with
plus/plus boundary donditions. Then as δ → 0, (η̂δXOR, h

δ) converges in distribution to a
limit (η̂XOR, h) where h is a GFF in D with zero boundary conditions and the outermost
loops in η is equal to L−(

√
2+1)λ,(

√
2+1)λ(h). If the outer boundary of a cluster converges to γ,

then the outer boundaries of the outermost clusters that are enclosed by this cluster with the
opposite sign converge to L−2λ,2

√
2λ in O(γ).

Theorem 2.10 implies Theorem 1.5. The proof of Theorem 2.10 combines Theorem 2.4,
Property 2 in Theorem 2.7 and Theorem 2.8.

2.5 Coupling of various models in the continuum limit

We have described a coupling between four models (the double random current and XOR-
Ising models on the primal and dual lattices) and one height function in Theorem 2.7. A
remarkable consequence is that this coupling can be carried through to the continuum limit.
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More precisely, Theorems 2.2, 2.4, 2.8 and 2.10 imply that the four coupled models and
the height function converge jointly, and the joint limit is described by these theorems where
we use the same height function which converges to the same GFF h. Therefore, the interfaces
of the double random current and XOR-Ising models on the primal and dual graphs converge
jointly to level loops at different heights of the same GFF. For simplicity, we have focused in
Theorems 2.2, 2.4, 2.8 and 2.10 on the description of the coupling of the outermost interfaces
of the corresponding models with h. However, it is not difficult to work out the coupling of the
nested interfaces with h, using the spatial Markov property of certain loops. Consequently,
we fully understand how the nested interfaces of the four models interact with each other. A
more detailed description is postponed to Section 8.2. Among other properties, the interfaces
of different models a.s. do not cross each other (since level loops of a GFF do not cross each
other), like in the discrete (Property 5 from Theorem 2.7).

As the discrete coupling is similar in spirit to the Edwards–Sokal coupling, the continuum
picture also bears similarities to that of CLE percolation [61]. For example, given the scaling
limit of the outermost double random current clusters with free boundary conditions (whose
outer boundaries are distributed as a CLE4) and i.i.d. labels in {−1, 1} for each cluster,
the first layer of the scaling limit of the XOR-Ising interfaces with free boundary conditions
should be the interfaces between the aggregated + and − clusters. However, unlike in the
discrete, it is not possible to define such an aggregation directly in the continuum, since none
of the CLE4 loops touch each other. There is nevertheless a notion of continuous percolation
interface (CPI) in the CLE carpet [61]. For a CLE4 where each loop receives an i.i.d. and
symmetric sign, its associated CPI is the unique interface which satisfies a certain conformal
invariance, a spatial Markov property, and which explores the CLE4 carpet in a way that
leaves + loops on its left and − loops on its right (see [61] for more details). This interface is
distributed as A−λ,λ [61, Proposition 5.3]. This is indeed the same as the interfaces stated in
Theorem 2.8. However, we point out that we a priori did not know the conformal invariance
and the spatial Markov property of the limiting interfaces, so CPI cannot be used to prove
our results, but constitutes an a posteriori explanation of the continuum picture.

2.6 Input from the second paper of the series

In this section we briefly recap some inputs from [28] that are used in this paper. We refer to
[28] for the proofs. We only mention the main tools from [28] that we will use and refer, later
in the proof, to the precise statements of [28] when they were not mentioned in this section.

Results for the double random current model As mentioned above, we need tightness
results for several families of loops, notably for the outer boundaries of the double random
current clusters. This is done using an Aizenman–Burchard-type criterion for the double
random current. Below, for a subset A of vertices, a A-cluster is a cluster for the (current or
XOR-Ising) configuration restricted to A. A domain D is a subgraph of Z2 whose boundary
is a self-avoiding polygon in Z2. Let Λr := [−r, r]2 and Ann(r,R) := ΛR \ Λr−1. Call
an Ann(r,R)-cluster crossing if it intersects both ∂Λr and ∂ΛR. For an integer k ≥ 1,
let A2k(r,R) be the event4 that there are k distinct Ann(r,R)-clusters in n1 + n2 crossing
Ann(r,R).

4The subscript 2k instead of k is meant to illustrate that there are k Ann(r,R)-clusters from inside to
outside separated by k dual clusters separating them.
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Theorem 2.11 (Aizenman–Burchard criterion for the double random current model). There
exist sequences (Ck)k≥1, (λk)k≥1 with λk tending to infinity as k → ∞, such that for every
domain D, every k ≥ 1 and all r,R with 1 ≤ r ≤ R/2,

P∅,∅D,D[A2k(r,R)] ≤ Ck( rR)λk . (2.7)

We will also need some a priori properties of possible subsequential scaling limits. These
will be obtained using estimates in the discrete on certain four-arm type events. We list them
now. Let

A�4 (r,R) := {there exist two ΛR-clusters crossing Ann(r,R)}

and let A�4 (x, r,R) be the translate of A�4 (r,R) by x.

Theorem 2.12. There exists C > 0 such that for all r,R with 1 ≤ r ≤ R,

P∅,∅Z2,Z2 [A�4 (r,R)] ≤ C(r/R)2. (2.8)

Furthermore, for every ε > 0, there exists η = η(ε) > 0 such that for all r,R with 1 ≤ r ≤ ηR
and every domain Ω ⊃ Λ2R,

P∅,∅Ω,Ω[∃x ∈ ΛR : A�4 (x, r,R)] ≤ ε. (2.9)

The result is coherent with the fact that the scaling limit of the outer boundary of large
clusters in n1 + n2 is given by CLE4, which is known to be made of simple loops that do not
touch each other. Interestingly, to derive the convergence to the continuum object it will be
necessary to first prove this property at the discrete level.

We turn to a second result of the same type. For a current n, let n∗ be the set of dual
edges e∗ with ne = 0. For a dual path γ = (e∗1, e

∗
2, . . . , e

∗
k), call the n-flux through γ the sum

of the nei . Call an Ann(r,R)-hole in n1 + n2 a connected component of (n1 + n2)∗ restricted
to Ann(r,R)∗ (note that it can be seen as a collection of faces). An Ann(r,R)-hole is said to
be crossing Ann(r,R) if it intersects ∂Λ∗r and ∂Λ∗R. Consider the event

A�4 (r,R) :=
{ there exist two Ann(r,R)-holes crossing Ann(r,R) and the

shortest dual path between them has even (n1 + n2)-flux

}
(see Fig. 2.5). Denote its translate by x by A�4 (x, r,R).

Theorem 2.13. There exists C > 0 such that for all r,R with 1 ≤ r ≤ R,

P∅,∅Z2,Z2 [A�4 (r,R)] ≤ C(r/R)2. (2.10)

Furthermore, for every ε > 0, there exists η = η(ε) > 0 such that for all r,R with 1 ≤ r ≤ ηR
and every domain D ⊃ Λ2R,

P∅,∅Ω,Ω[∃x ∈ ΛR : A�4 (x, r,R)] ≤ ε. (2.11)

Let us mention that the previous results are obtained using the following key statement,
which is of independent interest and is also directly used in this paper. For a set D, let ∂rD
be the set of vertices in D that are within a distance r from ∂D.
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Theorem 2.14 (Connection probabilities close to the boundary for double random current).
There exists c > 0 such that for all r,R with 1 ≤ r ≤ R and every domain D containing Λ2R

but not Λ3R,
c

log(R/r)
≤ P∅,∅D,D[ΛR

n1+n2←→ ∂rD] ≤ ε( rR),

where x 7→ ε(x) is an explicit function tending to 0 as x tends to 0.

We predict that the upper bound should be true for ε(x) := C/ log(1/x) but we do not
need such a precise estimate here. Again, the result is coherent with the fact that the scaling
limit of the outer boundary of large clusters in n1 + n2 is given by CLE4.

The lower bound is to be compared with recent estimates [31, 32] obtained for another
dependent percolation model, namely the critical Fortuin–Kasteleyn random cluster model
with cluster-weight q ∈ [1, 4). There, it was proved that the crossing probability is bounded
from below by a constant c = c(q) > 0 uniformly in r/R. We expect that the behaviour of
the critical random cluster model with cluster weight q = 4 on the other hand is comparable
to the behaviour presented here: large clusters do not come close to the boundary of domains
when the boundary conditions are free.

Results for the XOR Ising model Of course, as for the double random current we need
tightness for the XOR-Ising interfaces which, again, is obtained via an Aizenman–Burchard-
type criterion. For an integer k ≥ 1, let AXOR

2k (r,R) be the event5 that there are k clusters
of pluses in Ann(r,R) that are crossing.

Theorem 2.15 (Aizenman–Burchard criterion for the XOR-Ising model). There exist se-
quences (Ck)k≥1, (λk)k≥1 with λk tending to infinity as k →∞, such that for every domain
D, every k ≥ 1 and all r,R with 1 ≤ r ≤ R,

PXOR
Ω [AXOR

2k (r,R)] ≤ Ck( rR)λk . (2.12)

We will also need the following result similar to the results obtained recently in [32] for
random-cluster models (however, the techniques to obtain the two results are very different).
Let (D, a, b, c, d) be a quad, meaning a domain D with four distinct vertices a, b, c, d found on
its outer boundary in counter-clockwise order. The extremal distance `D [(ab) , (cd)] between
(ab) and (cd) inside D is defined as the unique ` > 0 such that there exists a conformal map
from the continuous domain6 naturally associated with D to the rectangle (0, `)× (0, 1), with
a, b, c, d being mapped (by the continuous extension of the conformal map) to the corners of
[0, `]× [0, 1], in counterclockwise order, starting with the lower-left corner.

Corollary 2.16 (Crossing estimates for the XOR-Ising model). For every κ ∈ (0,∞), there
exists c = c(κ) > 0 such that for every quad (D, a, b, c, d) with κ ≤ `D[(ab), (cd)] ≤ 1/κ,

c ≤ PXOR
Ω [(ab)

+←→ (cd)] ≤ 1− c. (2.13)

5The subscript 2k instead of k is meant to illustrate that there are k disjoint paths of pluses from inside to
outside separated by k paths of minuses separating them (the paths of minuses only need to be ∗-connected).

6The quad D can be seen as a continuous domain of the plane by considering the counter-clockwise loop
γ around D (up to cyclic permutation this loop is unique) and identifying it to a continuous piecewise linear
curve in R2 by seeing all its edges as segments of length 1. Then, the continuous domain associated to D is
obtained by taking the bounded connected component of R2 \ γ.

29



Λr

ΛR

Figure 2.5: A depiction of the event A�4 (r,R).

Organization The paper is organized as follows. In Section 3 we recall the relationship
between different discrete models and derive a connection between the inverse Kasteleyn
matrix and complex-valued fermionic observables. While some (but not all) of these results
are not completely new, they are scattered around the literature and we therefore review
them here. In Section 4 we derive Theorem 2.1. Section 5.1 is composed of the arguments
leading to Propositions 2.3, 2.5, and 2.9. Sections 6, 7 and 8 are dedicated to the continuum
part of the proof. Section 6 presents more preliminaries on the continuum objects. Section 7
is devoted to the identification of the limit of double random currents. Section 8 is devoted
to the identification of the limit of the XOR-Ising models.
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3 Preliminaries on discrete models

3.1 Mappings between discrete models

In this section we recall the combinatorial equivalences between double random currents,
alternating flows and bipartite dimers established in [27,53]. We will later use them to derive
a version of Dubédat’s bosonization identity [22]. An additional black-white symmetry for
correlators of monomer insertions is established that is not apparent in [22]. The results here
are stated for general Ising models on arbitrary planar graphs G = (V,E) and with arbitrary
coupling constants (Je)e∈E . We focus on the free boundary conditions case and the wired
boundary conditions can be treated analogously, replacing G with G+. We will actually
mostly consider wired boundary conditions on the dual graph G∗ which, as mentioned in
Remark 1.4, one can think of as (G†)+, where G† is the weak dual of G whose vertex set does
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Figure 3.1: One can construct the graphs ~G, Gd and CG locally around each vertex of G.
The weights satisfy y = 2x

1−x2 , w = 2x
1+x2

, z = 1−x2
1+x2

. Here x = xe is the high-temperature

weight equal to tanh(βJe). The edges carrying weight 1 in Gd (resp. in CG) are called short
(resp. roads), and the remaining edges are called long (resp. streets).

not contain the unbounded faces of G.
We start by describing the relevant decorated graphs: the double random current model

on a graph G will be related to the alternating flow model on a directed graph ~G, and the
dimer model on two bipartite graphs Gd and CG. All these graphs are weighted, and their
local structure together with the corresponding edge weights are shown in Fig. 3.1. We now
describe their construction in detail.

Given G, ~G is obtained by replacing each edge e of G by three parallel directed edges
es1, em, es2 such that the orientation of the side (or outer) edges es1 and es2 is opposite to
the orientation of the middle edge em. The orientation of the middle edge can be chosen
arbitrarily.

To obtain Gd from ~G, we replace each vertex v of ~G by a cycle of vertices of even length
which is given by the number of times the orientation of edges in ~G incident on v changes when
going around v. We colour the new vertices black if the corresponding edges are incoming
into v and white otherwise. We then connect the white vertices in a cycle corresponding
to v with the appropriate black vertices in a cycle corresponding to v′, where v and v′ are
adjacent in ~G. We call long all the edges of Gd that correspond to an edge of ~G, and short
the remaining edges connecting the vertices in the cycles.

The last graph CG can be constructed directly from G by replacing each edge of G by a
quadrangle of edges, and then connecting two quadrangles by an edge if the corresponding
edges of G share a vertex and are incident to the same face (see Fig. 3.1). Following [22], we
call streets the edges in the quadrangles and roads those connecting the quadrangles (which
represent cities).

We note that the set of faces U (resp. vertices V ) of G naturally embeds into the set of
faces of ~G, Gd and CG (resp. Gd and CG). We therefore think of U and V as subsets of the set
of faces of the respective decorated graphs (e.g., when we talk about equality in distribution
of the height function on CG and the nesting field on G).
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In the remainder of this section we describe the mappings between the different models
in the following order: In Section 3.1.1, Alternating flows on ~G are mapped by an application
θ to the image by a map ϑ of double random currents on G. In Section 3.1.2, dimers on Gd

are mapped by an application π to alternating flows on ~G. In Section 3.1.3, dimers on Gd

are mapped to dimers on CG. The corresponding statements for wired boundary conditions
can be recovered by replacing G with G+.

The first two maps yield relations between configurations of the associated models, and
the last map is described as a sequence of local transformations (urban renewals) of the
graphs CG or Gd that does not change the distribution of the height function on a certain
subset of the faces of these two graphs.

We first describe relations on the level of distributions on configurations where no sources
or disorders are imposed. Later on (in Section 3.2) we increase the complexity by introducing
sources.

3.1.1 Double random currents on G and alternating flows on ~G

A sourceless alternating flow F is a set of edges of the directed graph ~G satisfying the
alternating condition, i.e., for each vertex v, the edges in F that are incident to v alternate
between being oriented towards and away from v when going around v (see Fig. 3.2). In
particular, the same number of edges enters and leaves v. We denote the set of sourceless
alternating flows on ~G by F∅, and following [53], we define a probability measure on F∅ by
the formula, for every F ∈ F∅,

P∅flow(F ) :=
1

Z∅flow

wflow(F ), (3.1)

where Z∅flow is the partition function of sourceless flows and, if V (F ) denotes the set of vertices
in the graph (V, F ) that have at least one incident edge,

wflow(F ) := 2|V |−|V (F )|
∏
e∈F

xe, (3.2)

with the weights x~e as in Fig. 3.1. We also define the height function of a flow F to be a
function h = hF defined on the faces of ~G in the following way:

(i) h(u0) = 0 for the unbounded face u0,

(ii) for every other face u, choose a path γ connecting u0 and u, and define h(u) to be total
flux of F through γ, i.e., the number of edges in F crossing γ from left to right minus
the number of edges crossing γ from right to left.

The function h is well defined, i.e., independent of the choice of γ, since at each v ∈ V , the
same number of edges of F enters and leaves v (and so the total flux of F through any closed
path of faces is zero).

We are ready to state the correspondence between double random currents and alternating
flows. Consider the map ϑ from ΩΩΩB to the set ΩB of pairs (Eodd, Eeven) of subsets of E with
Eodd of even degree at every vertex in V \B, and odd degree at every vertex in B, obtained
as follows:

ϑ(n) := (nodd,neven) where
nodd is the set of edges e with ne odd,
neven is the set of edges with ne even and strictly positive.
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In what follows we will often identify a current n with the pair (nodd,neven) as it carries all
the relevant information for our considerations.

Also define a map θ : F∅ → Ω∅ as follows. For every F ∈ F∅ and every e ∈ E, consider
the number of corresponding directed edges em, es1, es2 that are present in F . Let nodd ⊆ E
be the set with one or three such present edges, and neven ⊆ E the set with exactly two such
edges, and set

θ(F ) := (nodd,neven).

Denote by θ∗P
∅
flow the pushforward measure on Ω∅. The following result was proved in [27,53].

Lemma 3.1 ([27]). We have θ∗P
∅
flow = ϑ∗P

∅
dcur. Moreover, under this identification the

restrictions to U of the nesting field of double random currents and the height function of the
alternating flows have the same distribution.

Proof. This is a consequence of the fact that the total weight of all alternating flows corre-
sponding to a cluster in the double random current, and whose outer boundary is oriented
clockwise is the same as those oriented counterclockwise (see also the proof of Lemma 3.7).
This corresponds to the fact that the nesting field is defined using symmetric coin flip random
variables εC . Moreover, the sum of these two weights is the same as the weight of the cluster
in the double random current model. The details are provided in [27].

3.1.2 Alternating flows on ~G and dimers on Gd

Consider a weighted graph G. Recall that a dimer cover (or perfect matching) M of G is a
subset of edges such that every vertex of the graph is incident to exactly one edge of M . We
write M(G) for the set of all dimer covers of G. The dimer model is a probability measure
on M(G) which assign a probability to a dimer cover that is proportional to the product of
the edge-weights over the dimer cover.

To each dimer cover M on a bipartite planar finite graph G (implicitly colored in black
and white in a bipartite fashion, one can associate a 1-form fM (i.e. a function defined on
directed edges which is antisymmetric under a change of orientation) satisfying fM ((v, v′)) =
−fM ((v′, v)) = 1 if {v, v′} ∈ M and v is white, and fM ((v, v′)) = 0 otherwise. For a 1-form
f and a vertex v, let df(v) =

∑
v′∼v f((v, v′)) be the divergence of f at v. Note that for a

dimer cover M , dfM (v) = 1 if v is white, and dfM (v) = −1 if v is black. Fixing a reference
1-form f0 with the same divergence, we define the height function h = hM by

(i) h(u0) = 0 for the unbounded face u0,

(ii) for every other face u, choose a dual path γ connecting u0 and u, and define h(u) to be
the total flux of fM − f0 through γ, i.e., the sum of values of fM − f0 over the edges
crossing γ from left to right.

The height function is well defined, i.e. independent of the choice of γ, since fM − f0 is a
divergence-free flow, i.e. d(fM − f0) = 0.

We will write P∅
Gd

for the dimer model measure on Gd with weights as in Fig. 3.1. We

also fix a reference 1-form f0 on Gd given by

• f0((w, b)) = −f0((b, w)) = 1/2 if {w, b} is a short edge and w is white,
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Figure 3.2: Left: A configuration ϑ(n) = (nodd,neven) on a piece of the hexagonal lattice G.
The blue edges represent nodd and the red edges represent neven. The blue and red edges
together form one cluster C . Middle: Two alternating flow configurations on ~G mapped to
ϑ(n) under θ. The two clusters have opposite orientations of the outer boundary. Depending
on this orientation the height function either increases or decreases by one when going from
the outside to the inside of the lower hexagon. This corresponds to two different outcomes
for the label εC in the definition of the nesting field (2.1). Right: Two dimer configurations
on Gd that map to the corresponding alternating flows under π. Note that the parity of the
height function on Gd restricted to the vertices of C and shifted by 1/2 changes whenever the
sign of εC changes. This can be seen from the placement of the dimers on the short edges.
This property is used in the proof of Theorem 2.7. On the other hand the parity of the height
function on the faces of G is independent of εC .
We also note that both π and θ are many-to-one maps.
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• f0((w, b)) = f0((b, w)) = 0 if {w, b} is a long edge.

We now describe a straightforward map π from the dimer covers on Gd to alternating
flows on ~G that preserves the law of the height function. We note that one could carry out
the same discussion and make a connection with double random currents directly, without
introducing alternating flows. However, we find the language of alternating flows particularly
convenient to express some of the crucial steps discussed later on (especially Lemmata 3.7
and 3.8). To this end, to each matching M ∈ M(Gd), associate a flow π(M) ∈ F∅ by
replacing each long edge in M by the corresponding directed edge in ~G. One can check that
this always produces an alternating flow. Indeed, assuming otherwise, there would be two
consecutive edges in F (M) of the same orientation, and therefore the path of short edges
connecting them in a cycle would be of odd length and therefore could not have a dimer
cover, which is a contradiction. Let π∗P

∅
Gd

be the pushforward measure on F∅ under the
map π.

Lemma 3.2 ([27]). We have π∗P
∅
Gd

= P∅flow. Moreover, under this identification, the re-
striction to U of the height functions of the dimer model and alternating flows have the same
distribution.

Proof. This is a consequence of the fact that the reference 1-form vanishes on long edges,
and hence its contribution to the increment of the height function across a long edge of Gd

is equal to zero, and the fact that the weights of the edges of ~G and the long edges of Gd are
the same. Moreover, if a vertex v has zero flow through it, i.e, v ∈ V \ V (F ), then there are
exactly 2 dimer covers of the cycle of short edges of Gd corresponding to v. Since both of
these covers have total edge-weight 1, this accounts for the factor 2|V |−|V (F )| in (3.2).

3.1.3 Dimers on Gd and on CG

We will write P∅CG for the dimer model measure on CG with weights as in Fig. 3.1. The dimer

models onGd and (G∗)d are closely related to the dimer model on CG (as was described in [27])
using standard dimer model transformations called the vertex splitting and urban renewal,
see Fig. 3.3.

Lemma 3.3 ([27]). One can transform Gd and (G∗)d to CG (and the other way around)
using urban renewals and vertex splittings.

Proof. We will describe how to transform Gd to CG. The second part follows since CG is
symmetric with respect to G and G∗.

To this end, note that to each edge e in G, there corresponds one quadrilateral in CG,
and two quadrilaterals in Gd. Given e, choose for the internal quadrilateral of urban renewal
the quadrilateral in Gd with the opposite colors of vertices. Then, split each vertex that
the chosen quadrilateral shares with a quadrilateral corresponding to a different edge of G.
In this way we find ourselves in the situation from the upper left panel in Fig. 3.3. After
performing urban renewal and collapsing the doubled edge, we are left with one quadrilateral
as desired. One can check that the weights that we obtain match those from Fig. 3.1. We
then repeat the procedure for every edge of G. The resulting graph is CG.

35



x1

x2

x3

x4 x′
4

x′
3

x′
2

x′
1

1 1

1 1

1 1x1

x4

x1

x4

x2

x3

x2

x3

Figure 3.3: Urban renewal and vertex splitting are transformations of weighted graphs
preserving the distribution of dimers and the height function outside the modified region.
The weights in urban renewal satisfy x′1 = x3
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Figure 3.4: An example of the correspondence between dimer models on Gd and CG. The
yellow quadrilaterals are transformed using urban renewal moves. The underlying graph G
is a 3× 3 piece of the square lattice.
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w2 1− w2

Figure 3.5: The figure shows the measure preserving mapping of local configurations on Gd

(corresponding to a single edge e of G) to local configurations on the streets of CG under
urban renewal performed on the left-hand side quadrilateral in Gd. The last case involves
additional random choice between two possible configurations. These choices are independent
for local configurations corresponding to different edges of G and the probabilities are as in
the figure with w = 2x/(1 + x2).

A choice of quadrilaterals where urban renewals are applied for a rectangular piece of
the square lattice is depicted in Fig. 3.4. In this way, the XOR-Ising model on the square
lattice is related to a (weighted) dimer model on the square-octagon lattice. In Fig. 3.5, we
illustrate the behaviour of local dimer configurations under one urban renewal performed in
the construction described in the lemma above.

As the reference 1-form for the dimer model on CG we choose the canonical one given by

f0((w, b)) = −f0((b, w)) = P∅CG({w, b} ∈M), (3.3)

where w is a white vertex. Note that this makes the height function centered as all its
increments become centered by definition. This is the same 1-form as used in [11] on the
infinite square-octagon lattice CZ2 . In [45], two crucial properties of f0 were established when
G is an infinite isoradial graph and the Ising model on G is critical. In the next lemma we
show that both of these properties hold for arbitrary Ising weights on general finite planar
graphs.

Lemma 3.4. We have

• P∅CG(e ∈M) = 1/2, if e is a road, i.e., e corresponds to a corner of G,

• P∅CG(e ∈ M) = P∅CG(e′ ∈ M), if e and e′ are two parallel streets corresponding to the
same edge of G (or of the dual G∗).
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In the proof, which is postponed to the end of Section 3.2, we actually compute the
probability from the second item in terms of the underlying Ising measure. However, the
exact value will not be important for our considerations. We note that the first bullet of the
lemma above is the reason why the nesting field with free boundary conditions on G is defined
to be integer-valued and the one with wired boundary conditions on G∗ to be half-integer
valued.

A crucial observation now is that the height function on the faces of Gd corresponding
to the faces and vertices of G is not modified by vertex splitting and urban renewal. This
follows from basic properties of these transformations, and the fact that the reference 1-form
on the short edges of Gd is the same as the one on the roads of CG (by the first item of
the lemma above). Indeed, one can compute the height function on the faces of Gd and CG

corresponding to the faces and vertices of G using only increments across short edges and
roads respectively. This means that the resulting height function on these faces of CG has
the same distribution as the one on Gd. Since CG plays the same role with respect to G∗ as
to G, we immediately get the following corollary.

Corollary 3.5. The height function on CG restricted to the faces and vertices of G is dis-
tributed as the the height functions on Gd and (G∗)d restricted to the faces and vertices of G.
In particular, the height function on CG restricted to the faces of G has the law of the nesting
field of the double random current with free boundary conditions on G, and restricted to the
vertices of G has the law of the nesting field of the double random current with wired boundary
conditions on G† (or free boundary conditions on G∗).

This observation is at the heart of the proof of the master coupling for double random
currents and the XOR-Ising model from Theorem 2.7. However, one has to be careful since
there is loss of information between the dimer model on Gd and the one on CG. Indeed, a
dimer configuration on CG does not contain information on where the even nonzero values
of the double random current are. To recover it, one needs to add additional randomness in
the form of independent coin flips for each edge of G with a proper success probability.

Proof of Theorem 2.7. We will use a procedure reverse to that from the proof of Lemma 3.3.
This procedure induces a measure preserving mapping between local configurations on CG
and Gd, see Fig. 3.6, where in certain cases additional randomness is used to decide on the
exact configuration on Gd.

As mentioned, the graph CG plays a symmetric role with respect to G and G∗. Hence,
taking the Kramers–Wannier dual parameters x∗e = (1− xe)/(1 + xe) and rotating the local
configuration on CG by π/2, one can use the same mapping from Fig. 3.6 to generate local
dimer configurations on (G∗)d that will correspond to dual random current configurations.
Recall that part of our aim is to couple the double random current on G with its dual on
G∗ so that no edge and its dual are open at the same time. The idea is to first sample a
dimer configuration on CG, and then using the rules from Fig. 3.6 choose, possibly introducing
additional randomness, the dimer configurations on both Gd and (G∗)d. The desired property
of the coupling will follow from the way we use the additional randomness for Gd and (G∗)d.

We now explain this in more detail. In the coupling between double random currents and
dimers on Gd, an edge in the current is closed (or has value zero) if and only if there is no
long edge present in the corresponding local dimer configuration. From Fig. 3.6, we see that
the only possibility to have nonzero values of double currents for both a primal edge e and its
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Figure 3.6: The reverse mapping to that in Fig. 3.5. Again, urban renewal is performed on
the left-hand side quadrangle of the local configuration on Gd. Whenever there is ambiguity,
we use additional randomness which is independent for each local configuration and with

probabilities as in the figure with s = 2(1−x2)
3+x4

. These probabilities are simply obtained

from Fig. 3.5 using the definitions of the weights in both dimer models on CG and Gd and
elementary conditional probability computations.

dual e∗ is when the quadrangle in CG that corresponds to both e and e∗ has no dimer in the
dimer cover. In that case we have a probability of 2x2

e/(1 + x2
e) to get a non-zero (and even)

value of the primal double current and a probability of 2(x∗e)
2/(1 + (x∗e)

2) to get a non-zero
(and even) value of the dual double current. However, since these choices are independent of
the possible choices for other local configurations, and since

2x2
e

1 + x2
e

+
2(x∗e)

2

1 + (x∗e)
2 = 1− 2xe(1− xe)

1 + x2
e

< 1

we can couple the results so that the primal and dual currents are never both open (nonzero)
at e. Together with Theorem 2.6, this establishes Properties 1, 2 and 5 from the statement
of the theorem.

We now focus on Property 3. Note that the spins τ † defined by the interfaces of odd
current in n satisfy

τ †u = (−1)H(u) (3.4)

for u ∈ U , where H is the height function on CG. By Corollary 3.5 we already know that
H restricted to U has the law of the height function on (G∗)d restricted to U . From the
relationship between the double random current n† on G∗ and the alternating flow model on
~G∗, one can see that the parity of this height function at a face u changes with the change
of the orientation of the outer boundary of the cluster of n† containing u (see Fig. 3.2 for a
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Figure 3.7: Corner insertions in the relevant models can be realized by considering additional
edges connecting a vertex and a neighbouring face.

dual example). Therefore (−1)H(u) is distributed as an independent assignment of a sign to
each cluster of n†. This yields Property 3. A dual argument for

τv = i(−1)H(v) (3.5)

with v ∈ V , and i the imaginary unit, yields the dual correspondence. Here, the factor i
appears due to the fact that the height function takes half-integer values on V .

Finally, (3.4) and (3.5) together imply Property 5.

We leave it to the interested reader to check that the resulting coupling of the primal
and dual double random current model is the same as the one described in [52] (where no
connection with the dimer model is used).

3.2 Disorder and source insertions

It will be important for our analysis to introduce the so-called sources in dimers, alternating
flows, and double random currents, and to see how they relate to order-disorder variables in
the Ising model.

A corner c = (u, v) of a planar graph G is a pair composed of a face u = u(c) (also
seen as a vertex of the dual graph) and a vertex v = v(c) bordering u. One can visualize
corners as segments from the center of the face u to the vertex v (see Fig. 3.7). In this
section we discuss correlations of disorder insertions, by which we mean modifications of the
state space of the appropriate model that are localized at the corners of G, and describe
their mutual relationships. In what follows, consider two corners ci and cj , and a simple dual

path γ connecting u(ci) to u(cj). For a collection of edges H of G, ~G, Gd or CG, we define
sgnγ(H) = −1 if the number of edges in H crossed by γ is odd and sgnγ(H) = 1 otherwise.

In the following subsections we introduce correlation functions of corner insertions in the
relevant models and relate them to each other.
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3.2.1 Kadanoff–Ceva fermions via double random currents

The two-point correlation function of Kadanoff–Ceva fermions is defined by

〈χciχcj 〉 :=
1

Z∅hT

∑
η∈E{v(ci),v(cj)}

sgnγ(η)
∏
e∈η

xe, (3.6)

where Z∅hT :=
∑

η∈E∅
∏
e∈η xe. Here, E∅ is the collection of sets of edges η ⊆ E such that

each vertex in the graph (V, η) has even degree, and E{v(ci),v(cj)} is the collection of sets of
edges such that each vertex has even degree except for v(ci) and v(cj) that have odd degree.
Note that the sign of this correlator depends (in this notation, implicitly) on the choice of γ.
However, its amplitude depends only on the corners ci and cj .

The next lemma was proved in [6, Lemma 6.3]. It expresses Kadanoff–Ceva correlators
in terms of double currents for which u(ci) is connected to u(cj) in the dual configuration.
Below, for (nodd,neven) ∈ ΩB, let

wdcur(nodd,neven) :=
∑

n∈ΩΩΩB :ϑ(n)=(nodd,neven)

w(n).

For a current n, recall the definition of n∗ from Section 2.6 and for two faces u and u′, let

u
n∗←→ u′ mean that u is connected to u′ in n∗, i.e., that u and u′ belong to the same connected

component of the graph (U,n∗). We stress the fact that the identity below involves the weight
wdcur and not the single current weight w.

Lemma 3.6 (fermions via double currents [6]). We have

〈χciχcj 〉 =
1

Z∅dcur

∑
(nodd,neven)∈Ω{v(ci),v(cj)}

sgnγ(nodd)wdcur(nodd,neven)1{u(ci)
n∗←→ u(cj)}.

3.2.2 Sink and source insertions in alternating flows

Consider the graph ~G with two additional directed edges ci = (u(ci), v(ci)) and −cj =
(v(cj), u(cj)), and let Fci,−cj be the set of alternating flows on this graph that contain both
ci and −cj . By an alternating flow here we mean a subset of edges of the extended graph

that satisfies the alternating condition at every vertex of ~G. The weights of ci and −cj are
set to 1. With γ defined as above, introduce

Zγflow(ci,−cj) :=
∑

F∈Fci,−cj
sgnγ(F )wflow(F ).

Here, ci plays the role of the source and −cj is the sink of the flow F .
Recall that θ : F∅ → Ω∅ is the measure preserving map sending sourceless alternating

flows on ~G to images by ϑ of sourceless double current configurations on G. With a slight
abuse of notation, we also write θ for the analogous map from Fci,−cj to the image by ϑ of
the set Ω{v(ci),v(cj)} of currents on G with sources at v(ci) and v(cj) (for currents there is no
distinction between sources and sinks).

The next lemma is closely related to [53, Theorem 4.1].
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Lemma 3.7 (Symmetry between sinks and sources). We have

Zγflow(ci,−cj) = Zγflow(cj ,−ci).

Proof. Note that the flow’s weights on ~G are invariant under the reversal of direction of the
flow, i.e., the weights of the three directed edges es1, em, es2 of ~G corresponding to a single
edge e of G satisfy xes1 + xes2 + xes1xes2xem = xem by construction. Hence, for a fixed
(nodd,neven) ∈ Ω{v(ci),v(cj)}, we have∑

F∈Fci,−cj : θ(F )=(nodd,neven)

wflow(F ) =
∑

F∈Fcj ,−ci : θ(F )=(nodd,neven)

wflow(F ).

We finish the proof by summing both sides of this identity over (nodd,neven) ∈ Ω{v(ci),v(cj)},
and using the fact that sgnγ(F ) depends only on θ(F ).

The next result is a direct analog of Lemma 3.6 with an additional factor of 1/2 that
corresponds to the fact that the connected component of the flow that connects ci to −cj has
a fixed orientation.

Lemma 3.8 (Dual connection in alternating flows). We have

θ(Fci,−cj ) = {(nodd,neven) ∈ Ω{v(ci),v(cj)} : u(ci)
n∗←→ u(cj)},

and moreover

Zγflow(ci,−cj) = 1
2

∑
(nodd,neven)∈Ω{v(ui),v(cj)}

sgnγ(nodd)wdcurr(nodd,neven)1{u(ci)
n∗←→ u(cj)}.

Proof. We first argue that for each (nodd,neven) = θ(F ) with F ∈ Fci,−cj , we have that

u(ci)
n∗←→ u(cj). This follows from topological arguments and the alternating condition for

flows. Indeed, assume by contradiction that there is a cycle of edges in F separating u(ci)
from u(cj), and choose the innermost such cycle surrounding u(ci). Consider the vertex v of
this cycle that is first visited on a path from ci to −cj . The alternating condition implies
that the edges of the cycle on both sides of v should be oriented away from v. Following
that orientation around the cycle, we must arrive at another vertex v′ of the cycle where
both incident edges are oriented towards v′. That is in contradiction with the alternating
condition and the fact that the cycle is minimal. The fact that the image of the map is

{u(ci)
n∗←→ u(cj)} follows from the same arguments as in [53, Lemma 5.4].

The second part of the statement follows from the proof of [53, Theorem 4.1] or [27,
Theorem 1.7] (the weights of flows in [53] are the same as ours up to a global factor). The
multiplicative constant 1/2 is a consequence of the fact that the orientation of the cluster
containing the corners is fixed to one of the two possibilities, and in the double random
current measure there is an additional factor of 2 for each cluster (see [53, Theorem 3.2]).

Corollary 3.9. We have

〈χciχcj 〉 = 2
Zγflow(ci,−cj)

Zγflow

= 2
Zγflow(cj ,−ci)

Zγflow

.

Proof. This follows directly from Lemmata 3.6 and 3.8.

42



Figure 3.8: Behaviour of corner monomer insertions under urban renewal. Insertion of a
monomer is modelled by the addition of edges with weight one into the dimer model: above
(resp. below), the insertion of a black (resp. white) monomer at the corner c = uv with a dis-
order operator at u. The green edges crossing γ are assigned negative weights. Urban renewal
is applied to the yellow quadrilaterals on the left-hand side yielding the yellow quadrilaterals
on the right-hand side. Note that the colour of the monomer insertions on the left-hand and
right-hand sides agree.

3.2.3 Monomer insertions on Gd and CG

We identify the faces and vertices of the graphs G and ~G with the corresponding subsets of
the faces of the dimer graphs Gd and CG. We say that a vertex of Gd or CG is a corner
(vertex) corresponding to c = vu if it is incident both on the vertex v and the face u of G in
this identification.

Lemma 3.10 (Symmetry between white and black corners). Let bi and wi (resp. bj and wj)
be a black and white corner vertex of Gd corresponding to the corner ci (resp. cj). If there
is no such vertex of the chosen colour, we modify Gd by splitting the corner vertex of the
opposite colour (using the vertex splitting operation from Figure 3.3). Then

Zγ
Gd

(bi, wj) = Zγ
Gd

(wi, bj) = Zγflow(ci, cj).

Proof. By the definition of the measure preserving map F∗ between dimers and alternating
flows, a corner monomer insertion in dimers is a source or sink insertion in alternating flows,
which yields

Zγflow(ci, cj) = Zγ
Gd

(bi, wj).

The statement then follows immediately from Lemma 3.7.

Lemma 3.11 (Monomer insertions in Gd and CG). Let b and w be respectively black and
white corner vertices of Gd, and let b̃ and w̃ be the corresponding black and white vertices
of CG. Then

Zγ
Gd

(b, w) = ZγCG(b̃, w̃).
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Proof. We use urban renewal as in Fig. 3.8 to transform Gd with monomer insertions to
CG with monomer insertions. Note that here we use urban renewal with some of the long
edges having negative weight. However, this is not a problem since the opposite edges in a
quadrilateral being transformed by urban renewal always have the same sign, which results
in a non-zero multiplicative constant for the partition functions. The resulting weights of CG
are negative if and only if the edge crosses γ. This implies the claim readily.

We finally combine the previous results to obtain the following identity. We note that
it can also be derived using the approach of [22] after taking into account the symmetry of
the underlying six-vertex model (that we do not discuss here and that is also not discussed
in [22]).

Corollary 3.12. In the setting of Lemma 3.10, we have

〈χciχcj 〉 = 2
ZγCG(wi, bj)

ZCG
= 2

ZγCG(wj , bi)

ZCG
.

Proof. This follows from Lemmata 3.11 and 3.10, as well as Corollary 3.9.

The final item of this section is the proof of Lemma 3.3 which explicitly computes the
canonical reference 1-form (3.4) on CG in terms of the underlying Ising measures.

Proof of Lemma 3.3. By the corollary above, for a street {w, b} of CG corresponding to an
edge e = {v, v′} of G, we have

P∅CG({w, b} ∈M) =
2x

1 + x2

ZγCG(w, b)

ZCG
=

x

1 + x2
〈χcχc′〉, (3.7)

where x = xe = tanhβJe is the high-temperature Ising weight, 2x
1+x2

is the weight of the edge
{w, b} in the dimer model on CG as in Fig. 3.1, and where c and c′ are the two corners of G
corresponding to the two roads of CG that are incident on w and b respectively. Indeed, the
first identity is a consequence of the fact that in this case the path γ can be chosen empty
and therefore the numerator ZγCG(w, b) is actually the unsigned partition function of dimer
covers of the graph where w and b are removed.

We now compute 〈χcχc′〉 in terms of the Ising two-point function µG[σvσv′ ]. To this end,
recall that E∅ is the collection of sets of edges η ⊆ E such that each vertex in the graph (V, η)
has even degree, and E{v,v′} is the collection of sets of edges such that each vertex has even
degree except for v and v′ that have odd degree. Let

Z+ :=
∑
η∈E∅
e∈η

∏
e′∈η

xe′ , and Z− :=
∑
η∈E∅
e/∈η

∏
e′∈η

xe′ ,

and Z = Z∅hT. By definition (3.6) of Kadanoff–Ceva fermions with γ empty, the high-
temperature expansion of spin correlations, and the fact that η 7→ η4{e} is a bijection
between E∅ and E{v,v′}, (3.7) gives

P∅CG({w, b} ∈M) =
x

1 + x2

1

Z
(x−1Z+ + xZ−) =

x

1 + x2
µG[σvσv′ ]. (3.8)
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The same argument applied to the other street {w′, b′} corresponding to the same edge e
yields P∅CG({w, b} ∈ M) = P∅CG({w′, b′} ∈ M) as the last displayed expression depends only
on e. Moreover by the Kramers–Wannier duality and the same computation for the dual
Ising model on the dual graph G∗, we have

P∅CG({w, b′} ∈M) = P∅CG({w′, b} ∈M) =
x∗

1 + (x∗)2
µG∗ [σuσu′ ] =

1− x2

2(1 + x2)
µG∗ [σuσu′ ],

(3.9)

where x∗ := (1− x)/(1 + x) is the dual weight, and where {u, u′} is the dual edge of {v, v′}.
This yields the second bullet of the lemma.

To prove the first bullet of the lemma, we need to relate the dual energy correlators
µG[σvσv′ ] and µG∗ [σuσu′ ] with each other. Interpreting the graphs in E∅ as interfaces between
spins of different value on the vertices of G∗, and using the low-temperature expansion we
get

µG∗ [σuσu′ ] =
Z− − Z+

Z
.

This together with the second equality of (3.8), and the fact that Z+ + Z− = Z, yields

2xµG[σvσv′ ] + (1− x2)µG∗ [σuσu′ ] = 1 + x2.

Therefore adding (3.8) and (3.9) gives

P∅CG({w, b} ∈M) + P∅CG({w, b′} ∈M) = 1/2.

This means that the probability of seeing the road containing w in the dimer configuration
is 1/2. By symmetry this is true for all roads of CG. This finishes the proof.

3.3 Kasteleyn theory and complex-valued fermionic observables

In this section, we introduce a Kasteleyn orientation which will be directly related to complex-
valued observables introduced by Chelkak and Smirnov [19].

3.3.1 A choice of Kasteleyn’s orientation

A Kasteleyn weighting of a planar bipartite graph is an assignment of complex phases ςe ∈ C
with |ςe| = 1 to the edges of the graph satisfying the alternating product condition meaning
that for each cycle e1, e2, . . . , e2k in the graph, we have

k∏
i=1

ςe2i−1ς
−1
e2i = (−1)k+1. (3.10)

Note that it is enough to check the condition around every bounded face of the graph.
To define an explicit Kasteleyn weighting for CG, consider the diamond graph of G, i.e.,

the graph whose vertices are the vertices and faces of G, and whose edges are the corners
of G (see Fig. 3.9). Recall that the edges of CG that correspond to the corners of G are called
roads and the remaining edges (forming the quadrangles) are called streets. To each street
there is assigned an angle θe between the two neighbouring corners in the diamond graph.
We now define
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Figure 3.9: A piece of the primal graph G and its dual G∗ (black solid and dashed edges
respectively) and the corresponding diamond graph (blue edges) used to define the Kasteleyn
weighting. Each street e of CG can be identified with a directed edge of G or G∗. Then,
the angle θe is the angle in the diamond graph at the origin of this directed edge as depicted
in the figure. By definition, these angles sum up to 2π around every vertex and face of G,
and around every face of the diamond graph. This guarantees that the associated weighting
satisfies the Kasteleyn condition.

• ςe = −1 if e is a road,
• ςe = exp( i

2θe) if e is a street that crosses a primal edge of G,
• ςe = exp(− i

2θe) if e is a street that crosses a dual edge of G∗.

That ς is a Kasteleyn orientation of CG follows from the fact that the angles sum up to 2π
around every vertex and face of G, and around every face of the diamond graph. Note that
if G is a finite subgraph of an embedded infinite graph Γ, then one can as well use the angles
from the diamond graph of Γ since, as already mentioned, one needs to check condition (3.10)
only on the bounded faces of CG. In particular, for subgraphs of the square lattice with the
standard embedding, we will take θe = π/2 for all edges e.

Fix a bipartite coloring of CG, and let K = KCG be a Kasteleyn matrix for a dimer
model on the bipartite graph CG with the weighting as above, i.e., the matrix whose rows
are indexed by the black vertices and the columns by the white vertices, and whose entries
are

K(b, w) := ςbwxbw

if bw is an edge of CG and K(b, w) = 0 otherwise, where b and w are respectively black and
white vertices, and x is the edge weight for CG as in Fig. 3.1.

We assume that the set of corners of G comes with a prescribed order c1, . . . , cm, and we
order the rows and columns of K according to this order (for each white and black vertex of
CG, there is exactly one corner of G that the vertex corresponds to). We denote by bi and wi
the black and white vertex of CG corresponding to ci.

The following lemma is a known observation.

Lemma 3.13. We have that

K−1(wi, bj) = iκγ
ZγCG(wi, bj)

ZCG
, (3.11)
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where γ is a dual path connecting a face ui adjacent to bi with a face uj adjacent to wj, κγ
is a global complex phase depending only on γ given by

κγ = (−1)i+j+1+N sgn(π)i
m−1∏
k=1

ς̃b̃kw̃π(k) , (3.12)

and ZγCG(bi, wj) is the partition function of dimers on CG with bi and wj removed, and with
negative weights assigned to the edges crossing γ.

The factor i is due to an arbitrary choice of κγ which is made for later convenience. We
will now justify (3.11) and explicitly identify the complex phase κγ in this expression.

Proof. To compute the inverse matrix, we use the cofactor representation as a ratio of deter-
minants:

K−1(wi, bj) = (−1)i+j
detKbj ,wi

detK
,

where Kwi,bj =: K̃ is the matrix K with the j-th row and i-th column removed.
By definition of the determinant, we have

detK =
∑
π∈Sm

sgn(π)

m∏
k=1

ςbkwπ(k)xbkwπ(k) .

In this sum, only terms where π corresponds to a perfect matching on CG are nonzero.
Moreover, by a classical theorem of Kasteleyn [40], the complex phase sgn(π)

∏m
i=1 ςbiwπ(i) is

constant for such π. In particular, we can take π to be the identity. Since ςbiwi = −1, we get
that

detK = (−1)NZCG ,

where N is the number of corner edges in CG.
We now want to interpret K̃ as a Kasteleyn matrix for the graph C̃G obtained from CG

by removing the vertices wi and bj . To this end, if wi and bj are not incident on the same
face ui = uj , we need to introduce a sign change to the Kasteleyn weighting along a dual
path γ which connects ui to uj . We do it as follows. Define modified weights ς̃ and x̃ by
ς̃e = −ςe (resp. x̃e = −xe), if e is crossed by γ, and ς̃e = ςe (resp. x̃e = xe) otherwise. Then
ςexe = ς̃ex̃e, and hence K̃(b, w) = ς̃bwx̃bw if bw is an edge of C̃G, and K̃(b, w) = 0 otherwise.
We leave it to the reader to verify that ς̃ is indeed a Kasteleyn weighting for C̃G.

We can therefore again apply Kasteleyn’s theorem to obtain

det K̃ =
∑

π∈Sm−1

sgn(π)
m−1∏
k=1

ς̃b̃kw̃π(k) x̃bkwπ(k) = κ̃γZ
γ
CG

(wi, bj),

where b̃1, . . . , b̃m−1 (resp. w̃1, . . . , w̃m−1) is an order preserving renumbering of the black (resp.
white) vertices where bj (resp. wi) is removed. Again,

κ̃γ = sgn(π)

m−1∏
k=1

ς̃b̃kw̃π(k)

is a constant complex factor independent of the permutation π defining a perfect matching
of C̃G. This justifies (3.11).
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Figure 3.10: An illustration of the proof of Lemma 3.14 in the case where G is a piece of the
square lattice. The green lines represent corners ci and cj , the red lines represent the primal
path ρ from v(ci) to v(cj), and the blue lines show the dual path γ from u(cj) to u(ci). The
red vertices wi and bj are removed in the graph CG̃. The matching Mρ corresponding to ρ
contains the orange streets and all remaining roads. The dashed (resp. solid) orange edges
carry a phase exp( iπ

4 ) (resp. exp(− iπ
4 )) in the original Kasteleyn weighting ς of CG. The

orange edge crossed by γ gets an additional −1 sign in the Kasteleyn weighting ς̃ of C̃G.

We now proceed to giving κγ a concrete representation in terms of the winding angle
of γ. To this end, we first need to introduce some complex factors. We follow [17] and for
each directed edge or corner e, we fix a square root of the corresponding direction in the
complex plane and denote by ηe its complex conjugate. Recall that we always assume that
a corner c is oriented towards its vertex v(c), and we write −c whenever we consider the
opposite orientation. For two directed edges or corners e, g that do not point in opposite
directions, we define ∠(e, g) to be the turning angle from e to g, i.e., the number in (−π, π)
satisfying

e−i∠(e,g) = (ηeηg)
2.

Lemma 3.14. Let ci, cj, and γ be as above. Define γ̃ to be the extended path starting at
−cj, following γ, and ending at ci. Then,

κγ = exp( i
2wind(γ̃)),

where wind(γ̃) is the total winding angle of the path γ̃, i.e., the sum of all turning angles
along the path.

Proof. Let ρ be a simple primal path starting at v(ci) and ending at v(cj), and let ρ̃ be the
extended path that starts at ci, then follows ρ, and ends at −cj . We will define a perfect
matching Mρ of C̃G that corresponds to ρ in a natural way (see Fig. 3.10). Note that there is
a unique sequence of streets Sρ such that the first edge contains bi and the last edge contains
wj , and where all the edges are directly to the right of the oriented path ρ̃ (the orange edges
in Fig. 3.10). We define Mρ to contain Sρ and all the remaining roads denoted by Rρ.
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Figure 3.11: An illustration of the proof of (3.13). The path ρ goes from ci to −cj , and is
composed of the two red edges. The orange edges represent Sρ.

Moreover, let ` be the loop (closed path) which is the concatenation of ρ̃ and γ̃. We claim
that ∏

bw∈Sρ

ς̃bw = (−1)t(`)
∏

bw∈Sρ

ςbw = (−1)t(`)+1i exp(− i
2wind(ρ̃)), (3.13)

where t(`) is the number of self-crossings of `. Indeed, the first identity follows since the
self-crossings of ` only come from a crossing between γ and ρ, and each such edge gets an
additional −1 factor in the Kasteleyn weighting σ̃. We now argue for the second inequality by
inspecting the contribution of the phases ς at each turn of ρ̃. To this end we consider all the
corners adjacent to ρ. We denote by αk (resp. α∗k), k = 1, 2, . . . , the unsigned angles between
two consecutive corners that share a vertex (resp. a face) of G, and by βk we denote the
angles between the edges of ρ and the corners (see Fig. 3.11). Note that there is exactly |ρ|
angles of type α∗, and 2|ρ| angles of type β (there can be more angles of type α). Moreover,
α∗k = π − β2k−1 − β2k for each k ∈ {1, . . . , |ρ|}. Finally, the sum of all angles of type α and
β around a vertex of G is by definition equal to π plus the turning angle of ρ at that vertex.
Writing A (resp. B) for the sum of all angles of type α (resp. β), and using the definition
of ς, we find∏

bw∈Sρ

ςbw =
∏
k

e−
iαk
2
∏
k

e
iα∗k
2 = e−

i
2 (A+B−|ρ|π) = e−

i
2 (wind(ρ̃)+π) = −i exp(− i

2wind(ρ̃)),

which justifies (3.13).
On the other hand, a classical fact due to Whitney [80] (see also [17, Lemma 2.2]) says

that

exp( i
2wind(`)) = (−1)t(`)+1. (3.14)

Factorizing the left-hand side into the contributions coming from ρ̃ and γ̃, we get

exp( i
2wind(`)) = κγ exp( i

2wind(ρ̃)).
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Combining with (3.13) we arrive at∏
bw∈Mρ

ς̃bw =
∏

bw∈Sρ

ς̃bw
∏

bw∈Rρ

ς̃bw = (−1)|Rρ|iκγ ,

where the second equality holds true since roads have complex phase ς = −1. On the other
hand, by (3.12) we have

κγ = (−1)i+j+1+N sgn(π)i
m−1∏
k=1

ς̃bkwπ(k) = (−1)i+j+1+N sgn(π)i
∏

bw∈Mρ

ς̃bw,

where π ∈ Sk−1 is the permutation defining the matching Mρ, and N is the number of all
corner edges in CG. Therefore to finish the proof, it is enough to show that

sgn(π) = (−1)i+j+N+|Rρ|. (3.15)

To this end, first note that Mρ naturally defines a bijection π̃ of the set of corners of G with
the two corners ci and cj identified as one corner, called from now on c̃, where π̃(c) = c′

if the black vertex corresponding to c is connected by an edge in Mρ to the white vertex
corresponding to c′. This bijection can be thought of as a permutation of {1, . . . , k − 1}
where the index corresponding to c̃ is m − 1, and where the first m − 2 indices respect the
original order on the remaining corners of CG. Clearly π̃ has only one nontrivial cycle whose
length is |Sρ|+ 1, and hence sgn(π̃) = (−1)|Sρ|. Without loss of generality, let j > i and for
an index l ∈ {1, . . . , k− 1}, let pl ∈ Sk−1 be the permutation such that pl(l) = k− 1 and that
does not change the order of the remaining indices. Note that sgn(pl) = (−1)k−1−l as pl is a
composition of k − 1 − l transpositions. One can check that π = p−1

i π̃pj−1, and as a result
sgn(π) = (−1)i+j−1+|Sρ|. To show (3.15) and finish the proof, we count the roads whose both
endpoints are covered by a street in Sρ, to get that N = |Sρ|+ 1 + |Rρ|.

All in all, from (3.11) together with Corollary 3.12 we obtain the following statement.

Corollary 3.15. We have

K−1(wi, bj) = 1
2 iκγ〈χciχcj 〉, (3.16)

where the complex phase κγ is as in Lemma 3.14.

3.3.2 Complex-valued fermionic observables

In this section we rewrite 〈χciχcj 〉, and hence the right-hand side of (3.16), in terms of
complex-valued fermionic observables of Chelkak–Smirnov [19], and Hongler–Smirnov [38].
This correspondence is well-known (and can be e.g. found in [17]) but we choose to present
the details for completeness of exposition. In the next section, we will use it together with
the available scaling limit results to derive the scaling limit of K−1 for the critical model on
CDδ .

We first define the complex version of the Kadanoff–Ceva observable for two corners ci
and cj by

f(ci, cj) :=
1

Z∅hT

∑
η∈Ev(ci),v(cj)

exp(− i
2wind(ρη))

∏
e∈η

xe, (3.17)

50



where wind(ρη) is again the total winding angle of the path ρη, i.e. the sum of all turning
angles along the path, and where ρη is a simple path contained in η ∪ {ci, cj} that starts at
ci and ends at −cj , and is defined as follows: for each vertex v of degree larger than two in
η, one connects the edges around v into pairs in a non-crossing way, thus giving rise to a
collection of non-crossing cycles Cη and a path from ci to −cj that we call ρη.

It is a standard fact that the definition of f(ci, cj) does not depend on the way the
connections at each vertex of η are chosen (as long as they are noncrossing). Moreover, for
all η ∈ Ev(ci),v(cj), we have

−κγ exp(− i
2wind(ρη)) = sgnγ(η), (3.18)

where as before, γ is a fixed dual path connecting u(ci) and u(cj), and κγ = exp( i
2wind(γ̃)),

with γ̃ being the path starting at −cj , then following γ, and ending at ci. To justify this
identity, we consider the loop ` which is the concatenation of ρη and the path γ̃, and write

exp(− i
2wind(`)) = κγ exp(− i

2wind(ρη)).

We then again use Whitney’s identity (3.14) and the fact that the collection of cycles Cη
must, by construction, cross γ an even number of times (since Cη does not cross ρη, and Cη
crosses ` an even number of times for topological reasons). This justifies (3.18) and implies
that

〈χciχcj 〉 = −κγf(ci, cj),

which together with Corollary 3.15 gives the following proposition.

Proposition 3.16. We have

K−1(wi, bj) = − i
2f(ci, cj). (3.19)

To make the connection with the scaling limit results of [38], we still need to introduce
an observable that is indexed by two directed edges of G instead of two corners. To this
end, for each edge e of G, let ze be its midpoint. Also, for a directed edge e = (v1, v2), let
h(e) be the half-edge {ze, v2}, let −e = (v2, v1) be its reversal, and let ē = {v1, v2} be its
undirected version. Moreover, for two directed edges e = (v1, v2) and g = (ṽ1, ṽ2), let Ee,g be
the collections of edges η̃ ∈ Ev2,ṽ1 that do not contain ē and ḡ. We define

f(e, g) :=
1

Z∅hT

∑
η̃∈Ee,g

exp(− i
2wind(ρη̃))

∏
e∈η̃

xe,

where ρη̃ is a simple path in η̃∪{h(e), h(−g)} that starts at ze and ends at zg, and is analogous
to ρη from (3.17). Note that the winding of ρη̃ is constant (independent of η̃) modulo 2π and
equal to ∠(e, g), and therefore

f(e, g) ∈ ηeηgR. (3.20)
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4 Proof of Theorem 2.1

Let D be a bounded simply connected domain, and let Dδ be an approximation of D by δZ2.
We consider the critical double random current model with free boundary conditions on Dδ,
and the corresponding dimer model on Dubédat’s square-octagon graph CDδ . We call U δ

and V δ the set of faces of CDδ that correspond to the faces and vertices of Dδ respectively.
In this section we show that the moments of the associated height function hδ converge to
the moments of 1√

π
times the Dirichlet GFF.

4.1 Scaling limit of inverse Kasteleyn matrix

We start by establishing the scaling limit of the inverse Kasteleyn matrix on CDδ . This is
crucial for the computation of the moments of the height function that is done in the next
section.

Our method is to use Proposition 3.16 obtained in the previous section, as well as the
existing scaling limit results for discrete s-holomorphic observables in the Ising model [18,38].
It is important to note that for the purpose of proving the main conjecture of Wilson, we need
to work with continuum domains D with an arbitrary (possibly fractal) boundary. Therefore,
we state a generalized version of the scaling limit results of Hongler and Smirnov [38] for the
critical fermionic observable with two points in the bulk of the domain. Their result, as
stated, is valid only for domains whose boundary is a rectifiable curve (see also [37]). Even
though the stronger result that we need is most likely known to the experts, for the sake of
completeness, we will outline its proof, which is a direct consequence of the robust framework
of Chelkak, Hongler and Izyurov [18] that was used to establish scaling limits for critical spin
correlations.

From now on, we assume that the observables are critical, i.e., the weight xe is constant

and equal to xc =
√

2− 1 so that
∏
e∈η xe = x

|η|
c . Also, we define

f(e, zg) := xc(f(e, g) + f(e,−g)), (4.1)

which is the observable of Hongler and Smirnov [38] (when e is a horizontal edge pointing to
the right) that is indexed by a directed edge e and a midpoint of an edge zg. The next lemma
relates this observable to the corner observable in a linear fashion. This type of identities is
well-known (see e.g. [17]) and is closely related to the notion of s-holomorphicity introduced
by Smirnov [77] for the square lattice, and generalized by Chelkak and Smirnov [19], and
Chelkak [13,16]. We omit the proof.

Lemma 4.1. Let ci and cj be two corners that do not share a vertex, and let e and g be
directed edges incident to v(ci) and v(cj) respectively. Then

f(ci, cj) =
1√
2

∑
e′∈{e,−e}

(
1 + (ηciηe′)

2
)(
f(e′, zg)− (ηe′ηcj )

2f(e′, zg)
)
.

We also need to introduce the continuum counterparts of the discrete holomorphic ob-
servables. To this end, let D ( C be a simply connected domain different from C, and
let ψw = ψDw be the unique conformal map from D to the unit disk with ψw(w) = 0 and
ψ′w(w) > 0. For w, z ∈ D, we define

fD− (w, z) :=
1

2π

√
ψ′w(w)ψ′w(z) and fD+ (w, z) :=

1

2π

√
ψ′w(w)ψ′w(z)

1

ψw(z)
.
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Lemma 4.2 (Conformal covariance of fD± ). Let ϕ : D → D′ be a conformal map. Then

fD− (w, z) = ϕ′(w)
1
2ϕ′(z)

1
2 fD

′
− (ϕ(w), ϕ(z)),

fD+ (w, z) = ϕ′(w)
1
2ϕ′(z)

1
2 fD

′
+ (ϕ(w), ϕ(z)).

Moreover, for the upper half-plane H, we have

fH− (w, z) =
i

2π(z − w)
and fH+ (w, z) =

1

2π(z − w)
.

The proof is an easy computation and is omitted.
We now proceed to the generalization of [38, Theorem 8] mentioned at the beginning of

the section. In the proof we will very closely follow the proof of [18, Theorem 2.16] dealing
with the convergence of discrete s-holomorphic spinors.

Theorem 4.3. Let D ( C be a bounded simply connected domain, and let Dδ approximate
D as δ → 0. Fix w, z ∈ D, and let e = eδ and g = gδ be edges of Dδ whose midpoints converge
to w and z respectively as δ → 0. Then

f δ(e, zg) = δ
(
fD− (w, z) + η2

ef
D
+ (w, z) + o(1)

)
as δ → 0,

where f δ is the observable from (4.1) defined on Dδ. Moreover the convergence is uniform
on compact subsets of {(w, z) ∈ D2 : w 6= z}.

Before giving a sketch of the proof of this theorem, we state a corollary that will be
convenient for us when computing moments of the height function in the next section.

Corollary 4.4. Consider the setting from the lemma above and let ci = cδi and cj = cδj be

two corners of Dδ whose vertices converge to w and z respectively. Then

K−1(wi, bj) = − 1√
2
δi
(
fD− (w, z)− η2

ciη
2
cjf

D
− (w, z) + η2

cif
D
+ (w, z)− η2

cjf
D
+ (w, z) + o(1)

)
,

where K−1 is the inverse Kasteleyn matrix on CDδ .

Again, it is a simple computation and we omit the proof here.

Sketch of proof of Theorem 4.3. Based on the scaling limit results of Hongler–Smirnov [38],
we first argue that the statement holds true for a domain D with a smooth boundary. Indeed,
in [38] it is assumed that η2

e = 1 and hence, in that case, the result follows directly from
[38, Theorem 8]. Applying this to a rotated domain together with the conformal covariance
properties from Lemma 4.2 yields the statement for a general direction of e.

We now briefly describe how to use the robust framework of Chelkak, Hongler and Izyurov
to extend this to general simply connected domains. In [18, Theorem 2.16], a scaling limit
result was established for a discrete holomorphic spinor F δ defined on an approximation
Dδ of an arbitrary bounded simply connected domain D. The two observables F δ and f δ

satisfy the same boundary conditions (of [38, Proposition 18] and [18, (2.7)]). Moreover,
both observables are s-holomorphic away from the diagonal. The difference however is their
singular behaviour near the diagonal. In [18], the full plane version F δC (the discrete analog
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of 1/
√
z − w) of the observable is subtracted from F δ in order to cancel out the discrete-

holomorphic singularity on the diagonal. The details of the proof of [18, Theorem 2.16] can
be carried out verbatim for f δ instead of F δ and its full plane version f δC (the discrete analog
of 1/(z−w)) introduced in [38] instead of F δC. Indeed, the arguments in [18] depend only on
the fact that the observables in question are s-holomorphic and satisfy the correct boundary
value problem.

Since the scaling limit is conformally invariant and was uniquely identified for domains
with a smooth boundary by the argument above. This finishes the proof.

4.2 Moments of hδ

For simplicity of exposition, we only consider the height function on CDδ restricted to U δ

which has the same distribution as the nesting field of the critical double random current on
D with free boundary conditions. The case of mixed moments (for the joint height function
on both the faces and vertices of Dδ) follows in the same manner as the faces and vertices of
Dδ play a symmetric role in the graph CDδ . To this end, let a1, a2, . . . , an be distinct points in
D, and let hδ(ai) (i = 1, . . . , n) be the height function evaluated at the face uδi = uδi (ai) ∈ U δ
of Dδ, in which the point ai lies (we choose a face arbitrarily if ai lies on an edge of Dδ).

Let GD(z, w) be the Dirichlet Green’s function in D, i.e., the Green’s function of standard
Brownian motion in D killed upon hitting ∂D. In particular for the upper-half plane H, we
have

GH(z, w) =
1

2π
ln
∣∣∣z − w
z − w

∣∣∣.
This section is devoted to the proof of the following theorem. Below, P∅,∅

Dδ,Dδ
denotes the

probability measure of the double random current model with free boundary conditions to-
gether with the independent labels used to define the nesting field.

Theorem 4.5. For every even integer n and any distinct points a1, a2, . . . , an ∈ D, we have

lim
δ→0

E∅,∅
Dδ,Dδ

[ n∏
i=1

hδ(ai)
]

=
∑

π pairing of {a1,...,an}

∏
{z,w}∈π

1
πGD(z, w),

where a pairing is a partition into sets of size two.

Note that the field hδ is symmetric, and therefore the corresponding moments for n odd
vanish.

In the proof of the theorem, we follow the line of computation due to Kenyon [43] but with
several adjustments to our setting. In particular, we start with an algebraic manipulation to
take care of the behaviour of K−1 near the boundary of Dδ: for a0

1, . . . , a
0
n ∈ D, write

E∅,∅
Dδ,Dδ

[ n∏
i=1

hδ(ai)
]

= E∅,∅
Dδ,Dδ

[ n∏
i=1

(hδ(ai)− hδ(a0
i ))
]
−

∑
t∈{0,1}n
t6=(1,...,1)

(−1)
∑
i(1−ti)E∅,∅

Dδ,Dδ

[ n∏
i=1

hδ(atii )
]
,

(4.2)

where a1
i = ai for i = 1, . . . , n.
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The advantage of this formulation is that the first term on the right-hand side can be
computed using Kasteleyn theory, and that the others are small when a0

1, . . . , a
0
n are close

to the boundary. This latter fact is not obvious and is relying on discrete properties of
the double random current obtained in [28] (note that it is basically saying that the field is
uniformly small – in terms of moments – near the boundary).

We start by proving that the remaining terms are small.

Proposition 4.6. For any ε > 0 and a1, . . . , an ∈ D, one may choose a0
1, . . . , a

0
n ∈ D so that

∣∣∣E∅,∅Dδ,Dδ[ n∏
i=1

hδ(ai)
]
−E∅,∅

Dδ,Dδ

[ n∏
i=1

(hδ(ai)− hδ(a0
i ))
]∣∣∣ < ε (4.3)

uniformly in δ > 0.

Remark 4.7. This proposition, which basically claims that the second term on the right-hand
side of (4.2) is approximately zero provided the a0

i are close enough to the boundary, is a
restatement of the fact that boundary conditions for the limiting height function are zero. It
is therefore the main place where we identify boundary conditions. Note that this proposition
relies heavily on the main result in [28] and is as such non-trivial.

To prove this proposition, we need to introduce some auxiliary notions. We say that a
cluster of the double random current is relevant for A = {a1, . . . , an} ( D if it is odd around
uδi for at least two different i ∈ {1, . . . , n} (it is possible that uδi = uδj even though ai 6= aj).

We denote by Rδ(A) the number of relevant clusters for A in Dδ, and by Iδ(A) the event that
all faces uδ1, . . . , u

δ
n are surrounded by at least one relevant cluster for A. We start with three

lemmata.

Lemma 4.8. For every n ≥ 2 even, there exists Pn ∈ (0,∞) such that for all sets of points
A = {a1, . . . , an} ( D, we have

E∅,∅
Dδ,Dδ

[ n∏
i=1

hδ(ai)
]
≤ Pn

√
E∅,∅
Dδ,Dδ

[Rδ(A)n]P∅,∅
Dδ,Dδ

[Iδ(A)].

Proof. For a cluster C of the double random current, let

Odd(C) := {ai ∈ A : C is odd around uδi }.

We denote a partition of A by {A1, . . . , Ak}. We call such a partition even if all its elements
have even cardinality. Using the correspondence with the nesting field of the critical double
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random current on Dδ with free boundary conditions defined in (2.1), we have

E∅,∅
Dδ,Dδ

[ n∏
i=1

hδ(ai)
]

= E∅,∅
Dδ,Dδ

[ n∏
i=1

(∑
Ci

εCi1{Ci odd around uδi }

)]
= E∅,∅

Dδ,Dδ

[ ∑
(C1,...,Cn)

n∏
i=1

εCi1{Ci odd around uδi }

]
=

∑
{A1,...,Ak} even

E∅,∅
Dδ,Dδ

[ ∑
(C1,...,Ck)

1{Ai⊆Odd(Ci), Ci distinct ∀i∈{1,...,k}}

]
≤

∑
{A1,...,Ak} even

E∅,∅
Dδ,Dδ

[ ∑
(C1,...,Ck)

1{Ci relevant for A}1Iδ(A)

]
≤ PnE∅,∅Dδ,Dδ

[
Rδ(A)n/21Iδ(A)

]
≤ Pn

√
E∅,∅
Dδ,Dδ

[Rδ(A)n]P∅,∅
Dδ,Dδ

[Iδ(A)],

where Pn is the number of even partitions of a set of size n (we used that k ≤ n/2), and
where in the last inequality we used the Cauchy–Schwarz inequality.

Lemma 4.9 (Log bound on the number of clusters). There exists C ∈ (0,∞) such that for
every bounded domain D and every A = {a1, . . . , an} ( D,

E∅,∅
Dδ,Dδ

[R(A)N ] ≤ 1

N !

[
Cn log

( diam(D)

mini 6=j |ai − aj |
)]N

,

uniformly in δ > 0.

Proof. Consider the constant C given by Theorem 2.11. Set κ := 1
2 mini 6=j |ai − aj | and

d := diam(D).
Consider the family B = (Λrk(xk) : k ∈ K) containing the boxes Λ r

4C
(x) with r := 2jκ,

x ∈ r
4CZ

2 ∩ Ann(ai, r, 2r) for every 1 ≤ i ≤ n and 0 ≤ j ≤ blog2(d/κ)c. One may easily
check that every cluster that surrounds at least two vertices in A must contain, for some
k ∈ K, a crossing from Λrk(xk) to Λ2Crk(xk). We deduce that if Xk is the number of disjoint
ΛCrk(xk)-clusters crossing Ann(xk, rk, 2Crk) from inside to outside, then

R(A) ≤
∑
k∈K

Xk.

Now, for each k ∈ K, Λ3Crk(xk) intersects at most O(C2) boxes Λ3Crl(xl) for l ∈ K. We may
therefore partition K in I = O(C2) disjoint sets K1, . . . ,KI for which the Λ3Crk(xk) with
k ∈ Ki are all disjoint. Set Si :=

∑
k∈Ki Xk. Hölder’s inequality implies that

E∅,∅
Dδ,Dδ

[R(A)N ] ≤ E∅,∅
Dδ,Dδ

[(S1 + · · ·+ S|I|)
N ] ≤ |I|N−1

|I|∑
i=1

E∅,∅
Dδ,Dδ

[SNi ].

The mixing property of the double random current proved in [28] and Theorem 2.11 imply
the existence of Cmix ∈ (0,∞) (independent of everything) such that Si is stochastically
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dominated by CmixS̃i, where S̃i is the sum of |Ki| independent Geometric random variables
(X̃k : k ∈ Ki) of parameter 1/2. We deduce that

E∅,∅
Dδ,Dδ

[SNi ] ≤ CNmix ×
(C0|Ki|)N

N !
.

Since |Ki| ≤ |K| ≤ C1n log(d/κ), we deduce that

E∅,∅
Dδ,Dδ

[R(A)N ] ≤ (C2n log(d/κ))N

N !
.

This concludes the proof.

We now turn to the third lemma that we will need. Let ∂αΩ be the set of points in Ω
that are exactly at a Euclidean distance equal to α away from ∂Ω.

Lemma 4.10 (Large double random current clusters do not come close to the boundary).
For every C,α, ε > 0, there exists β = β(C,α, ε) > 0 such that for every D ⊆ ΛC ,

P∅,∅
Dδ,Dδ

[∂αD
n1+n2←→ ∂βD] ≤ ε. (4.4)

Proof. Assume that ∂αD is not empty otherwise there is nothing to prove. Since D ⊆ ΛC ,
one may find a collection of k = O((C/α)2) vertices x1, . . . , xk ∈ 1

3αZ
2 such that

• Λ2α/3(xi) ⊆ D for 1 ≤ i ≤ k;
• Λα(xi) 6⊆ D for 1 ≤ i ≤ k;
• ∂αD ⊆ Λα/3(x1) ∪ · · · ∪ Λα/3(xk).

Then, Theorem 2.14 implies that

P∅,∅
Dδ,Dδ

[∂αD
n1+n2←→ ∂βD] ≤

k∑
i=1

P∅,∅
Dδ,Dδ

[Λα/3(xi)
n1+n2←→ ∂βD] ≤ kε(β/α). (4.5)

We then choose β so that the right-hand side is smaller than ε.

These ingredients are enough for the proof of Proposition 4.6.

Proof of Proposition 4.6. First, Lemma 4.9 shows that for every n ≥ 2, there exist Cn,Mn <
∞ such that for all sets of points A = {a1, . . . , an} ( D, we have

E∅,∅
Dδ,Dδ

[Rδ(A)n] ≤ Cn
∣∣ log(min

i 6=j
|ai − aj |) ∧ log 1

δ )
∣∣Mn . (4.6)

Lemma 4.10 implies that for every n ≥ 2 and every η > 0, there exists a function ρ : [0,∞)→
[0,∞) satisfying ρ(0) = 0 and continuous at 0, and such that for all δ and all sets of points
A = {a1, . . . , an} ( D that are pairwise at least η away from each other, we have

P∅,∅
Dδ,Dδ

[Iδ(A)] ≤ ρ(min
i

dist(ui, ∂D)).

The proof is then a direct combination of these two inequalities with Lemma 4.8 and (4.2).
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We now turn to the computation of the first term on the right-hand side of (4.2) using
the approach of Kenyon [43]. The next result is an analog of [43, Proposition 20].

Proposition 4.11. Let a1, a
0
1, . . . , an, a

0
n be distinct points in D, and let γ1, . . . , γn be pairwise

disjoint curves in D connecting a0
i to ai for i = 1, . . . , n. Then,

lim
δ→0

E∅,∅
Dδ,Dδ

[ n∏
i=1

(hδ(ai)−hδ(a0
i ))
]

= in
∑

ε∈{±1}n

n∏
i=1

εi

∫
γ1

· · ·
∫
γn

det
[
fεi,εj (zi, zj)

]
1≤i,j≤ndz

(ε1)
1 · · · dz(εn)

n ,

where dz
(1)
i = dzi, dz

(−1)
i = dzi, and

fεi,εj (zi, zj) =



0 if i = j,

f−(zi, zj) if (εi, εj) = (−1, 1),

f+(zi, zj) if (εi, εj) = (1, 1),

f−(zi, zj) if (εi, εj) = (1,−1),

f+(zi, zj) if (εi, εj) = (−1,−1).

Moreover the limit is conformally invariant.

Proof. We start by proving a stronger version of the conformal invariance statement. Namely,
if one expands the determinant under the integrals as a sum of terms over permutations ι,
then each multiple integral of the term Tε,ι corresponding to a fixed ε and ι is conformally
invariant. This follows from the conformal covariance of the functions f±(zi, zj) stated in
Lemma 4.2 and an integration by substitution. Indeed, it is enough to notice that Tε,ι is a
product of n functions f±(zi, zj) or their conjugates with the property that each variable zi
appears in it exactly twice and in a way that, under a conformal map ϕ, it contributes a
factor ϕ′(zi) if εi = 1 and ϕ′(zi) if εi = −1.

We now turn to the convergence part. To this end, we fix dual paths γδ1 , . . . , γ
δ
n connecting

(u0
i )
δ with uδi for every i = 1, . . . , n. It will be convenient to choose the paths γ in such a

way that:

• the faces of CDδ visited by each γ alternate with each step between U δ and V δ (by
definition, the paths start and end in U δ),

• the restriction of each γ to U δ is a path in the dual of Dδ, meaning that consecutive
faces share an edge in Dδ,

• the restriction of each γ to V δ is a path in Dδ given by the left endpoints of the edges
of Dδ crossed by the path.

Note that paths satisfying these conditions only cross corner edges of CDδ .
We enumerate the edges crossed by γδi (there is always an even number of them) using

the symbols c+
i,1, c

−
i,1, . . . , c

+
i,li
, c−i,li . With a slight abuse of notation we will also write c±i,t for

the indicator functions that the edge belongs to the dimer cover, and ĉ±i,t := c±i,t − E[c±i,t] for
the centred version. Since the height increments are centered by the choice of the reference
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1-form f0 (3.3) and since |f0| = 1/2 on all roads, we find

E∅,∅
Dδ,Dδ

[ n∏
i=1

(hδ(ai)− hδ(a0
i ))
]

= E∅,∅
Dδ,Dδ

[ n∏
i=1

li∑
t=1

(c+
i,t − c−i,t)

]
= E∅,∅

Dδ,Dδ

[ n∏
i=1

li∑
t=1

(ĉ+
i,t − ĉ−i,t)

]
=

l1∑
ti=1

· · ·
ln∑

tn=1

∑
s∈{±}n

(−1)#−(s)E
[ n∏
i=1

ĉsii,ti

]
, (4.7)

where #−(s) is the number of minuses in s.
Fix t1, . . . , tn and s ∈ {±}n, and let ĉi := ĉsii,ti . By [43, Lemma 21], the determinant of

the inverse Kasteleyn matrix gives correlations of height increments, hence

E∅,∅
Dδ,Dδ

[ n∏
i=1

ĉi

]
=
( n∏
i=1

K(bi, wi)
)

det Ĉ = (−1)n det Ĉ = det Ĉ, (4.8)

where Ĉ is the n× n matrix given by

Ĉi,j =

{
K−1(wi, bj) if i 6= j,

0 otherwise.

Here we used that the edges of Cδ (roads) corresponding to the corners in Dδ are assigned
weight −1 in the Kasteleyn weighting as defined in Section 3.3.1.

Let ei be the edge satisfying c±(ei) = c±i,ti , and let zi be its midpoint. We write f± := fD±
and f δ := fDδ . Proposition 4.4 gives

K−1(wi, bj) = − δi√
2

(
f−(zi, zj)− η2

ciη
2
cjf−(zi, zj) + η2

cif+(zi, zj)− η2
cjf+(zi, zj) + o(1)

)
.

We now expand the determinant from (4.8) as a sum over permutations. Let us investigate
the term in this expansion coming from a fixed permutation ι, and for simplicity of notation,
let us assume that ι is the cycle ι(i) = i+ 1 (mod n). The case of a general permutation will
follow in a similar manner. The term under consideration reads

sgn(ι)
δn√
2
n in

n∏
i=1

(
f−(zi, zi+1) + η2

cif+(zi, zi+1)−

η2
ciη

2
ci+1

f−(zi, zi+1)− η2
ci+1

f+(zi, zi+1)
)

+ o(δn)

= sgn(ι)
δn√
2
n in

n∏
i=1

(
f−1,1(zi, zi+1) + η−2

ci f1,1(zi, zi+1)−

η−2
ci η

2
ci+1

f1,−1(zi, zi+1)− η2
ci+1

f−1,−1(zi, zi+1)
)

+ o(δn). (4.9)

We can now expand the product into a sum of 4n terms. Note that for each corner ci, the
factors η2

ci and η−2
ci appear in exactly one out of n brackets, meaning that each final term

contains a multiplicative factor of η
rci
ci , where rci ∈ {−2, 0, 2}.
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The first important observation is that the terms for which there exists i such that rci = 0
cancel out to o(δn) after summing over all sign choices s ∈ {−1, 1}n in (4.7). Indeed, for
each such term, take the smallest i for which rci = 0 and consider the corresponding term
assigned in (4.7) to a different sign choice s′ which differs from s only at the coordinate i. By
(4.9) the two terms differ by o(δn), and the cancellation in (4.7) is caused by the fact that
#−(s) = −#−(s′).

There are exactly 2n remaining terms indexed by ε ∈ {−1, 1}n that satisfy rci = −2εi for
all i. Note that in the embedding of the square lattice δZ2, all corners have length δ

√
2/2,

and therefore
η±2
ci =

√
2δ−1dc

(∓1)
i ,

where dc
(1)
i := dci and dc

(−1)
i := dci. Hence, the

√
2-terms cancel out, and each such term is

of the form

sgn(ι)in
( n∏
i=1

εi

)( n∏
i=1

fεi,εi+1(zi, zi+1)
)
dc

(ε1)
i · · · dc(εn)

n + o(δn). (4.10)

The term
∏n
i=1 εi arises as the product of the signs from the expansion of (4.9).

Since
d(c+

i,ti
)(εi) − d(c−i,ti)

(εi) = d(zδi )
(εi),

keeping the permutation ι and the signs ε fixed, and summing (4.10) over all s ∈ {−1, 1}n,
we obtain

sgn(ι)in
( n∏
i=1

εi

)( n∏
i=1

fεi,εi+1(zi, zi+1)
)
d(zδ1)(ε1) · · · d(zδn)(εn) + o(δn).

Finally, summing back over all permutations, we obtain that (4.7) is equal to

in
l1∑
ti=1

· · ·
ln∑

tn=1

( ∑
ε∈{±}n

( n∏
i=1

εi

)
det
[
fεi,εj (zi, zj)

]
1≤i,j≤nd(zδ1)(ε1) · · · d(zδn)(εn) + o(δn)

)

= in
∑

ε∈{±}n

( n∏
i=1

εi

)∫
γ1

· · ·
∫
γn

det
[
fεi,εj (zi, zj)

]
1≤i,j≤ndz

(ε1)
1 · · · dz(εn)

n + o(1). (4.11)

This concludes the proof of Proposition 4.11.

Proof of Theorem 4.5. We already proved in Proposition 4.11 that the desired limit exists
and is conformally invariant. Hence, it is enough to identify it for the upper half-plane H. In
this case, by Lemma 4.2 we have an explicit formula

fεi,εj (zi, zj) =
i
εj−εi

2

2π
(
z

(εj)
j − z(εj)

i

) ,
where z

(1)
i = zi and z

(−1)
i = zi. Up to conjugation by a diagonal matrix with entries i

εi
2 , this

is the same matrix as in [44, Lemma 3.1], and hence

det
[
fεi,εj (zi, zj)

]
1≤i,j≤n =

1

(2π)n

∑
π pairing of {1,...,n}

∏
{i,j}∈π

1(
z

(εj)
j − z(εi)

i

)2 .
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This means that, after exchanging the order of summations, integrals and products, (4.11) is
equal to

in

(2π)n

∑
π pairing of {1,...,n}

∏
{i,j}∈π

2<e
[ ∫

γj

∫
γi

dzidzj
(zj − zi)2

− dzidzj
(zj − zi)2

]

= π−
n
2

∑
π pairing of {1,...,n}

∏
{i,j}∈π

1

2π
ln

∣∣∣∣∣(uj − ui)(u0
j − u0

i )(u
0
j − ui)(uj − u0

i )

(u0
j − ui)(uj − u0

i )(uj − ui)(u0
j − u0

i )

∣∣∣∣∣.
Note that the terms in the product above converge to GH(ui, uj) as u0

i and u0
j get close

to ∂H. This together with (4.3) implies that, up to the explicit multiplicative constant, the
moments have the same scaling limit as in [44], which ends the proof.

4.3 Convergence of hδ as a random distribution

Recall that for a ∈ D we write hδ(a) for the evaluation of the nesting field at a face uδ = uδ(a)
of Dδ containing a. For a test function g : D → R, define

hδ(g) :=

∫
D
g(a)hδ(a)da. (4.12)

Theorem 4.12. Let hD be the GFF in D with zero boundary conditions, and let g1, . . . , gk
be continuous test functions with compact support. Then, for l1, . . . , lk ∈ N,

lim
δ→0

E∅,∅
Dδ,Dδ

[ k∏
i=1

hδ(gi)
li
]

= E
[ k∏
i=1

( 1√
π
hD(gi))

li
]
,

Proof. To simplify notation, we only consider moments E[hδ(g)l] of one test function g for l
even. The general case follows in a similar way. To this end, we fix l ≥ 2, and define

Dl
δ := {(a1, . . . , al) ∈ Dl : |ai − aj | < δ for some i 6= j}.

Then by Lemma 4.8 and (4.6) we have∫
D
· · ·
∫
D

E∅,∅
Dδ,Dδ

[ l∏
i=1

g(ai)h
δ(ai)

]
1(a1,...,al)∈Dlδ

da1 · · · dal ≤ C‖g‖l∞(log 1
δ )lMλ2l(Dl

δ)

≤ C ′‖g‖l∞λλλ2(D)l−1(log 1
δ )Mδ2

for some constants C,C ′ and M that depend on l, where λλλ2l is the 2l-dimensional Lebesgue
measure. Note that the right-hand side tends to zero as δ → 0. The function

(a1, . . . , al) 7→ | log(min
i 6=j
|ai − aj |)|Ml

is integrable over Dl, and hence by dominated convergence, Lemma 4.8 and (4.6) again, we
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have

lim
δ→0

E∅,∅
Dδ,Dδ

[
hδ(g)l

]
= lim

δ→0

∫
D
· · ·
∫
D

E∅,∅
Dδ,Dδ

[ l∏
i=1

g(ai)h
δ(ai)

]
da1 · · · dal

= lim
δ→0

∫
D
· · ·
∫
D

E∅,∅
Dδ,Dδ

[ l∏
i=1

g(ai)h
δ(ai)

]
1(a1,...,al)∈Dl\Dlδ

da1 · · · dal

=

∫
D
· · ·
∫
D

( l∏
i=1

g(ai)
)

lim
δ→0

E∅,∅
Dδ,Dδ

[ n∏
i=1

hδ(ai)
]
1(a1,...,al)∈Dl\Dlδ

da1 · · · dal

=

∫
D
· · ·
∫
D

( l∏
i=1

g(ai)
) ∑
π pairing

∏
{i,j}∈π

1

π
GD(ai, aj)da1 · · · dal

= E[( 1√
π
hD(g))l],

where the second last equality follows from Theorem 4.5.

Remark 4.13. We note that the same convergence as in Theorem 4.12 holds if the height
function is considered as a function on all faces of CGδ and not only on the faces of Gδ.

We are now ready to conclude the proof the main theorem of this section.

Proof of Theorem 2.1. By Theorem 4.12, all moments of hδ converge to the corresponding
moments of 1√

π
hD, and since hD is a Gaussian process, we conclude that hδ tends to 1√

π
hD

in distribution as δ tends to 0 in the space of generalized functions acting on continuous test
functions with compact support.

5 Proof of Propositions 2.3, 2.5, and 2.9

We now present the proofs of Propositions 2.3, 2.5, and 2.9. These proofs rely heavily on the
results from [28].

5.1 Proof of Proposition 2.3

Proof of tightness and Property 1. We already know that hδ converges as δ → 0 to the GFF
in D with zero boundary conditions. Furthermore, the tightness of εδ is trivial once the one
of (Bδ, Aδ) has been justified. We therefore focus on the latter. Recall the tightness criterion
[3, H1]: a family of random variables Fδ (with law Pδ) taking values in C(Ω) satisfies H1 if
for every k < ∞ and every annulus Ann(x, r,R) with δ ≤ r ≤ R ≤ 1, the following bound
holds uniformly in δ > 0:

Pδ[Ann(x, r,R) is crossed by k separate pieces of interfaces in Fδ] ≤ C(k)( rR)λ(k), (5.1)

with C(k) > 0 and λ(k) tending to infinity as k →∞.
We apply this criterion to the family (Bδ ∪ Aδ) (we can also apply it to Bδ or Aδ). The

event that Ann(x, r,R) is crossed by k separate pieces of interfaces in Aδ ∪Bδ is included in
the (rescaled version of the) event A2k(r/δ,R/δ), so that we may apply Theorem 2.11.
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Until the end of this section, consider (B,A, ε, h) to be the limit of a converging subse-
quence (Bδn , Aδn , εδn , hδn).

Proof of Property 2. Every loop in A is surrounded by a loop in B by construction.
The fact that the loops in A and B do not intersect is a direct consequence of Theo-

rem 2.12. Indeed, fix α, β, ε > 0. For two loops of Aδn of diameter at least α to come within
distance β of each other, there must be x ∈ Ωδn such that the translate by x of the rescaled
version of the event A�4 (β/δn, α/δn) occurs. Yet, Theorem 2.12 implies that provided that
β ≤ β0(α, ε), this occurs with probability smaller than ε. The same is true for two loops of
Bδn .

The fact that the loops in A and B are simple is also direct consequence of Theorem 2.12.
Indeed, the event that a single loop comes within distance β of itself after going away to
distance α also implies the same event. Letting β tend to zero, then α, and finally ε, we
obtain the result.

The fact that A is not equal to {∂D} is an easy consequence of Theorem 2.14.

Proof of Property 3. Let C(`) be the cluster whose exterior boundary is `. Notice that the
definition of the nesting field implies that

hδn =
∑
`∈Bδn

∑
γ∈Aδn (`)

(hδnγ + εC(`)1O(γ) odd hole of C(`)),

where hδnγ is the nesting field in O(γ) (we use that C(`) is either odd around every face in O(γ),
or it is odd around none of them). Let us start by showing that for every test function g,

lim
α→0

lim
n→∞

∫
Dδn

g(x)hδn(x)1
x∈Eδnα dx = 0, (5.2)

where, if Λα(y) := y + [−α, α]2,

Eδnα := union of the Λα(y) for y ∈ αZ2 such that Λ2α(y) intersects some γ ∈ Aδn

(note that in particular every x that is within a distance α of some γ in Aδn must be in Eδnα ).
In order to prove this statement, we fix ε > 0 and see that

εPδ
[ ∫

Dδn
g(x)hδn(x)1

x∈Eδnα dx ≥ ε
]
≤ Eδ

[∣∣∣ ∫
Dδn

g(x)hδn(x)1
x∈Eδnα dx

∣∣∣]
≤
∑
y∈αZ2

Eδ
[∣∣∣ ∫

Λα(y)
g(x)hδn(x)1

x∈Eδnα dx
∣∣∣]

=
∑
y∈αZ2

Eδ
[
1
y∈Eδnα

∣∣∣ ∫
Λα(y)

g(x)hδn(x)dx
∣∣∣]

≤
∑
y∈αZ2

Pδ[y ∈ Eδnα ]1/2Eδ
[( ∫

Λα(y)
g(x)hδn(x)dx

)2]1/2

≤
∑
y∈αZ2

αc × C(g)α2 log(1/α) ≤ C(g,D) log(1/α)αc.
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Above, we used Markov’s inequality in the first inequality, the triangle inequality in the
second, the fact that x ∈ Eδnα is equivalent to y ∈ Eδnα in the third, and Cauchy–Schwarz in the
fourth. In the fifth, we combine an easy estimate on the second moment of

∫
Λα(y) g(x)hδn(x)dx

based on the definition of the nesting field and RSW type estimates from [28], together with
the fact that for Λα(y) to intersect a loop γ in Aδn , there must be a primal path in n1+n2 from
Λα(x) to Λβ(x) or a path in (n1 +n2)∗ from ∂Λβ(x) to ∂Λd(x,∂D)(x), where β :=

√
αd(x, ∂D).

Then, (5.2) follows by sending n to infinity, then α to 0, and finally ε to 0.

Now for every fixed α > 0, the convergence of Aδn , the spatial Markov property (in
each O(γ), the double random current has free boundary conditions) and Theorem 2.1 imply
that the functions hδnγ converge to independent GFF in O(γ) with zero boundary conditions
for every γ with radius at least α (here the convergence is the convergence of the random
variables obtained by averaging against a test function with compact support in O(γ)). Also,
the convergence of hδn implies that Pδn [C(`) odd around γ|Aδn , Bδn ] also converges7 to a
quantity that we denote c(γ) ∈ [0, 1]. Overall, we deduce by integrating against test functions
and first conditioning on Aδn , Bδn , that the limit h has the same law as∑

`∈B

∑
γ∈A(`)

(hγ + εC(`)c(γ))

where the hγ are independent GFF in each O(γ).
It remains to check that c(γ) ∈ {0, 1} when γ can be reached by a finite sequence of loops

and that c(γ) is equal to 0 or 1 depending only on the parity of the length of the sequence.
Recall that we say that a hole of a double random current cluster is odd if C is odd around
the hole. Otherwise we say that it is even. By Theorem 2.12, we know that γ is the scaling
limit of the boundary of a hole of the cluster of n1 + n2 whose external boundary converges
to `. Note that this is really a consequence of the theorem and that it is not direct as one
may be worried that several loops of Aδn ∪ Bδn collapse into a single loop (that would be
counted with multiplicity) in the limit.

Now, we know from Theorem 2.13 that two adjacent big holes in the discrete must have,
with probability very close to 1, an odd (n1 + n2)-flux between them, and therefore must
correspond to a height function that is changing by 1, or in other words if one of the holes is
odd, then the second one is even, etc. The result follows readily.

Proof of Property 4. Fix α, β, ε > 0. For a loop of Aδn of diameter at least α and with
inner boundary value 0 to come within a distance β of a loop in Bδn of diameter at least
α, there must be x ∈ Ωδn such that the translate by x of the rescaled version of the event
A�4 (β/δn, α/δn) occurs. Yet, Theorem 2.13 implies that provided that β ≤ β0(α, ε), this
occurs with probability smaller than ε. Letting β tend to zero, then α, and finally ε, we
obtain the result.

Proof of Property 5. For this item, we invoke [10]. Indeed, the Kramers-Wannier duality
implies that the odd part ηδni = η(nδni ) of nδni can be seen as the low temperature expansion
of a critical Ising model with plus boundary conditions on the dual graph (Ωδn)†. We can
therefore use [10] to prove that the large interfaces converge to CLE3. More precisely, we

7In fact, we may also further extract subsequential limits to guarantee the convergence.
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C1C2

xi

Λρ(xi)
Λ4ρ(xi)
Λ5ρ(xi)

D = [0, 2R]× [0, R]

Figure 5.1: The two right-most clusters crossing D from top to bottom. We also depicted
three examples of Λρ(xi). In blue, we explained one example of an event E2(i) occurring,
with one XOR cluster of pluses going from Λρ(xi) to ∂C2, and the absence of a crossing from
inside to outside in Λ5ρ(xi) \ Λ4ρ(xi).

know that the collection Fα(ηδn1 ) of loops in ηδn1 that are larger than α converges weakly to
the set of loops in CLE3 that are larger than α (here we do not insist on the decomposition
into loops of the even graph Fα(ηδn1 ) as it was proved in [10] that it is irrelevant for the
scaling limit). We deduce that the loops in B, which are more exterior than the limit of
the outer boundaries of the outermost clusters in the union of Fα(ηδn1 ) and Fα(ηδn2 ), must
be more exterior than the outer boundaries of the outermost clusters in the union of the
loops that are larger than α in two independent CLE3. Since CLE4 can be obtained as the
outer boundaries of the outermost clusters in the union of two CLE3 (see [75]), we obtain the
result.

Remark 5.1. At this stage, it is unclear whether B is strictly bigger than CLE4 or not, as
the even parts of nδn1 and nδn2 could increase the size of the double random current clusters
substantially, thus making B strictly larger than CLE4. In fact, even the fact that the outer
boundaries of the outermost clusters of the union of η(nδn1 ) and η(nδn2 ) is CLE4 is not obvious,
since we obtained this result by first considering loops that are larger than α and then by
taking the limit as α tends to 0. It could in fact be that the “dust” made of tiny loops in
both configurations play a role that is similar to the even part of each current in the last
sentence, and that loops are strictly larger than CLE4.

5.2 Proof of Proposition 2.5

Proof of tightness. The tightness is a consequence of Remark 7.3 of [28].
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Proof of Property 1. This is a consequence of Theorem 2.4.

Proof of Property 2. This follows from the same argument as the one leading to Property 3
of Proposition 2.3. The reason for the difference in gaps in the two propositions comes from
the construction of the nesting field in the discrete. The proof of the last property regarding
odd and even holes is the same as in the previous proposition.

5.3 Proof of Proposition 2.9

Proof of tightness. This follows directly from Theorem 2.11. The fact that C is not equal to
{∂D} is a direct consequence of Corollary 2.16.

Proof of Property 1. This is the object of Proposition 2.3.

Proof of Property 2. The fact that S ⊆ B and that every loop in S∪ S̃ is encircle by a loop in
C is a straightforward consequence of tightness. The two other points in Item 3 follow from
the construction in the discrete and the following statement: for every ε > 0, there exists
η > 0 such that for every δ small enough,

PΩδ [E(ε, η, δ)] ≤ ε, (5.3)

where E(ε, η, δ) is the event that there exists γ ∈ Bδ that has diameter ε and comes within
a distance η of a loop ` ∈ Cδ without intersecting it.

To see this, condition on the outer boundaries of the exterior-most XOR clusters, as well
as the clusters in n1 +n2 that are adjacent to those clusters (note that they have the opposite
spin). We need to prove that in the unexplored region D, the probability that there exists a
cluster of n1 + n2 of diameter at least ε coming within a distance η of ∂D is bounded by ε,
uniformly in any possible realization of D.

Introduce the events

A := {∃ a cluster in n1 + n2 from ∂αD to ∂ηD},
B := {∃ a cluster in n1 + n2 in D of radius at least ε remaining within distance α of ∂D}.

To bound the probability of D, further condition on the clusters of n1 + n2 that contain a
vertex that is at a distance at least α from ∂D and call D′ the remaining domain. Then,
one considers a box of size ε/3, and use the merging-vertices trick from [28] (we refer to the
paper for details) to prove that the probability that there exists a cluster intersecting the
box and the complement of it is bounded by exp[−c0ε/α]. We omit the details here since
similar reasoning have been implemented repeatedly in [28]. Since one may pave Ω by of
order O(1/ε2) boxes of size ε/3, we deduce that

PΩδ [B|D,D′] ≤ P∅,∅D′,D′ [B] ≤ C0

ε2
exp[−c0ε/α] ≤ ε/2,

where the second inequality follows by choosing α = α(ε) small enough. Averaging over D
gives

PΩδ [B] ≤ ε/2. (5.4)
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Then, one uses Corollary 4.10 to show that the probability of the event A satisfies

PΩδ [A] ≤ ε/2 (5.5)

provided η = η(ε, α) is chosen small enough (note that D can be made of a number of
connected components, but that only N = N(α) are such that they contain a point at a
distance at least α of ∂D).

The two previous displayed equations imply the claim.

Proof of Property 3. In the discrete, conditioning on Cδn and then on Sδn implies that in
each hole O(`) with ` ∈ S̃δn , we have a double random current model with free boundary
conditions and height function hδn equal to 0 on the boundary. We deduce that

hδn =
∑

`∈Sδn∪S̃δn

hδn` ,

where hδn` for ` ∈ S̃δn has the law of the associated nesting field in O(γ), and h̃δn is a height

function on the complement of the vertices enclosed by the loops in S̃δn .
Proving Item 3 from this equality is following the same lines as the end of the proof of

Item 2 of Proposition 2.3, namely one first condition on holes larger than α and then prove
that the error made by forgetting the other holes is not contributing anything when taking
the limit as n tends to infinity and then α to 0. The fact that each hδn` for ` of diameter
at least α converges can be deduced from the convergence of hδn tested against well-chosen
test-functions (those with support in O(`)).

Proof of Property 5. Let us first briefly sketch the proof in the first paragraph. We first
make trivial manipulations to focus on bounding the probability of having an XOR interface
staying close on the left to the j-th right-most cluster Cj crossing a R× 2R rectangle. Then,
one picks points at a distance between 2r and 3r (with r := bηRc with η � 1) to the left of
Cj and use Theorem 2.14 to show that with a probability that remains bounded away from
zero uniformly, the box of size r around these points is connected by pluses to ∂Cj .

We now turn to a formal proof. We rescale everything by R := b1/δc. Fix η > 0 and
set r := bηRc. By paving the domain, it suffices to show that for every ε > 0, there exists
η = η(ε) > 0 such that for every R and every domain Ω ⊃ Λ3R,

PΩ

[ there are interfaces in the XOR and double random current crossing
from ∂ΛR to ∂Λ2R and remaining at a distance ηR of each other

]
≤ ε. (5.6)

For the event in (5.6) to occur, there must exist a rectangle D chosen out of the translates
by a vector in RZ2 of the rectangles [0, R]×[0, 2R] and [0, 2R]×[0, R] that are included in Λ2R

such that there exist interfaces in the XOR and the double random current model crossing
D between the two long sides and staying within a distance r of each other. We now assume
that D is equal to [0, 2R] × [0, R] (we may translate and rotate everything to get into this
situation) and bound the probability that this event happens.

Let Cj be the j-th right-most D-cluster crossing D from bottom to top, when it exists and
assume that it has spin +. For a fixed k, set ρ := R/(12k) (we forget the rounding operation)
and consider, for every 1 ≤ i ≤ k, the left-most vertex xi on the horizontal line at height 12ρi
such that Λ3ρ(xi) intersects Cj but Λ2ρ(xi) does not. We refer to Fig. 5.1 for a picture.
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Let Ej(i) be the event that Λρ(xi) is connected by pluses to ∂Cj , and Λ4ρ(xi) is not
connected to Λ5ρ(xi) on the left of Cj . When Λ4ρ(xi) is not connected to Λ5ρ(xi) on the left
of Cj in n1 + n2, let Dj(i) be the connected component of xi in the set of points in Λ5ρ(xi)
that are not connected to ∂Λ5ρ(xi) in n1 +n2. Using [28, Corollary 3.5] in the first inequality
and then Theorem 2.14 for Dj(i), we get that

PΩ[Ej(i)|Cj ] ≥ c0PΩ[Λρ(xi)
+←→ ∂Cj |Cj ,Λ5ρ(xi) /←→ Λ4ρ(xi) in n1 + n2] ≥ c1.

Therefore, the mixing property from [28, Section 3.2] implies that the number of integers
i between k/3 and 2k/3 such that Ej(i) occurs dominates a Binomial random variable of
parameter k/3 and c2 := cmixc1.

We now fix j and set k = k(η) := log(1/η). Consider the event Ej that Ej(i) occurs for
some i. We deduce that

PΩ[Ecj ] ≤ ηc3PΩ[Cj exists and has spin +].

Since the expected number of clusters crossings D is bounded by [28, Corollary 7.2], the
union bound gives that

PΩ[∪jEcj ] ≤ C3η
c3 . (5.7)

Noticing that if ∩jEj occurs, there is no XOR interface crossing D and remaining on the left
and at a distance r of an interface of the double random current crossing D, we conclude the
proof by using (5.7), and by doing the same with spin − and with the left-most crossings of
D instead of the right-most ones.

5.4 Nested interfaces

In this section, we extend these results to nested interfaces. First, we deal with the free
boundary conditions. We work directly with the results for both the double random current
and the XOR-Ising model.

Let (Cδ0 , s
δ
0, S

δ
0 , S̃

δ
0 , ε

δ
0, B

δ
0, A

δ
0) be defined as (Cδ, sδ, Sδ, S̃δ, εδ, Bδ, Aδ). For i ≥ 0, given

(Cδi , s
δ
i , S

δ
i , S̃

δ
i , ε

δ
i , B

δ
i , A

δ
i )δ, define by recursion for every ` ∈ Aδi , by replacing D by O(`), the

tuple (Cδ` , s
δ
` , S

δ
` , S̃

δ
` , ε

δ
` , B

δ
` , A

δ
`), and let

(Cδi+1, s
δ
i+1, S

δ
i+1, S̃

δ
i+1, ε

δ
i+1, B

δ
i+1, A

δ
i+1)

defined by #δ
i+1 (for # equal to C, s, S, S̃, ε, B,A) to be the union of the #δ

` for ` ∈ Aδi .
Finally, set

(Cδnested, s
δ
nested, S

δ
nested, S̃

δ
nested, ε

δ
nested, B

δ
nested, A

δ
nested, h

δ),

where #δ
nested is the union of the #δ

i .

Proposition 5.2 (Nested version for free boundary conditions). Fix a simply connected
domain D and consider the coupling measure PDδ between the double random current and
the XOR-Ising model. The family

(Cδnested, s
δ
nested, S

δ
nested, S̃

δ
nested, ε

δ
nested, B

δ
nested, A

δ
nested, h

δ)δ>0
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is tight for the topology of weak convergence, and for every subsequential limit

(Cnested, snested, Snested, S̃nested, εnested, Bnested, Anested, h),

the following holds: For every ` in Anested ∪ S̃nested, conditioned on `, h|D\O(`) and all the
loops that are not surrounded by ` as well as their spins and labels, the next layer of interfaces
in O(`) satisfy the same properties of Propositions 2.3 and 2.9, except that (2.6) needs to be
replaced by

ε(γ) = (−1)ks(`), (5.8)

where k is the number of odd holes surrounding `.

Proof. The proof can be adapted from the previous proof very easily using the spatial Markov
property implying that in each hole of the outermost double random current clusters, n1 and
n2 are independent random current configurations with free boundary conditions.

For the wired boundary conditions, consider the tuple of nested objects

(Âδ, Cδnested, s
δ
nested, S

δ
nested, S̃

δ
nested, ε

δ
nested, B

δ
nested, A

δ
nested, h

δ),

where Âδ was introduced above Proposition 2.5 and then the nested elements are defined
recursively as in the case of free boundary conditions.

Proposition 5.3 (Nested version for wired and plus/plus boundary conditions). Fix a sim-
ply connected domain D with C1 boundary and consider the coupling measure P̂Dδ between
the double random current with wired boundary conditions and the XOR-Ising model with
plus/plus boundary conditions. The family

(Âδ, Cδnested, s
δ
nested, S

δ
nested, S̃

δ
nested, ε

δ
nested, B

δ
nested, A

δ
nested, h

δ)δ>0

is tight for the topology of weak convergence, and for every subsequential limit

(Â, Cnested, snested, Snested, S̃nested, εnested, Bnested, Anested, h),

the following holds: For every ` in Â∪Anested∪ S̃nested, conditioned on `, h|D\O(`) and all the
loops that are not surrounded by ` as well as their spins and labels, the next layer of interfaces
in O(`) satisfy the same properties of Propositions 2.3 and 2.9, except that (2.6) needs to be
replaced by

ε(γ) = (−1)ks(`), (5.9)

where k is the number of odd holes surrounding `.

Proof. The only observation is that conditioned on the loops in Âδ, the double random
current in the holes is a double random current with free boundary conditions. Then, the
proof follows readily from arguments that are similar to the previous ones.
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6 Preliminaries in the continuum

In this section, we recall some background on the continuum side, notably on the Gaussian
free field and its local sets, which will be the main tools of our proofs. Throughout, let D ( C
be a simply connected domain whose boundary is a Jordan curve. We also continue to use
the notations fixed in Section 2.2.1.

6.1 Schramm-Loewner evolution

The Schramm-Loewner evolution (SLE) was introduced by Schramm in [68] as a candidate
for the scaling limit of interfaces in a class of statistical physics models. For each κ ≥ 0,
an SLEκ is a random non self-crossing curve parametrized by the Loewner evolution with
a random driving function which is equal to

√
κ times a standard Brownian motion. The

most common forms of SLE are the chordal (connecting two boundary points) and radial
(connecting one boundary point and one interior point) SLEs.

It was shown in [78] that SLEκ is a.s. a simple curve for κ ∈ (0, 4], is a.s. self-intersecting
for κ ∈ (4, 8), and is a.s. space-filling for κ ≥ 8. In this work, we will only consider the case
κ = 4. As we will explain in Section 6.2, SLE4-type curves are level lines of the Gaussian
free field.

One common variant of the chordal (resp. radial) SLEκ is the chordal (resp. radial)
SLEκ(ρ1, . . . , ρn) process, introduced in [50]. It is a chordal (resp. radial) SLE with n ad-
ditional marked points x1, . . . , xn on the boundary (in addition to the starting and ending
points of the curve).

It was shown in [73] that the chordal and radial parametrizations of SLE can be inter-
changed, namely an SLE targeting a boundary point can be equivalently viewed as targeting
an interior point (with a changed driving function), and vice versa. The precise coordi-
nate change formula was computed in [73]. In particular, if an SLEκ(ρ1, . . . , ρn) satisfies
ρ1 + · · ·+ ρn = κ− 6, then this process is target-invariant, namely it has the same law when
viewed as targeting different points. For example, the target-invariant branching SLEκ(κ−6)
process plays an important role in the construction of Conformal loop ensembles (CLE) in
[74], as we will explain in Section 6.3.

6.2 Gaussian free field and local sets

Recall that the Gaussian free field (GFF) h with zero boundary condition in D is defined
by (2.3). The notion of local set for GFF was introduced by Schramm and Sheffield in [70].
Here, we write down its definition for a GFF in the unit disk U. For any other simply
connected domain D, one can simply map D conformally onto U. Let Γ be the space of
all closed nonempty subsets of U. We view Γ as a metric space, endowed by the Hausdorff
metric induced by the Euclidean distance. Note that Γ is naturally equipped with the Borel
σ-algebra on Γ induced by this metric. Given A ∈ Γ, let Aδ denote the closure of the δ-
neighborhood of A in U. Let Aδ be the smallest σ-algebra in which A and the restriction of
h to the interior of Aδ are measurable. Let

A :=
⋂

δ∈Q,δ>0

Aδ.
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Intuitively, this is the smallest σ-field in which A and the values of h in an infinitesimal
neighborhood of A are measurable.

Definition 6.1 (Local set [70]). Let h be a GFF in U. We say that A is a local set of h if
A is a closed subset of U and one can write h = hA + hA, where

• hA is an A-measurable random distribution which on U \ A a.s. has finite pointwise
values and is harmonic.

• hA is a random distribution which is independent of A. It is a.s. zero on A and equal
to an independent zero boundary GFF in each connected component of U \A.

Local sets behave nicely when one takes their conditionally independent union. More
precisely, if A1 and A2 are local sets of h, then we can construct a triple (A1, A2, h) so
that A1 and A2 are independent conditionally on h. The conditionally independent union
A = A1∪̌A2 is defined to be A1 ∪A2 for the previous triple (A1, A2, h).

Lemma 6.2 (Lemmata 3.10 and 3.11, [70]). If A1 and A2 are local sets coupled with the
GFF h on D, then their conditionally independent union A = A1∪̌A2 is also local. Moreover,
when A1 and A2 are connected local sets, hA − hA2 is a.s. an harmonic function in D \ A
that tends to zero on all sequences of points in D \A that tend to a limit in A2 \A1 (unless
A2 is a single point).

An important family of local sets for GFF consists of the level lines. In [69,70], Schramm
and Sheffield studied level lines of the discrete GFF, and showed that they converge in the
scaling limit to SLE4 type curves which are coupled with the GFF as its local sets. This is in
fact a particular case of the coupling between SLEκ and GFF for κ ∈ (0, 8), see [24,57–60,70]
and the references therein. Let us record in the following the properties of this coupling for
κ = 4. Throughout, let

λ :=
√
π/8.

Proposition 6.3 (Coupling SLE4 and GFF, [24, 57, 70]). Let D be a simply connected do-
main. Let h be a GFF in D with piecewise constant boundary conditions with finitely many
pieces. Fix x ∈ ∂D and y1, y2 ∈ ∂D \ {x} such that the clockwise boundary arc from x to y1

has boundary condition strictly smaller than λ and the clockwise boundary arc from y2 to x
has boundary condition strictly larger than −λ. Fix y ∈ ∂D, then there a.s. exists a unique
curve η from x targeting y (however this curve may end before reaching y) which satisfies the
following property.

• Let us parametrize η by the time interval [0, 1] in a continuous injective way. For
any t ∈ [0, 1], η([0, t]) is a local set of h such that hA (as given by Definition 6.1 for
A = η([0, t])) is equal to −λ on the right side of η and equal to λ on the left side of η.

• We call η a 0-height level line of h. Moreover, η is distributed as an SLE4(ρ1, . . . , ρn)
curve in D from x to y where ρ1, . . . , ρn are related to the boundary conditions of h as
in Fig. 6.1.

• If for y3, y4 ∈ ∂D the clockwise boundary arc from y3 to y4 has boundary condition
larger than or equal to λ or smaller than or equal to −λ, then η a.s. does not intersect
any point on this arc except possibly the endpoints y3, y4.
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a3 ≤ −λ
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Figure 6.1: We depict a 0-height level line of a GFF with piecewise constant boundary
conditions. The boundary conditions of h on the clockwise arcs (x, y1), (y1, y3), (y3, y4),
(y4, y2), (y2, x) are given by a1, . . . , a5. The red curve is the 0-height level line from x
targeting y4. The level line from x targeting x1 is given by the concatenation of the red curve
from x to z0 and the blue curve from z0 to x1. These two level lines from x (targeting y4

and x1 respectively) coincide with each other until the first time that the curve separates
the two target points, after which they evolve in the different connected components towards
their targets. Take the level line from x targeting x1 for example, it is distributed as an
SLE4(ρ1, . . . , ρ6) from x to x1 with marked points x−, y1, y3, y4 on its left and x+, y2 on its
right. Let ρ1, . . . , ρ6 be respectively the parameters for the points x−, y1, y3, y4, x

+, y2. The
rule is that for the marked points on the left we have −λ(1+ρ1+· · ·+ρi) = ai for i = 1, 2, 3, 4,
and for the marked points on the right we have λ(1 + ρ5) = a5 and λ(1 + ρ5 + ρ6) = a4. A
level line cannot always reach its target point (this depends on the continuation threshold of
the corresponding SLE curve). For example, in this picture, the level line from x targeting a
point y on the arc (y3, y4) ends at y4, because a 0-height level line can never intersect (y3, y4)
due to the boundary condition a3 ≤ −λ.

We have combined several results in Proposition 6.3. A fundamental point of it is the
uniqueness of level lines (given their starting and target points) [70]. This is at the very
basis of many other results about local sets, including the uniqueness of two-valued sets
(Lemma 6.16) and the results in the present work. Lemma 6.2 will allow us to consider
the union of multiple level lines which is still a local set of h. We will almost always use
Lemma 6.2 in this context, so the conditionally independent union ∪̌ is in fact the usual
union ∪, since level lines are deterministic functions of h.

Remark 6.4. By taking limits, the statements of Proposition 6.3 can be extended to the case
of piecewise constant boundary conditions with infinitely many pieces (see [63]).

Remark 6.5. Proposition 6.3 is stated only for level lines targeting boundary points, but the
target point only serves to determine for each t in which connected component of D \η([0, t])
η continues to evolve after time t (the level lines are target-invariant), so we can also define
level lines targeting interior points.

Remark 6.6. The curve η in Proposition 6.3 is called a level line of the GFF h with height 0,
and it is a deterministic function of h. For each a ∈ R, one can also consider level lines of a
GFF h at height a, which consists of curves that are local sets of h with boundary conditions
a − λ and a + λ at the two sides of the curve. The existence and boundary-intersecting
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behavior of such level lines can be deduced from Proposition 6.3 applied to h− a.

For a given GFF in D, its level lines at different heights interact with each other according
to the following rules.

Lemma 6.7 (Theorem 1.5 in [57]). Let h be a GFF in D with piecewise constant boundary
values. Fix u1, u2 ∈ R and x1, x2, y on ∂D in a counterclockwise order. Let η1 (resp. η2) be
the level line of h at height u1 (resp. u2) starting from x1 (resp. x2) (whenever it is possible)
and targeting y.

• If u2 > u1, then η2 a.s. stays to the right of η1.

• If u2 < u1, then η1 may intersect η2 and, upon intersecting, η2 crosses to the left of η1

and never crosses back.

• If u2 = u1, then η1 may intersect η2 and, upon intersecting, the two curves merge and
never separate.

Remark 6.8. Proposition 6.3 and Lemma 6.7 are stated for given points x, x1, x2 and y on ∂D,
so that the description of the level line η from x (resp. x1, x2) targeting y holds a.s. The same
statements hold if x, x1, x2 and y are chosen independently of h. These results, as stated, do
not rule out the existence of x, x1, x2, y on ∂D (which are chosen in a way depending on h)
for which the a.s. description does not hold (even though we can deduce results that apply to
all points, we prefer to avoid this discussion here). If ∂D is a continuous curve and I1, I2 are
two positive portions of ∂D, then for a.e. x ∈ I1 and a.e. y ∈ I2 (see Definition 6.9), the a.s.
properties of the level line from x targeting y (such as the boundary-intersecting behavior)
described in Proposition 6.3 hold.

Let us now introduce the following notion which is applied to boundaries of simply con-
nected domains (in particular loops). It will be used throughout this work.

Definition 6.9 (Positive portion of a boundary). For a simply connected domain D ( C,
we say that a set I ⊆ ∂D is a positive portion of the boundary if the following holds: for
a conformal map f from D onto the unit disk, the set f(I) is connected and has positive
Lebesgue measure on the unit circle. When we say “almost everywhere (a.e.)” on I, we mean
that it is a.e. with respect to the preimage of the Lebesgue measure under f . This definition
does not depend on the choice of f .

6.3 Conformal loop ensemble and other level loops

Let us recall a few basic facts about the conformal loop ensembles (CLE) (introduced and
studied in [74, 75]) and other level loops of the GFF. The family of CLE depends on a
parameter κ ∈ (8/3, 8), and each element is denoted by CLEκ. In this work, we will consider
the case κ = 4 only. In this regime (in fact for κ ∈ (8/3, 4]), a CLE in D is a random
countable collection of simple loops in D which are disjoint from each other. The gasket of
CLEκ a.s. has Lebesgue measure zero. The law of a CLE is invariant under all conformal
automorphisms from D onto itself.

In [74], Sheffield constructed CLEκ for all κ ∈ (8/3, 8) using a branching SLEκ(κ − 6)
exploration tree. In particular, each loop in CLEκ locally looks like an SLEκ curve. Since
SLE4-type curves are coupled with the GFF as its level lines, CLE4 is also coupled with
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the GFF (see Section 2.2.1 and Fig. 2.1 for a detailed description of the coupling). The
SLEκ(κ− 6) process has the particularly nice property of target-invariance. More generally,
the family of branching SLEκ(ρ, κ−6−ρ) exploration trees has the target-invariance property,
and can be used to construct CLE and its variant BCLE (introduced in [61]).

For κ = 4, the branching SLE4(ρ,−2− ρ) exploration tree is used to construct BCLE4(ρ)
in [61]. By varying ρ, this allows one to construct level loops of the GFF at all heights.
Below, we will describe the symmetric case of ρ = −1 which turns out to be particularly
useful (the gasket of BCLE4(−1) is the same as A−λ,λ in [8], see the next subsection).
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Figure 6.2: Left: We illustrate the branching SLE4(−1,−1) process which is used to con-
struct BCLE4(−1). One branch from x to y is depicted in red. Right: We color the
domains encircled by the counterclockwise loops in the BCLE4(−1) in grey. The white area
corresponds to the domains encircled by the clockwise loops in the BCLE4(−1). The GFF
restricted to each of the grey (resp. white) domains has boundary condition −λ (resp. λ).

Let us now define the SLE4(−1,−1) exploration tree coupled to h as its level lines. Fix
two distinct points x, y ∈ ∂D (see Fig. 6.2). By Proposition 6.3, the 0-height level line of h
from x to y is a.s. distributed as an SLE4(−1,−1) from x to y. Fix x, y1, y2 ∈ ∂D distinct.
Let η1 (resp. η2) be a 0-height level line of h, which has the law of SLE4(−1,−1) from x to
y1 (resp. y2). Due to the uniqueness of level lines (Proposition 6.3), η1 and η2 a.s. agree with
each other until the first time T such that y1 and y2 are in two different connected components
of D \ η([0, T ]) (this is also consistent with the target-invariance of SLE4(−1,−1)). After
time T , η1 and η2 evolve independently in the two connected components that contain y1

and y2 (splitting into two branches in the exploration tree). The branching SLE4(−1,−1)
exploration tree coupled with h is defined to be the closure of the union of 0-height level
lines from x to y over a countable dense collection of points y ∈ ∂D. Let BCLE4(−1) be
the collection of (clockwise and counterclockwise) loops traced by this branching exploration
tree. For each counterclockwise (resp. clockwise) loop γ in BCLE4(−1), h|O(γ) is equal to a
GFF with boundary value −λ (resp. λ). The gasket of BCLE4(−1) is exactly equal to the
branching SLE4(−1,−1) exploration tree, and is a local set of h with boundary values in
{−λ, λ}.

One can further define the nested version of BCLE4(−1) by iterating (just like how we
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define a nested CLE). The nested BCLE4(−1) can be constructed using the radial version
of branching SLE4(−1,−1) targeting a dense countable collection of points in D. Fix the
countable collection {zi, i ≥ 1} of points with rational coordinates in D. Fix x ∈ ∂D. The
branching radial SLE4(−1,−1) exploration tree is the union of all radial SLE4(−1,−1) from
x targeting zi. In order to describe the relation between this radial branching tree and the
nested BCLE4(−1), let us first define the following collections of loops (see Fig. 6.3 right).

Definition 6.10 (Collections Lk). Given a GFF h in D, let us define the collections of
loops Lk for k ∈ N0, which are the loops in the k-th layer of the nested BCLE4(−1). The
loops in Lk have the property that for each γk ∈ Lk, the restricted field h|O(γk) is equal to a

zero-boundary GFF h0|O(γk) plus a boundary value in
⋃k
j=0{(k − 2j)λ}.

More concretely, we proceed by induction. Let L0 := {∂D}. For k ≥ 0, assume that
we have defined the collections of loops Lk with the property that for each γk ∈ Lk, the
restricted field h|O(γk) is equal to a zero-boundary GFF h0|O(γk) plus a boundary value in⋃k
j=0{(k− 2j)λ}. Let Lk+1 be the union of BCLE4(−1)(h0|O(γk)) over all γk ∈ Lk. Then for

each γk+1 ∈ Lk+1, the restricted field h|O(γk+1) is equal to a zero-boundary GFF h0|O(γk+1)

plus a boundary value in
⋃k+1
j=0{(k + 1− 2j)λ}.

We now explain why the radial branching SLE4(−1,−1) exploration tree constructs the
nested BCLE4(−1). See Fig. 6.3 (left). Fix x ∈ ∂D, z ∈ D, and run a 0-height level line η
from x targeting z. Then η is distributed as a radial SLE4(−1,−1) from x to z. At the first
time T1 that η intersects itself, η completes a loop which is the loop γ1 ∈ L1 that encircles
z. After that, η continues to evolve towards z in O(γ1) from η(T1). The first time T2 > T1

that the part of η after T1 intersects itself (not counting intersecting γ1), it completes a loop
which is the loop γ2 ∈ L2 that encircles z. Iterating, η traces all the loops in Lk that encircle
z for all k ∈ N.

Remark 6.11. Due to the target-invariance of level lines (see Remark 6.5), the radial branching
SLE4(−1,−1) exploration tree (which is coupled with h as its level lines) has the same
boundary-intersecting behavior as described by Proposition 6.3. For both the chordal and
radial exploration trees, the starting point x can be randomly chosen in a way which is
independent of h (see Remark 6.8). For a.e. x ∈ ∂D, the above-described construction
for level lines starting from x yields the same set (by Lemma 6.7, level lines from x will
immediately merge into the exploration tree, because the tree visits a dense set of points on
∂D). For a given z ∈ D, at each time that the level line η targeting z completes a loop
γk, instead of continuing to evolve from η(Tk), one can also consider the level line of h|O(γk)

emanating from another point xk ∈ γk to obtain further loops in Lj for j > k.

Remark 6.12. We have already mentioned that the gasket of BCLE4(−1) is equal to A−λ,λ
considered in [8], where the same construction using level lines targeting a dense set of
boundary points is also employed. This set is also equal to the arc loop ensemble (ALE)
in [64]. Among the equivalent names, we will most often use the notation of two-valued set
(A−λ,λ or L−λ,λ depending on whether we consider the loops or the gasket, see the next
subsection), which turns out to be the most convenient notation in this article.

The works [61] and [8] propose an alternative way to construct the Miller-Sheffield cou-
pling of CLE4 and the GFF (described in Section 2.2.1) using the nested version of BCLE4(−1)
(or equivalently A−λ,λ). The construction is similar in spirit to that of A−2nλ,2nλ using nested
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Figure 6.3: Left: We depict the branch of the radial SLE4(−1,−1) exploration tree targeting
z. The part of SLE from x until the first time that it completes γ1 is depicted in red. Then
it continues to evolve as a radial SLE4(−1,−1) in O(γ1) until the first time that it completes
γ2, depicted in blue. We depict two further layers of iteration in yellow and purple. Right:
We depict the first and second layers of BCLE4(−1). In the second layer, the loops with
boundary value −2λ or 2λ (in red) belong to the CLE4.

CLE4 described in Section 2.2.1: we perform a random walk of steps ±λ until we reach the
values ±2λ. More precisely, we start with Γ = ∅, and add loops into it successively. For
each γ ∈ L2 with boundary condition −2λ or 2λ, we add γ into Γ. For each γ ∈ L2 with
boundary condition 0, we iterate: for each loop γ1 ∈ L2(h|O(γ)) with boundary condition
−2λ or 2λ, we add γ1 into Γ; for each loop γ1 ∈ L2(h|ω) with boundary condition 0, we
continue the iteration by further splitting it into smaller loops. Whenever we encounter a
loop with boundary condition −2λ or 2λ, we add it into Γ; whenever we encounter a loop
with boundary condition 0, we further split it. We end up with the collection of loops Γ
being equal to CLE4(h).

Finally, let us record a lemma about the intersection between two loops in Lk and Lk+1

that encircle the same point.

Lemma 6.13. Fix z ∈ D and k ∈ N. Suppose γ1 ∈ Lk and γ2 ∈ Lk+1 both encircle z. Then
almost surely, γ1 ∩ γ2 is non-empty and does not contain isolated points nor any positive
portion of γ1 or γ2.

Proof. The curve γ2 is part of an SLE4(−1,−1) curve η in O(γ1). If we parametrize η
according to the usual chordal capacity for SLE, then the intersection between η and γ1 is
given by the set of η(t) where t corresponds to the times at which a Bessel process (coming
from the driving function of SLE4(−1,−1)) hits zero (see e.g. [50]). The zeros of this Bessel
process do not contain isolated points, nor any open interval.

6.4 Two-valued sets

The notion of two-valued sets is very useful in this work. It was introduced by Aru, Sepúlveda
and Werner in [8], and denotes more precisely thin local sets with two prescribed boundary
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values. We have given a heuristic account of two-valued sets in Section 2.2.1. We have
also mentioned the examples of CLE4 (whose gasket is a thin local set of a GFF with two
boundary values in {−2λ, 2λ}) and BCLE4(−1) (whose gasket is a thin local set of a GFF
with two boundary values in {−λ, λ}).

In [8], the authors first defined the more general family of bounded type thin local sets
(denoted by BTLS), as follows.

Definition 6.14 (Bounded type thin local sets, [8]). Let h be a GFF in D. Let A be a
relatively closed subset of D. For K > 0, we say that A is a K-BTLS of h if

1. (boundedness) A is a local set of h such that |hA(x)| ≤ K for all x ∈ D \A.

2. (thinness) for any smooth function f , we have (hA, f) =
∫
D\A hA(x)f(x)dx.

It was shown in [8] that a BTLS must be connected to the boundary of the domain.

Lemma 6.15 (Proposition 4, [8]). If A is a BTLS, then A ∪ ∂D is a.s. connected.

A two-valued set is defined to be a BTLS A such that hA ∈ {−a, b} for a, b > 0. The
family of two-valued sets satisfies the properties of the following lemma.

Lemma 6.16 (Proposition 2 in [8]). Let −a < 0 < b.

• When a+ b < 2λ, it is not possible to construct a BTLS A such that hA ∈ {−a, b} a.s.

• When a+ b ≥ 2λ, there is a unique BTLS A coupled with h such that hA ∈ {−a, b} a.s.
We denote this set A by A−a,b.

• If [a, b] ⊆ [a′, b′], then A−a,b ⊆ A−a′,b′ a.s.

An important point of Lemma 6.16 is the uniqueness of A−a,b when it exists. This is
inherently due to the uniqueness of the level lines of the GFF (Proposition 6.3), which is also
crucial for our proofs.

Let us quickly deduce a generalization of the third bullet point of Lemma 6.16 which will
be used later on. Recall that we use L−a,b to denote L(A−a,b), so that A−a,b is equal to the
gasket of L−a,b.
Lemma 6.17. Fix a, b > 0 with a + b ≥ 2λ. Suppose that U is a collection of simple loops
such that gask(U) is a thin local set of h with the property that each loop γ ∈ U has inner
boundary value c(γ) ∈ [−a, b]. Then gask(U) ⊆ A−a,b.

Proof. Define the following set of loops

{γ ∈ U : c(γ) = −a or b} ∪
⋃

γ∈U :c(γ)∈(−a,b)

L−a−c(γ),b−c(γ)(h
0|O(γ)).

The gasket of this collection of loops is clearly a thin local set of h with boundary values in
{−a, b}, hence by uniqueness it is equal to A−a,b. This gasket clearly contains gask(U).

The construction of A−a,b also relies on the branching SLE4(ρ,−2− ρ) processes. When
a + b = 2λ, L−a,b is equal to BCLE4(ρ). Properties of the SLE4(ρ,−2 − ρ) processes lead
to the following intersecting behavior of the loops in L−a,b. Recall that we use L−−a,b (resp.

L+
−a,b) to denote the collection of loops in L−a,b with inner boundary value −a (resp. b).
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Lemma 6.18 (Intersecting behavior of the loops [7]). 1. There exists a loop in L+
−a,b (resp.

L−−a,b) which intersects ∂D if and only if b < 2λ (resp. a < 2λ).

2. If a + b < 4λ, then one can connect any two loops η1 and η2 in L−a,b by a finite
sequence of loops (γ1, . . . , γn) so that γ1 = η1, γn = η2 and γk+1 intersects γk for each
1 ≤ k ≤ n−1. Only loops with different inner boundary values can intersect each other.

3. If a + b = 2λ, then two loops in L−a,b intersect each other if and only if they share a
positive portion of boundary.

4. If a+ b ≥ 4λ, then all the loops in L−a,b are disjoint from each other.

7 Scaling limit of the double random current clusters

In this section, we identify the scaling limit of the double random current clusters with free
boundary condition (Theorem 1.6) and wired boundary condition (Theorem 1.7). Concretely,
we will focus on proving Theorem 2.2 which is the central piece of the identification. The
strategy of the proof of Theorem 2.2 is explained in Section 7.1.

Then, Sections 7.2 and 7.3 are devoted to the proof of Theorem 7.8, which characterizes
all thin local sets of the GFF with boundary values in {−µ, 0, µ} for µ ≥ 2λ. In Section 7.2,
we also characterize all simply connected open sets (and their contours) coupled with h with
0 boundary value. These two subsections can be read for their own interest, independently
of everything else.

In Section 7.4, we complete the proof of Theorem 2.2. In Section 7.5, we prove Theo-
rems 1.6, 2.4, and 1.7.

7.1 The strategy of the proof of Theorem 2.2

The proof of Theorem 2.2 takes Proposition 2.3 as an input. We use the same notations as
in Proposition 2.3 and let (B,A, h, ε) be one subsequential limit of (Bδ, Aδ, hδ, εδ)δ. Our goal
is to uniquely identify the law of (B,A, h, ε).

Our strategy is to first define, using A, a new collection Ã of loops with the property
that gask(Ã) is a thin local set of h with boundary values in {−2

√
2λ, 0, 2

√
2λ}. In the end,

the set Ã will turn out to be equal to A, namely there in fact do not exist loops in A with
boundary values other than −2

√
2λ, 0 and 2

√
2λ. The main part of our proof is dedicated to

the identification of the joint law of (B, Ã, h, ε).
Here is our definition of Ã. For each loop ` ∈ B and γ ∈ A(`), let us define the collection

Uγ of loops (where c(γ) is the inner boundary value of γ)

• if c(γ) ∈ (0, 2
√

2λ) and ε(`) = 1, then let Uγ := L−c(γ),2
√

2λ−c(γ)(h
0|O(γ));

• if c(γ) ∈ (0, 2
√

2λ) and ε(`) = −1, then let Uγ := Lc(γ)−2
√

2λ,c(γ)(h
0|O(γ));

• otherwise if c(γ) ∈ {0, 2
√

2λ}, then let Uγ := {γ}.

Let Ã be the union of Uγ over all γ ∈ A. It is easy to see that gask(Ã) is a thin local set of
h with boundary values in {−2

√
2λ, 0, 2

√
2λ}. Note that there are infinitely many local sets
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with this property. Our work consists in using additional information on B, h, ε to uniquely
determine (B, Ã, h, ε). More precisely, we will prove the following proposition.

Proposition 7.1. Almost surely, B is equal to CLE4(h), and each ` ∈ B has inner boundary
value ε(`)2λ. For each ` ∈ B, let Ã(`) denote the collection of loops in Ã encircled by `. We
have

• if ε(`) = 1, then Ã(`) = L−2λ,(2
√

2−2)λ(h0|O(`));

• if ε(`) = −1, then Ã(`) = L−(2
√

2−2)λ,2λ(h0|O(`)).

The main point of Proposition 7.1 is to show that B is equal to the CLE4 coupled with
h so that the label of each loop in B corresponds to the sign of its inner boundary condition.
Note that Property 5 of Proposition 2.3 provides one inequality between B and CLE4, but
does not provide information on the coupling between B and h. More generally, due to the
lack of Markov property in the discrete for the loops in Bδ, it is far from clear (relying on
discrete properties only) that B is in fact coupled to h as its local set.

In order to prove Proposition 7.1, in Sections 7.2 and 7.3 we establish results characterizing
thin local sets with boundary values in {−µ, 0, µ} for µ ≥ 2λ. Sections 7.2 and 7.3 do not
involve any discussion about double random currents or XOR-Ising models, and can be read
independently. More precisely, we first show in Section 7.2 a key lemma (Lemma 7.3) which
states that the contour of every simply connected open set coupled with h with boundary
value 0 must be a loop in L0, where L0 is defined as below.

Definition 7.2 (The collection L0). Let L0 be the collection of loops in ∪k∈NLk (see Defin-
tion 6.10) which have inner boundary value 0.

This then allows us to show in Section 7.3 that every thin local sets with boundary values
in {−µ, 0, µ} can be constructed by iteratively “splitting” the loops of Hµ (see Definitions 7.5
and 7.6).

In Section 7.4, we use the results of Sections 7.2 and 7.3 and information about (B,A, h, ε)
to complete the proof of Theorem 2.2. Throughout, we let Ã0, Ã+, Ã− denote the collection
of loops in Ã that respectively have inner boundary value 0, 2

√
2 and −2

√
2. The result of

Section 7.2 implies that Ã0 ⊆ L0. Combined with additional properties of Ã and B, we can
deduce that every loop in Ã0 is encircled by a loop in CLE4(h), and further that each loop
in B is encircled by a loop in CLE4(h). Together with Property 5 of Proposition 2.3, we can
deduce that B is equal to CLE4(h), thus proving Proposition 7.1. Finally, we will use the
adjacency properties of the loops in Ã to show that Ã = A, thus completing the proof of
Theorem 2.2.

7.2 Characterization of simply connected open sets with 0 boundary value

The main purpose of this subsection is to prove Lemma 7.3 below. By definition, for every
loop γ ∈ L0, D \ O(γ) is a local set of h with boundary value 0. Lemma 7.3 states that L0

is exactly the collection of contours of all simply connected open sets with this property.

Lemma 7.3. Let U ⊆ D be a simply connected open set such that D \ U is a local set of h
and h|U has 0 boundary value. Then ∂U is a.s. a loop in L0.
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Proof. Our proof relies on the intersection behavior between level lines of the GFF and the
boundary of the domain given in Proposition 6.3. We note that this was also the main tool
used in [8] to prove the results about bounded type thin local sets.

Let U be as in the statement of the lemma. We will complete the proof in two steps. In
Step 1, we will describe how ∂U interacts with the loops in Lk (see Definition 6.10) which are
not part of 0-height level lines. (Recall that the height of a level line is defined in Remark 6.6.
A level line with height a has boundary values a−λ and a+λ at its two sides.) In particular,
Step 1 implies that ∂U cannot cross any loop in L0. In Step 2, we will show that ∂U is in
fact equal to a loop in L0.

Here and in the reminder of this article, we say that two contours ∂U1 and ∂U2 cross each
other if U1 6⊆ U2, U2 6⊆ U1 and U1 ∩ U2 6= ∅. We say that a contour ∂U1 encircles another
contour ∂U2 if U2 ⊆ U1, and we say ∂U1 strictly encircles ∂U2 if U2 ( U1.

Step 1. Let us prove that, almost surely, for every k ∈ N and every γk ∈ Lk, if γk is not part
of a 0-height level line coupled with h, then both points below are true.

• The loop γk cannot cross ∂U .

• If O(γk) ⊆ U , then either γk = ∂U (this is only possible if γk has inner boundary value
0, i.e., γk ∈ L0) or γk can intersect ∂U at at most one point.

This will imply in particular that ∂U cannot cross any loop in L0 (note that the loops in L0

are at height either −λ or λ).
For the sake of contradiction, suppose that with positive probability, the following event

E1 holds: there exists k ∈ N and γk ∈ Lk such that the three points below are all true.

• The loop γk is part of an a0λ-height level line where a0 is a non-zero integer.

• The loop γk is not equal to ∂U .

• Either γk crosses ∂U , or O(γk) ⊆ U and γk intersects ∂U at more than one point.

On E1, let k be the smallest integer for which there exists such a loop γk ∈ Lk. It is clear that
U ∩ O(γk) 6= ∅ on E1. Fix z ∈ D, such that E1 ∩ {z ∈ U ∩ O(γk)} has positive probability.
On the event E1 ∩ {z ∈ U ∩ O(γk)}, let γk−1 be the unique loop in Lk−1 which encircles z.
Due to the third condition satisfied by γk, one of the following two possibilities must be true.

• Either γk−1 \ U contains a positive portion of γk−1.

• Or O(γk) ⊆ O(γk−1) ⊆ U and γk−1 ∩ ∂U contains at least two points, say x1, x2. Since
D \ O(γk−1) and D \ U are both local sets of h, the set γk−1 ∩ ∂U is independent of
h0|O(γk−1).

In both cases, by Remark 6.11, one can find x1 ∈ γk−1 \ U , such that the BCLE4(−1)
coupled to h|0(γk−1) can be constructed by running an exploration tree of level lines started
from x1. Let η be the 0-height level line of h0|O(γk−1) from x1 targeting z. Then γk is equal
to the loop that η makes at the first time t0 > 0 that η(t0) intersects its past η([0, t0)). Since
γk ∩ U 6= ∅ and γk intersects ∂U at more than one point, there exists t > 0 such that with
positive probability, η(t) ∈ γk ∩U and the future part of η (after t) needs to hit ∂U in order
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Figure 7.1: In both figures, the yellow loop represents ∂U . Left: Step 1 of the proof of
Lemma 7.3. The blue curve is η which traces the loop γk. Right: Step 2 of the proof of
Lemma 7.3. In this figure, k0 = 4. The grey lines represent the 0-height level lines in the
connected component of U \ A−λ,λ(h) containing z.

to complete the loop γk. See Fig. 7.1 (left). Let s ∈ (0, t) be the last time before t with
η(s) ∈ ∂U . Let O(z, t) be the connected component of U \ η([0, t]) containing z.

The curve η makes excursions into U . For any s1 < s2, we say that η([s1, s2]) is a maximal
excursion of η into U if η((s1, s2)) ⊆ U and η(s1), η(s2) ∈ ∂U . The boundary conditions of h
in O(z, t) are piecewise constant with possibly infinitely many pieces (i.e., if we map O(z, t)
conformally onto the unit disk, then we get piecewise constant boundary conditions): equal
to (a0 − 1)λ and (a0 + 1)λ on the left and right sides of η([s, t]); equal to (a0 − 1)λ or
(a0 + 1)λ on each maximal excursion of η([0, s]) into U (depending on whether this part of
∂O(z, t) corresponds to the left or right side of η); and equal to 0 on the remaining part. By
Proposition 6.3 and Remark 6.4, almost surely, the future part of η (after t) can only possibly
hit ∂O(z, t) at a point z1 which is equal to η(s), or an extremal point of a maximal excursion
of η([0, s]) into U .

Since z1 ∈ η([0, s]), η completes a loop upon hitting z1, and this loop should be equal
to γk. If z1 = η(s), then γk does not cross ∂U and intersects ∂U at only one point z1.
This contradicts the definition of γk. So z1 6= η(s). This implies that η([0, s]) has made at
least one maximal excursion into U . In particular, there exists t1 < s such that η(t1) ∈ U .
Then η must hit ∂U at some time in (t1, s]. Let t2 be the first time in (t1, s] that η hits
∂U . Again, Proposition 6.3, Remark 6.4 and the boundary conditions of O(z, t1) imply that
η(t2) must belong to η([0, t1]). This means that η completes tracing the loop γk at time t2.
This contradicts the assumption that η(t) is in the middle of tracing γk. Altogether, we have
proved the statement of this step.

Step 2. Let γ̂ be the smallest loop in L0 which encircles ∂U , i.e., U ⊆ O(γ̂). To prove the
lemma, it suffices to show that ∂U = γ̂ almost surely. Since h|O(γ̂) is a zero-boundary GFF,

81



we can map O(γ̂) onto D by a conformal map f and consider (f(∂U), f(h|O(γ̂))) instead
of (∂U, h). Therefore, without loss of generality, we can assume that γ̂ = ∂D. Under this
assumption (conditionnally on γ̂ = ∂D), ∂U is not encircled by any loop in L0 \ {∂D}. Fix
z ∈ D such that {z ∈ U} has positive probability. We aim to show that ∂U = ∂D a.s. on the
event {z ∈ U}. If this is true for any z, then we would have shown that ∂U = ∂D almost
surely, which completes the proof of the lemma.

From now on, we further condition on the event {z ∈ U}. By Step 1, ∂U should not cross
any loop in L0. By our assumption, ∂U is not encircled by any loop in L0 \{∂D}. Therefore,
∂U must strictly encircle all the loops in L0 \ {∂D} which encircle z.

For each k ∈ N, let γk be the a.s. unique loop in Lk which encircles z. Let us show that
O(γ2) ( U and γ2 intersects ∂U at at most one point almost surely. Note that h|O(γ2) has
boundary value either −2λ, 0 or 2λ. If the boundary value of h|O(γ2) is 0, then γ2 ∈ L0, hence
O(γ2) ( U by our assumption. Then by Step 1, we also know that γ2 intersects ∂U at at most
one point. Suppose that the boundary value of h|O(γ2) is −2λ (the case 2λ can be treated
in the same way), then let k0 be the smallest k ≥ 2 such that h|O(γk) has boundary value 0.
For all 2 ≤ j ≤ k0, γj must not cross ∂U and γj 6= ∂U . Indeed, γj is a level line of h whose
height is equal to the boundary value of h|O(γj−1). For all 2 ≤ j ≤ k0, the boundary value of
h|O(γj−1) is non-zero, hence γj is not a 0-height level line. By Step 1, for all 2 ≤ j ≤ k0, γj
cannot cross ∂U , and can intersect ∂U at at most one point. Moreover, since γk0 ∈ L0, we
have O(γk0) ( U by our assumption. Since for all j ∈ N, γj intersects γj+1 at infinitely many
points, it is not possible to have O(γj+1) ( U ( O(γj) for any 2 ≤ j ≤ k0− 1. Therefore, the
only possibility is O(γ2) ( U . Then the result of Step 1 further implies that γ2 intersects ∂U
at at most one point.

Now, let us show that γ2 also belongs to L2(h|U ). First note that A−λ,λ(h) ∩ U is non-
empty. Indeed, since O(γ2) ⊆ U , if A−λ,λ(h) ∩ U is empty, then we must have U ⊆ O(γ1).
However, since γ1 intersects γ2 at infinitely many points, ∂U would also intersect γ2 at
infinitely many points, which contradicts the previous section.

Then let us show that A−λ,λ(h|U ) contains A−λ,λ(h)∩U . By Lemma 6.2, (D\U)∪A−λ,λ(h)
is also a local set of h, and each connected component of U \A−λ,λ(h) has piecewise constant
boundary conditions (with possibly infinitely many pieces), taking values in {−λ, 0, λ}. More
precisely, it has boundary conditions −λ or λ on A−λ,λ(h) and 0 on ∂U . By Proposition 6.3
and Remark 6.4, in each connected component of U \A−λ,λ(h), we can run 0-height level lines
of h between a dense countable set of points on the parts of the boundary with 0 boundary
condition. If we take the closure of the union of these 0-height level lines with A−λ,λ(h)∩U ,
then we obtain a thin local set of h|U with boundary values in {−λ, λ}, which is exactly
A−λ,λ(h|U ). See Fig. 7.1 (right).

Without loss of generality, assume that γ1 has inner boundary value −λ. Let O denote
the connected component of U \A−λ,λ(h) containing z. Since O(γ2) ⊆ U and O(γ2) ⊆ O(γ1),
we have O(γ2) ⊆ O. Note that ∂U ∩ γ2 contains at most one point and γ1 ∩ γ2 contains
infinitely many points, hence there exists z1 ∈ γ1∩γ2 which is not on ∂U . Then there should
be a positive portion I ⊆ γ1 containing z1 which is disjoint from ∂U . Since ∂U must encircle
z1, it also must encircle I. In particular, I ⊆ ∂O. Since γ1 ∩ γ2 does not contain isolated
points (see Lemma 6.13), there a.s. exists z2 ∈ γ2 ∩ I distinct from z1. We know that for a
countable dense set of points on γ1, if we run the 0-height level line of h0|O(γ1) from a point
in this set targeting z, then the first time that this level line encircles z, the loop that it
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completes is equal to γ2 (see Remark 6.11). Let z0 ∈ I be a point in this countable dense set
and also on the portion of I between z1 and z2. Let ξ be the 0-height level line of h0|O(γ1)

(which is a −λ-height level line of h|O(γ1)) from z0 targeting z, stopped at the first time that
ξ encircles z. Then ξ is a local set of h|O(γ1) with boundary values 0 and −2λ at its two sides.
By the choice of z0, ξ would first hit the portion of γ2 between z1 and z2, and then follow γ2.
This ensures that ξ ⊆ O. By Lemma 6.2, (D \ O) ∪ ξ is also a local set of h, which implies
that ξ is also a −λ-height level line of h|O. Combined with the previous paragraph, ξ is part
of the second layer of BCLE4(−1) coupled with h|U , hence the loop γ2 belongs to L2(h|U ).

We have now proved that γ2 belongs to L2(h|U ). This implies that the ratio of the
conformal radii of γ2 and ∂U with respect to z should have the same law as the ratio of the
conformal radii of γ2 and ∂D with respect to z. This is possible only if ∂U = ∂D a.s. This
completes the proof of the lemma.

Remark 7.4. Following similar lines, one should also be able to characterize simply connected
open sets in D with boundary value a ∈ R. Since this is not the main purpose of this work,
we do not develop more on it.

7.3 Thin local sets with boundary values in {−µ, 0, µ}
The main goal of this subsection is to obtain Theorem 7.8 below, which characterises all thin
local sets with boundary values in {−µ, 0, µ} with µ ≥ 2λ. Throughout, we fix µ ≥ 2λ.

First, let us define a particular set of loops Hµ, such that gask(Hµ) is a thin local set of
h with boundary values in {−µ, 0, µ}.

Definition 7.5 (Collection of loops Hµ). Given a zero boundary GFF h, for every µ ≥ 2λ,
let Hµ(h) be the union of the following two collections of loops:

• the union of L−λ,µ−λ(h0|O(γ)) over all γ ∈ L+
−λ,λ(h);

• the union of L−µ+λ,λ(h0|O(γ)) over all γ ∈ L−−λ,λ(h).

The collection Hµ will serve as the building block of any thin local set with boundary
values in {−µ, 0, µ} through the following operation.

Definition 7.6 (Iterations of Hµ). Let Z0 := Hµ(h) and I0 := gask(Z0). For n ∈ N, suppose
that we have defined a collection of loops Zn such that In := gask(Zn) is a thin local set
with boundary values in {−µ, 0, µ}, let us define Zn+1. For each loop γn ∈ Zn with 0 inner
boundary value, we say that we split γn if we replace γn by the collection Hµ(h|O(γn)) of loops
which are all encircled by γn. Let Un ⊆ Zn be a set of loops with 0 inner boundary value. Let
Zn+1 be the set of loops obtained from splitting the loops in Un, namely

Zn+1 := (Zn \ Un) ∪
⋃

γn∈Un

Hµ(h|O(γn)).

The set In+1 := gask(Zn+1) is given by

In+1 = In ∪
⋃

γn∈Un

gask(Hµ(h|O(γn))).
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Then In+1 is again a thin local set of h with boundary values in {−µ, 0, µ}. For each n, we
say that Zn and In are obtained from n iterations of Hµ. Note that Zn and In are determined
by the choice of loops U0, . . . , Un−1.

One can also make infinite iterations of Hµ by carrying out the above splitting operation
for an infinite sequence of collections of loops (Un)n≥0. This gives rise to the following set

I∞ := gask(Hµ(h)) ∪
∞⋃
n=0

⋃
γn∈Un

gask(Hµ(h|O(γn))).

A set I is said to be obtained from iterations of Hµ, if it can be obtained by iterating this
operation a finite or countably infinite number of times.

In the following, for simplicity, we will call a loop an a-loop meaning that it is a loop with
inner boundary value a.

Lemma 7.7. If I is obtained from iterations of Hµ, then I is a thin local set with boundary
values in {−µ, 0, µ}.

Proof. The lemma is obvious when we perform only a finite number of iterations of Hµ. By
Lemma 6.17, after a finite number of iterations of Hµ, the thin local set we obtain is always
contained in A−µ,µ(h). Taking limits, any (finite or infinite) number of iterations of Hµ gives
rise to a subset of A−µ,µ(h). In fact, A−µ,µ(h) can be obtained from iterating Hµ infinitely
until there are no more 0-loops. This is the “maximum” number of iterations we can do. Fix
z ∈ D. Let γ0,z be the a.s. unique loop in Hµ(h) encircling z. For k ≥ 0, if we have obtained
γk,z such that h|O(γ0,z) is a zero boundary GFF, then we will let γk+1,z be the a.s. unique
loop in Hµ(h|O(γk,z)) encircling z. There a.s. exists a finite k(z) such that γk(z),z has inner
boundary value −µ or µ, and γk(z),z is equal to the loop in L−µ,µ(h) encircling z. Suppose
that I is obtained from iterations of Hµ, and let γ(z, I) be the a.s. unique loop in L(I) which
encircles z. Then there exists 0 ≤ k ≤ k(z) such that γ(z, I) = γk,z. Therefore h|O(γ(z,I)) is a
GFF with boundary conditions in {−µ, 0, µ} which is conditionally independent of the value
of h outside of γ(z, I). Since this is true for Lebesgue a.e. z ∈ D, I is indeed a local set of
h with boundary values in {−µ, 0, µ}. On the other hand, since I is a subset of A−µ,µ(h), it
must be thin as well. This completes the proof.

The following theorem states that the reverse of Lemma 7.7 is also true.

Theorem 7.8. If I is a thin local set of h with boundary values in {−µ, 0, µ}, then either
I = ∂D or I is obtained from iterations of Hµ.

In order to prove Theorem 7.8, we first collect Lemmata 7.9, 7.10 and 7.13.
Suppose that I is a thin local set with boundary values in {−µ, 0, µ}, then by Lemma 6.15,

we know that I∪∂D is a.s. connected. This implies that all the connected components of D\I
are simply connected. We can therefore define L(I) to be the collection of outer boundaries
of the connected components of D \ I. This is a collection of contours which will turn out
later to be simple loops.

Lemma 7.9. The contours in L(I) which are the boundaries of a simply connected set with
boundary value µ (resp. −µ) belong to L+

−µ,µ (resp. L−−µ,µ), and are therefore simple loops.
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Proof. Let K be the closure of the union of A−µ,µ(h|O) over all connected components O of
D \ I such that h|O has boundary value 0, together with I. Then K is a thin local set of h
with boundary values in {−µ, µ}. By uniqueness of two-valued thin local sets (Lemma 6.16),
we know that K = A−µ,µ(h). Therefore, the contours in L(I) with inner boundary value µ
or −µ belong to the set of loops in L(K) = L−µ,µ(h) with the same inner boundary value.
This implies the claim.

We call a loop in L0 \ {∂D} outermost if the only loop in L0 which strictly encircles it is
∂D.

Lemma 7.10. Every outermost loop in L0 \ {∂D} is encircled by a loop in Hµ.

We remark that by Lemma 7.3, every 0-loop of Hµ belongs to L0. Therefore, Lemma 7.10
implies that every 0-loop of Hµ is an outermost loop in L0 \ {∂D}.

Proof. The outermost loops in L0 \ {∂D} are obtained from iteratively sampling L−λ,λ until
the first time that one gets a loop with inner boundary 0. More precisely, we first sample
L−λ,λ(h) (which is also equal to L1). For each loop γ ∈ L1, we again sample L−λ,λ(h0|O(γ)).
For each loop ξ ∈ L−λ,λ(h0|O(γ)), if ξ has inner boundary value 0, then it is an outermost
loop in L0 \ {∂D}, otherwise we continue to sample L−λ,λ(h0|O(ξ)). For a fixed point z ∈ D,
this iteration gives rise to a sequence of loops encircling z whose inner boundary values follow
a simple random walk with steps in −λ, λ. We stop the process when the random walk value
associated with the loop is 0.

The previous paragraph implies the following fact for every n ∈ N. For each loop γ ∈ L1

with inner boundary value λ, every outermost loop in L0 \ {∂D} which is encircled by γ is
encircled by a loop in L−λ,nλ(h0|O(γ)). More precisely, every loop in L−−λ,nλ(h0|O(γ)) is an

outermost loop in L0 \ {∂D}, and every loop in L+
−λ,nλ(h0|O(γ)) strictly encircles a collection

of outermost loops in L0\{∂D}. Indeed, one way to construct L−λ,nλ(h0|O(γ)) is to iteratively
sample L−λ,λ. More precisely, we first sample L−λ,λ(h0|O(γ)). When we get a loop with inner
boundary value 0 or (n+ 1)λ, it belongs to L−λ,nλ(h0|O(γ)) so we keep it. For any other loop
ξ, we again sample L−λ,λ(h0|O(ξ)). For a fixed point z ∈ O(γ), this iteration gives rise to a
sequence of loops encircling z whose inner boundary values follow a simple random walk with
steps in −λ, λ. We stop this random walk when it reaches 0 or (n+ 1)λ. Combined with the
previous paragraph, it is clear that the loops of L−λ,nλ(h0|O(γ)) with inner boundary value
0 belong to the set of outermost loops in L0 \ {∂D}, and the loops of L−λ,nλ(h0|O(γ)) with
inner boundary value (n+ 1)λ can be further split into outermost loops in L0 \ {∂D}.

Now fix n ∈ N such that nλ ≥ µ. Note that for each λ-loop γ ∈ L1, each loop in
L−λ,nλ(h0|O(γ)) is encircled by a loop in L−λ,µ−λ(h0|O(γ)). Indeed, starting with the collection

of loops L−λ,µ−λ(h0|O(γ)), if we further split each loop γ1 ∈ L+
−λ,µ−λ(h0|O(γ)) into the set of

loops L−µ,(n+1)λ−µ(h0|O(γ1)), then we obtain L−λ,nλ(h0|O(γ)). Combined with the previous
paragraph, this implies that for each λ-loop γ ∈ L1, every outermost loop in L0 \{∂D} which
is encircled by γ is encircled by a loop in L−λ,µ−λ(h0|O(γ)). By symmetry, we can deduce
that for every −λ-loop in γ ∈ L1, every outermost loop in L0 \ {∂D} which is encircled by γ
is encircled by a loop in Lλ−µ,λ(h0|O(γ)). Altogether, we have proved the lemma.

We are now ready to prove Theorem 7.8.
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Proof of Theorem 7.8. First of all, Lemma 7.9 implies that each contour in L(I) which is the
outer boundary of a connected component with boundary conditions ±µ is a simple loop.
Then Lemma 7.3 implies that each contour in L(I) which is the outer boundary of a connected
component with boundary condition 0 is also a simple loop. Therefore, every contour in L(I)
is in fact a simple loop. Below, we will complete the proof in two steps. Assume that I 6= ∂D.

Step 1. Let us show that each loop in L(I) is either equal to a loop in Hµ, or is encircled
by a 0-loop in Hµ. Since I and gask(Hµ) have Lebesgue measure 0 (because they are thin),
upon showing this, we can deduce that each loop in Hµ with inner boundary value −µ or µ
must belong to L(I).

Since we can obtain L−µ,µ(h) by taking the union of the set of ±µ-loops of Hµ together
with the union of the sets L−µ,µ(h|O(ξ)) for every 0-loops ξ of Hµ, we can deduce that each
loop of L−µ,µ(h) is either equal to a ±µ-loop of Hµ, or encircled by a 0-loop of Hµ. On
the other hand, Lemma 7.9 implies that the ±µ-loops of L(I) are contained in L−µ,µ(h).
Therefore, each ±µ-loop of L(I) is also either equal to a ±µ-loop of Hµ, or is encircled by a
0-loop of Hµ.

Now, consider a 0-loop γ ∈ L(I). By Lemma 7.3, we know that γ belongs to L0. Then
by Lemma 7.10, γ is a.s. encircled by a loop in Hµ. It remains to prove that γ cannot be
encircled by a ±µ-loop of Hµ. Note that the union of the set of ±µ-loops of L(I) together
with the union of the sets L−µ,µ(h|O(ξ)) for every 0-loops ξ of L(I) form L−µ,µ(h). This
implies that γ is not encircled by any loop in L−µ,µ(h). Since the ±µ-loops of Hµ all belong
to L−µ,µ(h), γ is not encircled by any ±µ-loop of Hµ. Consequently, γ is encircled by a 0-loop
of Hµ.

Altogether, we have proved the first sentence of this step.

Step 2. The previous step implies that for each 0-loop γ of Hµ, there exists U ⊆ L(I) such
that ⋃

ξ∈U
O(ξ) = O(γ). (7.1)

If every 0-loop in Hµ belongs to L(I), then since every ±µ-loop in Hµ also belongs to L(I),
we have Hµ = L(I) and we are done. Otherwise let γ be a 0-loop in Hµ which does not belong
to L(I), and let U be given by (7.1). Conditionally on Hµ, h|O(γ) is a zero-boundary GFF in
O(γ). The set O(γ)\⋃ξ∈U O(ξ) is a thin local set of h|O(γ) with boundary values in {−µ, 0, µ}
which is not equal to γ. This implies that we can apply the same reasoning as in Step 1 to
h|O(γ) and U , just as we did for h and L(I). It follows that the ±µ-loops of H(h|O(γ)) must
belong to U (hence to L(I)), and the 0-loops of H(h|O(γ)) either belong to U (hence to L(I)),
or are split into loops that belong to L(I). We can then iterate this procedure as many times
as we want, until all the 0-loops of the iterated set belong to L(I). The number of iterations
is at most countable, because L−µ,µ can be obtained from iterating Hµ countably many times
(since for each z ∈ D, the loop in L−µ,µ which encircles z is obtained after a finite number
of iterations of Hµ). This proves the theorem.

7.4 Proof of Theorem 2.2

We will now complete the proof of Theorem 2.2. Recall the notations of Section 7.1. First,
we deduce from Proposition 2.3 the following properties for Ã in place of A. Recall that Ã0
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is the set of loops in Ã with 0 inner boundary value.

Lemma 7.11. The quadruple (B, Ã, ε, h) satisfies the following properties a.s.

1. h is a GFF with zero boundary conditions on ∂D.

2. The loops in Ã and B are simple, and do not cross each other. Every loop in Ã is
encircled by some loop in B. The set Ã is not equal to {∂D}.

3. The set gask(Ã) is a thin local set of h, with boundary values in {−2
√

2λ, 0, 2
√

2λ}.
For each loop ` ∈ B, every loop γ ∈ Ã encircled by ` has inner boundary condition 0 or
ε(`)2

√
2λ.

4. The loops in Ã0 do not touch the loops in B.

5. The loops in B are more exterior than CLE4 loops.

Proof. Properties 1, 2, 3 and 5 directly follow from Proposition 2.3 and the definition of Ã.
To get Property 4, note that the loops of A with inner boundary value 0 form a subset of
Ã0 and these loops do not touch the loops in B by Proposition 2.3. Any other loop of Ã0

is encircled by a loop γ in A with inner boundary condition not in {−2
√

2λ, 0, 2
√

2λ}. By
Property 3 of Proposition 2.3, such a loop γ cannot be reached from ` (where ` is the loop in
B that encircles γ) via a finite sequence of loops in A, so in particular γ does not intersect `.
It follows that every loop of Ã0 encircled by γ also cannot intersect `. This implies Property 4
of the lemma.

Let us now prove the following lemma for Ã0.

Lemma 7.12. Each loop in Ã0 is encircled by a loop in CLE4(h).

In order to prove Lemma 7.12, we need the following geometric property of L−a,b.

Lemma 7.13. Let D 6= C be a simply connected domain. Let h be a zero boundary GFF in
D. Fix a, b > 0 with a+ b ≥ 2λ. Almost surely, for each z ∈ ∂D and ε > 0, B(z, ε) intersects
at least one loop γ1 ∈ L+

−a,b(h) and one loop γ2 ∈ L−−a,b(h).

Proof. Suppose that with positive probability, the following event E occurs: there exists
z ∈ ∂D and ε > 0 such that B(z, ε) intersects only loops in L+

−a,b(h). Note that B(z, ε)
contains a positive portion `1 of ∂D. For δ > 0, let B(`1, δ) be the δ neighborhood of `1 in

D. Then on the event E, we have E
[∫
B(`1,δ)

h(x)dx
]

= b for all δ sufficiently small. This is

impossible because h has zero boundary condition in D. Therefore the event E should a.s.
not occur. Similarly, we cannot have B(z, ε) which only intersects loops in L−−a,b(h).

Proof of Lemma 7.12. Consider the loops in L1(h) and L2(h) (see Definition 6.10). The loops
in L1(h) have inner boundary values in {−λ, λ} and the loops in L2(h) have inner boundary
values in {−2λ, 0, 2λ}. Our first goal is to prove that

Ã0 ∩ L2 = ∅ a.s.. (7.2)

Before proving (7.2), let us first explain how to deduce the lemma, assuming (7.2). Due to
Lemma 7.3, we know that every loop γ ∈ Ã0 belongs to L0. Since γ ∈ Ã0 is not equal to
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∂D and does not belong to L1(h), it must belong to ∪k≥2Lk, hence γ is encircled by a loop
in L2(h). Note that the loops of L2(h) with inner boundary values in {−2λ, 2λ} belong to
CLE4(h), hence if γ is encircled by such a loop, then we are done. Otherwise, suppose that
there exists a loop ξ ∈ L2(h) with inner boundary condition equal to 0 such that O(γ) ( O(ξ)
(the possibility of γ = ξ is ruled out by (7.2)). By Property 3 and Theorem 7.8, we know
that the loops in Ã are obtained from iterations of H2

√
2λ, hence they do not cross ξ. Let U

be the set of loops in Ã that are encircled by ξ, then h|O(ξ) and U satisfy the same conditions

as h and Ã as in Lemma 7.11. Therefore, the same argument would imply that any 0-loop
in U , in particular γ,

• is either encircled by a loop in CLE4(h|O(ξ)), in which case we are done, since CLE4(h|O(ξ))
is a subset of CLE4(h).

• or is strictly encircled by a loop ξ′ ∈ L2(h|O(ξ)) with inner boundary condition 0, in
which case we can continue the iteration.

Since γ has non-zero diameter, the above iteration will end up in the first case after finitely
many iterations. This will complete the proof of the lemma, given (7.2).

Now, let us prove (7.2). We assume by contradiction that with positive probability, there
exists a loop γ ∈ Ã0 ∩ L2(h). On this event, let ξ be the loop in L1(h) that encircles γ
and assume without loss of generality that the inner boundary condition of ξ is λ. Note
that γ a.s. intersects ξ, hence also intersects some neighboring loop ξ̂ of ξ in L−λ,λ(h) (i.e.,

ξ̂ and ξ share a positive portion of boundary). Let z ∈ γ ∩ ξ ∩ ξ̂, and let ` be the loop
in B which encircles γ. By Property 4 of Lemma 7.11, there a.s. exists ε > 0 so that `
encircles a small ball B(z, ε). By Lemma 7.13, B(z, ε)∩O(ξ) a.s. intersects at least one loop
ζ1 ∈ L+

−λ,(2
√

2−1)λ
(h0|O(ξ)). Any such loop ζ1 in fact belongs to the set of loops in H2

√
2λ that

have inner boundary condition 2
√

2λ. Since A is not equal to the set {∂D} (Property 2 of
Lemma 7.11), by Theorem 7.8, we need to do at least one iteration to get Ã. It follows that
ζ1 belongs to Ã. More precisely, ζ1 ∈ Ã+. In the same way, B(z, ε) ∩ O(ξ̂) a.s. intersects
a loop ζ2 ∈ Ã−. Since O(`) contains B(z, ε) and ` does not cross ζ1 or ζ2 (Property 2 of
Lemma 7.11), it follows that ` encircles both ζ1 and ζ2. This leads to a contradiction, because
` cannot encircle loops both from Ã− and Ã+, by Property 3 of Lemma 7.11. This completes
the proof of (7.2) and also the lemma.

Lemma 7.14. If a loop γ in CLE4(h) has inner boundary value 2λ (resp. −2λ), then it has
to encircle at least one loop in Ã+ (resp. Ã−).

Proof. By applying Lemma 7.9 to µ = 2
√

2λ, we know that every loop in Ã+ ∪ Ã− belongs
to L−2

√
2,2
√

2(h), hence is encircled by a CLE4(h) loop. Indeed, A−2λ,2λ(h) ⊆ A−2
√

2,2
√

2λ(h)
(by Lemma 6.16) and L−2λ,2λ(h) is equal to CLE4(h). Combined with Lemma 7.12, we know

that every loop in Ã is encircled by a CLE4(h) loop.
Let γ be a loop in CLE4(h) with inner boundary value 2λ. Let U be the set of loops in Ã

which are encircled by γ. By Property 3 of Lemma 7.11, we know that gask(Ã) is thin, hence
O(γ)\∪η∈UO(η) is again a thin local set of h|O(γ). If U does not contain any loop in Ã+, then

O(γ) \ ∪η∈UO(η) would take boundary values in {−2
√

2λ, 0}, which is impossible because
h|O(γ) has boundary value 2λ and E[

∫
O(γ) h(x)dx] > 0. Similarly, we can prove that if a loop

γ in CLE4(h) has inner boundary value −2λ, then it has to encircle a loop in Ã−.
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Lemma 7.15. Every loop ` in B is a.s. encircled by a loop in CLE4(h).

Proof. Let us show that, if ` ∈ B, then O(`) a.s. cannot intersect more than one loop in
CLE4(h). For the sake of contradiction, suppose that with positive probability, O(`) intersects
two different loops γ1 and γ2 in CLE4(h). On this event, there exists z ∈ γ1 ∩O(`) and ε > 0
such that B(z, ε) ⊆ O(`). There exists δ ∈ (0, ε) such that the union of the loops in CLE4(h)
(apart from γ1) that intersect B(z, δ) is contained in B(z, ε) (because this union converges
to the point z as δ → 0). Consequently every loop in CLE4(h) which intersects B(z, δ)
(apart from γ1) is encircled by `. There are infinitely many loops in CLE4(h) which intersect
B(z, δ), because none of the loops completely encircle B(z, δ) and none of the loops intersect
each other. Since the loops in CLE4(h) have inner boundary values ±2λ for which the signs
are distributed as i.i.d. coin tosses given the loops, there a.s. exist loops γ3 ∈ CLE+

4 (h)
and γ4 ∈ CLE−4 (h) among the infinitely many loops in CLE4(h) which intersect B(z, δ).

Moreover, O(γ3) ⊆ O(`) and O(γ4) ⊆ O(`). By Lemma 7.14, γ3 a.s. encircles a loop in Ã+

and γ4 a.s. encircles a loop in Ã−. This implies that ` encircles simultaneously a loop in Ã+

and a loop in Ã−, which contradicts Property 3 of Lemma 7.11. We have thus proved that
O(`) a.s. intersects at most one loop in CLE4(h). In other words, ` is a.s. encircled by a loop
in CLE4(h). This completes the proof.

Proof of Proposition 7.1 and Theorem 2.2. We know thatB is a.s. larger than CLE4 by Prop-
erty 5 of Lemma 7.11, so by Lemma 7.15, B must be equal to CLE4(h). Moreover, for each
` ∈ B, the inner boundary value of ` must be equal to 2λε(`). Indeed, if the inner boundary
value of ` is −2λε(`), then by Lemma 7.14, ` must encircle a loop in Ã−ε(`), which contradicts
Property 3 of Lemma 7.11.

It follows that the law of Ã is given by Proposition 7.1. Indeed, Property 3 of Lemma 7.11
ensures that the gasket of Ã(`) in O(`) is a thin local set of h|O(`), and the loops in Ã(`) have

inner boundary conditions 0 or 2
√

2λε(`). This uniquely determines Ã(`) as a two-valued set
by Lemma 6.16.

It remains to prove that Ã = A. By Lemma 6.18, we know that for each ` ∈ B, every loop
in Ã(`) can be reached from ` via a finite sequence of loops in Ã. We also know that every
loop in A encircles (and does not cross) the loops in Ã. Therefore every loop in A(`) can also
be reached from ` via a finite sequence of loops in A(`). By Property 3 of Proposition 2.3,
we deduce that every loop in A has inner boundary value in {−2

√
2, 0, 2

√
2}, hence Ã = A.

Property 3 further implies that a loop in A has inner boundary value 0 if and only if it is
the limit of the boundary of an even hole. This completes the proof.

7.5 Proofs of Theorems 1.6, 2.4 and 1.7

Proof of Theorem 1.6. Theorem 2.2 identifies the limit of the (inner and outer) boundaries
of the outermost clusters in a double random current model with free boundary conditions.
By Proposition 5.2, for each loop γ in A, the next layer of outermost clusters in O(γ) satisfies
the same properties (i.e., Proposition 2.3) as the outermost clusters in D. The same proof as
that of Theorem 2.2 then identifies the law of the next layer of outermost clusters in O(γ).
Iterating, we can deduce Theorem 1.6.

Proof of Theorem 2.4. By Proposition 2.5, gask(Â) is a thin local set of h such that for
each γ ∈ Â, h restricted to O(γ) is an independent GFF with boundary condition c(γ) ∈
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[−
√

2λ,
√

2λ]. The gasket of the following set of loops

{γ ∈ Â : c(γ) = −
√

2λ or
√

2λ} ∪
⋃

γ∈A : c(γ)∈(−
√

2λ,
√

2λ)

L−√2λ−c(γ),
√

2λ−c(γ)(h
0|O(γ)) (7.3)

forms a thin local set of h with boundary values in {−
√

2λ,
√

2λ}. By Lemma 6.16, the
set (7.3) is equal to L−√2λ,

√
2λ(h). By Lemma 6.18, we know that every loop γ in L−√2λ,

√
2λ(h)

can be reached from ∂D by a finite sequence of loops in L−√2λ,
√

2λ(h). We further know by

(7.3) that every loop in Â encircles (and does not cross) the loops in L−√2λ,
√

2λ(h). This

implies that every loop in Â can also be reached from ∂D by a finite sequence of loops in Â.
This implies that Â = L−√2λ,

√
2λ(h). Moreover, the parity of the hole encircled by each loop

in Â is indicated by its inner boundary value by Property 2.

Proof of Theorem 1.7. The first bullet point of Theorem 1.7 is given by Theorem 2.4. Given
Â, for each loop γ ∈ Â, we again have the scaling limit of an independent double random
current model in O(γ) with free boundary conditions (see Proposition 5.3). This Markov
property implies the second and third bullet points of Theorem 1.7.

8 Scaling limit of the XOR-Ising interfaces

In this section, we will identify the scaling limit of XOR-Ising interfaces with free boundary
conditions (Theorem 1.2) and with plus/plus boundary conditions (Theorem 1.5). More
concretely, we will focus on proving Theorem 2.8 which implies Theorem 1.2 directly and is
the main input for Theorems 2.10 and 1.5.

In Sections 8.1 and 8.2, we deal with the free boundary condition case. We continue to
use the setting and notations fixed above Proposition 2.9. There, we defined Cδ, sδ, Sδ,
S̃δ, εδ, Bδ, Aδ, hδ for the double random current and XOR-Ising models and their height
function, coupled as in Theorem 2.7. In Section 8.1, we will focus on proving the following
proposition.

Proposition 8.1. Almost surely, C is equal to L−λ,λ(h). For each γ ∈ C, h|O(γ) is equal to
a GFF with boundary condition s(γ)λ. Moreover, we have

S(γ) = Ls(γ)
−λ,λ(h0|O(γ)) and S̃(γ) = L−s(γ)

−λ,λ (h0|O(γ)).

Proposition 8.1 uniquely determines the law of (C, s, S, S̃, h). Recall that Theorem 2.2
identifies the law of (ε, B,A, h). Altogether, we have identified the law of (C, s, S, S̃, ε, B,A, h).

The main point of Proposition 8.1 is the identification of the set C, which is the scaling
limit of the XOR-Ising interfaces between the clusters in Items 1 and 2 in Theorem 2.8. The
discrete interfaces Cδ do not satisfy spatial Markov property. The identification of C relies
on the sets S and S̃ which satisfy Property 3 of Proposition 2.9. Recall that for each γ ∈ C,
S(γ) is the collection of loops in B that touch γ, and S̃(γ) is the collection of outer boundaries
of the connected components of O(γ) \ ∪`∈S(γ)O(`). For each γ ∈ C, s(γ) ∈ {−1, 1} is the
spin of the cluster with outer boundary γ. See Fig. 2.4 for an illustration.

In Section 8.2, we complete the proof of Theorem 2.8 (which implies Theorem 1.2). In
Section 8.3, we complete the proof of Theorem 2.10 (which implies Theorem 1.5).
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8.1 Proof of Proposition 8.1

Introduce Ω := gask(S∪ S̃). Property 3 of Proposition 2.9 implies that Ω is a thin local set of
h with boundary values in {−2λ, 0, 2λ}, such that every loop in S̃ has inner boundary value
0 and every loop in S has inner boundary value −2λ or 2λ (due to S ⊆ B and Theorem 2.2).
Theorem 7.8 implies that Ω must be obtained from iterations of H2λ.

We will first deduce a few geometric properties of H2λ and L−λ,λ in Lemmata 8.3 and 8.4,
and then combine with Proposition 2.9 to identify the law of (C,Ω, h) and complete the proof.
Let us first define the adjacency relation between the loops in H2λ.

Definition 8.2. We say that two loops in H2λ are adjacent if their intersection contains a
positive portion of boundary (see Definition 6.9). Two loops γ1, γ2 ∈ H2λ are said to be in
the same adjacency class if there is a finite sequence of loops η1, . . . , ηn so that γ1 is adjacent
to η1, ηn is adjacent to γ2 and ηi is adjacent to ηi+1 for every 1 ≤ i ≤ n− 1.

Lemma 8.3. Two loops in H2λ are in the same adjacency class if and only if they are
encircled by the same loop in L−λ,λ(h).

Proof. Note that H2λ is obtained via a nested version of L−λ,λ. For each loop γ ∈ L−λ,λ(h),
the set of loops in H2λ that are encircled by γ is exactly equal to L−λ,λ(h0|O(γ)). By
Lemma 6.18, all the loops in L−λ,λ are in the same adjacency class. This implies that
for each loop γ ∈ L−λ,λ, all the loops in H2λ that are encircled by γ belong to the same
adjacency class.

It remains to prove that for any two different loops γ1, γ2 ∈ L−λ,λ(h) and any two loops
γ3, γ4 ∈ H2λ such that O(γ3) ⊆ O(γ1) and O(γ4) ⊆ O(γ2), γ3 and γ4 cannot be in the same
adjacency class. It is enough to consider the case where γ1 and γ2 are adjacent. If γ3 and γ4

are in the same adjacency class, then there must exist two adjacent loops γ5 and γ6 in H2λ

such that O(γ5) ⊆ O(γ1) and O(γ6) ⊆ O(γ2). However, neither γ5 ∩ γ1 nor γ6 ∩ γ2 contains
any positive portion of the loops (see Lemma 6.13). Since γ5∩γ6 ⊆ γ1∩γ2, γ5 and γ6 cannot
be adjacent, hence γ3 and γ4 are not in the same adjacency class.

Lemma 8.4. Almost surely, for each z ∈ ∂D and ε > 0, B(z, ε) contains at least one λ-loop
and one −λ-loop in L−λ,λ(h).

Proof. We put down N = O(2−n) points z1, . . . , zN on ∂D such that the union of B(zi, 2
−n)

covers ∂D. We choose these points independently of h. It suffices to show that for each
i, B(zi, 2

−n) a.s. contains at least one λ-loop and one −λ-loop in L−λ,λ(h). Indeed, upon
showing this, the statement of the lemma holds for ε = 2−n+3, and this is true for all n ∈ N.

It suffices to show that B(z1, 2
−n) a.s. contains at least one λ-loop and one −λ-loop in

L−λ,λ(h). Let ζ be a 0-height level line of h from z2 targeting z1, then ζ is part of A−λ,λ(h),
and ζ is distributed as a chordal SLE4(−1,−1) from z2 to z1 in D. For 0 < t1 < t2, we
say that a subpath ζ([t1, t2]) is an arc around z1 if ζ(t1) ∈ ∂D, ζ(t2) ∈ ∂D, ζ((t1, t2)) ⊆ D,
and z1, z2 are in two different connected components of D \ ζ([t1, t2]). Then ζ a.s. makes an
infinite sequence of arcs around z1 before reaching z1. Any two consecutive arcs that ζ makes
around z1 are of opposite directions, namely one arc encircles z1 in a clockwise manner and
the other arc in a counterclockwise manner. Moreover, since ζ is a continuous curve that goes
to z1, there a.s. exist 0 < t1 < t2 such that ζ([t1, t2]) is an arc contained in B(z1, 2

−n) which
encircles z1 in a clockwise manner. Then ζ([t1, t2]) is part of a clockwise loop ξ ∈ L+

−λ,λ(h)

and ξ ⊆ B(z1, 2
−n). Similarly, B(z1, 2

−n) also contains at least one −λ-loop in L−λ,λ(h).

91



We are now ready to prove Proposition 8.1.

Proof of Proposition 8.1. Since Ω = gask(S ∪ S̃) is a thin local set of h with boundary values
in {−2λ, 0, 2λ}, by Theorem 7.8, Ω is obtained by iterating H2λ. Since Ω 6= ∂D (by Property 1
of Proposition 2.9), one has to do at least the first iteration, i.e., sample H2λ. The ±2λ-loops
in H2λ all belong to S ∪ S̃ and each 0-loop in H2λ either belongs to S ∪ S̃ or is further split.
Let γ be a 2λ-loop in H2λ, and let ξ1 be the loop in C which encircles γ, i.e., O(γ) ⊆ O(ξ1).
Let ξ2 be the loop in L+

−λ,λ(h) which encircles γ. Our goal is to show that ξ1 = ξ2. Indeed,
if this is true for any 2λ-loop (hence also for any −2λ-loop, by symmetry) in H2λ, then it
follows that C = L−λ,λ(h). This further implies that S∪ S̃ = H2λ. Indeed, any 0-loop of H2λ

cannot be further split, because otherwise the loops in C would encircle both 2λ-loops and
−2λ-loops, which contradicts Property 2 of Proposition 2.9. This implies the proposition.

We now prove that ξ1 = ξ2. Let us first show that ξ1 a.s. does not cross any 0-loop of H2λ.
For the sake of contradiction, suppose that with positive probability, there exists γ0 ∈ H2λ

with zero boundary condition, such that ξ1 crosses γ0. In particular, O(γ0) ∩ O(ξ1) 6= ∅
and O(γ0) 6⊆ O(ξ1). It follows that, in order to get Ω, we have to split γ0. Since ξ1 crosses
γ0, there exists z ∈ γ0 and ε > 0 such that B(z, ε) ⊆ O(ξ1). When we split γ0 once, we
sample H2λ(h|O(γ0)). The ±2λ-loops in L(H2λ(h|O(γ0))) belong to S ∪ S̃, while the 0-loops
can possibly be further split. Note that H2λ(h|O(γ0)) is obtained by sampling two layers of
L−λ,λ in O(γ0). By Lemma 8.4, B(z, ε) must contain at least one λ-loop and one −λ-loop
of L−λ,λ(h|O(γ0)). Each λ-loop (resp. −λ-loop) of L−λ,λ(h|O(γ0)) further encircles infinitely
many 2λ-loops (resp. −2λ-loop) of H2λ(h|O(γ0)). Therefore, B(z, ε) must contain at least one
2λ-loop and one −2λ-loop of S. In particular, ξ1 must encircle at least one −2λ-loop of S,
which is impossible due to Property 2 of Proposition 2.9. Therefore, we have proved that ξ1

a.s. does not cross any 0-loop of H2λ.
Recall (see the first paragraph of the proof) that the ±2λ-loops in H2λ all belong to S∪ S̃.

Therefore ξ1 does not cross any ±2λ-loop of H2λ. Combined with the previous paragraph,
we know that ξ1 does not cross any loop in H2λ. Let us further show that ξ1 also cannot
separate two adjacent loops in H2λ, i.e., the two loops are either both contained in O(ξ1), or
are both disjoint from O(ξ1). Indeed, if ξ1 separates two adjacent loops, then it must follow
the interface between them. For any two adjacent loops in H2λ, one of them must have inner
boundary value ±2λ and must belong to S ⊆ B. This implies that ξ1 will coincide with a
positive portion of a loop in B, which is ruled out by Property 4 of Proposition 2.9. It then
follows that ξ1 also cannot separate any two loops of H2λ in the same adjacency class. This
implies O(ξ2) ⊆ O(ξ1) by Lemma 8.3.

On the other hand, we must have O(ξ1) ⊆ O(ξ2). If it is not the case, then there would
exist z ∈ ξ2 and ε > 0 such that B(z, ε) ⊆ O(ξ1). Note that B(z, ε) must intersect O(ξ2) and
another loop ξ3 ∈ L−λ,λ(h) which is adjacent to ξ2. Any two adjacent loops in L−λ,λ(h) must
have inner boundary conditions with opposite signs. Since ξ2 is a λ-loop, ξ3 is a −λ-loop.
By Lemma 8.4, B(z, ε) contains at least one loop γ1 ∈ L−−λ,λ(h0|O(ξ3)). Note that γ1 is a
−2λ-loop in H2λ. Therefore O(ξ1) contains a −2λ-loop in S. This contradicts Property 2 of
Proposition 2.9. Therefore, we also have O(ξ1) ⊆ O(ξ2), hence ξ1 = ξ2. This completes the
proof of the proposition.
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8.2 Joint convergence of double random current and XOR-Ising interfaces
with free boundary condition

In this section, we prove Theorem 2.8. Our proofs also contain a detailed description of the
interactions between the nested XOR-Ising interfaces and the double random current cluster
boundaries in the continuum.

Our proof makes use of the spatial Markov property of the so-called renewal loops.

Definition 8.5 (Renewal loop). We call the loops in Anested and S̃nested renewal loops.

For each renewal loop ξ, the joint scaling limit of the interfaces in O(ξ) and the height
function h0|O(ξ) is independent of the configuration outside of ξ and has the “same law” as
the scaling limit of the interfaces in the original domain D. By “same law”, we mean that
the former law can be obtained from the latter as the image under a conformal map from
D onto O(ξ). Indeed, Proposition 5.2 ensures that inside each renewal loop, the next layer
of interfaces satisfies the same discrete properties as the outermost layer of interfaces. In
Theorem 2.2 and Proposition 8.1, we have identified the law of the outermost interfaces as
being conformally invariant. The same proof can be applied to the interfaces inside each
renewal loop.

We point out that for the nested double random current clusters, the relation between
their labels and spins is given by (5.9). Proposition 8.1 is stated for only the outermost
double random current clusters. When we look at the configuration inside a renewal loop,
Proposition 8.1 needs to be adapted according to the parity of the number of odd loops that
encircle the renewal loop.

Proof of Theorem 2.8. In Dδ, we sample a double random current model with free boundary
conditions, coupled with a XOR-Ising model with free boundary conditions according to
Theorem 2.7. By Proposition 8.1, we know that (Cδ, sδ, Sδ, S̃δ, εδ, Bδ, Aδ, hδ) converges in
distribution to (C, s, S, S̃, ε, B,A, h).

Our first goal is to determine the outer boundaries of the outermost negative XOR-Ising
clusters of Types 1 and 3 in Theorem 2.8. We will achieve this by successively splitting the
level loops of h, as illustrated in Fig. 8.1. More precisely, we start by letting U0 := {∂D}. In
the n-th step, suppose that we have defined Un. To construct Un+1, we will specify whether
and how each loop γ in Un is split. If γ is the outer boundary of an outermost negative
XOR-Ising cluster, then we keep this loop, i.e. we write Vγ := {γ}. Otherwise, we split γ into
a set Vγ := L−a,b(h0|O(γ)) for some well-chosen a, b > 0. We then let Un+1 := ∪γ∈UnVγ . One
can see by induction that for every n ∈ N, gask(Un) is a thin local set of h, and for every
loop γ in Un, h|O(γ) is a GFF with constant boundary conditions.

By Proposition 8.1, the outer boundaries of the clusters of Types 1 and 2 are respectively
given by L+

−λ,λ(h) and L−−λ,λ(h). We split ∂D into U1 := L−λ,λ(h). The set L−−λ,λ(h) of
loops are outer boundaries of negative XOR-Ising clusters, hence we will no longer split these
loops. Each loop γ1 in L+

−λ,λ(h) is the outer boundary of a positive cluster of Type 1. We split

γ1 into Vγ1 := L−λ,λ(h0|O(γ1)). By Proposition 8.1, we know that S̃(γ1) = L−−λ,λ(h0|O(γ1))
is composed of renewal loops that have inner boundary condition 0. For each loop γ2 in
L−−λ,λ(h0|O(γ1)), the further layers of XOR-Ising and double random current interfaces in
O(γ2) as well as their coupling with h|O(γ2) will have the same law as the configuration inside
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−

−

+

flip
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Figure 8.1: Successive splitting of the level loops. The loops inside plain frames are outer
boundaries of outermost positive and negative XOR-Ising clusters in D. The purple color is
to match the purple interfaces in Fig. 2.4. The blue color corresponds to the outer boundaries
of the double random current clusters, as in Figures 2.2 and 2.4. The red and green colors
correspond to the two types of holes of the double random current clusters as in Fig. 2.2.
Each loop inside a dashed frame is a renewal loop.

D coupled with h (up to a conformal map). Therefore it is enough to understand what
happens inside a loop γ3 in S(γ1) = L+

−λ,λ(h0|O(γ1)).
Note that γ3 represents the outer boundary of a double random current cluster with pos-

itive label. By Theorem 2.2, the holes of this double random current cluster are given
by L−2λ,(2

√
2−2)λ(h0|O(γ3)), and each of these loops are renewal loops. We split γ3 into

L−2λ,(2
√

2−2)λ(h0|O(γ3)). The loops in L−−2λ,(2
√

2−2)λ
(h0|O(γ3)) have inner boundary condition

0, hence the configuration of the XOR-Ising interfaces and the corresponding GFF inside it
again has the same law as in D. Therefore, it is enough to understand what happens inside
a loop γ4 in L+

−2λ,(2
√

2−2)λ
(h0|O(γ3)).

Note that γ4 is a renewal loop, so that in O(γ4), we have an independent double random
current model coupled with a XOR-Ising model, both with free boundary conditions. More-
over, h|O(γ4) is equal to 2

√
2λ plus a zero boundary GFF h0|O(γ4), so γ4 is the boundary of an

odd hole according to Theorem 2.2. Due to (5.9), the labels of the outermost double random
current clusters encircled by γ4 take opposite signs as their spins. Applying Proposition 8.1
by replacing s(γ) by −s(γ) in the statement, we can split γ4 into L−λ,λ(h0|O(γ4)). The outer
boundaries of the outermost negative clusters in O(γ4) that are not encircled by any pos-
itive cluster in O(γ4) are given by L+

−λ,λ(h0|O(γ4)). Each loop in L+
−λ,λ(h0|O(γ4)) has inner

boundary value (2
√

2 + 1)λ and is the outer boundary of an outermost negative XOR-Ising
cluster (the associated cluster is of Type 4), hence we no longer split these loops. The outer
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boundaries of the outermost positive clusters in O(γ4) that are not encircled by any negative
cluster in O(γ4) are given by L−−λ,λ(h0|O(γ4)). For each γ7 in L−−λ,λ(h0|O(γ4)), let us continue
to look for the next layer of negative XOR-Ising clusters in O(γ7).

For each γ7 in L−−λ,λ(h0|O(γ4)), the distribution of the coupled models in O(γ7) is the same
as in O(γ1), except that the labels of the double random current clusters in O(γ7) are flipped
compared to the picture in O(γ1), since γ7 is encircled by an odd hole γ4. Therefore, we can
split γ7 in the same way as we split γ1, but for a GFF with a flipped sign. More precisely,
we split γ7 into L−λ,λ(h0|O(γ7)).

• The set L+
−λ,λ(h0|O(γ7)) of loops all have the renewal property. Each loop γ9 in the set

L+
−λ,λ(h0|O(γ7)) has boundary value 2

√
2λ. The picture in O(γ9) has exactly the same

law as that in O(γ4).

• The set L−−λ,λ(h0|O(γ7)) corresponds to the outer boundaries of the double random

current clusters in O(γ7) which touch γ7. Each loop γ8 in L−−λ,λ(h0|O(γ7)) is the outer
boundary of a double random current cluster with minus label and positive spin.

We can again apply Theorem 2.2, but for a GFF with a flipped sign. The holes of the
double random cluster with outer boundary γ8 are given by L−(2

√
2−2)λ,2λ(h0|O(γ8)). These

sets of loops are renewal loops with inner boundary values 0 and 2
√

2λ. Note that γ10 in
L−−(2

√
2−2)λ,2λ

(h0|O(γ8)) is again the boundary of an odd hole. By (5.9), the influence on the

labels of the two odd holes γ4 and γ10 are cancelled out, and the picture in O(γ10) is the
same as the picture in D. On the other hand, any loop γ11 in L−−(2

√
2−2)λ,2λ

(h0|O(γ8)) is the

boundary of an even hole so the influence of γ4 remains. The picture inside γ11 is therefore
the same as what we see in γ4.

By induction, this procedure will allow us to successively split ∂D, until we get a collection
U∞ of outer boundaries of outermost negative XOR-Ising clusters. The previous reasoning
guarantees that for each loop γ in U∞, h|O(γ) has boundary value either −λ or (2

√
2 + 1)λ.

This implies that gask(U∞) is a local set of h with boundary values in {−λ, (2
√

2 + 1)λ},
and it remains to prove that gask(U∞) is thin. Note that at each finite step n ∈ N, gask(Un)
is a thin local set of h such that each loop in Un has inner boundary value in [−λ, (2

√
2 +

1)λ]. By Lemma 6.17, we know that gask(Un) ⊆ A−λ,(2√2+1)λ. Taking limits, we also

have gask(U∞) ⊆ A−λ,(2√2+1)λ which implies the thinness of gask(Un). Therefore U∞ =

L−λ,(2√2+1)λ(h). This also implies that for γ1, the outermost negative clusters encircled by

γ1 are given by L−2λ,2
√

2λ(h0|O(γ1)).

In the above exploration process, we stop whenever we discover the outer boundary of an
outermost negative cluster. However, this exploration can in fact be carried on indefinitely,
and allows us to describe the nested XOR-Ising and double random current clusters. For
example, for each γ0 in L−−λ,λ(h) which is the outer boundary of a negative cluster, the
next layer of outer boundaries of outermost positive clusters encircled by γ0 is equal to
L−2

√
2λ,2λ(h0|O(γ0)). This can be deduced, by symmetry, from how γ1 in L+

−λ,λ(h) is split.
More generally, by induction and symmetry, we can show that

• if γ is the outer boundary of a positive XOR-Ising cluster and γ is surrounded by an
even number of odd holes, or if γ is the outer boundary of a negative XOR-Ising cluster
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Figure 8.2: This is an illustration of the splitting process depicted in Fig. 8.1. We depict
the interfaces of the XOR-Ising and double random current models with free boundary con-
ditions in the same color code as in Figures 2.2 and 2.4. In addition, we also depict a few
(filled) outermost negative XOR-Ising clusters (of Types 2 and 4) in yellow and dark orange.
The yellow clusters have inner boundary value −λ and the dark orange clusters have inner
boundary value (2

√
2 + 1)λ. The purple lines represent the interfaces in C. We depict in

detail what happens inside a loop γ in C with λ inner boundary condition. The situation in
a loop with −λ inner boundary condition is symmetric.
As shown in Fig. 2.4, γ can be split into 2λ-loops and 0-loops. The 2λ-loops are part of the
CLE4 and are depicted in blue, just as in Fig. 2.2. Inside the 0-loops, we again have an in-
dependent XOR-Ising with free boundary conditions, so that some of its outermost negative
clusters are depicted in yellow, and has −λ boundary condition. Inside the 2λ-loops, we can
carry out the decomposition as described in Fig. 2.2. We depict the 2

√
2λ-holes in green,

and the 0-holes in red. Inside a 0-hole (which is an even hole), we do the same thing as in
the original domain, and obtain (among other things) outermost negative clusters with −λ
boundary condition, also depicted in yellow. Inside a 2

√
2λ-hole (which is an odd hole), we

again have an independent XOR-Ising model with free boundary conditions, but the labels of
the clusters in this hole have an additional −1 factor given their spins. This leads to (filled)
outermost negative clusters depicted in dark orange which have (2

√
2 + 1)λ inner boundary

value.
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and γ is surrounded by an odd number of odd holes, then the next layer of outermost
positive XOR-Ising clusters in O(γ) is distributed as L−2λ,2

√
2λ(h0|O(γ));

• if γ is the outer boundary of a negative XOR-Ising cluster and γ is surrounded by an
even number of odd holes, or if γ is the outer boundary of a positive XOR-Ising cluster
and γ is surrounded by an odd number of odd holes, then the next layer of outermost
positive XOR-Ising clusters in O(γ) is distributed as L−2

√
2λ,2λ(h0|O(γ)).

This completes the proof of Theorem 2.8.

8.3 XOR-Ising with plus/plus boundary condition

Let us prove Theorem 2.10 which implies Theorem 1.5.

Proof of Theorem 2.10. We consider the coupling described in Theorem 2.7 and we stay on
the dual square lattice throughout the proof. In this coupling, given the double random
current model with wired boundary conditions, we can obtain an XOR-Ising model with
plus/plus boundary condition by assigning the + spin to the outermost cluster, and then
assigning i.i.d. spins to all the other clusters. As a consequence, the outermost negative
XOR-Ising clusters are given by the outermost negative XOR-Ising clusters inside each hole
of the outermost double random current cluster.

Theorem 2.4 states that the boundaries of the holes of the outermost double random
current cluster are distributed as L−√2λ,

√
2λ(h). On the other hand, conditionally on the

outermost double random current cluster, in each of its holes, we have an independent double
random current model, coupled with an XOR-Ising model, both with free boundary condi-
tions, and a height function, just like on the primal lattice in the original domain. This spatial
Markov property in the discrete transforms to the continuum limit (Proposition 5.3). Conse-
quently, for each γ in L−√2λ,

√
2λ(h), we can apply the same proof as that of Theorem 2.8. If γ

has inner boundary value
√

2λ, then it is the scaling limit of an odd hole, and the outermost
negative XOR-Ising clusters in O(γ) is distributed as L−(2

√
2+1)λ,λ(h0|O(γ)). If γ has inner

boundary value −
√

2λ, then it is the scaling limit of an even hole, and the outermost neg-
ative XOR-Ising clusters in O(γ) is distributed as L−λ,(2√2+1)λ(h0|O(γ)). This implies that

the outermost negative XOR-Ising clusters in D is distributed as L−(
√

2+1)λ,(
√

2+1)λ(h).
The law of the nested layers of interfaces also follows from the spatial Markov property

and the proof of Theorem 2.8. In particular, the two bullet points at the end of the proof of
Theorem 2.8 also hold for the dual XOR-Ising model (one needs to look at dual clusters and
dual holes instead of primal ones). This completes the proof of Theorem 2.10.

8.4 Asymptotic behavior of the number of loops

Let us now prove two lemmata which will lead to the asymptotic numbers of loops (or clusters)
in the XOR-Ising and double random current models that surround the origin.

Lemma 8.6. Fix a, b > 0 with a + b ≥ 2λ. Let N(ε) be the number of loops in the nested
L−a,b in the unit disk surrounding 0 whose conformal radii w.r.t. the origin are at least ε.
Then

N(ε)/ log(ε−1) −→
ε→0

4λ2/(abπ2) a.s.
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Proof. Let R be the difference in log conformal radii between two successive L−a,b loops
that encircle the origin. We know by [8, Proposition 20] that R is equal to the exit time
of a standard Brownian motion from the interval [−aπ/(2λ), bπ/(2λ)]. The n-th loop which
encircles the origin has log conformal radius equal to −Sn where Sn := −(R1 + · · ·+Rn) and
Ri are i.i.d. random variables distributed like R. Then N(ε) is the smallest n ≥ 1 such that
Sn+1 ≥ log(ε−1). By the law of large numbers, we know that Sn/n converges to E(R) a.s. as
n→∞. Since N(ε)→∞ as ε→ 0, we also have that

SN(ε)+1/(N(ε) + 1)→ E(R) a.s. as ε→ 0.

Note that log(ε−1) ≤ SN(ε)+1 ≤ log(ε−1) +RN(ε). It follows that

lim
ε→0

log(ε−1)/N(ε) = E(R) = abπ2/(4λ2).

The inverse of the above equation proves the lemma.

Lemma 8.7. In the scaling limit of the double random current model in the unit disk (with
either the free or wired boundary conditions), let N(ε) be the number of clusters surrounding
the origin such that their outer boundaries have a conformal radius w.r.t. the origin at least
ε. Then

N(ε)/ log(ε−1) −→
ε→0

1/(
√

2π2).

Proof. By Theorems 1.6 and 1.7 and [8, Proposition 20], we know that the difference of
log conformal radii between the outer boundaries of two successive double random current
clusters that encircle the origin is given by T1 +T2, where T1 is the first time that a standard
Brownian motion exits [−π, (

√
2 − 1)π] and T2 is the first time that a standard Brownian

motion exits [−π, π]. We have

E(T1 + T2) = (
√

2− 1)π2 + π2 =
√

2π2.

This implies the result of the present lemma, by the same argument as in the proof of the
previous lemma.
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