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Abstract

We study harmonic functions on random environments with particular emphasis
on the case of the infinite cluster of supercritical percolation on Z

d. We prove that
the vector space of harmonic functions growing at most linearly is d+ 1-dimensional
almost surely. In particular, there are no non-constant sublinear harmonic functions
(thus implying the uniqueness of the corrector). The main ingredient of the proof
is a quantitative, annealed version of the Kaimanovich-Vershik entropy argument.
This also provides bounds on the derivative of the heat kernel, simplifying and
generalizing existing results. The argument applies to many different environments,
even reversibility is not necessary. We also mention several open problems and
conjectures on the behavior of harmonic functions on stationary random graphs.

1 Introduction

Since the work of Yau [67] in 1975, where the Liouville property for positive harmonic
functions on complete manifolds with non-negative Ricci curvature was proved, the struc-
ture of various spaces of harmonic functions have been at the heart of geometric analysis.
Some years later, Yau conjectured that the space of polynomial growth harmonic func-
tions of fixed order is always finite dimensional in open manifolds with non-negative Ricci
curvature. Extensive literature has appeared on this conjecture and related problems.
The understanding progressed quickly (Yau’s conjecture was proved in [21]) and gave
birth to many tools (see [53] for an introduction to the subject).

Studying harmonic functions with controlled growth naturally extends to discrete
structures such as Cayley graphs. Recently, Kleiner proved that the space of harmonic
functions with polynomial growth on the Cayley graph of a group with fixed polynomial
volume growth is finite dimensional. He used this fact to provide a new proof of Gromov’s
theorem [48] (see [63] for a quantitative version of this theorem).

Another place where harmonic functions have played an important role recently is in
the proof of the central limit theorem on random graphs. A central element in the proofs
(see e.g. [65, 59, 14, 35]) is the construction of a harmonic function h on the cluster which
is close to linear — the term χ(x) = h(x) − ⟨x, v⟩ is called the corrector and once one
shows that χ(x) = o(∣∣x∣∣), the proof may proceed.
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The focus of this article is the case of random graphs. Classical tools of geomet-
ric analysis do not extend to this context in a straightforward way. Indeed, a random
environment is not regular at the microscopic scale. In order to understand harmonic
functions, one thus needs to control the macroscopic behavior of the environment. Let us
take supercritical percolation as an example (see [36] for background and definitions).

For p ∈ (0,1), consider the random graph G = (V (G),E(G)) defined by V (G) = V (Zd)
and E(G) being a random set containing each edge of Zd with probability p, independently
of the other edges. It is classical that there exists pc(d) ∈ (0,1) such that for p < pc(d),
there is almost surely no infinite connected component (also called cluster), while for
p > pc(d), there is a unique infinite cluster. When p > pc(d), we denote this cluster by ω.

Theorem 1. Let d ≥ 2 and let p > pc(d). Then with probability 1, the infinite cluster ω

has no non-constant sub-linear harmonic functions.

This immediately shows that the corrector χ is unique, as was conjectured by Berger
and Biskup [14, Question 3].

In more regular settings, claims of this sort have been proved using the following
strategy: try to show that two random walks starting at neighbors will couple before time
n with probability bigger than 1−Cn−1/2. This fact is classical in the case of the hypercubic
lattice Zd where an explicit coupling can be exhibited. In the random context it is not clear
how to construct an explicit coupling, but a number of approaches in the literature allow
to construct a coupling indirectly. The known gaussian heat kernel bounds (see (1) below)
allow to construct a coupling that will fail with probability n−ǫ. Using also the central limit
theorem already mentioned, one could improve this to n−1/2+o(1). Nevertheless, getting
the precise n−1/2 seems difficult with these approaches. The approach we will apply below
not only gives the precise order n−1/2, but the proof is also significantly simpler than those
just suggested.

The proof uses an entropy argument similar to Kaimanovich & Vershik [43] who showed
that a Cayley graph satisfies the Liouville property if and only if the entropy of random
walk is sublinear (see also Derriennic [30] for an alternative proof of this result. The “if
direction” which is the relevant one here was proved earlier by Avez [2]). Two extensions
were known before for the if direction: it applies to random graphs [9] and it can be quan-
tified [33, Section 5]. It turns out that both generalizations can be applied simultaneously.
Further, Theorem 1 is but an example: the techniques work in great generality, even re-
versibility is not needed. Only stationarity of the walk and some weak (sub-)diffusivity
are used. Precise assumptions are detailed below.

The environment as viewed from the particle. Before stating the results, we pro-
vide a precise definition of what we mean by ‘environment’. We are interested in envi-
ronments which are somehow translational invariant. This notion extends the transitivity
condition to the random context.

Consider a Markov chain P over some set V (formally a function P ∶ V × V → [0,1]
where P (x, y) denotes the probability to move from x to y). We always assume our
Markov chain is irreducible, i.e. that for any v,w ∈ V there is an n such that P n(v,w) > 0.
A rooted Markov chain is a triplet (P,V, ρ) where ρ ∈ V is some vertex that will be called
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the root vertex. Two rooted Markov chains are considered isomorphic if there is a one-
to-one map φ ∶ V → V ′ with φ(ρ) = ρ′ and P (x, y) = P ′(φ(x), φ(y)). An environment as
viewed from the particle, abbreviated as simply environment is a random rooted Markov
chain. Two environments are considered to have the same law if they can be coupled such
that the resulting rooted Markov chains are isomorphic with probability 1.

Definition 2. An environment (P,V, ρ) is called stationary if it has the same law as(P,V,X1) where X1 is the position of the first step of the Markov chain P , starting from
ρ, and independent of the random choice of (P,V, ρ).

Stationary environments are very common (we provide ten examples in the end of
Section 2). Most of these examples are embedded in Zd and for these we could have used
a much simpler definition — there is no need to “couple the environments such that the
resulting rooted Markov chains are isomorphic with probability 1”. One could just say
that they have the same law considered as a random function P ∶ Zd × Zd → [0,1], after
shifting ρ to 0⃗ (formally this is a stronger requirement, but all our examples embeddable
into Zd seem to have it). However, Examples 2.6, 2.8 and 2.10 are not embeddable into
Zd, and we found no simpler definition that catches all examples of interest.

A very important subset of stationary environments is given by environments V with
the structure of a weighted graph (with the weight being a positive function ν on every
couple (v,w) ∈ E, and 0 on every couple (v,w) /∈ E). P is given by

P (v,w) = ν(v,w)
ν(v) where ν(v) =∑

x

ν(v, x).
These environments will be called random stationary graphs. This particular type of
Markov chains is also commonly called reversible. The reversible case has a rich theory,
see e.g. [1, 9] where one can also find many more examples. Let us mention that our main
result, Theorem 3 below, applies and has some interest also in the non-reversible case.
To clearly distinguish between the reversible and non-reversible case, random stationary
graphs will be denoted by (G,ν, ρ) where G is the graph, ν is the weight function and ρ

is the root.
The graph distance in G is denoted by dG(⋅, ⋅) and the ball of size r centered at x by

BG
x (r). We will also consider this distance in non-reversible setting, where it is simply the

smallest n such that P n(x, y) > 0. Since the distinction between annealed and quenched
statements will be clear in the context, we will often drop the dependence on G in the
notation. For instance, PG

x , dG(⋅, ⋅) and BG
x (n) will become simply Px, d(⋅, ⋅) and Bx(n).

We collected all notations and conventions used in this paper in the last section of the
introduction (page 7).

Non-constant harmonic functions with minimal growth. Let P be a Markov
chain with state space V . Then a function h ∶ V → R is called harmonic if h(Xn) is a
martingale, or in other words, if

h(x) =∑
y

P (x, y)h(y) ∀x.
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As already mentioned, harmonic functions have had a number of important applica-
tions recently. Let us expand on the particular application in Kleiner’s proof of Gromov’s
theorem. Shalom and Tao [63] showed that a quantitative version of Kleiner’s proof can
be performed using only the linear growth harmonic functions, which are in the context
of the groups with polynomial volume growth the non-constant harmonic functions with
minimal growth [38, Theorem 6.1]. In fact, Shalom and Tao (personal communication)
have shown that any such function must be a character of the group, in analogy to the
Choquet-Deny Theorem [20, 57]. We plan to analyze this space in the context of Cayley
graphs, especially of wreath products, in a future paper. The main contribution of this
paper is the study of minimal growth harmonic functions on stationary random graphs.

Using the entropy of the random walk, it is possible to bound from below the minimal
growth of non-constant harmonic functions in terms of the rate of escape of the random
walk. A particularly interesting case is the case of stationary environments with diffusive
behavior, for which the bound is often sharp. A stationary environment (P,V, ρ) satisfies
diffusive or sub-diffusive behaviour (SDB) if

(SDB) There exists C > 0 such that E (d(ρ,Xn)2) ≤ Cn for every n.

where here and below E is the average over both the environment and over the walk (the
so-called annealed average). We may now state our main result:

Theorem 3. Let (P,V, ρ) be a stationary environment such that E (∣Bρ(n)∣) ≤ Cnd for
some constants C,d <∞ independent of n. If (P,V, ρ) satisfies (SDB), then for almost
every environment, there are no non-constant sublinear harmonic functions.

As already stated, it applies to many different models, some of them significantly less
well-understood than percolation. See a list of examples at the end of Section 2.

Whether (SDB) follows from polynomial growth in the reversible case is an interesting
question. The Carne-Varopoulos bound [19, 66] gives that Eρ(d(ρ,Xn)) ≤ C

√
n logn

which would give (with the same proof as that of Theorem 3, see Theorem 3’ in Section
2) that any stationary random graph with polynomial volume growth has no non-constant

harmonic functions h with h(x) ≤ Cd(ρ,x)/√logd(ρ,x). Without stationarity the Carne-
Varopoulos bound

√
n logn cannot be improved, as was shown by Barlow & Perkins [8].

Kesten gave a beautiful argument that a stationary random graph embedded in Zd satisfies(SDB), see e.g. [8, Section 2]. But it does not seem to apply just assuming polynomial
growth.

The relation between entropy, harmonic functions and speed of the random walk holds
for more general environments (for instance with larger growth). We defer to Section 2
for a more complete account of this question.

Polynomially growing functions. As in the case of manifolds, we are interested in
the dimension of the space of harmonic functions with prescribed polynomial growth. Of
course, one can encounter very different behavior depending on the environment (like
in the deterministic case). Hence we will assume that our environments satisfy volume
doubling and Poincaré inequality. In this section we do not assume stationarity, and
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hence we do not need a root for our graph. The object of interest is therefore simply a
random weighted graph (G,ν). Here is the precise formulation of our assumptions on the
environment:(V D)G (G,ν) satisfies the volume doubling property (V D)G if there exist

0 <CVD <∞ such that for every λ <∞ and for every x ∈Bρ(λn),
ν(Bx(2n)) ≤ CVDν(Bx(n)) for n large enough, where ν(B) is the
total weight of the edges in the ball B.

(P )G (G,ν) satisfies the Poincaré inequality (P )G if there exists CP <∞
such that for every λ > 0, for every x ∈Bρ(λn) and f ∶Bρ(2n)→ R,

∑
y∈Bx(n)

(f(y) − fBx(n))2ν(y) ≤CPn2 ∑
(y,z)∈E(Bx(2n))

∣f(y) − f(z)∣2ν(y, z)
for n large enough, where

f
Bx(n) =

1

ν(Bx(n)) ∑
y∈Bx(n)

f(y)ν(y).
CVD and CP may depend on the random choice of (G,ν) (though we do not have any

interesting example which actually uses this freedom). The minimal n from which the
properties hold may depend both on the environment and on λ.

These properties are classical in geometric analysis. They go back to the theory
developed by De Giorgi, Nash and Moser [60, 61, 62, 26] in the fifties and sixties for
uniformly elliptic second-order operators in divergence form. In the deterministic context,
they imply the Harnack principle and Gaussian bounds for the heat kernel. The versions
above are tailored for the random case: they take into consideration that in most examples
of interest these properties do not hold from every point since some unusual points always
exist. So we require that they hold for balls which are not too far from our root ρ,
relative to their size. This is reminiscent of Barlow’s good and very good balls [4], but
our requirements are much weaker, we only need the properties to hold for “macroscopic
balls”, balls whose distance to ρ is proportional to their size.

Let us remark on the appearance of the number 2 in Bx(2n) in both properties.
For the volume doubling property it is clear that these properties are equivalent for all
choices bigger than 1 i.e. if one were to define a “3-volume doubling property” then it
would be equivalent to the “2-volume doubling property” defined above, though perhaps
with different CVD and minimal n. The same holds for the Poincaré inequality, under the
assumption of volume doubling. This is well known in deterministic settings, see e.g. [42,
§5], and the proof carries over to the random case with no change.

With these definitions we can state the following easy but, we believe, conceptually
important theorem:

Theorem 4. Let (G,ν) be a random weighted graph (not necessarily stationary). If(G,ν) satisfies (V D)G and (P )G, then for every k > 0, the space of harmonic functions
with h(x) ≤ d(ρ,x)k for all x large enough, is finite dimensional.

Further, the bound on the dimension depends only on CVD and CP.
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This theorem represents a randomized discrete version of Yau conjecture (except that
the Poincaré inequality must be assumed since it is not automatically satisfied). The
proof of this theorem follows the existing path of [27, 48, 63, 64]. Let us stress again
that the interesting part is that is requires only macroscopic volume growth and Poincaré
inequality: the definitions of (V D)G and (P )G only examine balls of radius n inside
Bρ(λn) for some finite λ.

Since the dimension depends only on CVD and CP, then in particular, if these constants
are not random, neither is the bound. Thus, for example, in supercritical percolation the
is a constant A (depending only on the dimension d and the probability p) such that
CVD ≤ A and CP ≤ A almost surely (the minimal n is the only quantity which really
changes between configurations). Hence for each k there is a number Dk such that the
dimension of harmonic functions of growth smaller than ∣x∣k is smaller than Dk, almost
surely.

Linearly growing functions. In the special case of environments which are modifi-
cations of Zd, we can compare the dimension of harmonic functions with a prescribed
growth to the dimension of harmonic functions on Zd. The simplest perturbation of Zd is
the supercritical cluster of percolation. We prove the following theorem:

Theorem 5. For p > pc(d), let ω be the unique infinite component of percolation on Zd.
Then, the dimension of the vector space of harmonic functions with growth at most linear
on ω is equal to d + 1 almost surely.

This theorem must be understood as a first step towards a bigger goal, which would
be to compute the dimension of all spaces with prescribed growth.

The properties of the supercritical percolation cluster that we harness in this proof are
quite general. First we use the d-dimensional volume growth and the Poincaré inequality(P )ω, proved (in stronger form) by Barlow [3], as well as the Gaussian bounds which
Barlow concludes from these. But the main ingredient of the proof is an invariance
principle [65, 14, 59]. All these properties witness the close relation between macroscopic
properties of the supercritical percolation cluster and Rd. In some sense, it confirms the
fact that this cluster is an approximation of Zd.

Heat kernel estimates. Classically it is known that the kernels of symmetric diffu-
sions have some Hölder regularity. By ‘classically’ we refer to [60, 61, 62, 26]. In random
environments, few results are known on Hölder behavior: Conlon and Naddaf [23] and
Delmotte and Deuschel [29] treated the case of random conductance with a uniform ellip-
ticity condition, see also [35]. The entropy techniques developed for the proof of theorem
1 allow to give a very short proof that the space derivative exists. Moreover, it applies in
a very general context. We present the case of percolation.

Theorem 6. Let Pp be the measure of the infinite cluster of percolation (denoted ω) on
Zd. There exist C3,C4 > 0 such that for every n > 0 and x,x′, y at distance less than n of
0, x ∼ x′,

Ep [ (pn(x, y) − pn−1(x′, y))2 1{y,x∼x′∈ω} ] ≤ C3

nd+1
exp[−C4∣x − y∣2/n],
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where pn(y,x) ∶= Py(Xn = x) and Xn is the random walk on ω.

Estimates for the heat kernel itself (i.e. not for the derivative) are well understood,
and are known as Gaussian estimates (GE). Heuristically, Gaussian estimates are bounds
of the form

C1

nd/2
exp [ −C2∣x − y∣2/n] ≤ Px[Xn = y] ≤ C3

nd/2
exp [ −C4∣x − y∣2/n].

A few caveats are in place, though. The lower bound cannot hold if there is any kind of
periodicity (as in Zd or in subgraphs of it, such as supercritical percolation). One should
talk about continuous time random walk, lazy random walk, or replace Px[Xn = y] with
Px[Xn = y]+Px[Xn+1 = y]. Further, the lower bound does not hold for x and y extremely
far away — if ∣x−y∣ > t then the probability is just zero (in the simple random walk case).

In the case of the infinite cluster of supercritical percolation, these bounds were ob-
tained for continuous time random walk in [4]. They also hold for simple random walk,
most of the details are filled in in [7]. Again, one should be careful, as (with small
probability) the environment in the neighborhood of ρ might be atypical, breaking these
estimates for small t. Hence the formulation is as follows. There exist strictly positive
constants C1, C2, C3 and C4 such that for almost every environment ω there exist random
variables nx(ω), x ∈ Zd so that for every x, y ∈ ω and n > nx(ω), ∣x − y∣.

C1

nd/2
exp [ −C2∣x − y∣2/n] ≤ Px[Xn = y] +Px[Xn+1 = y] ≤ C3

nd/2
exp [ −C4∣x − y∣2/n]. (1)

Moreover, the random variables nx(ω) satisfy a stretched exponential estimate i.e.

Pp(x ∈ ω,nx(ω) ≥ s) ≤ ce−cs
ε

(2)

for some ε > 0.
For the proof of Theorem 6 we only need the upper bound in (1). For the proof of

Theorem 5 we will also need the lower bound, but only in the regime ∣x − y∣ ≈ √n i.e. in
the regime where the probabilities are ≈ n−d/2.

Organization of the paper. In the next section, we study the notion of mean entropy
of random walks on a stationary random graph to bound the total variation between
random walks starting at neighbors. We deduce Theorem 3. Section 3 contains the
proof that (V D)G and (P )G imply that the space of harmonic functions of prescribed
polynomial growth is finite dimensional, i.e. Theorem 4. Section 4 deals with the example
of the supercritical percolation cluster and analyzes the space of linearly growing harmonic
functions. It is completely independent of Section 3. Section 5 contains the proof of
Theorem 6. Section 6 regroups all the open questions.

Notations. To make the distinction between the reversible and non-reversible case clear,
we call the general case “Markov chain” and denote it by (P,V ), where V is the space
and P ∶ V × V → [0,1] are the transition probabilities, P (x, y) being the probability to
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move from x to y. We often write P n which we interpret as a matrix power — of course,
P n(x, y) is also the probability that a random walk starting from x will be at y after n

steps.
The reversible case is called “graph” and denoted by (G,ν) where G is a graph and

ν are weights on the edges i.e. ν ∶ E(G) → [0,∞). Here and below we denote by E(G)
the set of edges of the graph G, and for a set of vertices S we denote by E(S) the set of
edges between the vertices of S. The notation x ∼ y for two vertices will mean that they
are neighbors in the graph.

We also consider ν as a measure. So for a vertex x we will denote ν(x) =∑y∼x ν(x, y)
while for a set of vertices S we will denote ν(S) = ∑x∈S ν(x). Note that edges between
two vertices of S are counted twice in this sum.

For a fixed graph or Markov chain we denote by E the expectation with respect to
the random walk on that fixed graph. When we want to note the starting point of the
random walk we will use subscripts, i.e. Eρ. E is used to denote the expectation with
respect to both the environment and the random walk (the “annealed” average). Similarly,
bold letters will usually denote “quenched” objects, i.e. objects related to an instance G

of the environment. The quantity d(x, y) will denote the graphical distance between two
vertices x and y of G, i.e. the length of the shortest path in G between x and y, or, in the
non-reversible setting, the minimal n such that P n(x, y) > 0. Bx(r) will denote the ball{y ∶ d(x, y) ≤ r}. ci will denote constants which depend on the environments G, while
constants of the form Ci are uniform in the environment. We will occasionally write just
c or C for a constant — different appearances of c or C might be different constants.

Finally, for a random variable X we denote by L (X) the law of X, i.e. the measure
on the space of values of X induced by it. If E is some event then we will denote by
L (X ∣E ) the law of X conditioned on E happening. For a set E we will denote by ∣E∣
the cardinality of E.

2 The Entropy Argument

The connection between entropy and random walks was first exhibited in [2] and then
made famous in a celebrated paper of Kaimanovich and Vershik [43] (see also Derriennic
[30]). For any discrete variable X the entropy is defined by

H(X) =∑
x

φ(P (X = x)) φ(t) = −t log t, φ(0) = 0.

Consider a stationary environment (P,V, ρ) with law P. Conditionally on (P,V, ρ), define
the entropy of the random walk started at x at times n,m by

Hm
n (P,V, ρ) = H(Xn,Xm) = ∑

x,y∈V

φ(Pρ(Xn = x,Xm = y))
When n = m, we simply denote Hn

n(P,V, ρ) by Hn(P,V, ρ). In the random context, we
define the mean entropy (see [9]) by

Hm
n = E[Hm

n (P,V, ρ)] and Hn = E[Hn(P,V, ρ)].
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There are many ways of measuring the distance between two probability measures µ

and ν on some set V , the most standard being the total variation ∣∣µ−ν∣∣TV ∶= ∑x∈V ∣µ(x)−
ν(x)∣. In this article, we will use a less standard one. Define ∆(µ, ν) by the formula

∆(µ, ν) ∶= [∑
x∈G

(µ(x) − ν(x))2
µ(x) + ν(x) ]

1/2

. (3)

Estimating the distance using ∆ is stronger than via the total variation: by Cauchy-
Schwartz,

∣∣µ − ν∣∣TV =∑
x

∣µ(x) − ν(x)∣ =∑
x

√
µ(x) + ν(x) ∣µ(x) − ν(x)∣√

µ(x) + ν(x) ≤
≤

¿ÁÁÀ(∑
x

µ(x) + ν(x))(∑
x

(µ(x) − ν(x))2
µ(x) + ν(x) ) =

√
2∆(µ, ν) (4)

This quantity has an advantage compared to the total variation: for any f ∶ G → R, we
have (using Cauchy-Schwarz similarly)

∣µ(f) − ν(f)∣ ≤∆(µ, ν)(µ(f 2) + ν(f 2))1/2. (5)

We will always be interested in the particular case of random walks. In order to lighten
the notations, we set

∆n(x, y) ∶ =∆(L (Xn∣X0 = x),L (Xn−1∣X0 = y)) (6)

=∆(L (Xn∣X0 = x),L (Xn∣X1 = y)),
the last equality following by the Markov property. Recall that L (X ∣E ) denotes the law
of X conditioned on E . Note that the second measure is the law of the random walk after
n − 1 steps, so the definition is not symmetric in x and y.

Theorem 7. Let (P,V, ρ) be a stationary environment. For every n > 0, we have

E(∆n(ρ,X1)2) ≤ 2(Hn −Hn−1) (7)

(as usual E is over both the environment and the randomness of X1).
Before proving Theorem 7, we state a result from [9] concerning Hn

1 . We isolate it from
the rest of the proof because it is the only place where stationarity is used (stationarity
replaces transitivity as used in the context of groups).

Lemma 8. Let (P,V, ρ) be a stationary environment. For every n > 0, we have Hn
1 =

Hn−1 +H1.

Proof. Fix n > 0. We first use the conditional entropy formula H(X,Y ) = H(X ∣Y )+H(Y ).
In our context this is simply

Hn
1(P,V, ρ) = ∑

x,y∈G

φ(Pρ(X1 = x,Xn = y))
= ∑

x∈G

Pρ(X1 = x)∑
y∈G

φ(Pρ(Xn = y ∣X1 = x)) +∑
x∈G

φ(Pρ(X1 = x))
9



which we simplify using the Markov property giving

Pρ(Xn = y ∣X1 = x) = Px(Xn−1 = y).
Taking the expectation with respect to the environment we obtain

Hn
1 = E[∑

x∼ρ

Pρ(X1 = x)∑
y∈G

φ(Px(Xn−1 = y))] +E[∑
x∈G

φ(Pρ(X1 = x))]
= E [Hn−1(P,V,X1)] +E [H1(P,V, ρ)] = Hn−1 +H1

where in the last equality we used the fact that (P,V,X1) has the same law as (P,V, ρ)
— formally, we use the coupling that makes them isomorphic with probability 1, and
since a Markov chain isomorphism preserves the entropy, the expected entropy of the two
environments (P,V,X1) and (P,V, ρ) must be equal (this is not a property of entropy, it
would be true for any function of the environment).

Before continuing let us state one corollary of Lemma 8 which is not necessary for the
proof of Theorem 7 but does shed some light on the quantities involved.

Corollary 9. Hn −Hn−1 is decreasing.

Proof. By Lemma 8,

Hn −Hn−1 = Hn −Hn
1 +H1 = E[Hn −Hn

1 ] +H1.

and Hn − Hn
1 can be written as the conditioned entropy −H(X1∣Xn) where Xn is the

random walk at time n (this statement is quenched). This, however, increases since

H(X1∣Xn) =H(X1∣Xn,Xn+1) ≤ H(X1∣Xn+1) (8)

where the equality is because due to the fact that conditioned on Xn, knowing Xn+1

gives you no information about what happened before time n. The inequality in (8) is
a generic fact about entropy — conditioning on more information reduces the relative
entropy. Hence Hn −Hn

1 decreases, and so does its expectation.

Returning to the proof of Theorem 7, let us recall another well-known fact. For any
two random variables X and Y , H(X,Y ) ≤ H(X) +H(Y ) with equality holding if and
only if X and Y are independent. The next lemma gives a quantitative version of this
fact.

Lemma 10. For any two random variables X and Y ,

∑
y

P(Y = y)∆2(L (X),L (X ∣Y = y)) ≤ 2(H(X) +H(Y ) −H(X,Y )). (9)
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Proof. We start with the fact that for t > 0

2t log t ≥
(t − 1)2
t + 1

+ 2t − 2 (10)

(This can be seen by Taylor expanding t log t to the second order at 1.) For shortness
denote

p(x) = P(X = x) p(y) = P(Y = y) p(x, y) = P(X = x,Y = y).
Then the left-hand side of (9) is (recall the definition (3) of ∆),

LHS =∑
y

p(y)∑
x

(p(x, y)/p(y) − p(x))2
p(x, y)/p(y) + p(x) =

=∑
y,x

p(x)p(y)((p(x, y)/p(x)p(y) − 1)2
p(x, y)/p(x)p(y) + 1

+ 2
p(x, y)

p(x)p(y) − 2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
0

)
where we were allowed to add the expression denoted by ®

0
since summing over x and y

makes both terms equal to 2 and cancel out. Thus, we get

LHS
(10)
≤ 2∑

x,y

p(x)p(y)( p(x, y)
p(x)p(y) log

p(x, y)
p(x)p(y)) =

= 2∑
x,y

p(x, y) (log p(x, y) − log p(x) − log p(y)) = 2(−H(X,Y ) +H(X) +H(Y ))
where in the last equality we used that ∑y p(x, y) = p(x) and ∑x p(x, y) = p(y).
Proof of Theorem 7. This is a direct corollary of Lemmas 8 and 10. Indeed, by Lemma
10,

E(∆n(ρ,X1)2) =∑
x

P(X1 = x)∆(L (Xn),L (Xn∣X1 = x))2
≤ 2(H1 +Hn −Hn

1).
We now take expectation with respect to the environment and get from Lemma 8

E(∆n(ρ,X1)2) ≤ 2E(H1 +Hn −Hn
1) = 2(Hn −Hn−1).

We are now in a position to prove Theorem 3:

Proof of Theorem 3. We only need to prove that for almost every environment, h(ρ) =
h(X1) for any sublinear harmonic function. Indeed, stationarity would then imply that
for almost every P , h(Xn) = h(Xn+1) for any sublinear harmonic function. Since the
Markov chain is irreducible, (Xn) can visit any vertex and we deduce that almost surely
any sublinear harmonic function is constant.

For any harmonic function h with respect to the environment we have

h(ρ) = Eρ(h(Xn)) h(X1) = EX1
(h(Xn−1)).

11



Hence

∣h(ρ) − h(X1)∣ = ∣Eρ[h(Xn)] −EX1
[h(Xn−1)]∣

By (5) ≤∆n(ρ,X1)√Eρ[h2(Xn)] +EX1
[h2(Xn−1)].

Taking expectation over X1 gives

Eρ∣h(ρ) − h(X1)∣ ≤ Eρ[∆n(ρ,X1)√Eρ[h2(Xn)] +EX1
[h2(Xn−1)]]

by Cauchy-Schwarz ≤
√

2Eρ [∆n(ρ,X1)2]Eρ[h2(Xn)] (11)

where in the last line we also used that Eρ[EX1
[h2(Xn−1)] = Eρ[h2(Xn)].

Now, assume that h has sublinear growth. First, for any ε > 0, there exists a constant
K such that for all x ∈ V ,

h2(x) ≤ εd(x, ρ)2 +K. (12)

Second, the Markov chain has annealed polynomial growth, therefore the entropy satisfies

Hn ≤ E[log ∣Bρ(n)∣] ≤ logE[∣Bρ(n)∣] ≤ log[Cnd]
and is at most logarithmic (we use the fact that log is concave). Hence Hn −Hn−1 ≤ c/n
for infinitely many n. Using Theorem 7 and (SDB) we get

E[n∆n(ρ,X1)2] +E[n−1d(Xn, ρ)2] ≤ C for infinitely many n.

Hence, by Fatou’s Lemma, for almost every environment there exists c1 <∞ such that

Eρ[n∆n(ρ,X1)2] +Eρ[n−1d(Xn, ρ)2] ≤ c1 for infinitely many n, (13)

where this time the sequence of n for which it holds depends on the environment, i.e. is
random. Putting (12) and (13) in (11), we deduce that for almost every environment,
and for every h harmonic and sublinear on it,

Eρ(∣h(ρ) − h(X1)∣) ≤ c2ε
1/2.

Letting ε go to 0, we deduce that h(ρ) = h(X1) almost surely for any sublinear harmonic
function.

Inequality (11) relates the entropy to the value of possible harmonic functions at Xn.
Its use is not restricted to the case of diffusive environments with polynomial growth.
For instance, one can use this inequality to prove a characterization of almost sure Liou-
ville property for stationary random graphs (this was proved in [9] using a more direct
generalization of [43]). For completeness, we state the result in [9] here.

Corollary 11. [9] Let (P,V, ρ) be a stationary environment. If Hn/n converges to 0,
then P has the Liouville property (i.e. has no non-constant bounded harmonic functions)
almost surely.
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We would like to emphasize why we use ∆(µ, ν). Csiszár’s inequality [24, 25] relates
the total variation between two measures to their relative entropy. In our context, an
inequality involving the total variation can also be found, hence giving a bound on the best
coupling (in time) between two random walks starting at neighbors. For completeness,
we state the inequality here (it is a consequence of (4) applied to (7)): for a stationary
environment (P,V, ρ) and n > 0, we have

E(∣∣L (Xn) −L (Xn∣X1)∣∣2TV ) ≤ 4(Hn −Hn−1).
Interestingly, this inequality is not strong enough for our applications, since controlling
the probability that two random walks merge before time n says nothing about their
behavior when they do not couple.

Examples. We finish this section by presenting a collection of examples.

Example 2.1 (Random conductance). Consider the graph Zd and let ν be given by a
shift-invariant law (for example i.i.d. positive random variables). We assume that the
set of sites connected by edges with positive conductances is infinite. The random walk
induces a Markov process on the environment, cf. Kipnis and Varadhan [47], called the
environment as seen from the particle. This process can be made stationary by weighting
each configuration proportionally to ν(ρ).

This model has been studied extensively. Under the assumption of uniform ellipticity:
∃α > 0 ∶ P[α < ν(x, y) < 1/α] = 1, many things are known on the environment. First, the
Poincaré inequality is a trivial consequence of the Zd case. Second, Delmotte proved in
[28] that the Poincaré inequality implies that there exist c1, c2 > 0 such that

Pρ[Xn = x] < c1

nd/2
e−c2∣x∣

2/t

(a corresponding lower bound also holds but is not needed for our purposes). Third,
an annealed invariance principle holds in the sense that the law of the paths under the
measure integrated over the environment scales to a non-degenerate Brownian motion
[47]. In particular, Theorem 3 applies in this case.

Once the assumption of uniform ellipticity is relaxed, matters get more complicated.
An example of random conductance models without uniform ellipticity is the infinite
cluster of percolation which we will discuss next. For an unusual example of a transitive
conductance model, see the work of Disertori, Spencer and Zirenbaur [32] who reduced a
supersymmetric hyperbolic sigma model to the study of random walk on a certain (highly
correlated) random environment.

Example 2.2 (Infinite cluster of percolation). Consider the percolation measure with a
parameter p such that there exists an infinite cluster with probability 1. See [36] for details
about percolation. Set P0 to be the law of the infinite cluster conditioned to contain 0. It
is well-known that the random walk on ω induces a Markov chain on the space Ω of infinite
subgraphs of Zd containing the origin. When weighting each configuration proportionally
to the number of neighbors of the origin we obtain a stationary measure with respect to
the shift along the random walk.
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Since the infinite cluster of percolation can be seen as a stationary random graph
with polynomial volume growth and since the random walk is diffusive [46, 4], Theorem 3
applies, and we get Theorem 1.

Example 2.3 (Centered random environments). This is our first non-reversible example.
A centered random environment is, roughly speaking, a Markov chain on Zd such that
the probabilities can be “decomposed” into a sum over cycles. Such environments, even
when non-reversible, are still heuristically quite close to reversible, and in particular they
have a stationary version which is related to the usual version by an explicit reweighting,
like in the reversible case [31, Section 3]. See Deuschel and Kösters [31] for a proof of a
CLT, which implies (SDB) — of course, a CLT is much stronger than (SDB) — and
hence our results apply.

Example 2.4 (Balanced random environments). This is another non-reversible example,
which is “farther” from reversible than the previous one. A balanced random environment
is a Markov chain P with state space Zd and nearest neighbor movements, such that
for every x ∈ Zd and every unit vector ei, P (x,x + ei) = P (x,x − ei). It follows that Xn

is a martingale, and hence (SDB) is an immediate corollary of the Azuma-Hoeffding
inequality. The issue is therefore only stationarity. In the case that the environment µ

is uniformly elliptic and stationary and ergodic to the action of Zd (this is different from
our notion of stationarity!), Lawler [51, Theorem 3] showed that there exists a stationary
measure (in our sense) λ which is mutually absolutely continuous with respect to µ. Hence
our results apply to λ, and hence also to µ. Guo and Zeitouni weakened the requirement
of uniform ellipticity to just ellipticity, at the price of restricting the environment to
the i.i.d. case [37]. Berger and Deuschel [15] have removed the requirement of ellipticity
altogether.

Example 2.5 (Random environments with cut points). Under certain conditions, one can
prove that a random walk in non-reversible random environments in Zd, d large enough,
has cut points, and deduce from that a CLT and the existence of a stationary environment,
hence our techniques apply. See [17] for the details.

Let us give one example which is not embedded in Zd, and in fact has unbounded
degrees.

Example 2.6 (Poisson point process). Examine a Poisson point process in Rd. Add the
point 0 (this is often called “the Palm process”) and let it be the root. Construct a graph
by some process invariant under translations of Rd. For example, connect any two points
by an edge with weight which depends on their Euclidean distance [18] or construct the
Delauney triangulation [34]. Give each configuration a “probability proportional to the
total weight of 0”. The resulting process is stationary and diffusive (see e.g. [18, §2.1] or
[34, Lemma A.1] for stationarity — subdiffusivity can be deduced from [8, Section 2] or
from the two previous papers). Hence our theorem applies.

The previous examples dealt with random walks which are diffusive. An interesting
situation, which cannot hold in the case of groups, is environments with subdiffusive
behavior. We give four examples of these.

Example 2.7 (Graphical fractals). A graphical fractal is a graph which is constructed like
one of the classical fractals (the Sierpinski gasket, for example) but inside out — bigger
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Figure 1: A portion of the graphical Sierpinski gasket.

pieces of the graph are constructed from smaller pieces by connecting them in a repeated
fashion (see [5] for precise definitions and main properties). See figure 1 for an example,
the graphical Sierpinski gasket. A graphical fractal always has an invariant measure and is
always diffusive or subdiffusive, and in many examples is in fact subdiffusive, see e.g. [3].
Let us remark that a significant part in the remarkable work of Barlow and Bass on the
Sierpinski carpet [6] has to do with the construction of a coupling, so a tool (like the one
described in this section) that gives easy proofs that couplings exist should be useful.

Example 2.8 (Critical Galton-Watson trees). The critical Galton-Watson tree with any
offspring distribution conditioned to survive is stationary (see [44, 56, 55]) and subdif-
fusive. If the offspring distribution has finite variance, the diffusivity exponent 1/3 was
proved in [46].

Example 2.9 (Infinite Incipient Cluster). Consider the critical percolation on Zd condi-
tioned on the fact that the origin is connected to infinity [45] — one cannot really condition
on this event which has probability 0 (proved in d = 2 and high d and conjectured in the
others), but the object can be defined properly using a limit process. For example, one
may take pc + ǫ percolation, condition on 0⃗ being in the cluster and then take a limit of
the resulting measures as ǫ→ 0. Since for each ǫ the measure is stationary (as usual after
reweighting the configurations proportionally to the degree of 0⃗), so will be their limit if it
exists (or any subsequence limit in general). The limit is known to exists in 2 dimensions
[45, 41] and in high dimensions [40, 39]. It was proved in [46, 49] that the random walk
is subdiffusive on this cluster (in high dimension the diffusivity exponent is 1/3, as on the
tree). Since it is embedded in Zd, it grows no faster than polynomially. Therefore, there
are no linear growth harmonic functions on it.

Example 2.10 (UIPQ). Let Gn be fixed or random finite graphs. Take ρn to be a random
vertex in Gn, selected according to the stationary measure on Gn. Then the limit of(Gn, ρn), if it exists, is called the graph limit [13]. This limit is always stationary [50,
Section 1.3].

A particular case is when Gn is a planar quadrangulation with n faces, chosen uni-
formly. The graph limit is known as the uniform infinite planar quadrangulation. It was
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proved to be subdiffusive with diffusivity exponent bounded from above by 1/3, in [10].
Thus, there are no linear growth harmonic functions in this case as well.

Other growth rates. Examining the proof of Theorem 3 the same argument can also
be used with growth rates bigger then polynomial. A general statement would be

Theorem 3’. Let (P,V, ρ) be a stationary environment. Then there are no non-constant
harmonic functions h which satisfy

Eρ[h(Xn)2] ⋅ (Hn −Hn−1)→ 0

even if this holds just along a subsequence of n.

In particular this holds for fixed transitive graphs, which is a version of a result of [33,
Section 5].

A remark on connectivity. We assumed throughout that the environment (P,V, ρ)
is irreducible, i.e. that for any v,w ∈ V there is some n such that P n(v,w) > 0. This
assumption was only used once: we showed that a not-necessarily-irreducible stationary
environment satisfies that every harmonic function h has h(ρ) = h(X1) almost surely, and
concluded, using irreducibility, that h is constant. The assumption of irreducibility is
of course necessary, as a disconnected graph always has bounded non-constant harmonic
functions, namely functions which are constant on each component, but with different
constants.

Nevertheless, in the non-reversible case, the assumption of irreducibility can be weak-
ened slightly: we only need to assume that for every v and w there exist n,m and x

such that P n(v, x) > 0 and P m(w,x) > 0. The proof is the same — since h(ρ) = h(X1)
almost surely then this gives that h(v) = h(x) = h(w) almost surely and h is constant.
An example of a stationary graph satisfying this is as follows: take a 3-regular tree T ,
choose a height function ℓ (i.e. a function such that each vertex has one neighbor with ℓ

bigger by one, and two neighbors with ℓ smaller by one), and orient all edges “up” i.e. in
the direction of the larger ℓ. Of course, the random walk on the resulting graph is so
degenerate it can hardly be called random, as each vertex has only one outgoing edge.
But this is irrelevant at this point. This environment is not irreducible in the usual sense,
but does satisfy the weaker assumption and hence our results apply (again, in this case it
is simple to analyze the harmonic functions directly). Multiplying by Z will give a slightly
less trivial example.

3 Polynomial growth harmonic functions

In this section we prove Theorem 4. The proof boils down to the observation that macro-
scopic Poincaré inequality and volume growth estimates are sufficient. The strategy fol-
lows the lines of Shalom and Tao [63, 64], where a quantitative version of Gromov’s
celebrated theorem on groups of polynomial growth (any group of polynomial growth is
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virtually nilpotent) is proved. The proof is inspired by an elegant proof of this theorem
due to Kleiner [48] harnessing spaces of harmonic functions with polynomial growth in a
crucial way. We start with a very general inequality, called the reverse Poincaré inequality,
which holds in any graph with bounded degree. For sake of completeness, we prove it in
our context.

Proposition 12 (Reverse Poincaré inequality). For any weighted graph (G,ν) and any
function h ∶ G→ R harmonic on a ball Bx(2n),

∑
(y,z)∈E(Bx(n))

(h(z) − h(y))2ν(y, z) ≤ 4

n2
∑

y∈Bx(2n)

h(y)2ν(y). (14)

for every x ∈ G and n > 0.

Proof. For this proof, we denote the quantity f(x) by fx. Let h ∶ Bx(2n)→ R be harmonic
and let φ be a function such that φy = 1 for y ∈ Bx(n), φy = 0 for y /∈ Bx(2n − 1) and∣φy − φz∣ ≤ 1/n for all y ∼ z. For example,

φy ∶=min(1,2 − d(y,x)
n
) .

We have

∑
E(Bx(n))

(hy − hz)2 ν(y, z) = ∑
E(Bx(n))

1
2
(φ2

y + φ2
z) (hy − hz)2 ν(y, z). (15)

To make the calculation a little shorter we represent the sum on the right-hand side of (15)
as a sum of 1

2
φ2

y(hy − hz)2 over directed edges. Denote by E∗ the set of directed edges in
Bx(2n) i.e. both (y, z) and (z, y) appear in E∗ and are different. For an edge (y, z) ∈ E∗,
an easy computation shows that φ2

y(hz − hy)2 equals the lengthly yet straightforward
quantity

(hzφ
2
z − hyφ

2
y)(hz − hy) − hz(φz − φy)2(hz − hy) − 2hzφy(φz − φy)(hz − hy).

We start by dealing with the first term. Integration by parts and the fact that hφ2 vanishes
on the boundary of Bx(2n) imply

∑
E∗
(hzφ

2
z − hyφ

2
y)(hz − hy)ν(y, z) = 2 ∑

y∈Bx(2n)

hyφ
2
y (∑

z∼y

(hy − hz)ν(z, y))
Since h is harmonic, this sum equals 0.

For the second term, since ∣hz(hz − hy)∣ ≤ 3
2
h2

z +
1
2
h2

y and ∣φz − φy∣ ≤ 1/n, we have that
each summand is bounded by (3h2

z + h2
y)/(2n2). When summing over E∗ we obtain

∣∑
E∗

hz(φz − φy)2(hz − hy)ν(y, z)∣ ≤ 2

n2
∑

Bx(2n)

h2
yν(y).
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For the third term, note that

∣hzφy(φz − φy)(hz − hy)∣ ≤ 1

4
(hy − hz)2φ2

y + h2
z(φz − φy)2. (16)

So,

∑
E∗
∣hzφy(φz − φy)(hz − hy)∣ν(z, y)

By (16) ≤
1

4
∑
E∗
(hy − hz)2φ2

yν(y, z) +∑
E∗

h2
z(φz − φy)2ν(y, z)

≤
1

4
∑
E∗
(hy − hz)2φ2

yν(y, z) + 1

n2
∑

Bx(2n)

h2
yν(y)

using the bound ∣φz − φy∣ ≤ 1
n

for every y ∼ z. Putting the bound on the different terms
together leads to

∑
E∗
(hy − hz)2φ2

yν(y, z) ≤ 1

2
∑
E∗
(hy − hz)2φ2

yν(y, z) + 4

n2
∑

Bx(2n)

h2
yν(y).

which gives

∑
E(Bx(n))

(hz − hy)2dν(y, z) ≤ 1

2
∑
E∗
(hz − hy)2φ2

yν(y, z) ≤ 4

n2
∑

Bx(2n)

h2
yν(y).

Lemma 13. Let (G,ν) be a random graph satisfying the volume doubling condition(V D)G almost surely. Then there exists c > 0 such that for any finite λ and n large
enough, there is a covering of the ball Bρ(λn) by less than Mλ balls By1

(n),..,Byk
(n)

satisfying that every point x ∈ Bρ(n) belongs to at most c balls Byi
(2n).

Further, c depends only on the volume doubling constant CVD, and Mλ depends only
on λ and CVD.

We call a covering with this property proper.

Proof. Let λ and G be as above. Let n be large enough so that (V D)G holds for our λ.
Given this, we can choose a maximal family of disjoint balls By1

(n/2), . . . ,Byk
(n/2) with

yj ∈ Bρ(λn) for all j.

• Since the family {Byj
(n/2)} is maximal, every vertex in Bρ(λn) must be within

distance ≤ n from one of the yj, so Bρ(λn) is covered by By1
(n), . . . ,Byk

(n).
• For any x ∈Bρ(λn), if x ∈Byj

(2n), then Byj
(n/2) ⊂ Bx(3n). Using volume doubling

we see that ν(Bx(3n)) ≤ C4
VDν(Byj

(n/2)), hence (since these balls are disjoint) we
have that the number of yj that are in Bx(2n) is at most C4

VD.

• We use volume doubling similarly and get

ν(Bρ((λ + 1)n)) ≤Cν(Byj
(n/2)) ∀j.
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(the constant is C
⌈log2(λ+1)⌉+2
VD ). Since these balls are all disjoint and fully contained

in Bρ((λ + 1)n), we get

k min
j

ν(Byj
(n/2)) ≤ ν(⋃

j

Byj
(n/2)) ≤ ν(Bρ((λ + 1)n)) ≤ Cmin

j
ν(Byj

(n/2))
and we get that the number of balls k is bounded by the same C.

Lemma 14. Let (G,ν) be a random graph satisfying (P )G almost surely. For almost
every G, there exists c > 0 such that for every ε > 0 and n large enough, and for every
proper covering of Bρ(n) by balls of radius εn, if h ∶ G → R is harmonic and has 0 mean
on all the balls of the covering then

∑
Bρ(n)

h(z)2ν(z) ≤ cε2 ∑
Bρ(4n)

h(z)2ν(z). (17)

Further, c depends only on CP, the constant in the Poincaré inequality.

Proof. Let G be an environment and fix n large enough so that (P )G holds true for λ = 1/ε
and εn: for every x ∈Bρ(n) and f a map on Bρ(n),

∑
y∈Bx(εn)

(f(y) − f
Bx(εn))2ν(y) ≤ CP(εn)2 ∑

(y,z)∈E(Bx(2εn))

∣f(y)− f(z)∣2ν(y, z).
Consider h ∶ G → R a harmonic function and By1

(εn),..,Byk
(εn) the proper covering

of Bρ(n) from the statement of the lemma. The hypothesis asserts that hByi
(εn) = 0 for

every i, so that Poincaré inequality implies

∑
Byi
(εn)

h2(z)ν(z) = ∑
Byi
(εn)

(h(z) − hByi
(εn))2ν(z)

≤ CPε2n2 ∑
E(Byi

(2εn))

(h(z) − h(t))2ν(z, t).
Since the Byi

(εn) have uniformly bounded overlap (each point belong to at most c balls),
and since Byi

(2εn) ⊂Bρ(2n), we find

∑
Bρ(n)

h2(z)ν(z) ≤ cCPε2n2 ∑
E(Bρ(2n))

(h(z) − h(t))2ν(z, t). (18)

Using the reverse Poincaré inequality (Proposition 12) for the larger ball, we conclude

∑
Bρ(n)

h2(z)ν(z) ≤ 4cCPε2 ∑
Bρ(4n)

h2(z)ν(z) (19)

which implies the claim with c = 4cCP.

Proof of Theorem 4. We aim to prove that the space of harmonic functions u such that∣u(x)∣ ≤ Cd(ρ,x)k for every x ∈ G is finite dimensional. Consider an environment G
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satisfying (V D)G and (P )G. Let c2 and c large enough that the two previous lemma
holds true. Let ε > 0 to be fixed later.

On the set of harmonic functions on Bρ(n), a scalar product between two functions
can be defined by ⟨f, g⟩n = ∑

Bρ(n)

f(x)g(x)ν(x).
Consider d harmonic functions u1,..., ud on G and set V = span(u1, .., ud).

Let ε be some parameter to be fixed later. For n large enough, there exists a proper
covering By1

(εn),..., ByM
(εn) of Bρ(n) by M =M1/ε balls. Therefore there is a codimen-

sion d −M vector space V0 ⊂ V of harmonic functions with mean 0 on each of the balls
Byi
(εn). Let v1,...,vd be an orthogonal base of V for ⟨⋅, ⋅⟩4n such that v1,..,vd−M is a base

of V0. Examine the Gram matrix of vi i.e. the d × d matrix whose entries are ⟨vi, vj⟩n.
Then

det [{⟨vi, vj⟩n}i,j] ≤ d

∏
i=1

⟨vi, vi⟩n
≤

d−M

∏
1

cε ⟨vi, vi⟩4n

d

∏
i=d−M+1

⟨vi, vi⟩4n

= (cε)d−M det [{⟨vi, vj⟩4n}i,j],
where in the first line we have used Hadamard’s inequality, in the second Lemma 14
and in the last, the fact that (vi) is orthogonal for ⟨⋅, ⋅⟩4n. Now, the ratio of two Gram
determinants is preserved by linear operations on vectors, so we can return from the basis{vi} (which was specific to n) to our “original” basis {ui}. We get

det [{⟨ui, uj⟩n}i,j] ≤ (cε)d−M det [{⟨ui, uj⟩4n}i,j].
Iterating the reasoning, we find for every r > 0

det [{⟨ui, uj⟩n}i,j] ≤ [(cε)d−M ]r det [{⟨ui, uj⟩4rn}i,j].
Since every entry of the matrix is smaller than C(4rn)k thanks to the bound on the
growth of the harmonic functions, we find

det [{⟨ui, uj⟩n}i,j] ≤ d!nkdCd((cε)d−M4kd)r.
We now fix ε to be 4−2k/c. If d > 2M then this would imply

(cε)d−M4kd = 4−2k(d−M)+kd < 1

and the right hand side would converges to 0. We deduce that det [{⟨ui, uj⟩n}i,j] = 0, and
that the ui restricted to the ball of radius n form a dependent family. Since this is true
for every n large enough, we easily deduce that (ui) is a linearly dependent family. The
result holds for any family of d harmonic functions with growth bounded by Cd(⋅, ρ)k. It
implies that the dimension of the vector space of harmonic functions with such growth is
smaller or equal to 2M .
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Example 3.1 (Infinite cluster of percolation). The infinite cluster of percolation satisfies(V D)ω and (P )ω almost surely [4]. Therefore, spaces of harmonic functions with pre-
scribed polynomial growth are finite dimensional.

Example 3.2 (Random conductance). Random conductances with uniform elliptic con-
ditions also satisfy (V D)ω and (P )ω deterministically. Therefore, spaces of harmonic
functions with prescribed polynomial growth are finite dimensional.

Example 3.3 (Wedges). Let f be some slowly varying function from [0,∞) → [0,∞).
Define the wedge with respect to d and f to be

W ∶= {x ∈ R
d
∶ xd ≤ f(∣x1∣ +⋯ + ∣xd−1∣)}.

Then it is well-known and not difficult to see that W (with the graph structure inherited
from Zd) satisfies volume doubling and Poincaré inequality. Under some weak condi-
tions on f and d (which we will not detail here, as that would take us too off-topic) so
would percolation on W . Hence both W and supercritical percolation on it have a finite
dimensional space of harmonic functions.

4 Linear growth harmonic functions on the infinite clus-

ter of percolation

In this section, we fix d > 0 and p > pc(d). The infinite cluster of supercritical percolation
can be thought of as an approximation of Zd. In particular, macroscopic properties of the
cluster are the same as those of Rd. For instance, the random walk satisfies an invariance
principle (CLT )ω [65, 14, 59]: define

B̃n(t) ∶= 1√
n
(Xtn),

where for non-integer tn we define Xtn as the linear interpolation between X⌊tn⌋ and
X⌈tn⌉; that is, Xtn = X⌊tn⌋(tn − ⌊tn⌋) + X⌈tn⌉(⌈tn⌉ − tn). There exists σ(d) such that

the law of (B̃n(t),0 < t < ∞) converges weakly to the law of a Brownian motion with
variance σ(d) as n → ∞. The main step in the proof in all three papers [65, 14, 59] is
the construction of a d-dimensional space of harmonic functions {fv}v∈Rd such that fv has
slope v i.e. fv(x) = ⟨v, x⟩ + o(∣x∣). Let us state this as a theorem.

Theorem 15 ([65, 14, 59]). Let d ≥ 2, and p > pc(d). Let ω be the infinite cluster of
percolation on Zd with parameter p. Then, for almost every ω there exists χ ∶ ω → Rd such
that x ↦ x + χ(x) is harmonic on ω, and

lim
n→∞

1

n
sup

x∈Bρ(n)
∣χ(x)∣ = 0 a.s. (20)

This (random) function is called the corrector.

With the constant functions, we get a d + 1-dimensional space of harmonic functions
with (sub-)linear growth. Our aim in this section is to prove Theorem 5 from the intro-
duction, namely that there are no other harmonic functions of linear growth.
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Proof sketch. Let h be a harmonic function with linear growth. Define hn ∶ R
d → R

such that hn(x) = h(nx)/n. In order to prove Theorem 5, we first show that (hn) forms
a precompact family (one can say that h has a scaling limit). The second step is to
identify the possible limits. For this, we use the average property at the discrete level
and the invariance principle to prove that limits are harmonic on Rd. If the space of
limits is at most d-dimensional, one can then use the absence of non-constant sublinear
harmonic functions to show that the space of harmonic functions with linear growth is
d + 1-dimensional.

Properties of the supercritical cluster. Recall that the infinite supercritical cluster
of percolation ω can be seen as a stationary random graph with polynomial growth. It is
well-know that the system is ergodic with respect to the shift by X1, see e.g. [14, Theorem
3.1]. Typical balls have the same growth as in the ambient space Zd in the following sense:
there exists constants c and C such that for any finite λ, any n sufficiently large and any
x ∈Bρ(λn)

cnd ≤ ν(Bx(n)) ≤ Cnd. (21)

Clearly, (21) implies volume doubling (V D)ω. Moreover, the graph satisfies (P )ω almost
surely. Both properties were proved by Barlow [4]. Actually, Barlow proved quantitatively
stronger versions of (V D)ω and (P )ω: he obtained the volume growth estimates and the
Poincaré inequality for every ball of radius larger than C logn in Bρ(n). These improved
versions allow to prove Harnack inequalities and gaussian estimates (1) on the heat kernel.
In [4] these results are stated for continuous time random walk, but they hold also for
simple random walk, as was explained in [7, Section 2]. We do not need the full force
of gaussian estimates here — in particular we do not need far off-diagonal lower bounds
which are particularly difficult — so let us make a list of corollaries from these gaussian
estimates which we will use.

Corollary 16. For every finite λ, every n sufficiently large and every x ∈Bρ(λn),
Px(Xn2 = y) ≤ Cn−d exp [−C ∣x − y∣2/n] ∀y (22)

This immediately implies
Ex[∣Xn2 − x∣2] ≤ c3n

2 (23)

for some constant c3 depending on the environment.
The lower bound has some periodicity requirements, because clearly Px(Xt = y) = 0

whenever t +∑(xi − yi) is odd.

Corollary 17. For every finite λ, every n sufficiently large and every x ∈ B(λn),
Px(Xn2 = y) ≥ Cn−d ∀y ∈ Bx(n) such that n2

+∑(xi − yi) is even (24)

We start with a technical lemma which allow to move estimates at ρ to estimates at
most points. The main ingredient is ergodicity.
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Lemma 18. Let f(x, y,ω) be some translation-invariant variable (i.e. f(x+s, y+s,ω+s) =
f(x, y,ω)) with M ∶= E∣f(0,X1, ω)∣ < ∞. Then for every λ > 0 and for almost every
environment ω,

∑
(x,y)∈E(Ba(n))

f(x, y,ω)ν(x, y) ≤ C ⋅M ⋅ nd

for n sufficiently large, and for all a ∈ Bρ(λn).
Proof. We will no longer denote the ω in the f . For almost every ω, 1

k ∑
k−1
t=0 ∣f(Xt,Xt+1)∣

converges in L1 (for the measure Pρ) to M by ergodicity [14, Theorem 3.1]. Therefore

1

k

k−1

∑
t=0

Eρ[f(Xt,Xt+1)] ≤ 2M for k sufficiently large. (25)

Moreover, the heat kernel lower bound (24) implies that there exists C > 0 such that for
every t sufficiently large and every x ∈ Bρ(√t) with t +∑xi even,

Pρ[Xt = x] ≥ C∣Bρ(√t)∣
which we sum over t to get, for x, y ∈Bρ(k) and k sufficiently large

1

2k2

2k2

∑
t=0

Pρ[Xt = x,Xt+1 = y] ≥ C4∣Bρ(k)∣ .
Hence,

∑
(x,y)∈E(Bρ(k))

f(x, y)ν(x, y) ≤ ∣Bρ(k)∣
C4

⋅
1

2k2

2k2

∑
t=0

Eρ[f(Xt,Xt+1)] (25)
≤

2M

C4

∣Bρ(k)∣ (26)

for k sufficiently large. Fix some k0 such that the probability that (26) holds for k > k0 is
bigger than 1

2
. Call a point b ∈ ω good if

∑
(x,y)∈E(Bb(k))

f(x, y)ν(x, y) ≤ 2M

C4

∣Bb(k)∣ ∀k > k0

We know that ρ is good with probability greater than 1
2
.

By ergodicity again, for almost every environment ω,

1

k

k−1

∑
t=0

1{Xt is good} Ð→ P[ρ is good] Pρ − almost surely (27)

when k goes to infinity. Now, consider an environment ω and fix δ > 0. The maximum
distance between two good points in the box Bρ(n) behaves like o(n). Indeed, if it was
not the case there would exists ε > 0 such that with positive Pρ-probability, the random
walk X would not visit a good point during an interval εn before time n for an infinite
number of n (here we used implicitly the invariance principle to see that the walk has

23



positive probability to reach that “bad ball”, and stay there). This would prevent the
left hand side in (27) from converging Pρ-almost surely as during these intervals the sum

∑1{Xt is good} would not increase while k would increase by a factor of 1 + ε, causing the
average to “plunge”. This cannot happen infinitely many times for a converging sequence.

Therefore, for every a ∈ Bρ(λn), there exists a good point b at distance less than n.
Thus,

∑
(x,y)∈E(Ba(n))

f(x, y)ν(x, y) ≤ ∑
(x,y)∈E(Bb(2n))

f(x, y)ν(x, y)
≤

2M

C4

∣Bb(2n)∣ (21)
≤ CMnd.

Recall the hn from the proof sketch on page 22. There we defined hn(x) = h(nx)/n
which is a priori only defined on the contracted infinite cluster. For simplicity let us
extend it to all Rd, e.g. by extending h to Zd by taking the value at the closest point
of the infinite cluster, and then to Rd by dividing each square (n,m) + [0,1]2 into two
triangles and interpolating on the triangles linearly. Once h is extended to all Rd, so is
hn.

Proposition 19. For almost every environment ω, any harmonic function h on ω with
linear growth satisfies that for every compact K ⊂ Rd, the sequence (hn)∣K is uniformly
bounded and equicontinuous.

Proof. Fix a harmonic map h with (at most) linear growth on an environment ω. There
exists A > 0 such that ∣h(x)∣ ≤ A∣x∣. We only need to prove equicontinuity on the ball
(other compact sets K work the same). To do so, we prove that for any η > 0, there exists
δ > 0 such that (h(a) − h(b))2 ≤ ηn2 for any two points a, b ∈ Bρ(n) at distance δn of
each other, when n is large enough. For this reason, we will always assume that n is large
enough so that (P )ω and (V D)ω hold true for an appropriate λ.

Let δ, ε > 0 to be fixed later (think about ε≪ δ) and a, b ∈ Bρ(n) with d(a, b) ≤ δn. Let
B be some ball of radius 2δn containing both Ba(δn) and Bb(δn) — for example around
the middle point of [ab]. Let h be the average 1

ν(B) ∑x∈B h(x)ν(x). Since ∣h(a) − h(b)∣ ≤∣h(a) − h∣ + ∣h(b) − h∣, it is enough to estimate these terms, and we estimate ∣h(a) − h∣ —
the other term being symmetric.

Set E to be the event that ∣X(εn)2 − a∣ ≥ δn. Note that

Pa(E ) ≤ Ea(∣X(εn)2 − a∣2)(δn)2 ≤
c3(εn)2(δn)2 = c3(ε/δ)2

where the Markov inequality was used in the first inequality and the quenched diffusive
behavior (23) in the second.

Now, we have

∣h(a) − h∣2 ≤ (Ea[∣h(X(εn)2) − h∣])2
≤ 2 (Ea[∣h(X(εn)2) − h∣1E ])2 + 2 (Ea[∣h(X(εn)2) − h∣1E c])2
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We first deal with the first term on the right:

(Ea[∣h(X(εn)2) − h∣1E ])2 ≤ Ea[(∣h(X(εn)2)∣ + ∣h∣)2] ⋅Pa(E )
≤ (2Ea[h(X(εn)2)2] + 2h

2) ⋅Pa(E )
Since h(x) ≤ A∣x∣ ≤ 2A(Ea[∣X(εn)2 ∣2] + (1 + δ)2n2) ⋅Pa(E )

by (23) ≤ 2A(c3ε
2
+ (1 + δ)2)n2

⋅ c3

ε2

δ2
= c5n

2 ε2

δ2

where in the first inequality we have used Cauchy-Schwarz.
For the second term, the heat kernel upper bound (22) show that Pa(X(εn)2 = x) ≤

C6/(εn)d for any x ∈ Bρ(n) and n large enough. Therefore,

(Ea [∣h(X(εn)2) − h∣1E c])2 ≤ Ea [∣h(X(εn)2) − h∣21E c]
≤

C6(εn)d ∑
x∈Ba(δn)

∣h(x) − h∣2 ν(x)
≤

C6(εn)d ∑x∈B ∣h(x) − h∣2 ν(x).
Harnessing Poincaré inequality, we find

Ea [∣h(X(εn)2) − h∣1E c]2 ≤ CPC6(εn)d δ2n2 ∑
(x,y)∈E(B′)

∣h(x) − h(y)∣2ν(x, y),
where B′ is the ball with same center as B and radius 4δn.

Now, the quantity ∆n controls the gradient of an harmonic function. Indeed, the same
reasoning as the one used to derive (11) implies that

∣h(x) − h(y)∣2 ≤ (Ex[∣h(Xn)∣2] +Ey[∣h(Xn)∣2)∆n(x, y)2
≤ A2(Ex[∣Xn∣2] +Ey[∣Xn∣2])∆n(x, y)2

for every n. Using diffusivity and taking the liminf, we obtain

∣h(x) − h(y)∣2 ≤ c7 lim inf
n→∞

√
n∆n(x, y)2

where c7 does not depend on the points x, y (though it does depend on h through A).
Denote this lim inf by ∆∞(x, y)2. We get

(Ea [∣h(X(εn)2) − h∣1E c])2 ≤ δ2

εd

CPC6

nd−2 ∑
(x,y)∈E(B)

c7∆∞(x, y)2ν(x, y).
We next note that E∆∞(ρ,X1)2 <∞. Indeed, the infinite cluster of percolation is a sub-
graph of Zd, it has uniform polynomial growth and Hn ≤ C1 logn for every n. Theorem 7
implies that E[∆n(ρ,X1)2] ≤ C2/n for an infinite number of n. Using Fatou’s lemma, we

25



obtain that E[∆∞(ρ,X1)2] < ∞. Thus we may use Lemma 18 for the function f = ∆2
∞

and get (with the fact that B′ has radius 4δn),

Ea[∣h(X(εn)2) − h∣1E c]2 ≤ c8

δd+2

εd
n2.

Putting together the estimates for the two terms, we obtain

(h(a) − h(b))2 ≤ n2 (c3

ε2

δ2
+ c8

δd+2

εd
)

which implies the claim provided δ = ε(d+1)/(d+2).

Proof of Theorem 5. Let d ≥ 2, the constant functions on ω are obviously harmonic. The
projections of the corrector (see Theorem 15) on each coordinate provide us with d linearly
independent functions. These functions have linear growth. Therefore, the space of linear
growth harmonic functions is at least d + 1 dimensional.

Now, let h be a harmonic function on ω with (at most) linear growth and with h(0) = 0.
Proposition 19 allows us to extract a subsequence of (hnk

) converging uniformly on any
compact subset of Rd to a continuous function h̃. For simplicity, we forget about the
subsequence (nk) and assume that the sequence is converging. Assume for a moment
that h̃ is proved to be linear. Then, h − h̃ ○ χ is a harmonic function on ω with sublinear
growth. By Theorem 3, it must be equal to 0 and h = h̃ ○ χ. Therefore, any harmonic
function with growth at most linear and equal to 0 at 0 belongs to a vector space of
dimension d and the result follows. In conclusion, it is sufficient to prove that h̃ is linear,
or equivalently that it is harmonic, since it is well known that harmonic functions with
at most linear growth on Rd are the affine maps (take the partial derivative along one
direction, it is a bounded harmonic map on Rd, and thus a constant map).

Let now Bt be Brownian motion. Our first goal is to examine Brownian motion starting
from 0, namely, we wish to show

E0[h̃(Bt)] = h(0) ∀t > 0. (28)

To see (28) note that h is harmonic and hence Eρ[h(Xt)] = h(ρ) or equivalently

E0[hn(Xn2t/n)] = hn(0).
The central limit theorem (Theorem 15) allows to control h(Xt) in a ball of radius ≈

√
t.

Namely, because (Xn2t/n) converges weakly to Bt,

∣E0 [h̃(Xn2t/n) ⋅ 1∣X
n2t
/n∣<K] −E0 [h̃(Bt) ⋅ 1∣Bt∣<K]∣ ≤ ε(K) + o(1)

where ε(K) goes to 0 as K → ∞ and the o(1) is as n → ∞. The gaussian bounds (22)
and the linear bound on hn and h̃ allow to control h(Xt) outside that ball

∣E0 [hn(Xn2t/n) ⋅ 1∣X
n2t
/n∣≥K]∣ ≤ ε(K) ∀n sufficiently large

and similarly for h̃(Bt). This shows (28).
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We now extend (28) from 0 to all points u using Lemma 18. Fix t, and fix also some
ε and some n0. Consider a vertex x in the cluster to be good if the gaussian estimates
(22) hold for all n > n0 and if the Lévy-Prokhorov distance between Xn2t/n (started from
x) and Bt (started from x/n) is smaller than ε.

Now, if n0 is sufficiently large (depending on t and ε), the probability of x to be good
will be > 1 − ε — for the gaussian estimates this follows directly from (22) while for the
Lévy-Prokhorov distance this follows from the equivalence of Lévy-Prokhorov convergence
and weak convergence. Fix therefore n0 to satisfy this property.

Now use Lemma 18 with the function f being f(x, y) = 1{x is bad} (the y variable is
simply ignored). We get that for sufficiently large n, the number of bad x in Bρ(λn) is
bounded by CndP(0 is bad) ≤ Cεnd. Define

Bn ∶= {u ∈ R
d
∶ ∣u∣ ≤ λ,un is bad}

(where as usual we in fact take the point of the infinite cluster closest to un and check
whether it is bad). Since the measure of Bn is ≤ Cε, we see that, except for a set of
measure ≤ Cε every u ∈ Rd with ∣u∣ ≤ λ is not contained in Bn for infinitely many n. But
this means we can use the previous argument for u. We get

∣Eu[h̃(Bt)] − h(u)∣ ≤ Cε

(the Cε error comes because the Lévy-Prokhorov distance is ≤ ε). This holds outside a
set of measure ≤ Cε. But ε (both for the error and for the measure of the bad set) was
arbitrary so we get that

Eu[h̃(Bt)] = h(u)
almost everywhere. Since h is continuous, this in fact holds everywhere. Since t was
arbitrary, h̃(Bt) is a continuous martingale, from any starting point.

The lemma is now finished. Using the strong Markov property we get that h̃(u) is
equal to its average over a sphere of arbitrary radius around u, in other words, we have
established the mean-value property hence h̃ is harmonic.

A natural extension of the supercritical bond percolation setting is to look at random
environments on Zd, such as random conductance with uniformly elliptic conditions. See
[65] for the existence of the corrector in this case. Similar results can probably be obtained
in this setting.

5 Heat kernel derivative estimates

Our purpose in this section is to prove Theorem 6 which gives an upper bound for
the (discrete) derivative of the heat kernel, pn(x, y) − pn−1(x′, y), for x ∼ x′, where
pn(x, y) ∶= Px(Xn = y).

We start with a lemma true on any graph. It relates the infinity norm of the gradient
of the heat kernel to the infinity norm of the heat kernel and the entropy.
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Lemma 20. Let G be a graph of maximal degree d, for any x,x′, y ∈ G then with x ∼ x′,

(p2n(x, y) − p2n−1(x′, y))2 ≤ 4d(d + 1) ⋅∆n(x,x′)2 ⋅ max
a,b∈Bx(2n)∶

d(a,b)≥d(x,y)/2

pn(a, b) ⋅ max
a,b∈Bx(2n)

pn(a, b)
(29)

where ∆n is defined in (6).

Proof. We know by Markov’s property that

p2n(x, y) − p2n−1(x′, y) = ∑
a∈G

(pn(x, a) − pn−1(x′, a))pn(a, y).
Let us split the sum on a ∈ G into two sums I + II, where I is the sum over a ∈
Bx(d(x, y)/2), and II on the remaining a. Using Cauchy-Schwarz we can write

I2 ≤
⎛⎝ ∑

a∈Bx(d(x,y)/2)

(pn(x, a) − pn−1(x′, a))2⎞⎠⎛⎝ ∑
a∈Bx(d(x,y)/2)

pn(a, y)2⎞⎠
For the first term, bound the denominator in the definition of ∆ by its maximum and get

∑
a∈Bx(d(x,y)/2)

(pn(x, a) −pn−1(x′, a))2 ≤ ∆n(x,x′)2 ⋅ max
a∈Bx(d(x,y)/2)

{pn(x, a) + pn−1(x′, a)}
For the second term write

∑
a∈Bx(d(x,y)/2)

pn(a, y)2 ≤ ( max
a∈Bx(d(x,y)/2)

pn(a, y)) ⋅ ⎛⎝ ∑
a∈Bx(d(x,y)/2)

pn(a, y)⎞⎠
≤ ( max

a∈Bx(d(x,y)/2)
pn(a, y)) ⋅ ⎛⎝ ∑

a∈Bx(d(x,y)/2)

d ⋅ pn(y, a)⎞⎠
≤ d ⋅ ( max

a∈Bx(d(x,y)/2)
pn(a, y)).

Together we get

I2 ≤ d ⋅∆n(x,x′)2 ⋅ max
a∈Bx(d(x,y)/2)

{pn(x, a) + pn−1(x′, a)} ⋅ max
a∈Bx(d(x,y)/2)

pn(a, y). (30)

Now, the second maximum in the right-hand side of (30) is a maximum on a smaller set
than the first maximum in (29) (note that points in Bx(d(x, y)/2) are at distance larger
than d(x, y)/2 from y). Similarly, the first maximum is smaller than (1 + d) times the
second maximum of (29). Therefore, the product of maxima is smaller than

(d + 1) ⋅ max
a,b∈Bx(2n)∶

d(a,b)≥d(x,y)/2

pn(a, b) ⋅ max
a,b∈Bx(2n)

pn(a, b).
The estimate for II is the similar

II2 ≤ d ⋅∆n(x,x′)2 ⋅ max
a/∈Bx(d(x,y)/2)

{pn(x, a) + pn−1(x′, a)} ⋅ max
a/∈Bx(d(x,y)/2)

pn(a, y).
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It is easy to obtain the same bound again, except the estimates are reversed (i.e. what
was bounded by the first term before is now bounded by the second term). We sum up:

(p2n(x, y) − p2n−1(x′, y))2 = (I + II)2 ≤ 2(I2
+ II2)

≤ 4d(d + 1) ⋅∆n(x,x′)2 ⋅ max
a,b∈Bx(2n)∶

d(a,b)≥d(x,y)/2

pn(a, b) ⋅ max
a,b∈Bx(2n)

pn(a, b).
In Section 2 it was always enough to discuss behavior (say of Hn−Hn−1) on a sequence

nk. Here it is no longer enough and we need an estimate that holds for all n. Hence we
prove

Lemma 21. For supercritical percolation, Hn −Hn−1 ≤ C/n for every n, where C is a
constant depending only on d and p.

Proof. The heat kernel estimates (1) show, after a little calculation, that

Hn =
d

2
logn +O(1) ∀n > n0(ω). (31)

For n ≤ n0(ω) we can use a much rougher bound, say Hn ≤ d log(2n) which follows from the
fact that for any cluster ω the distribution of Rn is supported on the cube {−n, . . . , n}d and
any measure has entropy smaller than the entropy of the uniform measure on its support.
Since n0(ω) has a stretched exponential tail, we can integrate over the environment and
get that Hn =

d
2
logn +O(1). This means that H2n −Hn ≤ C for some C. Using the fact

that Hn −Hn−1 is decreasing (Corollary 9 on page 10) proves the claim.

Proof of Theorem 6. As before, percolation can be seen as a stationary random graph,
and it is sufficient to prove

E( (p2n(0, x) −p2n−1(X̃1, x))2 ⋅ 1{x∈ω}) ≤ C ′3
nd+1

exp(−C ′4∣x∣2/n)
where C ′3 and C ′4 depend only on d and the percolation probability p. Also note that
one can restrict ourself to ∣x∣ ≤ n1/2+ε/3, since in the regime ∣x∣ ≥ n1/2+ε/3, the heat kernel
decreases fast enough so that one can tune the constant C ′4 in order to obtain the result
for free.

Again we use the variables ny(ω) from (1,2). Take ε to be given by the stretched
exponential bound for n0(ω), (2). Fix ∣x∣ ≤ n1/2+ε/3. Let N(ω) =max{ny(ω) ∶ y ∈ B0(n)}.
So the gaussian estimates (1) imply that for a.e. environment ω such that x ∈ ω, whenever
n ≥ N(ω), we have

max
a,b∈B0(n)∶

d(a,b)>d(0,x)/2

pn(a, b) ≤ C3

nd/2
exp [ −C4∣x∣2/n] and max

a,b∈B0(n)
pn(a, b) ≤ C3

nd/2
. (32)

Averaging (29) on the environments satisfying N(ω) ≤ n (for which we have (32)), we find

E( (p2n(ρ,x) −p2n−1(X̃1, x))2 ⋅ 1{x∈ω}1{N(ω)≤n})
≤ 4d(d + 1) ⋅E(∆n(ρ, X̃1)2) C2

3

nd
exp [ −C4∣x∣2/n].
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Applying Theorem 7 to bound ∆n with Hn−Hn−1 and then Lemma 21 to bound Hn−Hn−1

gives

E( (p2n(ρ,x) −p2n−1(X̃1, x))2 ⋅ 1{x∈ω}1{N(ω)≤n}) ≤ 4d(d + 1) C ⋅C2
3

nd+1
exp [ −C4∣x∣2/n].

We cannot control the behavior of the gradient on {N(ω) > n}, but this event has prob-
ability at most Cnde−n

ε
, so that in the regime ∣x∣ ≤ n1/2+ε/3 we find

E((p2n(ρ,x) −p2n−1(X̃1, x))2 ⋅ 1{x∈ω}1{N(ω)>n})
≤ Pp(n0 ≥ n) ≤ 4d(d + 1)⋅ C2

3

nd+1
exp [ −C4∣x∣2/n].

Putting all the pieces together, we obtain the result.

The proof involved only Gaussian estimates at mesoscopic scale and the entropy argu-
ment. It extends to other contexts such as random conductances satisfying the uniform
elliptic condition (see Example 2.1). One may then get, using convolution, annealed sec-
ond space-derivative and first time-derivative estimates for the heat kernel using the first
space-derivative estimates. We refer to Section 5 of [29] for more details.

6 Open questions

This study must be understood as an introduction and some initial steps in the subject.
There are many natural questions on harmonic functions which remain open. We present
few of them in this section.

Minimal growth harmonic functions. The question of minimal growth harmonic
functions was implicitly studied in the literature: the failure of the Liouville property
corresponds to a special case of minimal growth. When the the Liouville property is true,
it becomes interesting to determine the minimal growth. Even the deterministic case
(i.e. transitive or Cayley graphs) has interesting phenomenology and we plan to analyze
some examples in a future paper. Note that groups always admit linear growth harmonic
functions [48, 63, 64]. This is no longer the case for stationary random graphs (see below).
When the random walk is subdiffusive (note that the random walk on Cayley graphs is
at least diffusive, a result due to Erschler, see Lee and Peres [52]), Theorem 3’ (page 16)
implies a phenomenon which is specific to random environments:

Proposition 22. Let (G,ν, ρ) be a stationary random graph with polynomial growth such
that the random walk is (strictly) subdiffusive. Then, almost surely there do not exist
linear growth harmonic functions.

Therefore graphical fractals, UIPQ, critical Galton-Watson trees conditioned to sur-
vive and the incipient infinite cluster (IIC) do not admit linear growth harmonic functions.
We mention that it was already proved [9] that the Uniform Infinite Planar Triangulation
is almost surely Liouville. There are no non-constant harmonic functions on the critical
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Galton-Watson tree or on the IIC as both have infinitely many cut vertices. Indeed, the
Galton-Watson tree is well-known to be one-ended and hence, as a tree, must have in-
finitely many cut vertices. The existence of cut points for the IIC is essentially known,
but we did not find a reference and including a full proof would take us too far off-topic.

Question 1. Do there exist non-constant harmonic functions with polynomial growth on
the UIPQ?

If such functions exist, we may ask the following question:

Question 2. What is the minimal growth of a non-constant harmonic function on the
UIPQ?

Space of harmonic functions with polynomial growth. Cayley graphs with poly-
nomial growth automatically satisfy the volume doubling property and the Poincaré in-
equality, thus implying that spaces of harmonic functions with prescribed polynomial
growth are finite dimensional. The possibility of such behavior in the case of stationary
random graphs of polynomial volume growth is a legitimate question.

Question 3. Let (G,ν, ρ) be a stationary random graph with polynomial growth. Is the
space of harmonic functions with prescribed polynomial growth finite dimensional?

The difficulty comes from the fact that we do not necessarily have Poincaré inequality
at our disposal (in the case of the UIPQ for instance). Therefore, we cannot use the
technology developed in Section 3 in the general context. We mention that there exists
another strategy to prove finite dimensionality, proposed in [27], relying on the following
weaker statement: for every harmonic function h on G and x ∈ G:

h2(x) ≤ C

ν(Bx(n)) ∑
y∈B(x,Cn)

h2(y)ν(y).
where is C a constant independent of x and n. This inequality appears in standard
proofs of elliptic Harnack inequalities and holds for a larger class than those satisfying
the doubling volume property and Poincaré inequality. Still one cannot expect it to hold
in graphs with small “bottlenecks” like the UIPQ.

Question 4. Is the space of harmonic functions with some prescribed polynomial growth
on the UIPQ finite dimensional?

Dimension of spaces of harmonic functions. The computation of the dimension
of spaces of harmonic functions does not restrict to the case of linear growth harmonic
functions. For a graph G and k > 0, let dk[G] be the dimension of the space of harmonic
functions with growth bounded by a polynomial of degree k.

The similarity between Zd and the infinite cluster of percolation might extend to the
dimension of the space of harmonic functions with arbitrary polynomial growth. More
precisely, we ask the following question:

Question 5. Do the families (dk[ω])k>0 and (dk[Zd])k>0 have equal dimension almost
surely?

31



In particular, an interesting intermediate step toward this question would be to show
that there is no harmonic function with non-integer growth.

It is natural to ask if an invariance principle for the random walk in the random envi-
ronment ω implies that the sequence (dk[ω]) coincides with (dk[Zd]). On Zd, diffusivity
and the invariance principle are robust under rough isometry. Therefore, one can ask if(dk[G])k≥0 is invariant under rough isometry for these kind of graphs. This is not true in
general. For instance, Liouville property is not invariant under rough isometry (see [54]
for the first example or [12] for a simpler one).

More generally, one can ask whether a small perturbation of a Cayley graph modifies
drastically the harmonic functions on it. For instance, consider percolation on a Cayley
graph G such that pu(G) (the infimum of the values for which there exists a unique infinite
cluster) is strictly smaller than 1. Fix p > pu(G) and set ω(G) to be the unique infinite
cluster of the percolation with parameter p.

Question 6. Are the dimensions of spaces of harmonic functions with a given growth equal
for G and ω(G)?

Note that the question, in the case of bounded harmonic functions, was addressed in
[11].

In the context of Cayley graphs, the space of harmonic functions with a certain growth
rate is crucial in the study of the underlying group. Indeed, the latter acts on harmonic
functions naturally. In the random setting, we do not have this interpretation. Neverthe-
less, an interesting question is to understand what information on the random graph is
encoded in the sequence (dk[G])k≥0. In particular, the following question would be a first
step in this direction:

Question 7. Consider a random subgraph G of Zd. What are the requirements to ensure
that (dk[G])k≥0 equals (dk[Zd])k≥0?
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