
On the critical parameters of the q ≥ 4
random-cluster model on isoradial graphs

V. Beffara H. Duminil-Copin S. Smirnov

Abstract

The critical surface for random-cluster model with cluster-weight q ≥ 4 on iso-
radial graphs is identified using parafermionic observables. Correlations are also
shown to decay exponentially fast in the subcritical regime. While this result is
restricted to random-cluster models with q ≥ 4, it extends the recent theorem of
[6] to a large class of planar graphs. In particular, the anisotropic random-cluster
model on the square lattice are shown to be critical if pvph

(1−pv)(1−ph)
= q, where pv and

ph denote the horizontal and vertical edge-weights respectively. We also provide
consequences for Potts models.

1 Introduction

1.1 Motivation

Random-cluster models are dependent percolation models introduced by Fortuin and
Kasteleyn in 1969 [24]. They have been become an important tool in the study of phase
transitions. Among other applications, the spin correlations of Potts models get rephrased
as cluster connectivity properties of their random-cluster representations, which allows
for the use of geometric techniques, thus leading to several important applications. Nev-
ertheless, only few aspects of the random-cluster models are known in full generality.

The random-cluster model on a finite connected graph G = (V [G],E [G]) is a model
on edges of this graph, each one being either closed or open. A cluster is a maximal
component for the graph composed of all the sites, and of the open edges. The probability
of a configuration is proportional to

∏
e open

pe ∏
e closed

(1 − pe) ⋅ q
# clusters,

where the edge-weights pe ∈ [0,1] (for every e ∈ E [G]) and the cluster-weight q ∈ (0,∞)

are the parameters of the model. Extensive literature exists concerning these models; we
refer the interested reader to the monograph of Grimmett [26] and references therein.

For q ≥ 1, this model can be extended to infinite-volume lattices where it exhibits a
phase transition. In general, there are no conjectures for the value of the critical surface,
i.e. the set of (pe)e∈E [G] for which the model is critical. In the case of planar graphs, there
is a connection (related to the Kramers-Wannier duality [36, 37] for the Ising model)
between random-cluster models on a graph and on its dual with the same cluster-weight
q and appropriately related edge-weights. This relation leads, in the particular case of Z2

(which is isomorphic to its dual) with pe = p for every e, to the following conjecture: the

1



critical point pc(q) is the same as the so-called self-dual point, which has a known value
√
q/(1 +

√
q). The previous conjecture was proved recently in [6] for any q ≥ 1 (see also

[19]). Furthermore, the size of the cluster at the origin was proved to have exponential
decaying tail if p < pc(q).

The critical point was previously known in three famous cases. For q = 1, the model
is simply Bernoulli bond-percolation, proved by Kesten [34] to be critical at pc(1) = 1/2.
For q = 2, the self-dual value corresponds to the critical temperature of the Ising model,
as first derived by Onsager [42]; one can actually couple realizations of the Ising and FK
models to relate the critical points of each, see [26] and references therein for details.
Finally, for q ≥ 25.72, a proof is known based on the fact that the random-cluster model
exhibits a first order phase transition; see [38, 39].

A general question in statistical physics is the understanding of universal behavior,
i.e. the behavior of a certain model, for instance the planar random-cluster model, on
different graphs. A large class of graphs, which appeared to be central in different domains
of planar statistical physics, is the class of isoradial graphs. An isoradial graph is a planar
graph admitting an embedding in the plane in such a way that every face is inscribed in
a circle of radius one. In such case, we will say that the embedding is isoradial.

θe θe
e

Figure 1: The black graph is the isoradial graph. White vertices are the
vertices of the dual graph. All faces can be put into an incircle of radius one.
Dual vertices have been drawn in such a way that they are the centers of these
circles.

Isoradial graphs were introduced by Duffin in [16] in the context of discrete complex
analysis. The author noticed that isoradial embeddings form a large class of embeddings
for which a discrete notion of Cauchy-Riemann equations is available. Isoradial graphs
first appeared in the physics literature in the work of Baxter [1], where they are called
Z-invariant graphs. The so-called star-triangle transformation was then used to relate
the free energy of the eight-vertex and Ising models between different such graphs. In
Baxter’s work, Z-invariant graphs are obtained as intersections of lines in the plane, and
are not embedded in the isoradial way. The term isoradial was only coined later by
Kenyon, who studied discrete complex analysis and the graph structure of these graphs
[33]. Since then, isoradial graphs were used extensively, and we refer to [13, 29, 33, 41]
for literature on the subject.

In the present article, we study the random-cluster model on isoradial graphs.
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1.2 Statement of the results

All the graphs which we will consider in this paper will be assumed to be periodic, in the
sense that they will carry an action of the square lattice Z2 with finitely many orbits;
indeed, this is often a crucial hypothesis in the usual arguments of statistical mechanics.
Nevertheless, some of our results extend to a more general family of isoradial graphs,
which is why we first introduce the following, weaker condition.

Let e be an edge of an isoradial embedding of a graph G. It subtends an angle
θe ∈ (0, π) at the center of the circle corresponding to any of the two faces bordered by e;
see Fig. 1. Fix θ > 0, and let G∞ = (V [G∞],E [G∞]) be an infinite isoradial graph. The
graph is said to satisfy the bounded-angle property if the following condition holds:

(BAPθ) For any e ∈ E [G∞], θ ≤ θe ≤ π − θ.

In order to study the phase transition, we parametrize random-cluster measures with
cluster-weight q ≥ 4 are parametrized with the help of an additional parameter β > 0. For
β > 0, define the edge-weight pe(β) ∈ [0,1] for e ∈ E [G∞] by the formula

pe(β)

[1 − pe(β)]
√
q
= β

sinh[σ(π−θe)2 ]

sinh[σθe2 ]
,

where the spin σ is given by the relation

cosh (
σπ

2
) =

√
q

2
.

The infinite-volume measure on G∞ with cluster-weight q ≥ 4, edge-weights (pe(β) ∶ e ∈
E [G∞]) and free boundary conditions (see next section for a formal definition) is denoted
by φ0

G∞,β,q.

Remark 1 In the case of the square lattice, one gets pe(β) =
β
√
q

1+β
√
q . This does not quite

match what one obtains in the setup of the Edwards-Sokal coupling between the Potts and
random-cluster models: the bond-parameter corresponding to the q-state Potts model at
inverse temperature β is equal to 1 − e−2β. This simply means that what we will denote
here by β should not be interpreted as an inverse temperature as such, but simply as a
parameter according to which a phase transition can be defined.

Let ∣ ⋅ ∣ be the Euclidean norm.

Theorem 2 Let q ≥ 4, θ > 0 and β < 1. There exists c = c(β, q, θ) > 0 such that for any
infinite isoradial graph G∞ satisfying (BAPθ),

φ0
G∞,β,q(u is connected to v by an open path) ≤ exp[−c∣x − y∣],

for any u, v ∈ G∞.

This theorem implies that the edge-weights pe = pe(1) are critical in the following
sense.

Theorem 3 Let q ≥ 4, θ > 0. For any periodic isoradial graph G∞:

1. The infinite-volume measure is unique whenever β ≠ 1.
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2. For β < 1, there is φ0
G∞,β,q-almost surely no infinite-cluster.

3. For β > 1, there is φ0
G∞,β,q-almost surely a unique infinite-cluster.

In fact, what we will prove is the following, slightly weaker result in the more general
setup of graph satisfying the bounded-angle property:

Theorem 4 Let q ≥ 4, θ > 0. For any infinite isoradial graph G∞ satisfying (BAPθ):

1. For β < 1, there is φ0
G∞,β,q-almost surely no infinite-cluster.

2. For β > 1, there is φ1
G∞,β,q-almost surely a unique infinite-cluster.

It will be shown that in the periodic case, or in any case for which the set Dq,G∞
of β such that there are more than one infinite-volume random-cluster measure is of
everywhere dense complement (see Proposition 8 below), Theorem 4 implies Theorem 3.
Since this will be the only place where periodicity will be used, most statements of this
article are phrased (and proved) in the more general bounded-angle setup.

The theorems were previously known for two specific choices of q: when q = 2, the
model was proved to be conformally invariant when β = 1 in [14], thus implying the
different theorems; for percolation (i.e. the case q = 1), Manolescu and Grimmett [27, 28,
29] showed the corresponding statements and much more.

The main tool of the proof is the parafermionic observables. These observables were
first introduced in [43] for critical random-cluster models on Z2 with parameter q ∈ [0,4],
as (anti)-holomorphic parafermions of fractional spin σ ∈ [0,1], given by certain vertex
operators. So far, holomorphicity was rigorously proved only for q = 2 (which corresponds
to the Ising model) and probably holds exactly only for this value. In this case, the
observable can be used to understand many properties on the model, including conformal
invariance of the observable [14, 43] and loops [10, 32], correlations [11, 12, 31] and
crossing probabilities [8, 9, 18]. Inspired by similar considerations, one can also compute
the critical surface of any bi-periodic graph [40, 15].

Our proof uses an appropriate generalization of these vertex operators to random-
cluster models with q ≥ 4. Even though exact holomorphicity is not available, the observ-
able can still be used efficiently. Interestingly, the spin variable becomes purely imaginary
and does not possess an immediate physical interpretation. However, this allows us to
write better estimates even in the absence of exact holomorphicity. It also simplifies the
relation between our observables and the connectivity properties of the model.

For β ≠ 1, we prove that observables behave like massive harmonic functions and
decay exponentially fast with respect to the distance to the boundary of the domain.
Translated into connectivity properties, this implies the sharpness of the phase transition
at β = 1.

The fact that isoradial graphs are perfect candidate for constructing parafermionic
observables is reminiscent from both the works of Duffin and Baxter. Indeed, these
works highlighted the fact that isoradial graphs constitute a general class of graph on
which discrete complex analysis and statistical physics can be studied precisely.
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Application to inhomogeneous models The inhomogeneous random-cluster models
on the square, the triangular and the hexagonal lattices can be seen as random-cluster
models on periodic isoradial graphs. Theorem 3 therefore implies the following corollary.

Corollary 5 The inhomogeneous random-cluster model with cluster-weight q ≥ 4 on the
square, triangular and hexagonal lattices Z2, T and H have the following critical surfaces:

on Z2 p1

1 − p1

p2

1 − p2

= q,

on T p1

1 − p1

p2

1 − p2

p3

1 − p3

+
p1

1 − p1

p2

1 − p2

+
p1

1 − p1

p3

1 − p3

+
p2

1 − p2

p3

1 − p3

= q

on H p1

1 − p1

p2

1 − p2

p3

1 − p3

= q
p1

1 − p1

+ q
p2

1 − p2

+ q
p3

1 − p3

+ q2,

where p1, p2 (resp. p1, p2, p3) are the edge-weights of the different types of edges.

For percolation, Corollary 5 was predicted in [45] and proved in [35, Section 3.4] for the
case of the square lattice and [25, Section 11.9] for the case of triangular and hexagonal
lattices.

Let us also mention that the critical parameter of the continuum random-cluster
model can be computed using the fact that it is the limit of inhomogeneous random-
cluster models on the square lattice with (p1, p2) → (0,1). We refer to [30] for a precise
definition of the models. They are connected to Quantum Potts models. The parameters
of the models are usually referred to as λ, δ > 0, where λ and δ are the intensities of the
Poisson Point Process of bridges and deaths respectively. In such case, Theorem 3 implies
that the critical point is given by λ/δ = q for q ≥ 4.

Application to Potts models Potts models on G with q colors and correlations (Je ∶
e ∈ E [G]) can be coupled with random-cluster model with cluster-weight q and edge-
weights pe = 1 − exp[−Je]. As a consequence, Theorem 3 shows the following.

Corollary 6 Let q ≥ 4 and θ > 0. For any infinite periodic isoradial graph G∞, the
q-state Potts models on isoradial graphs with correlations − log[1 − pe(1)], e ∈ E [G∞] is
critical.

1.3 Open questions

Exact computations can be performed for the random-cluster model at criticality (see
[2]), and despite the fact that they do not lead to fully rigorous mathematical proofs,
they do provide insight and further conjectures on the behavior of these models at and
near criticality. Let us mention few open questions.

1. Parafermionic observables were used when 1 ≤ q ≤ 4 to prove that the phase transition
is continuous [17, 20]. Moreover, it is conjectured that among all random-cluster models
defined on planar lattices, the phase transition is of first order if and only if q is greater
than 4. Interestingly, the parafermionic observable exhibits a very different behavior for
q ≤ 4 and q > 4, which raises the following question.

Question 1. Can the change of behavior of the observable be related to the change
of critical behavior of the random-cluster model?
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2. Since the work [6], the critical value for the random-cluster model on the isotropic
square lattice has been computed for any q ≥ 1. Parafermionic observables on isoradial
graphs also make sense for q < 1 (see [17, 43]), which leads to the following question.

Question 2. Use the parafermionic observable to compute the critical point on
isoradial graphs (or simply on Z2) for any q ∈ (0,4)?

3. More generally, parafermionic observables have been found in a number of critical
planar statistical models, see [21, 44] and references therein. They have sometimes been
used to derive information on the models (see [17] for random-cluster models and [3, 4,
5, 22, 23] for O(n)-models and self-avoiding walks). A natural question is to go further
in this direction.

4. As mentioned earlier, the fact that random-cluster models on Z2 undergo a first order
phase transition is currently known for q ≥ 25.72; see [38, 39]. The main ingredient is the
Pirogov-Sinai theory, which shows that the φ0

Z2,1,q
-probability that the origin is connected

to distance n decays exponentially fast in n. Interestingly, Grimmett and Manolescu [29]
used the star-triangle transformation to relate probabilities of being connected to distance
n for percolation on different isoradial graphs. From [1], the star-triangle transformation
is known to extend to critical random-cluster models and it seems plausible that the tech-
niques in [29] can be combined to results in [38, 39] to prove that the φ0

G∞,1,q-probability
random-cluster models that the origin is connected to distance n decays exponentially
fast in n whenever q ≥ 25.72. This would show some kind of universal behavior: first order
phase transition is common to any random-cluster model with large enough cluster-weight
on isoradial graphs. Note that Pirogov-Sinai theory extends partially to this context (al-
though likely with different bounds due to the fact that the graphs involved would have
different combinatorics).

Question 3. Show that random-cluster models on any isoradial graph undergo a first
order phase transition when q is large enough.

5. Let us conclude with a pair of more technical questions: How to release the periodicity
assumption and show Proposition 8 for isoradial graphs satisfying only the bounded-
angle property? Can the results be extended to isoradial graphs which do not satisfy the
bounded-angle property?

Organization of the paper. Section 2 gives an overview of probabilistic properties of
the random-cluster model. It also introduces the observable. Section 3 contains a deriva-
tion of a representation formula, similar to the formula for massive harmonic functions,
which is then used to provide bounds on the observable. Section 4 then contain the proof
of Theorem 2 and Section 5 the proofs of Theorem 3 and its corollaries.

2 Basic features of the model
We start with an introduction to the basic features of random-cluster models. Details
and proofs can be found in Grimmett’s book [26].
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Isoradial graphs As mentioned earlier, an isoradial graph G = (V [G],E [G]) is a
planar graph admitting an embedding in the plane in such a way that every face is
inscribed in a circle of radius one. In such case, we will say that the embedding is isoradial.
For the isoradial embedding, we construct the dual graph G∗ = (V [G∗],E [G∗]) as follows:
V [G∗] is composed of all the centers of circumcircles of faces of G. By construction, every
face of G is associated to a dual vertex. Then, E [G∗] is the set of edges between dual
vertices corresponding to adjacent faces. Edges of E [G∗] are in one-to-one correspondence
with edges of E [G]. We denote the dual edge associated to e by e∗.

From now on, we work only on an infinite isoradial graphG∞ embedded in the isoradial
way. Note that the graph is not a priori periodic.

Definition of the random-cluster model. The random-cluster measure can be de-
fined on any graph. However, we will restrict ourselves in this article to the graph G∞ and
its connected finite subgraphs. Let G = (V [G],E [G]) be such a subgraph. We denote
by ∂G the vertex-boundary of G, i.e. the set of sites of G linked by an edge to a site of
G∞ ∖G.

A configuration ω on G is a random subgraph of G, having vertex set V [G] and edge
set included in E [G]. We will call the edges belonging to ω open, the others closed. Two
sites u and v are said to be connected, if there is an open path — a path composed of
open edges only — connecting them. The previous event is denoted u ←→ v (we extend
the notation U ←→ V to the event that there exists an open path from a set of vertices
U to a set V ). The maximal connected components of ω will be called clusters.

A set ξ of boundary conditions is given by a partition of ∂G. The graph obtained
from the configuration ω by identifying (or wiring) the vertices in ∂G that belong to the
same component of ξ is denoted by ω ∪ ξ. Boundary conditions should be understood as
encodings of how sites are connected outside of G. Let k(ω, ξ) be the number of connected
components of ω ∪ ξ. The probability measure φξG,p,q of the random-cluster model on G
with parameters p = (pe ∶ e ∈ E [G]) ∈ [0,1]E [G], q ∈ (0,∞) and boundary conditions ξ is
defined by

φξG,p,q({ω}) =
∏e∈ω pe ⋅∏e∉ω(1 − pe) ⋅ q

k(ω,ξ)

Zξ
G,p,q

, (2.1)

for any subgraph ω of G, where Zξ
G,p,q is a normalizing constant referred to as the partition

function. When there is no possible confusion, we will drop the reference to parameters
in the notation.

Three specific boundary conditions Three boundary conditions will play a special
role in our study:

1. Free boundary conditions are the boundary conditions obtained by the absence of
wiring between boundary vertices. It is denoted by φ0

G,p,q.

2. Wired boundary conditions are the boundary conditions obtained by wiring every
boundary vertices. It is denoted by φ1

G,p,q.

3. Assume that ∂G is a self-avoiding polygon in G∞, and let a and b be two sites
of ∂G. The triple (G,a, b) is called a Dobrushin domain. Orienting its boundary
counterclockwise defines two oriented boundary arcs ∂ab and ∂ba; the Dobrushin
boundary conditions are defined to be free on ∂ab (there are no wiring between these
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sites) and wired on ∂ba (all the boundary sites are wired together). We will refer
to those arcs as the free and the wired arc, respectively. The measure associated
to these boundary conditions will be denoted by φa,bG,p,q. We will often use the dual
arc ∂∗ab adjacent to ∂ab instead of ∂ab. See Fig. 2.

Remark 7 The standard use of the term “Dobrushin boundary condition” is to designate
the mixed +/− boundary condition in the setup of the Ising model; however the main idea
is the same here, this choice of boundary condition forces the existence of a macroscopic
boundary between two regions in the domain (+/− for the Ising model, open/dual-open in
the case of the random-cluster model), which is why the same term is used here.

The domain Markov property One can encode, using appropriate boundary condi-
tions ξ, the influence of the configuration outside F on the measure within it. In other
words, given the state of edges outside a graph, the conditional measure inside F is a
random-cluster measure with boundary conditions given by the wiring outside F . More
formally, let G be a graph and fix F ⊂ E [G]. Let X be a random variable measurable in
terms of edges in F (call FE [G]∖F the σ-algebra generated by edges of E [G] ∖F ). Then,

φξG,p,q(X ∣FE [G]∖F )(ψ) = φ
ξ∪ψ
F,p,q(X),

where ξ denotes boundary conditions on G, ψ is a configuration outside F and ξ∪ψ is the
wiring inherited from ξ and the edges in ψ. We refer to [26, Lemma (4.13)] for details.

The comparison between boundary conditions. Random-cluster models with pa-
rameter q ≥ 1 are positively correlated ; see [26, Theorem (2.1)]. It implies that for any
boundary conditions ψ ≤ ξ (meaning that the wirings existing in ψ exist in ξ as well), we
have

φψG,p,q(A) ≤ φξG,p,q(A) (2.2)

for any increasing event A. We immediately obtain that φ0
G,p,q(A) ≤ φξG,p,q(A) ≤ φ1

G,p,q(A)

for any increasing event A and boundary conditions ξ.

Planar duality In two dimensions, one can associate to any random-cluster measure
with parameters p and q on G a dual measure. Let us focus on the case of free and wired
boundary conditions.

Consider a configuration ω sampled according to φ0
G,p,q. Construct an edge model on

G∗ by declaring any edge of the dual graph to be open (resp. closed) if the corresponding
edge of the primal graph is closed (resp. open) for the initial random-cluster model. The
new model on the dual graph is then a random-cluster measure with wired boundary
conditions and parameters p∗ = p∗(p, q) ∈ [0,1]E(G∗) and q satisfying

p∗e∗ =
(1 − pe)q

(1 − pe)q + pe
, or equivalently

p∗e∗pe
(1 − p∗e∗)(1 − pe)

= q.

This relation is known as the planar duality. Similarly, the dual boundary conditions of
wired boundary conditions are free boundary conditions. See [26, Section 6.1].

8



Infinite-volume measures A probability measure φ on (Ω,F ) is called an infinite-
volume random-cluster measure on G∞ with parameters p and q if for every event A ∈ F
and any finite G ⊂ G∞,

φ(A∣FE [G∞∖G])(ξ) = φ
ξ
G,p,q(A),

for φ-almost every ξ ∈ Ω, where FE [G∞∖G] is the σ-algebra generated by edges in G∞ ∖G.
The domain Markov property and the comparison between boundary conditions allow

us to define an infinite-volume measure as the limit of a sequence of random-cluster
measures in finite nested graphs Gn ↗ G∞ with free boundary conditions. In such cases,
the sequence of measures is increasing. We denote the corresponding limit measure
φ0
G∞,p,q. Similarly, one can construct the measure φ1

G∞,p,q by considering measures on
nested boxes with wired boundary conditions. Section 4 of [26] presents a comprehensive
study of this question.

The diamond graph of a Dobrushin domain Let G∞ be an infinite isoradial graph.
Define G◇

∞ = (V [G◇
∞],E [G◇

∞]) to be the graph with vertex set V [G∞]∪V [G∗
∞] and edge

set given by edges between a site x of V [G∞] and a dual site v of V [G∗
∞] if x belongs to

the face corresponding to v. It is then a rhombic graph, i.e. a graph with faces composed
of rhombi; see Fig. 2. To emphasize the distinction with edges of G∞, G∗

∞ and G◇
∞, we

refer to the latter as diamond edges.
We now define the diamond graph in the case of Dobrushin domains. Let (G,a, b) be

a Dobrushin domain. The diamond graph G◇ = (V [G◇],E [G◇]) is the subgraph of G◇
∞

composed of sites in V [G]∪V [G∗]∪ ∂∗ab and of diamond edges between them; see Fig. 2
again.

Loop representation on a Dobrushin domain Let (G,a, b) be a Dobrushin domain.
In this paragraph, we aim for the construction of the loop representation of the random-
cluster model.

Consider a configuration ω, it defines clusters in G and dual clusters in G∗. Through
every face of the diamond graph passes either an open edge of G or a dual open edge of
G∗. Therefore, there is a unique way to draw Eulerian (i.e. using every edge exactly once)
loops on the diamond graph — interfaces, separating clusters from dual clusters. Namely,
loops pass through the center of diamond edges, and in a face of the diamond graph, loops
always makes a turn so as not to cross the open or dual open edge through this face; see
Figure 2. We further require that loops cross each diamond edge orthogonally. Besides
loops, the configuration will have a single curve joining the edges adjacent to a and b,
which are the diamond edges ea and eb connecting a site of ∂ab to a dual site of ∂∗ba. This
curve is called the exploration path; we will denote it by γ. It corresponds to the interface
between the cluster connected to the wired arc ∂ba and the dual cluster connected to the
free arc ∂∗ab.

This provides us with a bijection between random-cluster configurations on G and
Eulerian loop configurations on G◇. This bijection is called the loop representation of the
random-cluster model. We orientate loops in such a way that they cross every diamond
edge e in such a way that the end-point of e in V [G] is on its left, while the end-point
in V [G∗] is on its right.

Let p ∈ (0,1)E [G]. The probability measure can be nicely rewritten (using Euler’s
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formula) in terms of the loop picture:

φa,bG,p,q({ω}) =
1

Z̃a,b
G,x,q

(∏
e∈ω

xe)
√
q

# loops
,

where Z̃a,b
G,x,q is a normalizing constant and x = (xe ∶ e ∈ E [G]) ∈ (0,∞)E [G] is given by

xe =
pe

(1 − pe)
√
q
.

ea

eb

∂∗
ab

∂ba

Figure 2: Construction of the diamond graph and the loop representation.

Critical weights for isoradial graphs In the case of isoradial graphs, a natural family
of weights can be defined. Let

xe =
pe(1)

(1 − pe(1))
√
q
=

sin[σθe2 ]

sin[σ(π−θe)2 ]
.

The bounded angle property immediately implies that weights are uniformly bounded
away from 0 and 1.

This family of weights on isoradial graph is self-dual, in the sense that the dual of a
random-cluster model with edge-weights x = (xe ∶ e ∈ E [G]) is a random cluster model
on the (isoradial) dual graph with edge-weights (xe∗ ∶ e∗ ∈ E [G∗]).

Let us stress out the fact that many other families of weights x are self-dual. Never-
theless, this family will play a special role for reasons that will become apparent later in
the article.

Fix β > 0. From now on, we will consider random-cluster measures

φξG,β,q({ω}) = φ
ξ
G,βx,q({ω}) =

1

Z̃a,b
G,βx,q

(∏
e∈ω

βxe)
√
q

# loops
,

for any configuration ω. Note that (φ0
G,β,q)

∗ = φ1
G∗,β−1,q.
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Phase transition and critical point in the periodic case In this paragraph, iso-
radial graphs are assumed to be periodic. We aim to study the behavior of φξG,β,q when
β varies from 0 to ∞. Positive association of the model implies that

φξG,β,q(A) ≤ φξG,β′,q(A)

for any increasing event A and β ≤ β′ (in such case, φξG,β,q(A) is said to be stochastically
dominated by φξG,β′,q(A)). The previous inequality extends to the infinite volume. It is
therefore possible to define

βc = sup{β ≥ 0 ∶ φξG∞,β,q(0←→∞) = 0},

where 0 ←→∞ denotes the fact that 0 is contained in an infinite open path. This value
is called the critical point.

The infinite-volume measure is not necessarily unique. Nevertheless, it can be shown
that for a fixed q ≥ 1, uniqueness can fail only on a countable set Dq,G∞ . More precisely:

Proposition 8 Let G∞ be a periodic isoradial graph. There exists an at most countable
set Dq,G∞ ⊂ (0,∞) such that for any β ∉ Dq,G∞, there exists a unique infinite-volume
measure on G∞ with parameters β and q ≥ 1.

Proof The proof follows the argument of [26, Theorem (4.63)] quite closely, so we only
give a sketch here. Define the free energy per unit volume in a finite box as

Hξ
Λ(β) =

1

∣E[Λ]∣
log Z̃ξ

Λ,β,q.

We have
∂

∂β
Hξ

Λ(β) =
1

∣E[Λ]∣
∑

e∈E[Λ]

xeφ
ξ
G,β,q(e is open) ∈ [0,max{xe ∶ e ∈ E[G∞]}];

in particular, Hξ
Λ is convex. Now, let Λ increase to cover the whole lattice. A classical

argument of boundary-area energy comparison (see the lines following [26, Equation
(4.71)]) shows that the limit H(β) of Hξ

Λ(β) exists and does not depend on the boundary
condition ξ.

Since H is a uniform limit of convex functions, it is convex, and therefore differentiable
outside an at most countable set Dq,G∞ . Classically, we obtain that both ∂

∂βH
1
Λ(β) and

∂
∂βH

0
Λ(β) converge to the same limit, which is also equal to ∂

∂βH(β), for any β ∉ Dq,G∞ .
Hence, for any such β,

lim
Λ↗G∞

1

∣E[Λ]∣
∑

e∈E[Λ]

xeφ
0
G,β,q(e is open) = lim

Λ↗G∞

1

∣E[Λ]∣
∑

e∈E[Λ]

xeφ
1
G,β,q(e is open)

which is enough to guarantee that the measures φ0
β,q and φ

1
β,q coincide; this in turn implies

uniqueness of the Gibbs measure for all β ∉ Dq,G∞ . ◻

Since the infinite-volume measure is unique for almost every β (at fixed q), for any
infinite-volume measure φG∞,β,q,

φG∞,β,q(0←→∞)

⎧⎪⎪
⎨
⎪⎪⎩

= 0 if β < βc

> 0 if β > βc
.
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Observables for Dobrushin domains Fix a Dobrushin domain (G,a, b) and consider
the loop representation of the random-cluster model. Following [43], we now define an
observable F on the edges of its diamond graph, i.e. a function F ∶ E [G◇]→ R+. Roughly
speaking, F is a modification of the probability that the exploration path passes through
the center of an edge. First, we introduce the following definition: The winding WΓ(z, z′)
of a curve Γ between two edges z and z′ of the diamond graph is the total rotation (in
radians) that the curve makes from the center of the diamond edge z to the center of the
diamond edge z′.

Let q > 4. We define the observable F for any diamond edge e ∈ E [G◇] by

F (e) = φa,bG,β,q (eσWγ(e,eb)1e∈γ) , (2.3)

where γ is the exploration path and σ > 0 is given by the relation

cosh (σ
π

2
) =

√
q

2
. (2.4)

For σ > 0 to exist, q needs to be larger than 4, hence the hypothesis in the theorem. We
define the function F̃ by

F̃ (e) = φa,bG,β,q (e−σWγ(e,eb)1e∈γ) , (2.5)

Remark 9 The observable G(e) = EG,a,b (eiσWγ(e,eb)1e∈γ), where sin(σπ/2) =
√
q/2, was

introduced in the case q ≤ 4 in [43] for the square lattice. When weights are critical, one
obtains around each vertex v

G(NW ) −G(SE) = i[G(NE) −G(SW )],

where NW , SE, NE and SW are the your edges incident to v indexed in a trivial
way. This relation can be seen as a discrete version of Cauchy-Riemann equation. The
observable is then a holomorphic parafermion of spin σ, which is a real number in [0,1].
For q ≥ 4, σ is purely imaginary and does not have an obvious physical meaning; it would
nonetheless be amusing to find one. In this article, one could work with the corresponding
G for q > 4, but the definitions in (2.3) and (2.5) are easier to handle for the application
we have in mind.

3 A representation formula for the observable
Let (G,a, b) be a Dobrushin domain. In this section, we estimate the sum of F over a
set E ⊂ E [G◇] in various ways. Let F ◇ be the set of inner faces of G◇. Any f ∈ F ◇ is
bordered by four edges in E [G◇], which we label counterclockwise A, B, C and D, so
that the loop (or the exploration path) goes from f to the outside when crossing A and
C, and from the outside to f when crossing B and D; see Figure 2. There are a priori
two ways to do so, but the choice will be irrelevant.

Lemma 10 Fix β > 0 and q > 4. For every face f ∈ F ◇,

F (B) + F (D) = Λe(βxe) [F (A) + F (C)] , (3.1)

where e is the edge of G passing through f , and Λe is given by Λe(x) = e−σ(π−θe)
x + eσ

π
2

x + e−σ
π
2

.

A similar statement was used in [7] to derive massive harmonicity of the observable
when q = 2 on the square lattice. This enabled to compute the correlation length of the
high temperature Ising model. Observe that Λ(xe) = 1.
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Proof Consider the involution s on the space of configurations which switches the state
(open or closed) of the edge of G passing through f .

Let e be an edge of the diamond graph and denote by eω = eσWγ(e,eb)1e∈γp(ω) the
contribution of ω to F (e) (here p(ω) is the probability of the configuration ω). Since s
is an involution, the following relation holds:

F (e) =∑
ω

eω =
1
2∑
ω

[eω + es(ω)] .

In order to prove (3.1), it suffices to prove the following for any configuration ω:

Bω +Bs(ω) +Dω +Ds(ω) = Λ(βxe) [Aω +As(ω) +Cω +Cs(ω)] . (3.2)

When γ(ω) does not go through any of the diamond edges bordering f , neither does
γ(s(ω)). All the contributions then vanish and identity (3.2) trivially holds. Thus we
may assume that γ(ω) passes through at least one edge bordering f . The interface enters
f through either A or C and leaves through B or D. Without loss of generality, we
assume that it enters first through A and leaves last through D; the other cases are
treated similarly.

θe

A B

CD

A B

CD

Figure 3: Two associated configurations ω and s(ω)

Two cases can occur (see Figure 3): Either the exploration curve, after arriving
through A, leaves through B and then returns a second time through C, leaving through
D; or the exploration curve arrives through A and leaves through D, with B and C
belonging to a loop. Since the involution exchanges the two cases, we can assume that
ω corresponds to the first case. Knowing the term Aω, it is possible to compute the
contributions of ω and s(ω) to all of the edges bordering f . Indeed,

• the probability of s(ω) is equal to βxe
√
q times the probability of ω (due to the

fact that there is one additional loop, and the primal edge crossing f is open);

• windings of the curve can be expressed using the winding of the edge A. For
instance, the winding of B in the configuration ω is equal to the winding of the
edge A plus an additional −θe turn.

Contributions are computed in the following table.

configuration A B C D
ω Aω eσθeAω e−σπAω e−σ(π−θe)Aω

s(ω) βxe
√
qAω 0 0 e−σ(π−θe)βxe

√
qAω

Using the identity eσ
π
2 + e−σ

π
2 =

√
q, we deduce (3.2) by summing the contributions of

all the edges bordering f . ◻

For a set E of edges of E [G◇], ∂eE denotes the set of edges of E [G◇] ∖E bordering
the same face as an edge of E. Also define Eint to be the set of diamond edges between
two faces of F ◇.
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Proposition 11 Fix β < 1 and q > 4. Let G∞ satisfying (BAPθ). There exists C1 =

C1(β, q, θ) <∞ such that
∑
e∈E

F (e) ≤ C1 ∑
e∈∂eE

F (e)

for any E ⊂ Eint.

Proof of Proposition 11 Sum Identity (3.1) over all faces bordered by an edge in E.
It provides a weighted sum of F (e) (with coefficients denoted by c(e)) identical to zero:

0 = ∑
e∈E

c(e)F (e) + ∑
e∈∂eE

c(e)F (e). (3.3)

For an edge e ∈ E, F (e) will appear in two identities, corresponding to the two faces
it borders. Since a loop going through e comes from one of the faces and enters through
the other one, the coefficients will be −1 and Λ(βxe). Thus F (e) for e ∈ E will enter the
sum with a coefficient

c(e) = Λ(βxe) − 1 = e−σ(π−θe) (
βxe + eσ

π
2

βxe + e−σ
π
2

) − 1 = (
xe + e−σ

π
2

xe + eσ
π
2

)(
βxe + eσ

π
2

βxe + e−σ
π
2

) − 1

= (1 +
(β − 1)xe

xe + eσ
π
2

)(1 −
(β − 1)xe

βxe + e−σ
π
2

) − 1

= (β − 1)xe (
e−σ

π
2 − eσ

π
2

(xe + eσ
π
2 )(βxe + e−σ

π
2 )

) =
2(1 − β)xe sinh(σ π2 )

(xe + eσ
π
2 )(βxe + e−σ

π
2 )

≥ 2(1 − β) min{xe ∶ e ∈ E [G]} sinh(σ π2 ).

In the second equality, we used that Λ(xe) = 1. Because of the bounded angle property,
xe is bounded away from 0 and ∞ uniformly, and so is c(e).

For an edge e ∈ ∂eE, F (e) will appear in exactly one identity, (corresponding to the
face that it shares with an edge of E). The coefficient will be Λ(βxe) or −1, depending
on the orientation of e with respect to the face. Thus F (e) will enter the sum with
a coefficient c(e) which is bounded from above uniformly in e (thanks to the Bounded
Angle Property). The proposition follows immediately by setting

C1 = C1(β, q, θ) ∶=
max{∣c(e)∣ ∶ e ∈ ∂eE}

min{∣c(e)∣ ∶ e ∈ E}
=

max{∣c(e)∣ ∶ e ∈ E[G◇
∞]}

min{∣c(e)∣ ∶ e ∈ E[G◇
∞]}

< 0.

Note that C1 depends only β, q and θ, but not on G∞ or E. ◻

Set ∂E [G◇] for the edge-boundary of G◇, meaning the set of diamond edges connecting
two boundary vertices. Note that it is simply E[G◇] ∖Eint.

Lemma 12 Let (G,a, b) a Dobrushin domain. For a site u on the free arc ∂ab and
e ∈ ∂E [G◇] a diamond edge incident to u, we have

F (e) = eσW (e,eb) ⋅ φa,bG,β,q(u↔ wired arc ∂ba),

where W (e, eb) is the winding of an arbitrary curve on the diamond graph from e to eb.
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Proof Let u be a site of the free arc ∂ab and recall that the exploration path is the
interface between the open cluster connected to the wired arc and the dual open cluster
connected to the free arc. Since u belongs to the free arc, u is connected to the wired arc
if and only if e belongs to the exploration path, so that

φa,bG,β,q(u←→ wired arc ∂ba) = φa,bG,β,q(e ∈ γ).

The edge e being on the boundary, the exploration path cannot wind around it, so that
the winding of the curve is deterministic. Call this winding W (e, eb). We deduce from
this remark that

F (e) = φa,bG,β,q(e
σWγ(e,eb)1e∈γ) = eσW (e,eb)φa,bG,β,q(e ∈ γ) = eσW (e,eb)φa,bG,β,q(u←→ wired arc ∂ba).

◻

We are now in a position to prove our key proposition.

Proposition 13 Fix q > 4 and G∞ satisfying (BAPθ). There exists C2 = C2(q, θ) < ∞
such that

∑
e∈∂E [G◇]

F (e) ≤ C2eσ(Wmax−Wmin)

for any β ≤ 1 and any Dobrushin domain (G,0,0) (0 is assumed to belong to ∂G). Above,
Wmin and Wmax are the minimal and maximal winding when going along the boundary of
G, starting from 0.

Note that Dobrushin boundary conditions on (G,0,0) coincide with free boundary
conditions.

Proof Let us start with the case β = 1. Sum Identity (3.1) over all F ◇. Since Λ(xe) = 1
for any e, we find that c(e) = 0 for any e ∈ Eint and c(e) = ±1 on ∂E[G◇] depending on
the fact that a loop going through e points outwards or inward F ◇. Boundary edges
corresponding to a loop pointing outward are called exiting, those for which the loop is
pointing inward entering. We find

∑
e exiting

F (e) − ∑
e entering

F (e) = 0.

Since edges exiting or entering belong to ∂E [G◇], Lemma 12 implies that

F (e) = eσW (e,eb)φ0
G,1,q[u←→ 0],

for v the site of G bordering e. Note that each vertex u ∈ ∂G is the end-point of a unique
entering edge, called ein(u) and a unique exiting edge eex(u). With this definition and
the two previous displayed equalities, we find

∑
u∈∂G

[eσW (eex(u),eb) − eσW (ein(u),eb)]φ0
G,1,q(0←→ u) = 0

which can be rewritten as

∑
u∈∂G∖{0}

[eσW (eex(u),eb) − eσW (ein(u),eb)]φ0
G,1,q(u←→ 0) = eσW (ein(0),eb) − eσW (eex(0),eb).
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Now, when u = 0, ein(0) = ea and eex(0) = eb. Since W (ea, eb) ≤ 2π,

eσW (ein(0),eb) − eσW (eex(0),eb) = eσW (ea,eb) − eσW (eb,eb) ≤ eσ2π.

When u ≠ 0, we find that

W (eex(u), eb) −W (ein(u), eb) =W (eex(u), ein(u)) ≥ θ[uv] ≥ θ,

where v is a neighbor of u outside of G, and [uv] is the edge between u and v. Note that
the existence of this neighbor is guaranteed by the fact that u ∈ ∂G. Next,

eσW (eex(u),eb) − eσW (ein(u),eb) = [eσW (eex(u),ein(u)) − 1] eσW (ein(u),eb) ≥ [eσθ − 1]eσWmin .

Therefore,
[eσθ − 1]eσWmin ∑

u∈∂G∖{0}

φ0
G,1,q(u←→ 0) ≤ eσ2π.

Finally, observe that

∑
e∈∂E [G◇]

F (e) = ∑
e∈∂E [G◇]

eσW (e,eb)φ0
G,1,q[u←→ 0]

≤ 4eσWmax ∑
u∈∂G

φ0
G,1,q[u←→ 0] ≤ 4eσWmax + 4eσWmax ∑

u∈∂G∖{0}

φ0
G,1,q[u←→ 0]

≤ 4eσWmax + 4
eσ(Wmax−Wmin)

eσθ − 1
eσ2π.

In the first inequality, we used the fact that at most four edges correspond to a boundary
vertex.

The case β ≤ 1 follows readily since F (e) = eσW (e,eb)φ0
G,β,q[u ←→ 0] is an increasing

quantity in β. ◻

For a graph G, let us introduce the following graphs constructed recursively. Let
G(0) = G and G(k) = G(k−1) ∖ ∂G(k−1) for any k ≥ 1. They can be seen as successive
“pillings” of G, each step consisting in removing the boundary of the existing graph. Let
Ek = Eint[G(k)]. Note that E0 = Eint = E [G◇] ∖ ∂E [G◇].

Corollary 14 Let G∞ satisfying (BAPθ). Consider the Dobrushin domain (G,0,0) (by
default, 0 is therefore assumed to be on the boundary of G). For any β < 1 and q > 4,

∑
e∈Ek

F (e) ≤ C1C2eσ(Wmax−Wmin) (
C1

1 +C1

)

k

.

Proof Proposition 11 can be applied to Ek ⊂ Eint to give

∑
e∈Ek

F (e) ≤
C1

1 +C1
∑

e∈Ek∪∂eEk

F (e).

Since Ek ∪ ∂eEk ⊂ Ek−1 and F (e) ≥ 0,

∑
e∈Ek

F (e) ≤
C1

1 +C1
∑

e∈Ek−1
F (e).
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Using the previous bound iteratively, and Proposition 11 one last time (in the second
inequality), we find

∑
e∈Ek

F (e) ≤ (
C1

1 +C1

)

k

∑
e∈Eint

F (e) ≤ C1 (
C1

1 +C1

)

k

∑
e∈∂E [G◇]

F (e)

The claim follows by bounding the sum on the right-hand side using Proposition 13. ◻

The study above can be performed with F̃ instead of F . We obtain the following
corollary.

Corollary 15 Let G∞ satisfying (BAPθ). Consider the Dobrushin domain (G,0,0) (by
default, 0 is assumed to be on the boundary of G). For any β < 1 and q > 4,

∑
e∈Ek

F̃ (e) ≤ C1C2eσ(Wmax−Wmin) (
C1

1 +C1

)

k

.

4 Proof of Theorems 2
Without loss of generality, we assume that v = 0. Fix β < 1. We aim to prove that there
exists c = c(β, q, θ) > 0 such that

φ0
G∞,β,q(0←→ u) ≤ exp(−c∣u∣)

for any u ∈ G∞ containing 0. We now fix G∞ containing 0 and satisfying (BAPθ). We
stress out that the constants involved in the proof depend on θ only but not on G∞ or u.

The case q = 4 is derived through stochastic domination between random cluster
measures. Indeed, for every β < 1, there exists (β′, q) with q > 4 and β′ < 1 such that
the random-cluster measure φ0

G∞,β′,q stochastically dominates the random-cluster measure
φ0
G∞,β,4. We refer to [26, Theorem (3.23)] for details on this fact. It follows from this

stochastic domination that

φ0
G∞,β,4(0←→ u) ≤ φ0

G∞,β′,q(0←→ u) ≤ exp [ − c(β′, q, θ)∣u∣]

for any u ∈ G∞. It is therefore sufficient to assume that q > 4, which we now do.

For a graph G∞, we identify a convex subset A of R2 with the subgraph given by
vertices in G∞ ∩A and edges between them. The set ∂A is referring to ∂(G∞ ∩A). Note
that this set is not necessarily connected, but this will not be relevant in the following.
For r > 0, let B0(r) = {x ∈ R2 ∶ ∣x∣ < r}.

Lemma 16 There exists c1 = c1(β, q, θ) > 0. Assume that v ∈ G∞ is on the positive real
axis. Then,

φ0
[0,∞)×(−∞,∞),β,q(0←→ v) ≤ exp[−c1∣v∣].

There could be no vertex v on the positive axis, but there is no loss of generality in
assuming that v belongs to this positive axis, since the graph G∞ can be rotated around
the origin in order to obtain an estimate valid for any vertex v ∈ G∞, where the half-plane
[0,∞) × (−∞,∞) is replaced by the half-plane containing v whose boundary contains 0
and is orthogonal to the vector given by the coordinates of v.
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Proof Define Gm,n to be the connected component of the origin in [0, n]× [−m,m]. Set
k = ∣v∣/2. Let m ≥ 100 and n > max{2∣v∣,100} (these two conditions avoid nasty local
problems). Apply Corollaries 14 and 15 to Gm,n and k to find (we use the notation of
the corollary)

∑
e∈Ek

F (e) + F̃ (e) ≤ 2C1C2eσ(Wmax−Wmin) (
C1

1 +C1

)

k

.

The maximum and minimum windings on ∂E[Gm,n] are bounded by a certain constant
C3 < ∞. This statement comes from the fact that the winding of ∂E[Gm,n] is roughly
comparable of the winding of the boundary of [0, n] × [−m,m] (there are a few local
effects to take care of). Let us sketch an argument. There exists a path of adjacent
faces of the subgraph Hm,n = [0, n] × [−m,m] ∖ [4, n − 4] × [−m + 4,m − 4] of Gm,n going
around [4, n− 4]× [−m+ 4,m− 4]. The constant 4 has been chosen to fit our purpose. It
can probably be improved but this would be of no interest for the proof. In particular,
∂E[Gm,n] is contained in Hm,n. The bounded angle property shows that two vertices
cannot be arbitrary close to each other, which prevents the existence of paths of edges in
E[Hm,n] winding arbitrary often around a point of R2. As a consequence, the winding
along ∂E[Gm,n] is indeed bounded by a universal constant.

The previous bounds on Wmax and Wmin imply

∑
e∈Ek

F (e) + F̃ (e) ≤ C4 (
C1

1 +C1

)

k

.

Next,

F (e) + F̃ (e) = φ0
Gm,n,β,q

[(eσW (e,eb) + e−σW (e,eb))1e∈γ] ≥ 2φ0
Gm,n,β,q

(e ∈ γ).

Let C0 be the cluster of the origin and ∂outC0 its outer boundary, meaning the set of
vertices connected by a path in E[G∞]∖E[C0]. A diamond edge e = [vy], where v ∈ Gm,n

and y ∈ G∗
m,n belongs to γ if and only if 0 is connected to v and y is connected to the free

arc. In other words, v is on the outer boundary of the cluster of 0. We deduce that

φ0
Gm,n,β,q

(∂outC0 ∩G
(k)
m,n ≠ ∅) ≤ ∑

u∈G
(k)
m,n

φ0
Gm,n,β,q

(u ∈ ∂C0)

≤ ∑

e∈E
(k−1)
int

F (e) + F̃ (e)

≤ C4 (
C1

1 +C1

)

k−1

.

Letting m go to infinity and using the uniform bound above,

φ0
G∞,n,β,q(∂outC0 ∩G

(k)
∞,n ≠ ∅) ≤ C5 (

C1

1 +C1

)

k

,

where G∞,n = [0, n] × (−∞,∞). Next, observe that G∞,n does not contain any infinite
cluster φG∞,n,β,q-almost surely (in fact, this is true for any β′ <∞, since the graph is rough
isometric to Z). Let us provide a rigorous proof of this statement. The experienced reader
can skip the next paragraph.

The bounded angle condition implies that the weight xe is bounded from above uni-
formly on G∞. Therefore, there exits c2 = c2(β, q, θ) <∞ such that for any finite set S of
dual edges of cardinality r

φ0
G∞,n,β,q(every edge in S is dual-open ∣ FE [G∗∞,n]∖S) ≥ exp[−c2r].
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The constant c2 comes from the finite-energy of the random-cluster model, i.e. the prop-
erty that the probability for an edge to be closed is bounded away from 0 uniformly in
the state of all the other edges; see [26, Equation (3.4)]. Next, it is possible to divide
the strip into an infinite number of finite pieces by considering disconnecting paths P
of length less than c3n for some constant c3 = c3(θ) < ∞. The existence of these paths
is easy proved by considering a sequence of set of adjacent faces cutting the strip, and
by noticing that the bounded angle property bounds from above the number of edges
bordering a face by π/ sin(θ/2). Now, conditioned on the state of the others paths, each
one of these paths has probability larger than exp[−c2c3n] > 0 of being dual-open. This
immediately implies that there is no infinite cluster φG∞,n,β,q-almost surely.

Since there is no infinite cluster almost surely, C0 intersects G(k)
∞,n if and only if ∂outC0

intersects G(k)
∞,n. Furthermore, edges have length smaller than 2, which implies that

u ∈ G
(k)
∞,n (we use the fact that n − ∣v∣ and ∣v∣ are larger than 2k). Hence,

φ0
G∞,n,β,q(0←→ v) ≤ φ0

G∞,n,β,q(C0 ∩G
(k)
∞,n ≠ ∅) = φ0

G∞,n,β,q(∂C0 ∩G
(k)
∞,n ≠ ∅) ≤ C5 (

C1

1 +C1

)

k

.

The proof follows by letting n go to infinity and then by choosing c1 = c1(β, q, θ) > 0 small
enough. ◻

Γ = γ

γ

Figure 4: The gray area is γ. The dual path surrounding it is Γ. It is the
exterior most dual circuit.

We are now in a position to prove Theorem 2. Let n > ∣u∣ + 2. We work with the
random-cluster measure on B0(n) with free boundary conditions. Let Xmax be the site
of B0(n) ∩ C0 which maximizes its Euclidean distance to the origin (when several such
sites exist, take the first one for an arbitrary indexation of sites in G∞). Note that
∣u∣ ≤ ∣Xmax∣ < n. Therefore,

φ0
B0(n),β,q

(0←→ u) ≤ φ0
B0(n),β,q

(∃v ∈ B0(n) ∖B0(∣u∣) ∶Xmax = v)

≤ ∑
v∈B0(n)∖B0(∣u∣)

φ0
B0(n),β,q

(Xmax = v). (4.1)
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For v, let C(v) be the set of dual-open self-avoiding circuits γ surrounding the origin and
v and such that any site of B0(n) surrounded by γ is in B0(∣v∣). Let γ be the set of sites
of B0(n) surrounded by γ ∈ C(v), see Fig. 4. Dual-open circuits in C(v) are naturally
ordered via the following order relation: γ is more exterior than γ′ if γ ⊂ γ′.

If Xmax = v, then v is connected to 0 and there exists a circuit in C(v) which is dual-
open (simply take the boundary of C0, drawn on the dual graph). Let {Γ = γ} be the
event that γ is the exterior-most dual-open circuit in C(v). With this definition, Xmax = v
if and only if v is connected to 0 and there exists γ ∈ C(v) such that Γ = γ. Therefore

φ0
B0(n),β,q

(Xmax = v) = φ
0
B0(n),β,q

(0←→ v and ∃γ ∈ C(v) ∶ Γ = γ)

= ∑
γ∈C(v)

φ0
B0(n),β,q

(0←→ v and Γ = γ)

= ∑
γ∈C(v)

φ0
B0(n),β,q

(0←→ v∣Γ = γ)φ0
B0(n),β,q

(Γ = γ)

Since Γ is the exterior most circuit in C(v), {Γ = γ} is measurable with respect to
dual-edges outside γ. Furthermore, edges of γ are dual-open on {Γ = γ}, see Fig. 4.
Therefore, conditioned on {Γ = γ}, the measure inside γ is a random-cluster model with
free boundary conditions. Hence,

φ0
B0(n),β,q

(0←→ v∣Γ = γ) = φ0
γ,β,q(0←→ v).

Rotate the graph B0(n) in such a way that v is on the positive axis. Let H = (−∞, v]×R.
Observe that by definition of C(v), γ ⊂H. The comparison between boundary conditions
leads to

φ0
γ,β,q(0←→ v) ≤ φ0

H,β,q(0←→ v in γ) ≤ φ0
H,β,q(0←→ v) ≤ exp[−c1∣v∣]

by Lemma 16. This implies

φ0
B0(n),β,q

(Xmax = v) ≤ ∑
γ∈C(y)

exp[−c1∣v∣]φ
0
B0(n),β,q

(Γ = γ) ≤ exp[−c1∣v∣].

In the second equality, we used the fact that the union of {Γ = γ} for γ ∈ C(v) is disjoint.
Going back to (4.1), we find

φ0
B0(n),β,q

(0←→ u) ≤ ∑
v∈B0(n)∖B0(∣u∣)

exp[−c1∣v∣]

≤ ∑
v∈G∞∖B0(∣u∣)

exp[−c1∣v∣]

≤∑
k≥0

∣B0(∣u∣ + k + 1) ∖B0(∣u∣ + k)∣ exp[−c1(∣u∣ + k)]

≤∑
k≥0

∣ π
sin(θ/2)(∣u∣ + k + 1)∣ exp[−c1(∣u∣ + k)]

≤ c4∣u∣ exp[−c1∣u∣].

In the previous inequalities, we used the fact that the number of sites in B0(r+1)]∖B0(r)
is bounded by π

sin(θ/2)(r + 1) because of the bounded angle property.
The proof follows by letting n go to infinity and by choosing c = c(β, q, θ) > 0 small

enough.
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5 Proofs of Theorem 3 and Corollaries
Proof of Theorem 3 Fix β < 1. Let G∞ be an infinite isoradial graph. Without loss of
generality (simply translate the graph), we assume that y = 0 ∈ G∞. For r > 0, Theorem 2
implies

φ0
G∞,β,q(0←→ ∂B0(r)) ≤ ∑

u∈∂B0(r)

φ0
G∞,β,q(0←→ u)

≤
πr2

4 sin(θ/2)
exp [ − c(β, q, θ)(r − 2)]. (5.1)

In the second inequality, we used the fact that any site u ∈ ∂B0(r) is at distance larger
than r − 2 of the origin since any primal edge is of length smaller than 2 (the diameter
of circles is 2), and that u ∈ ∂B0(r) is connected to a site outside B0(r). We also used
the fact that the cardinality of B0(r) is smaller than πr2/(4 sin(θ/2)) since any edge of
G∞ corresponds to a face of G◇

∞ of volume larger than 4 sin(θ/2) thanks to the bounded
angle property. Letting r go to infinity, we obtain that φ0

G∞,β,q(0←→∞) = 0.

Let us now consider φ1
G,β,q with β > 1. For a dual vertex y ∈ G∗, let A(y) be the event

that there exists a dual-open circuit surrounding the origin, i.e. a path of dual-open edges
disconnecting 0 from infinity in R2. Observe that the dual circuit must go to distance ∣y∣.
Since the dual model is a random-cluster model on the dual isoradial graph, with free
boundary conditions and with β∗ = 1/β < 1, (5.1) implies

φ1
G∞,β,q(A(y)) ≤

π∣y∣2

4 sin(θ/2)
exp [ − c(1/β, q, θ)(∣y∣ − 2)]

for any y ∈ G∗
∞. Borel-Cantelli lemma together with the bound ∣G∗

∞ ∩ B0(r)∣ ≤
πr2

4 sin(θ/2)

implies that
φ1
G∞,β,q(there exist infinitely many y ∈ G∗

∞ ∶ A(y)) = 0.

This immediately implies that there exists an infinite cluster φ1
G∞,β,q-almost surely.

Let us now turn to the uniqueness question. This is the only place where unique-
ness is harnessed. Recall that in this case, DG∞,q defined in Proposition 8 is countable.
Since φ0

G∞,β,q = φ1
G∞,β,q outside of the countable set DG∞,q, for any β < 1 there exists

β < β′ < 1 such that φ1
G∞,β′,q = φ

0
G∞,β′,q. We deduce that

φ1
G∞,β,q(0←→∞) ≤ φ1

G∞,β′,q(0←→∞) = φ0
G∞,β′,q(0←→∞) = 0.

From [26][Theorem (5.33)], we deduce that φ1
G∞,β,q = φ

0
G∞,β,q for any β < 1. Theorem

(5.33) is proved in the case of Zd, but the proof extends to the context of periodic graphs
mutatis mutandis. By duality, the infinite-volume measure is unique except possibly for
β = 1. This implies in particular that there is φ0

G∞,β,q-almost surely an infinite cluster
whenever β > 1. ◻

Proof of Corollary 5 We present the proof in the case of the square lattice, the cases
of triangular and hexagonal lattices being the same. If p1

1−p1

p2
1−p2

= βq, then x1x2 = 1
where xi = pi

(1−pi)
√
qβ
. By embedding the square lattice in such a way that every face

is a rectangle inscribed in a circle of radius 1, and the aspect ratio is given by x1/x2,
we obtain an isoradial graph with critical weights x1 and x2. The model is therefore
subcritical (respectively supercritical) if and only if β < 1 (respectively β > 1). ◻
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Proof of Corollary 6 It follows directly from the classical coupling between random-
cluster models and Potts models. ◻
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