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Abstract

We prove Russo-Seymour-Welsh-type uniform bounds on crossing prob-
abilities for the FK Ising (FK percolation with cluster weight q = 2) model
at criticality, independent of the boundary conditions. Our proof relies
mainly on Smirnov’s fermionic observable for the FK Ising model [34],
which allows us to get precise estimates on boundary connection proba-
bilities. We stay in a discrete setting, in particular we do not make use of
any continuum limit, and our result can be used to derive directly several
noteworthy properties – including some new ones – among which the fact
that there is no infinite cluster at criticality, tightness properties for the
interfaces, and the existence of several critical exponents, in particular the
half-plane one-arm exponent. Such crossing bounds are also instrumental
for important applications such as constructing the scaling limit of the
Ising spin field [7], and deriving polynomial bounds for the mixing time
of the Glauber dynamics at criticality [26].

1 Introduction

It is fair to say that the two-dimensional Ising model has a very particular
historical importance in statistical mechanics. This model of ferromagnetism
has been the first natural model where the existence of a phase transition,
a property common to many statistical mechanics models, has been proved,
in Peierls’ 1936 work [29]. In a series of seminal papers (particularly [28]),
Onsager computed several macroscopic quantities associated with this model.
Since then, the Ising model has attracted a lot of attention, and it has probably
been one of the most studied models, giving birth to an extensive literature,
both mathematical and physical.

A few decades later, in 1969, Fortuin and Kasteleyn introduced a dependent
percolation model, for which the probability of a configuration is weighted by the
number of clusters (connected components) that it contains. This percolation
representation turned out to be extremely powerful to study the Ising model,
and by now it has become known as the random-cluster model, or the Fortuin-
Kasteleyn percolation – FK percolation for short. Recall that on a finite graph
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G, the FK percolation process with parameters p, q is obtained by assigning to
each configuration ω a probability proportional to

po(ω)(1− p)c(ω)qk(ω),

where o(ω), c(ω), and k(ω) denote respectively the number of open edges, closed
edges, and connected components in ω. The definition of the model also involves
boundary conditions, encoding connections taking place outside G. The bound-
ary conditions can be seen as a set of additional edges between sites on the outer
boundary, and they will play a central role in this article. The precise setup
that we consider in this paper is presented in Section 2.

For the specific value q = 2, FK percolation provides a geometric represen-
tation of the Ising model [11]: there exists a coupling between the two models,
whose general form is known as the Edwards-Sokal coupling [10]. In the present
article, we restrict ourselves to this value q = 2, and we call this model the
FK Ising model. We also stick to the square lattice Z2 – or subgraphs of it –
though our arguments could possibly be carried out in the more general con-
text of isoradial graphs, as in [9]. Note that our results are stated for the FK
representation, but that the aforementioned coupling then allows one to trans-
late them into results for the Ising model itself. For instance, as first noticed
in [11], 2-point connection probabilities for the FK Ising model correspond via
this coupling to 2-spin correlation functions for the Ising model.

For the value q = 2 and Z2 as an underlying graph, the model features a
phase transition – in the infinite-volume limit – at the critical and self-dual
point pc = psd =

√
2

1+
√

2
: for p < pc, there is a.s. no infinite open cluster, while

for p > pc, there is a.s. a unique one. These two regimes, known as sub-critical
and super-critical, have totally different macroscopic behaviors. Between them
lies a very interesting and rich regime, the critical regime, corresponding to the
value p = pc. Its behavior is intimately related to the behavior of the model
through its phase transition, as indicated in particular by the scaling theory.

In this paper, we prove lower and upper bounds for crossing probabilities
in rectangles of bounded aspect ratio. These bounds are uniform in the size of
the rectangles and in the boundary conditions, and they are analogues for the
FK Ising model to the celebrated Russo-Seymour-Welsh bounds for percolation
[31, 32]. Formally, we consider rectangles R of the form J0, nK × J0,mK for
n,m > 0, and translations of them – here and in the following, J·, ·K is the
integer interval between the two (real) end-points, i.e. the interval [·, ·]∩Z. We
denote by Cv(R) the event that there exists a vertical crossing in R, a path from
the bottom side J0, nK × {0} to the top side J0, nK × {m} that consists only of
open edges. Our main result is the following:

Theorem 1.1 (RSW-type crossing bounds) Let 0 < β1 < β2. There exist
two constants 0 < c− ≤ c+ < 1 (depending only on β1 and β2) such that for
any rectangle R with side lengths n and m ∈ Jβ1n, β2nK ( i.e. with aspect ratio
bounded away from 0 and ∞ by β1 and β2), one has

c− ≤ Pξpsd,2,R(Cv(R)) ≤ c+
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for any boundary conditions ξ, where Pξpsd,2,R denotes the FK measure on R
with parameters (p, q) = (psd, 2) and boundary conditions ξ.

These bounds are in some sense a first glimpse of scale invariance. It was
widely believed in the physics literature that the FK Ising model at criticality,
i.e. for p = pc, should possess a strong property of conformal invariance in the
scaling limit [4, 5, 30]. A precise mathematical meaning was recently established
by Smirnov in a groundbreaking paper [34]. One of the main tools there is the
so-called preholomorphic fermionic observable, a complex observable that makes
holomorphicity appear on the discrete level. This property can then be used to
take continuum limits and describe the scaling limits so-obtained.

Our proof mostly relies on Smirnov’s observable. More precisely, it is based
on precise estimates on connection probabilities for boundary vertices, that allow
us to use a second-moment method on the number of pairs of connected sites.
For that, we use Smirnov’s observable to reveal some harmonicity on the discrete
level, which enables us to express macroscopic quantities such as connection
probabilities in terms of discrete harmonic measures. Note in addition that
other recent works (e.g. [3]) also suggest that this complex observable is a
relevant way to look at FK percolation, both for q = 2 and for other values of q.
We would like to stress that our argument stays completely in a discrete setting,
using essentially elementary combinatorial tools: in particular, we do not make
use of any continuum limits [35].

Crossing bounds turned out to be instrumental to study the percolation
model at and near its phase transition – for instance to derive Kesten’s scaling
relations [18], that link the main macroscopic observables, such as the density of
the infinite cluster and the characteristic length. These bounds are also useful
to study variations of percolation, in particular for models exhibiting a self-
organized critical behavior. We thus expect Theorem 1.1 to be of particular
interest to study the FK Ising model at and near criticality.

This theorem allows us to derive easily several noteworthy results. Among
the consequences that we state, let us mention power law bounds for magne-
tization at criticality for the Ising model, first established by Onsager in [28],
tightness results for the interfaces coming from the Aizenman-Burchard technol-
ogy, and the value 1/2 of the one-arm half-plane exponent – that describes both
the asymptotic probability of large-distance connections starting from a bound-
ary point for the FK Ising model, and the decay of boundary magnetization in
the Ising model. Moreover, Theorem 1.1 is used in [26] to establish a polynomial
upper bound on the mixing time of the Glauber dynamics at criticality, and in
[7], such crossing bounds allow the authors to construct subsequential scaling
limits for the spin field of the critical Ising model.

Theorem 1.1 also appears to be useful in enabling to transfer properties of
the scaling limit objects back to the discrete models. It is therefore expected to
be helpful to prove the existence of critical exponents, in particular of the arm
exponents. Connections between discrete models and their continuum coun-
terparts usually involve decorrelation of different scales, and thus use spatial
independence between regions which are far enough from each other. In the
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random cluster model, one usually addresses the lack of spatial independence
by successive conditionings, using repeatedly the spatial (or domain) Markov
property of FK percolation, by which what happens outside a given domain
can be encoded by appropriate boundary conditions. For this reason, proving
bounds that are uniform in the boundary conditions seems to be important. An
example of application of this technique is given in Section 5.1.

We would also like to mention that other proofs of Russo-Seymour-Welsh-
type bounds have already been proposed. In [9], Chelkak and Smirnov give a
direct and elegant argument to explicitly compute certain crossing probabilities
in the scaling limit, but their argument only applies for some specific boundary
conditions (alternatively wired and free on the four sides). In [7], Camia and
Newman also propose to obtain RSW as a corollary of a recently announced
result [9]: the convergence of the full collection of interfaces for the Ising model
to the conformal loop ensemble CLE(3). The interpretation of CLE(3) in terms
of the Brownian loop soup [38] is also used. However, to the author’s knowledge,
the proofs of these two results are quite involved, and moreover, the reasoning
proposed only applies for the infinite-volume measure. In these two cases, uni-
formity with respect to the boundary conditions is not addressed, and there does
not seem to be an easy argument to avoid this difficulty. While weaker forms
might be sufficient for some applications, it seems however that this stronger
form is needed in many important cases, and that it considerably shortens sev-
eral existing arguments.

The paper is organized as follows. In Section 2, we first remind the reader of
the basic features of FK percolation, as well as properties of Smirnov’s fermionic
observable. In Section 3, we compare the observable to certain harmonic mea-
sures, and we establish some estimates on the latter. These estimates are central
in the proof of Theorem 1.1, which we perform in Section 4. Then, Section 5 is
devoted to presenting the consequences that we mentioned. In the last section,
we state conjectures on crossing probabilities for FK models with general values
of q ≥ 1.

2 FK percolation background

2.1 Basic features of the model

In order to remain as self-contained as possible, we recall some basic features
of the random-cluster models. Some of these properties, like the Fortuin-
Kasteleyn-Ginibre (FKG) inequality, are common to many statistical mechanics
models. The reader can consult the reference book [13] for more details, and
proofs of the results stated.

Definition of the random-cluster measure

We define the random-cluster (or FK percolation) measure on arbitrary finite
graphs, although in this paper, we will be mostly interested in finite subgraphs
of the square lattice Z2.
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Let G = (V,E) be a finite graph. The boundary of G, denoted by ∂G, is a
given subset of the set of vertices V . A configuration ω is a random subgraph of
G given by the vertices of G, together with some subset of edges between them.
An edge of G is called open if it belongs to ω, and closed otherwise. Two sites
x and y are said to be connected if there is an open path – a path composed
of open edges only – connecting them, an event which is denoted by x  y.
Similarly, two sets of vertices X and Y are said to be connected if there exist
two sites x ∈ X and y ∈ Y such that x  y; we use the notation X  Y .
We also abbreviate {x}  Y as x  Y . Sites can be grouped into (maximal)
connected components, usually called clusters.

Contrary to usual independent percolation, the edges in the FK percolation
model are dependent of each other, a fact which makes the notion of boundary
conditions important. Formally, a set ξ of boundary conditions is a set of
“abstract” edges, each connecting two boundary vertices, that encodes how
these vertices are connected outside G. We denote by ω ∪ ξ the graph obtained
by adding the new edges in ξ to the configuration ω.

We are now in a position to define the FK percolation measure itself, for
any parameters p ∈ [0, 1] and q ≥ 1. Denoting by o(ω) (resp. c(ω)) the number
of open (resp. closed) edges of ω, and by k(ω, ξ) the number of connected
components in ω∪ ξ, the FK percolation process on G with parameters p, q and
boundary conditions ξ is obtained by taking

Pξp,q,G({ω}) =
po(ω)(1− p)c(ω)qk(ω,ξ)

Zξp,q,G
(1)

as a probability for any configuration ω, where Zξp,q,G is an appropriate normal-
izing constant, called the partition function.

Among all the possible boundary conditions, two of them play a particular
role. On the one hand, the free boundary conditions correspond to the case when
there are no extra edges connecting boundary vertices; we denote by P0

p,q,G the
corresponding measure. On the other hand, the wired boundary conditions
correspond to the case when all the boundary vertices are pair-wise connected,
and the corresponding measure is denoted by P1

p,q,G.

Remark 2.1 Note that for connections between sets (in particular for crossings
and the definition of Cv(R)), edges of ξ are not allowed to be used. Hence, even
for the measure with wired boundary conditions, two points x and y on the
boundary are not necessarily connected.

Domain Markov property

The different edges of an FK percolation model being highly dependent, what
happens in a given domain depends on the configuration outside the domain.
However, the FK percolation model possesses a very convenient property known
as the domain Markov property, which usually makes it possible to obtain some
spatial independence. This property is used repeatedly in our proofs.
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Consider a finite graph G, with E its set of edges. For a subset F ⊆ E,
consider the graph G′ having F as a set of edges, and the endpoints of F as
a set of vertices. Then for any boundary conditions φ, Pφp,q,G conditioned to
match some configuration ω on E \ F is equal to Pξp,q,G′ , where ξ is the set of
connections inherited from ω (one connects in ξ the boundary vertices that are
connected in G \ G′ taking the boundary conditions into account). In other
words, one can encode, using appropriate boundary conditions ξ, the influence
of the configuration outside G′.

Strong positive association and infinite-volume measures

The random-cluster model with parameters p ∈ [0, 1] and q ≥ 1 on a finite graph
G has the strong positive association property. More precisely, it satisfies the
so-called Holley criterion [13], a fact which has two important consequences. A
first consequence is the well-known FKG inequality

Pξp,q,G(A ∩B) ≥ Pξp,q,G(A) Pξp,q,G(B) (2)

for any pair of increasing events A, B (increasing events are defined in the
usual way [13]) and any boundary conditions ξ. This correlation inequality is
fundamental to study FK percolation, for instance to combine several increasing
events such as the existence of crossings in various rectangles.

A second property implied by strong positive association is the following
monotonicity between boundary conditions, which is particularly useful when
combined with the Domain Markov property. For any boundary conditions
φ ≤ ξ (all the connections present in φ belong to ξ as well), we have

Pφp,q,G(A) ≤ Pξp,q,G(A) (3)

for any increasing event A that depends only on G. We say that Pφp,q,G is
stochastically dominated by Pξp,q,G, denoted by Pφp,q,G ≤st Pξp,q,G.

In particular, this property directly implies that the free and wired bound-
ary conditions are extremal in the sense of stochastic ordering: for any set of
boundary conditions ξ, one has

P0
p,q,G ≤st Pξp,q,G ≤st P1

p,q,G. (4)

An infinite-volume measure can be constructed as the increasing limit of FK
percolation measures on the nested sequence of graphs (J−n, nK2)n≥1 with free
boundary conditions. For any fixed q ≥ 1, classical arguments then show that
there must exist a critical point pc = pc(q) such that for any p < pc, there is
almost surely no infinite cluster of sites, while for p > pc, there is almost surely
one (see [13] for example).

Planar duality

In two dimensions, an FK measure on a subgraph G of Z2 with free boundary
conditions can be associated with a dual measure in a natural way. First define

6



the dual lattice (Z2)∗, obtained by putting a vertex at the center of each face
of Z2, and by putting edges between nearest neighbors. The dual graph G∗ of a
finite graph G is given by the sites of (Z2)∗ associated with the faces adjacent
to an edge of G. The edges of G∗ are the edges of (Z2)∗ that connect two of its
sites – note that any edge of G∗ corresponds to an edge of G.

A dual model can be constructed on the dual graph as follows: for a per-
colation configuration ω, each edge of G∗ is dual-open (or simply open), resp.
dual-closed, if the corresponding edge of G is closed, resp. open. If the primal
model is an FK percolation with parameters (p, q), then it follows from Eu-
ler’s formula (relating the number of vertices, edges, faces, and components of a
plane graph) that the dual model is again an FK percolation, with parameters
(p∗, q∗) – in general, one must be careful about the boundary conditions. For
instance, on a rectangle R, the FK percolation measure P0

p,q,R is dual to the
measure P1

p∗,q∗,R∗ , where (p∗, q∗) satisfies

pp∗

(1− p)(1− p∗)
= q and q∗ = q. (5)

The critical point pc(q) of the model is the self-dual point psd(q) for which p = p∗

(this has been recently proved in [2]), whose value can easily be derived:

psd(q) =
√
q

1 +
√
q
. (6)

In the following, we need to consider connections in the dual model. Two
sites x and y of G∗ are said to be dual-connected if there exists a connected path
of open dual-edges between them. Similarly to the primal model, we define dual-
clusters as maximal connected components for dual-connectivity.

FK percolation with parameter q = 2: FK Ising model

For the value q = 2 of the parameter, the FK percolation model is related to
the Ising model. More precisely, if starting from an FK percolation sample, one
assigns uniformly at random a spin +1 or −1 to each cluster as a whole (sites
in the same cluster get the same spin), independently, we get simply a sample
of the Ising model. Conversely, one can get an FK percolation sample from an
Ising sample by considering a percolation restricted to those edges that connect
sites of the same spin. This coupling is called the Edwards-Sokal coupling [10],
and it provides a link between correlations for the Ising model and connection
probabilities for the FK Ising model.

In this case, the FK percolation model is now well-understood. The value
pc = psd is implied by the computation by Kaufman and Onsager of the partition
function of the Ising model, and an alternative proof has been proposed recently
by Beffara and Duminil-Copin [3]. Moreover, in [34], Smirnov proved conformal
invariance of this model at the self-dual point psd.

Theorem 1.1 can be applied to the Ising model, using the previous coupling.
For instance, one can deduce directly the following:
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Corollary 2.2 Consider the Ising model with (+) or free boundary conditions
in a rectangle R with dimensions n and m < βn. There exists a constant cβ > 0
such that

Pfree/+
R (C+

v (R)) ≥ cβ ,
where C+

v denotes the existence of a vertical (+) crossing.

We could state this result for more general boundary conditions, for instance
(+) on one arc and free on the other arc. However, we have to be a little
careful since not all boundary conditions can “go through this coupling”. The
corresponding result for (−) boundary conditions is actually not expected to
hold: one can notice for example that in any given smooth domain, a CLE(3)
process – the object describing the scaling limit of cluster interfaces – a.s. does
not touch the boundary.

In the following, we restrict ourselves to the FK percolation model with pa-
rameters q = 2 and p = psd(2) =

√
2/(1+

√
2) (so that we forget the dependence

on p and q), which is also known as the critical FK Ising model – we often call
it the FK Ising model for short.

2.2 Smirnov’s fermionic observable

In this part, we recall discrete holomorphicity and discrete harmonicity results
for the FK Ising model, established by Smirnov in [34]. We do not include any
proof, yet we remind the basic definitions and properties. These results are
crucial in our proofs since they allow us to compare connection probabilities to
harmonic measures. It should be noted that our proof only involves discrete
arguments, the convergence results of [34] are not used. Recall that from now,
q = 2 and p = psd(2).

Medial lattice of Z2

We first need to introduce the medial lattice associated with the square lattice
Z2. The medial lattice (Z2)�, shown in Figure 1, has a site at the middle of
each edge of Z2, and edges connecting nearest-neighbor sites. We obtain in this
way a rotated copy of the square lattice (scaled by a factor 1/

√
2).

The faces of the medial lattice correspond to sites of the primal or the dual
lattice. We call a face black (resp. white) if it is associated with a site of Z2

(resp. (Z2)∗). We use extensively in the proof this correspondence between sites
of the primal or dual lattices, and faces of the medial lattice. For instance, we
say that two black faces are connected if the corresponding sites of the primal
lattice are connected.

In addition to this, we put an orientation on (Z2)�: we orient the edges
around each black face in counterclockwise direction.

Dobrushin domains and medial graphs

Informally speaking, a Dobrushin domain, as on Figure 1, is a domain with two
points a and b dividing the boundary into two arcs (ab) and (ba), called the free
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Figure 1: A domain D with Dobrushin boundary conditions: the vertices of the
primal graph are black, the vertices of the dual graph D∗ are white, and between
them lies the medial lattice D�. The arcs ∂ab and ∂ba are the two outermost
medial paths (with arrows) from ea to eb. Note that ∂ab and ∂ba both have
black faces to their left, and white faces to their right.

and the wired arcs.
More precisely, let ea and eb be two distinct edges of the medial lattice, a

and b being their two adjacent black faces. Consider two self-avoiding paths
∂ab and ∂ba on the medial lattice, both starting at ea and ending at eb, that
follow the orientation of the medial lattice and intersect only at ea and eb. We
assume that the loop obtained by following ∂ab \ ea ∪ eb (along its orientation)
and then ∂ba \ ea ∪ eb (in the reverse direction) is oriented counterclockwise.
The medial graph D� = (V�, E�) associated with ∂ab and ∂ba consists of all the
medial edges and vertices which are surrounded by the two arcs, as on Figure
1. The boundary of V�, denoted by ∂V�, is the set of vertices of V� that belong
to one of the two paths ∂ab and ∂ba.

Every such medial graph is naturally associated with a subgraph D = (V,E)
of the primal lattice. The set V is composed of the sites in Z2 – black faces –
adjacent to a medial edge of E�, and the set E consists of all the edges between
sites of V that do not intersect ∂ab. We define the free arc (ab) (resp. the wired
arc (ba)) to be the set of sites of Z2 – black faces – adjacent to ∂ab (resp. ∂ba).

In the same manner, we can also define the dual graph D∗ associated with
D�. We call dual free arc the set of white faces – on ∂D∗ – adjacent to the arc
∂ab. Note that these faces are a set of dual sites, contrary to the free arc itself,
made of primal sites.

In most instances, the choice of arcs is natural and the correspondence be-
tween D� and D is straightforward. For this reason, we often specify Dobrushin
domains as subgraphs of Z2 with two marked points a and b on the boundary.
In this case, we denote them by (D, a, b).

FK Ising model and loop representation in Dobrushin domains

Let (D, a, b) be a Dobrushin domain. We consider a random cluster measure
with wired boundary conditions on the wired arc – all the edges are pair-wise
connected – and free boundary conditions on the free arc. These boundary
conditions are called the Dobrushin boundary conditions on (D, a, b). We denote
by PD,a,b the associated random cluster measure with parameters q = 2 and
p = psd(2).

For any FK percolation configuration in D, we can consider the associated
models on D and D∗. The interfaces between the primal clusters and the dual
clusters (if we follow the edges of the medial lattice) then form a family of
loops, together with a path from ea to eb, called the exploration path, as shown
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Figure 2: An FK percolation configuration in the Dobrushin domain (D, a, b),
together with the corresponding interfaces on the medial lattice: the loops in
grey, and the exploration path γ from ea to eb in black. Notice that the explo-
ration path is the interface between the open cluster connected to the wired arc
and the dual-open cluster connected to the dual free arc.

on Figure 2.

Remark 2.3 The exploration path is the interface between the open cluster con-
nected to the wired arc and the dual-open cluster connected to the dual free arc.

A simple rearrangement of (1), using the duality property, shows that the
probability of such a configuration is proportional to (

√
2)#loops – taking into

account the fact that q = 2 and p = psd(2) = p∗. The orientation of the medial
lattice naturally gives an orientation to the loops, so that we are now working
with a model of oriented curves on the medial lattice.

Remark 2.4 If we consider a Dobrushin domain (D, a, b), the slit domain cre-
ated by “removing” the first T steps of the exploration path is again a Dobrushin
domain ( i.e we extend the arcs ∂ab and ∂ba by initially “bouncing” along the slit).
We denote the new domain by (D \ γ[0, T ], γ(T ), b), where, with a slight abuse
of notation, γ(T ) is used to denote the site of the primal lattice adjacent to the
medial edge γ(T ). Then conditionally on γ, the law of the FK Ising model in
this new domain is exactly PD\γ[0,T ],γ(T ),b. This observation will be central in
our proof.

Fermionic observable and local relations

Let (D, a, b) be a Dobrushin domain and γ the exploration path from ea to eb.
The winding WΓ(z, z′) of a curve Γ between two edges z and z′ of the medial
lattice is the overall angle variation (in radians) of the curve from the center of
the edge z to the center of the edge z′. The fermionic observable F can now be
defined by the formula (see [34], Section 2)

F (e) = ED,a,b[e−
1
2 ·iWγ(ea,e)Ie∈γ ], (7)

for any edge e of the medial lattice D�. The constant σ = 1/2 appearing in
front of the winding is called the spin (see [34], Section 2).

The quantity F (e) is a complexified version of the probability that e belongs
to the exploration path (note that it is defined on the medial graph D�). The
complex weight makes the link between F and probabilistic properties less ex-
plicit. Nevertheless, as we will see, the winding term can be controlled along
the boundary. The observable F also satisfies the following local relation, from
which Propositions 2.6 and 2.7 follow.
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Figure 3: Indexation of the four medial edges around a vertex v.

Lemma 2.5 ([34], Lemma 4.5) For any vertex v ∈ V� \ ∂V�, the relation

F (e1) + F (e3) = F (e2) + F (e4) (8)

is satisfied, where e1, e2, e3 and e4 are the four edges at v indexed in clockwise
order, as on Figure 3.

We refer to [34] or [3] for the proof of this result. The key ingredient is a
bijection between configurations that contribute to the values of F at the edges
around v. Note that for other values of q, one can still define the fermionic
observable in a way similar to Eq.(7): for an appropriate value σ = σ(q) of the
spin, the previous relation Eq.(8) still holds, see [3, 34].

Complex argument of the fermionic observable F and definition of H

Due to the specific value of the spin σ = 1/2, corresponding to the value q = 2,
the complex argument modulo π of the fermionic observable F follows from its
definition Eq.(7). For instance, if the edge e points in the same direction as
the starting edge ea, then the winding is a multiple of 2π, so that the term
e−

1
2 ·iWγ(ea,e) is equal to ±1, and F (e) is purely real. The same reasoning can

be applied to any edge to show that F (e) belongs to the line eiπ/4R, e−iπ/4R or
iR, depending on the direction of e. Contrary to Lemma 2.5, this property is
very specific to the FK Ising model.

For a vertex v ∈ V� \ ∂V�, keeping the same notations as for Lemma 2.5,
F (e1) and F (e3) are always orthogonal (for the scalar product between complex
numbers (a, b) 7→ <e(ab̄)), as well as F (e2) and F (e4), so that Eq.(8) gives

|F (e1)|2 + |F (e3)|2 = |F (e2)|2 + |F (e4)|2 . (9)

Consider now a vertex v ∈ ∂V�. It possesses two or four adjacent edges,
depending on whether the corresponding boundary arc passes once or twice
through this vertex. Assume that there are only two adjacent edges (the other
case can be treated similarly), and denote by e5 the “entering” edge, and by e6

the “exiting” edge. For such a vertex on the boundary of the domain, e5 belongs
to the interface γ if and only if e6 belongs to γ – indeed, by construction, the
curve entering through e5 must leave through e6. Moreover, the windings of the
curve Wγ(ea, e5) and Wγ(ea, e6) are constant since γ cannot wind around these
edges. From these two facts, we deduce:

|F (e5)|2 =
∣∣∣e− 1

2 ·iWγ(ea,e5)PD,a,b(e5 ∈ γ)
∣∣∣2 = PD,a,b(e5 ∈ γ)2 = |F (e6)|2. (10)

From Eqs.(9) and (10), one can easily prove the following proposition.
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Proposition 2.6 ([34], Lemma 3.6) There exists a unique function H de-
fined on the faces of D� by the relation

H(B)−H(W ) = |F (e)|2 , (11)

for any two neighboring faces B and W , respectively black and white, separated
by the edge e, and by fixing the value 1 on the black face corresponding to a.
Moreover, H is then automatically equal to 1 on the black faces of the wired arc,
and equal to 0 on the white faces of the dual free arc.

This function H is a discrete analogue of the antiderivative of F 2, as explained
in Remark 3.7 of [34].

Approximate Dirichlet problem for H

Let us denote by H• and H◦ the restrictions of H respectively to the black faces
and to the white faces. At a black site u of D which is not on the boundary, we
can consider the usual discrete Laplacian ∆ (on the graph D): for a function f ,
∆f(u) is the average of f on the four nearest black neighbors of u, minus f(u).
A similar definition holds for white sites of the graph D∗.

The result below, proved in [34], is a key step to prove convergence of the
observable as one scales the domain – but we will not discuss this question here.
Its proof relies on an elementary yet quite lengthy computation.

Proposition 2.7 ([34], Lemma 3.8) The function H• (resp. H◦) is subhar-
monic (resp. superharmonic) inside the domain for the discrete Laplacian.

Since we know that H is equal to 1 (resp. 0) on the black faces of the wired
arc (resp. on the white faces of the dual free arc), the previous proposition can
be seen as an approximate Dirichlet problem for the function H. In the next
section, we make this statement rigorous by comparing H to harmonic functions
corresponding to the same boundary problems (on the set of black faces, or on
the set of white ones).

3 Comparison to harmonic measures

In this section, we obtain a comparison result for the boundary values of the
fermionic observable F introduced in the previous section in terms of discrete
harmonic measures. It will be used to obtain all the quantitative estimates on
the observable that we need for the proof of Theorem 1.1.

3.1 Comparison principle

As in the previous section, let (D, a, b) be a discrete Dobrushin domain, with
free boundary conditions on the arc (ab), and wired boundary conditions on the
other arc (ba).

12



For our estimates, we first extend the medial graph of our discrete domain
by adding two extra layers of faces: one layer of white faces adjacent to the
black faces of the wired arc, and one layer of black faces adjacent to the white
faces of the dual free arc. We denote by D̄� this extended domain.

Remark 3.1 Note that a small technicality arises when adding a new layer of
faces: some of these additional faces can overlap faces that were already here.
For instance, if the domain has a slit, the free and the wired arc are adjacent
along this slit, and the extra layer on the wired arc (resp. on the dual free arc)
overlaps the dual free arc (resp. the wired arc). As we will see, H• is equal to 1
on the wired arc, and to 0 on the additional layer along the dual free arc. One
should thus remember in the following that the added faces are considered as
different from the original ones – it will always be clear from the context which
faces we are considering.

For any given black face B, let us define
(
XB
•t
)
t≥0

to be the continuous-time
random walk on the black faces of D̄� starting at B, that jumps with rate 1 on
adjacent black faces, except for the black faces on the extra layer of black faces
adjacent to the dual free arc onto which it jumps with rate ρ := 2/(

√
2 + 1).

Similarly, we denote by
(
XW
◦t
)
t≥0

the continuous-time random walk on the white
faces of D̄� starting at a white face W that jumps with rate 1 on adjacent white
faces, except for the white faces on the extra layer of white faces adjacent to the
wired arc onto which it jumps with the same rate ρ = 2/(

√
2 + 1) as previously.

For a black face B, we denote by HM•(B) the probability that the random
walk XB

•t hits the wired arc from b to a before hitting the extra layer adjacent
to the free arc. Similarly, for W a white face, we denote by HM◦(W ) the
probability that the random walk XW

◦t hits the additional layer adjacent to the
wired arc before hitting the free arc. Note that there is no extra difficulty
in defining these quantities for infinite discrete domains as well. We have the
following result:

Proposition 3.2 (uniform comparability) Let (D, a, b) be a discrete Do-
brushin domain, and let e be a medial edge of ∂ab (thus adjacent to the free
arc). Let B = B(e) be the black face bordered by e, and W = W (e) be a white
face adjacent to B that does not belong to the dual free arc. Then we have√

HM◦(W ) ≤ |F (e)| ≤
√

HM•(B). (12)

Proof By (11) and the lines following (11), we have |F (e)|2 = H(B) and
H(W ) = |F (e)|2 − |F (e′)|2 ≤ |F (e)|2, where e′ is the medial edge between B
and W : it is therefore sufficient to show that H(B) ≤ HM•(B) and H(W ) ≥
HM◦(W ). We only prove that H(B) ≤ HM•(B), since the other case can be
handled in the same way.

For this, we use a variation of a trick introduced in [9] and extend the function
H to the extra layer of black faces – added as explained above – by setting H
to be equal to 0 there. It is then sufficient to show that the restriction H• of H

13



Figure 4: We extend D� by adding two extra layers of medial faces, and extend
the functions H• and H◦ there. Here is represented the extension along the dual
free arc.

to the black faces of D̄� is subharmonic for the Laplacian that is the generator
of the random walk X•, since it has the same boundary values as HM• (which
is harmonic for this Laplacian). Inside the domain, subharmonicity is given by
Proposition 2.7, since there the Laplacian of X• is the usual discrete Laplacian
(associated with it is just a simple random walk). The only case to check is
when a face involved in the computation of the Laplacian belongs to one of the
extra layers. For the sake of simplicity, we study the case when only one face
belongs to these extra layers.

Denote by BW , BN , BE and BS the black faces adjacent to B, and assume
that BS is on the extra layer (see Figure 4). The discrete Laplacian of X• at
face B is denoted by ∆•. We claim that

∆•H•(B) =
2 +
√

2

6 + 5
√

2
[H•(BW ) +H•(BN ) +H•(BE)] +

2
√

2

6 + 5
√

2
H•(BS)−H•(B) ≥ 0.

(13)

For that, let us denote by e1, e2, e3, e4 the four medial edges at the bottom
vertex v between B and BS , in clockwise order, with e1 and e2 along B, and e3

and e4 along BS (see Figure 4) – note that e3 and e4 are not edges of D�, but
of (Z2)�.

We extend F to e3 and e4 by requiring F (e3) and F (e1) to be orthogonal,
as well as F (e4) and F (e2), and F (e1) + F (e3) = F (e2) + F (e4) to hold true.
This defines these two values uniquely: indeed, as noted before, we know that
F (e2) = e−iπ/4F (e1) on the boundary (since Wγ(ea, e1) and Wγ(ea, e2) are
fixed, with Wγ(ea, e2) = Wγ(ea, e1) + π/2, and the curve cannot go through
one of these edges without going through the other one), which implies, after a
small calculation, that

|F (e3)|2 =
∣∣∣( tan

π

8

)
eiπ/4F (e2)

∣∣∣2 =
2−
√

2
2 +
√

2
|F (e2)|2 =

2−
√

2
2 +
√

2
H•(B).

If we denote by H̃• the function defined by H̃• = H• on B, BW , BN and BE ,
and by

H̃•(BS) = |F (e3)|2 =
2−
√

2
2 +
√

2
H•(B), (14)

then H̃• satisfies the same relation Eq.(11) (definition of H) for e3 and e4, as
inside the domain. Since the fermionic observable F verifies the same local equa-
tions, the computation performed in the Appendix C of [34] is valid, Proposition
2.7 applies at B (with H̃ instead of H), and we deduce

∆H̃•(B) =
1
4

[H̃•(BW ) + H̃•(BN ) + H̃•(BE) + H̃•(BS)]− H̃•(B) ≥ 0. (15)
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Figure 5: Estimate of Lemma 3.3: the dashed line corresponds to the dual free
arc.

Using the definition of H̃•, this inequality can be rewritten as

1
4

[H•(BW ) +H•(BN ) +H•(BE)]− 6 + 5
√

2
4(2 +

√
2)
H•(B) ≥ 0. (16)

Now using that H•(BS) = 0, we get the claim, Eq.(13). �

3.2 Estimates on harmonic measures

In the previous subsection, we gave a comparison principle between the values of
H near the boundary, and the harmonic measures associated with two (almost
simple) random walks, on the two lattices composed of the black faces and of
the white faces respectively. In this subsection, we give estimates for these two
harmonic measures in different domains needed for the proof of Theorem 1.1.
We start by giving a lower bound which is useful in the proof of the 1-point
estimate.

Lemma 3.3 For β > 0 and n ≥ 0, let Rβn be

Rβn = J−βn, βnK× J0, 2nK.

Then there exists c1(β) > 0 such that for any n ≥ 1,

HM◦(Wx) ≥ c1(β)
n2

(17)

in the Dobrushin domain (Rβn, u, u) (see Figure 5), for all x = (x1, 0) and u =
(u1, 2n) such that |x1|, |u1| ≤ βn/2 ( i.e. far enough from the corners), Wx being
any of the two white faces that are adjacent to x and not on the dual free arc.

Proof This proposition follows from standard results on simple random walks
(gambler’s ruin type estimates). For the sake of conciseness, we do not provide
a detailed proof. �

In the remaining part of this section, we consider only Dobrushin domains
(D, a, b) that contain the origin on the free arc, and are subsets of the medial
lattice H�, where H = {(x1, x2) ∈ Z2, x2 ≥ 0} denotes the upper half plane – in
this case, we say that D is a Dobrushin H-domain. For the following estimates
on harmonic measures, the Dobrushin domains that we consider can also be
infinite. We are interested in the harmonic measure of the wired arc seen from
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Figure 6: The two domains involved in the proof of Lemma 3.4.

a given point: without loss of generality, we can assume that this point is just
the origin. Let B0 be the corresponding black face of the medial lattice, and
W0 be an adjacent white face which is not on the free arc.

We first prove a lower bound on the harmonic measure. For that, we intro-
duce, for k ∈ Z and n ≥ 0, the segments

ln(k) = {k} × J0, nK (= {(k, j) : 0 ≤ j ≤ n}).

Lemma 3.4 There exists a constant c2 > 0 such that for any Dobrushin H-
domain (D, a, b), we have

HM◦(W0) ≥ c2
k
, (18)

provided that, in D, the segment lk(−k) disconnects from the origin the inter-
section of the free arc with the upper half-plane (see Figure 6).

Proof We know that lk(−k) disconnects the origin from the part of the free
arc that lies in the upper half-plane, let us thus consider the connected compo-
nent of D \ lk(−k) that contains the origin. In this new domain D0, if we put
free boundary conditions along lk(−k), the harmonic measure of the wired arc
is smaller than the harmonic measure of the wired arc in the original domain D.
On the other hand, the harmonic measure of the wired arc in D0 is larger than
the harmonic measure of the wired arc in the slit domain (H\lk(−k), (−k, k),∞),
which has respectively wired and free boundary conditions to the left and to the
right of (−k, k) (see Figure 6). Estimating this harmonic measure is straight-
forward, using the same arguments as before. �

We now derive upper bounds on the harmonic measures. We will need
estimates of two different types. The first one takes into account the distance
between the origin and the wired arc, while the second one requires the existence
of a segment ln(k) disconnecting the wired arc from the origin (still inside the
domain).

Lemma 3.5 There exist constants c3, c4 > 0 such that for any Dobrushin H-
domain (D, a, b),

(i) if d1(0) denotes the graph distance between the origin and the wired arc,

HM•(B0) ≤ c3
1

d1(0)
, (19)

(ii) and if the segment ln(k) disconnects the wired arc from the origin inside
D,

HM•(B0) ≤ c4
n

|k|2
. (20)

16



Figure 7: The two different upper bounds (i) and (ii) of Lemma 3.5.

Proof Let us first consider item (i). For d = d1(0), define the Dobrushin
domain (Bd, (−d, 0), (d, 0)), where Bd is the set of sites in H at a graph distance
at most d from the origin (see Figure 7). The harmonic measure of the wired
arc in (D, a, b) is smaller than the harmonic measure of the wired arc in this
new domain Bd, and, as before, this harmonic measure is easy to estimate.

Let us now turn to item (ii). Since ln(k) disconnects the wired arc from
the origin, the harmonic measure of the wired arc is smaller than the harmonic
measure of ln(k) inside D, and this harmonic measure is smaller than it is in
the domain H \ ln(k) with wired boundary conditions on the left side of ln(k) –
right side if k < 0 (see Figure 7). Once again, the estimates are easy to perform
in this domain. �

4 Proof of Theorem 1.1

We now prove our result, Theorem 1.1. The main step is to prove the uniform
lower bound for rectangles of bounded aspect ratio with free boundary condi-
tions. We then use monotonicity to compare boundary conditions and obtain
the desired result. In the case of free boundary conditions, the proof relies on a
second moment estimate on the number N of pairs of vertices (x, u), on the top
and bottom sides of the rectangle respectively, that are connected by an open
path.

The organization of this section follows the second-moment estimate strat-
egy. In Proposition 4.2, we first prove a lower bound on the probability of a
connection from a given site on the bottom side of a rectangle to a given site on
the top side. This estimate gives a lower bound on the expectation of N . Then,
Proposition 4.3 provides an upper bound on the probability that two points on
the bottom side of a rectangle are connected to the top side. This proposition
is the core of the proof, and it provides the right bound for the second moment
of N . It allows us to conclude the section by using the second moment estimate
method, thus proving Theorem 1.1.

In this section, we use two main tools: the domain Markov property, and
probability estimates for connections between the wired arc and sites on the free
arc. We first explain how the previous estimates on harmonic measures can be
used to derive estimates on connection probabilities. The following lemma is
instrumental in this approach.

Lemma 4.1 Let (D, a, b) be a Dobrushin domain. For any site x on the free
arc of D, we have√

HM◦(Wx) ≤ PD,a,b(x wired arc) ≤
√

HM•(Bx), (21)
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where Bx is the black face corresponding to x, and Wx is any closest white face
that is not on the free arc.

Proof Since x is on the free boundary of D, there exists a white face on the free
arc of D� which is adjacent to Bx: we denote by e the edge between these faces.
As noted before, since the edge e is along the free arc, the winding Wγ(ea, e) of
the exploration path γ at e is constant, and depends only on the direction of e.
This implies that

PD,a,b(e ∈ γ) = |F (e)|.
In addition, e belongs to γ if and only if x is connected to the wired arc, which
implies that |F (e)| is exactly equal to PD,a,b(x  wired arc). Proposition 3.2
thus implies the claim. �

With this lemma at our disposal, we can prove the different estimates.
Throughout the proof, we use the notation ci(β) for constants that depend
neither on n nor on sites x, y or on boundary conditions. When they do not
depend on β, we denote them by ci (it is the case for the upper bounds). Recall
the definition of Rβn:

Rβn = J−βn, βnK× J0, 2nK. (22)

Let ∂+R
β
n (resp. ∂−R

β
n) be the top side J−βn, βnK × {2n} (resp. bottom side

J−βn, βnK×{0}) of the rectangle Rβn. We begin with a lower bound on connec-
tion probabilities.

Proposition 4.2 (connection probability for one point on the bottom side)
Let β > 0, there exists a constant c(β) > 0 such that for any n ≥ 1,

P0
Rβn

(x u) ≥ c(β)
n

(23)

for all x = (x1, 0) ∈ ∂−Rβn, u = (u1, 2n) ∈ ∂+R
β
n, satisfying |x1|, |u1| ≤ βn/2.

Proof The probability that x and u are connected in the rectangle with free
boundary conditions can be written as the probability that x is connected to
the wired arc in (Rβn, u, u) (where the wired arc consists of a single vertex). The
previous lemma, together with the estimate of Lemma 3.3, concludes the proof.
�

We now study the probability that two boundary points on the bottom edge
of Rβn are connected to the top edge, with boundary conditions wired on the
top side and free on the other sides.

Proposition 4.3 (connection probability for two points on the bottom side)
There exists a constant c > 0 (uniform in β, n) such that for any rectangle Rβn
and any two points x, y on the bottom side ∂−Rβn,

PRβn,an,bn(x, y  wired arc) ≤ c√
|x− y|n

, (24)
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Figure 8: The Dobrushin domain (Rβn, cn, dn), together with the exploration
path up to time T .

where an and bn denote respectively the top-left and top-right corners of the
rectangle Rβn.

The proof is based on the following lemma, which is a strong form of the so-
called half-plane one-arm probability estimate (see Subsection 5.1 for a further
discussion of this result). For x on the bottom side of Rβn and k ≥ 1, we denote
by Bk(x) the box centered at x with diameter k for the graph distance. We can
now state the lemma needed:

Lemma 4.4 There exists a constant c5 > 0 (uniform in n, β and the choice of
x) such that for all k ≥ 1,

PRβn,an,bn(Bk(x) wired arc) ≤ c5

√
k

n
. (25)

Proof Consider n, k, β > 0, and the box Rβn with one point x ∈ ∂−Rβn. Eq.(25)
becomes trivial if k ≥ n, so we can assume that k ≤ n. For any choice of
β′ ≥ β, the monotonicity between boundary conditions Eq.(4) implies that
the probability that Bk(x) is connected to the wired arc ∂+R

β
n in (Rβn, an, bn)

is smaller than the probability that Bk(x) is connected to the wired arc in
the Dobrushin domain (Rβ

′

n , cn, dn), where cn and dn are the bottom-left and
bottom-right corners of Rβ

′

n . From now on, we replace β by β+ 2, and we work
in the new domain (Rβn, cn, dn). Notice that Bk(x) is then included in Rβn and
that the right-most site of Bk(x) is at a distance at least n from the wired arc.

We denote by T the hitting time – for the exploration path naturally parametrized
by the number of steps – of the set of medial edges bordering (the black faces
corresponding to) the sites of Bk(x); we set T = ∞ if the exploration path
never reaches this set, so that Bk(x) is connected to the wired arc if and only if
T <∞.

Let z be the right-most site of the box Bk(x). Consider now the event
{z  wired arc}. By conditioning on the curve up to time T (and on the event
{Bk(x) wired arc}), we obtain

P
R
β
n,cn,dn

(z  wired arc) = E
R
β
n,cn,dn

ˆ
IT<∞P

R
β
n,cn,dn

(z  wired arc | γ[0, T ])
˜

= E
R
β
n,cn,dn

ˆ
IT<∞P

R
β
n\γ[0,T ],γ(T ),dn

(z  wired arc)
˜
,

where in the second equality, we have used the domain Markov property, and
the fact that it is sufficient for z to be connected to the wired arc in the new
domain (since it is then automatically connected to the wired arc of the original
domain).
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Figure 9: This picture presents the different steps in the proof of Proposition
4.3: we first (1) condition on γ[0, Tx] and use the uniform estimate (i) of Lemma
3.5, then (2) condition on γ[0, Tk+1] and use the estimate (ii) of Lemma 3.5, in
order to (3) conclude with Lemma 4.4.

On the one hand, since z is at a distance at least n from the wired arc
(thanks to the new choice of β), we can combine Lemma 4.1 with item (i) of
Lemma 3.5 to obtain

PRβn,cn,dn(z  wired arc) ≤ c3√
n
. (26)

On the other hand, if γ(T ) can be written as γ(T ) = z+(−r, r), with 0 ≤ r ≤ k,
then the arc z+lr(−r) disconnects the free arc from z in the domain Rβn\γ[0, T ],
while if γ(T ) = z + (−r, 2k − r), with k + 1 ≤ r ≤ 2k, then the arc z + lr(−r)
still disconnects the free arc from z. Using once again Lemma 4.1, this time
with Lemma 3.4, we obtain that a.s.

PRβn\γ[0,T ],γ(T ),dn
(z  wired arc) ≥ c4√

r
≥ c4√

2k
. (27)

This estimate being uniform in the realization of γ[0, T ], we obtain

c4√
2k

PRβn,cn,dn(T <∞) ≤ PRβn,cn,dn(z  wired arc) ≤ c3√
n
, (28)

which implies the desired claim, that is, Eq.(25). �

Proof of Proposition 4.3 Let us take two sites x and y on ∂−Rβn. As in the
previous proof, the larger the β, the larger the corresponding probability, we can
thus assume that β has been chosen in such a way that there are no boundary
effects. In order to prove the estimate, we express the event considered in terms
of the exploration path γ. If x and y are connected to the wired arc, γ must go
through two boundary edges which are adjacent to x and y, that we denote by
ex and ey. Notice that ex has to be discovered by γ before ey is.

We now define Tx to be the hitting time of ex, and Tk to be the hitting time
of the set of medial edges bordering (the black faces associated with) the sites
of B2k(y), for k ≤ k0 = blog2 |x − y|c – where b·c is the integer part of a real
number. If the exploration path does not cross this ball before hitting ex, we
set Tk =∞. With these definitions, the probability that ex and ey are both on
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γ can be expressed as

PRβn,an,bn(x, y  wired arc) = PRβn,an,bn(ex, ey ∈ γ) (29)

=
k0∑
k=0

PRβn,an,bn(ey ∈ γ, Tx <∞, Tk+1 < Tk =∞) (30)

=
k0∑
k=0

ERβn,an,bn
[
ITk+1<Tk=∞ITx<∞PRβn,an,bn(ey ∈ γ |γ[0, Tx] )

]
, (31)

where the third equality is obtained by conditioning on the exploration path up
to time Tx. Recall that ey belongs to γ if and only if y is connected to the wired
arc. Moreover, if {Tk =∞}, y is at a distance at least 2k from the wired arc in
Rβn \ γ[0, Tx]. Hence, the domain Markov property, item (i) of Lemma 3.5 and
Lemma 4.1 give that, on {Tk =∞},

PRβn,an,bn(ey ∈ γ |γ[0, Tx] ) = PRβn\γ[0,Tx],x,bn
(y  wired arc) ≤ c3√

2k
a.s.

(32)
By plugging this uniform estimate into (31), and removing the condition on
Tk =∞, we obtain

P
R
β
n,an,bn

(ex, ey ∈ γ) ≤
k0X
k=0

c3√
2k

E
R
β
n,an,bn

ˆ
ITk+1<∞P

R
β
n,an,bn

(Tx <∞|γ[0, Tk+1] )
˜
,

where we conditioned on the path up to time Tk+1. Now, ex belongs to γ if
and only if x is connected to the wired arc. Assuming {Tk+1 <∞}, the vertical
segment connecting γ(Tk+1) to Z – of length at most 2k+1 – disconnects the
wired arc from x in the domain Rβn \ γ[0, Tk+1]. For k + 1 < k0, this vertical
segment is at distance at least 1

2 |x − y| from x. Applying the domain Markov
property and item (ii) of Lemma 3.5, we deduce that, for k + 1 < k0, on
{Tk+1 <∞},

P
R
β
n,an,bn

(ex ∈ γ |γ[0, Tk+1] ) = P
R
β
n\γ[0,Tk+1],γ(Tk+1),bn

(x wired arc) ≤ 2c4

√
2k+1

|x− y| a.s..

Making use of this uniform bound, we obtain

PRβn,an,bn(x, y  wired arc)

≤ 2c3c4
k0−2∑
k=0

√
2k+1

√
2k|x− y|

PRβn,an,bn(Tk+1 <∞) + 2c3
PRβn,an,bn(Tx <∞)

√
2k0−1

≤
√

2c3c4c5
|x− y|

√
n

k0−2∑
k=0

√
2k +

2c3c5√
n2k0−1

≤ c√
n|x− y|

,

using also Lemma 4.4 (twice) for the second inequality. �

We are now in a position to prove our result.
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Proof of Theorem 1.1 Let β > 0, n > 0, and also Rβn defined as previously.
Step 1: lower bound for free boundary conditions. Let Nn be the

number of connected pairs (x, u), with x ∈ ∂−Rβn, and u ∈ ∂+R
β
n. The expected

value of this quantity is equal to

E0
Rβn

[Nn] =
∑

u∈∂+Rβn
x∈∂−Rβn

P0
Rβn

(x u). (33)

Proposition 4.2 directly provides the following lower bound on the expectation
by summing on the (βn)2 pairs of points (x, u) far enough from the corners, i.e.
satisfying the condition of the proposition:

E0
Rβn

[Nn] ≥ c6(β)n (34)

for some c6(β) > 0.
On the other hand, if x and u (resp. y and v) are pair-wise connected, then

they are also connected to the horizontal line Z × {n} which is (vertically) at
the middle of Rβn. Moreover, the domain Markov property implies that the
probability – in Rβn with free boundary conditions – that x and y are connected
to this line is smaller than the probability of this event in the rectangle of half
height with wired boundary conditions on the top side. In the following, we
assume without loss of generality that n is even and we set m = n/2, so that
the previous rectangle is R2β

m , and we define am and bm as before. Using the
FKG inequality, and also the symmetry of the lattice, we get

P0

R
β
n

(x u, y  v) ≤ P
R

2β
m ,am,bm

(x, y  wired arc) P
R

2β
m ,am,bm

(ū, v̄  wired arc),

where ū and v̄ are the projections on the real axis of u and v. Summing the
bound provided by Proposition 4.3 on all sites x, y ∈ ∂−Rβn and u, v ∈ ∂+R

β
n,

we obtain
E0
Rβn

[N2
n] ≤ c7m2 ≤ c7n2 (35)

for some constant c7 > 0. Now, by the Cauchy-Schwarz inequality,

P0
Rβn

(Cv(Rβn)) = P0
Rβn

(Nn > 0) = E0
Rβn

[(INn>0)2] ≥
E0
Rβn

[Nn]2

E0
Rβn

[N2
n]
≥ c6(β)2/c7, (36)

since E0
Rβn

[Nn] = E0
Rβn

[NnINn>0]. We have thus reached the claim.
Step 2: lower and upper bounds for general boundary conditions.

Using the ordering between boundary conditions Eq.(4), the lower bound that
we have just proved for free boundary conditions actually implies the lower
bound for any boundary conditions ξ.

For the upper bound, consider a rectangle R with dimensions n ×m with
m ∈ Jβ1n, β2nK and with boundary conditions ξ. Using once again Eq.(4), it
is sufficient to address the case of wired boundary conditions, and in this case,
the probability that there exists a dual crossing from the left side to the right
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side is at least c− = c−(1/β2, 1/β1), since the dual model has free boundary
conditions. We deduce, using the self-duality property, that

PξR(Cv(R)) ≤ 1− P1
R(C∗h(R)) = 1− P0

R∗(Ch(R∗)) ≤ 1− c−, (37)

where we use the notation C∗h for the existence of a horizontal dual crossing,
and R∗ is as usual the dual graph of R (note that we have implicitly used the
invariance by π/2-rotations). This concludes the proof of Theorem 1.1.

�

5 Consequences for the FK Ising and the (spin)
Ising models

5.1 Critical exponents for the FK Ising and the Ising mod-
els

Power-law decay of the magnetization at criticality

We start by stating an easy consequence of Theorem 1.1. We consider the box
Sn = J−n, nK2, its boundary being denoted as usual by ∂Sn. We also introduce
the annulus Sm,n = Sn \ S̊m of radii m < n centered on the origin, and we
denote by C(Sm,n) the event that there exists an open circuit surrounding Sm
in this annulus.

Corollary 5.1 (circuits in annuli) For every β < 1, there exists a constant
cβ > 0 such that for all n and m, with m ≤ βn,

P0
Sm,n(C(Sm,n)) ≥ cβ .

Proof This follows from Theorem 1.1 applied in the four rectangles RB =
J−n, nK × J−n,−mK, RL = J−n,−mK × J−n, nK, RT = J−n, nK × Jm,nK and
RR = Jm,nK × J−n, nK. Indeed, if there exists a crossing in each of these
rectangles in the “hard” direction, one can construct from them a circuit in
Sm,n.

Now, consider any of these rectangles, RB for instance. Its aspect ratio is
bounded by 2/(1 − β), so that Theorem 1.1 implies that there is a horizontal
crossing with probability at least

P0
RB (CH(RB)) ≥ c > 0.

Combined with the FKG inequality, this allows us to conclude: the desired
probability is at least cβ = c4 > 0. �
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Proposition 5.2 (power-law decay of the magnetization) For p = psd,
there exists a unique infinite-volume FK-Ising measure PZ2 . For this measure,
there is almost surely no infinite open cluster. Moreover, there exist constants
α, c > 0 such that for all n ≥ 0,

PZ2(0 ∂Sn) ≤ c

nα
. (38)

This result also applies to the Ising model: the magnetization at the origin
decays at least as a power law.

Remark 5.3 We would like to mention that an alternative proof of the fact that
there is no spontaneous magnetization at criticality can be found in [14, 39].
Also, we actually know from Onsager’s work that the connection probability
follows a power law as n → ∞, described by the one-arm plane exponent α1 =
1/8. It should be possible to prove the existence and the value of this exponent
using conformal invariance, as well as the arm exponents for a larger number
of arms. More precisely, one would need to consider the probability of crossing
an annulus a certain (fixed) number of times in the scaling limit, and analyze
the asymptotic behavior of this probability as the modulus tends to ∞. Theorem
1.1 then implies the so-called quasi-multiplicativity property, which allows one to
deduce, using concentric annuli, the existence and the value of the arm exponents
for the discrete model.

Proof We first note that it is classical that the non-existence of infinite clusters
implies the uniqueness of the infinite-volume measure: it is thus sufficient to
prove Eq.(38). We consider the annuli An = S2n,2n+1 for n ≥ 1, and C∗(An) the
event that there is a dual circuit in A∗n. We know from Corollary 5.1 that there
exists a constant c > 0 such that

P1
An(C∗(An)) ≥ c (39)

for all n ≥ 1. By successive conditionings, we then obtain

PZ2(0 ∂S2N ) ≤
N−1∏
n=0

P1
An((C∗(An))c) ≤ (1− c)N , (40)

and the desired result follows. �

n-point functions for the FK Ising and the Ising models

Since the work of Onsager [28], it is known that for the Ising model at criticality,
the magnetization at the middle of a square of side length 2m with (+) boundary
conditions decays like m−1/8. It is then tempting to say that the correlation of
two spins at distance m in the plane (in the infinite-volume limit, say) decays like
m−1/4, and this is indeed what happens. To the knowledge of the authors, there
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is no straightforward generalization of Onsager’s work that allows to derive this
without difficult computations. However, this result can be made rigorous very
easily with the help of Theorem 1.1. We give here only a result for two-point
correlation functions, but exponents for n-spin correlations, for instance, can be
obtained using exactly the same method.

Let us first use Theorem 1.1 to interpret Onsager’s result in terms of the FK
representation.

Lemma 5.4 Let Sm be the square J−m,mK2 with arbitrary boundary conditions
ξ. Then there exist two constants c1 and c2 (independent of m and ξ) such that
we have

c1m
−1/8 ≤ PξSm(0 ∂Sm) ≤ c2m−1/8. (41)

Proof This is a consequence of Onsager’s result for wired boundary conditions
(since it is derived in terms of the Ising model with (+) boundary conditions),
which provides the upper bound by monotonicity. Using Theorem 1.1, we can
obtain a lower bound independent of the boundary conditions by enforcing the
existence of a circuit in the annulus Sm/2,m, and using the FKG inequality. For
that, we just need to lower the constant, using monotonicity: the connection
probability conditionally on the fact that there is a wired annulus around the
origin is indeed larger than the connection probability with wired boundary
conditions on ∂Sm. �

We can now state the result for two-point correlation functions in the infinite-
volume Ising model.

Proposition 5.5 Consider the Ising model on Z2 at critical temperature. There
exist two positive constants C1 and C2 such that we have

C1|x− y|−1/4 ≤ Eβc [σxσy] ≤ C2|x− y|−1/4, (42)

where for any x, y ∈ Z2, we denote by σx and σy the spins at x and y, and Pβc
is the infinite-volume Ising measure at βc.

Proof The 2-spin correlation Eβc [σxσy] can be expressed, in the corresponding
FK representation, as the probability of the event {x  y}. Let now m be
the integer part of |x − y|/4. The upper bound is easy and does not rely on
Theorem 1.1: the event that x is connected to y implies that x is connected to
x+∂Sm and that y is connected to y+∂Sm. Using the domain Markov property,
these two events are independent conditionally on the boundaries of the boxes
being open: together with the previous lemma, this provides the upper bound.

Let us turn now to the lower bound. We can enforce the existence of a
connected “8” in

[(x+ S2m+2) ∪ (y + S2m+2)] \ [(x+ Sm) ∪ (y + Sm)]
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that surrounds both x and y and separates them: this costs only a positive
constant α, independent of m, using Theorem 1.1 in well-chosen rectangles and
the FKG inequality. Using once again the FKG inequality, we get that

PZ2(x y) ≥ αPZ2(x x+ ∂S2m+2) · PZ2(y  y + ∂S2m+2), (43)

and combined with the previous lemma, this yields the desired result. �

Half-plane one-arm exponent for the FK Ising model and boundary
magnetization for the Ising model

As a by-product of our proofs, in particular of the estimates of Section 3, one can
also obtain the value of the critical exponent for the boundary magnetization
in the Ising model, near a free boundary arc (assuming it is smooth), and the
corresponding one-arm half-plane exponent for the FK Ising model.

Let us first consider the one-point magnetization ED,a,b[σx] for the Ising
model at criticality in a discrete domain (D, a, b) with free boundary conditions
on the counterclockwise arc (ab), and (+) boundary conditions on the other arc
(ba).

Proposition 5.6 There exist positive constants c1 and c2 such that for any
discrete domain (D, a, b) with a = (−n, 0) and b = (n, 0) (n ≥ 0), containing
the rectangle Rn = J−n, nK×J0, nK and such that its boundary contains the lower
arc J−n, nK× {0}, we have

c1n
−1/2 ≤ ED,a,b[σ0] ≤ c2n−1/2, (44)

uniformly in n.

Proof The magnetization at the origin can be expressed, in the corresponding
FK representation, as the probability that the origin is connected to the wired
counterclockwise arc (ba). By Lemma 4.1, we can compare this probability
to the harmonic measures HM◦ and HM•, for which estimates similar to the
estimates in Lemmas 3.4 and 3.5 hold. �

This result can be equivalently stated for the one-arm half-plane probability
for FK percolation:

Proposition 5.7 Consider the rectangle Rn = J−n, nK × J0, nK. There exist
positive constants c1 and c2 such that for any boundary conditions ξ such that
the bottom side ∂−Rn is free, one has

c1n
−1/2 ≤ PξRn(0 ∂+Rn) ≤ c2n−1/2, (45)

uniformly over all n.
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Proof We get the upper bound using monotonicity and the previous propo-
sition, since (+) boundary conditions in the Ising model correspond to wired
boundary conditions in the corresponding FK representation. For the lower
bound, by Theorem 1.1 and the FKG inequality, we can enforce the existence
of a crossing in the half-annulus Rn \Rn/2 that disconnects 0 from ∂Rn \ ∂−Rn
to the price of a constant independent of ξ. Using monotonicity and FKG, the
probability that 0 is connected by an open path to this crossing (conditionally on
its existence) is larger than the probability that 0 is connected to the boundary
with wired boundary conditions on ∂Rn \ ∂−Rn, without conditioning. Hence,
the lower bound of the previous proposition gives the desired result. �

Remark 5.8 Note that contrary to the power laws established using the SLE
technology, there are no potential logarithmic corrections here – as is the case
with the “universal” arm exponents for percolation (corresponding to 2 and 3
arms in the half-plane, and 5 arms in the plane). Furthermore, one can fol-
low the same standard reasoning as for percolation, based on the RSW lower
bound, to prove that the two- and three-arm half-plane exponents, with alternat-
ing “types” (primal or dual), have values 1 and 2 respectively.

5.2 Regularity of interfaces and tightness

Theorem 1.1 can be used to apply the technology developed by Aizenman and
Burchard [1], to prove regularity of the collection of interfaces, which implies
tightness using a variant of the Arzelà-Ascoli theorem.

This compactness property for the set of interfaces is important to construct
the scaling limits of discrete interfaces, once we have a way to identify their limit
uniquely (using for instance the so-called martingale technique, detailed in [33]).
Here, the fermionic observable provides a conformally invariant martingale, and
its convergence to a holomorphic function has been proved in [34], leading to
the following important theorem:

Theorem 5.9 (Smirnov [35]) For any Dobrushin domain (D, a, b), with dis-
crete lattice approximations (Dε, aε, bε), the PDε,aε,bε-law of the exploration path
γε from aε to bε converges weakly to the law of a chordal SLE(16/3) path in D,
from a to b.

We briefly explain how one can use the crossing bounds to obtain the com-
pactness of the interfaces. Note that this result has also been proved, in a
different way, in [15] and in the forthcoming article [16].

As usual, curves are defined as continuous functions from [0, 1] into a bounded
domain D – more precisely, as equivalence classes up to strictly increasing
reparametrization. The curve distance is given by

d(γ1, γ2) = inf
φ

sup
u∈[0,1]

|γ1(u)− γ2(φ(u))|, (46)

where the infimum is taken over all strictly increasing bijections φ : [0, 1] →
[0, 1].
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Let Sn,N (x) = x + Sn,N be the annulus of radii n < N centered at x. We
denote by Ak(x; r,R) the event that there are 2k pairwise disjoint crossings of
the curve in Sn,N (x) (from its inner boundary to its outer boundary).

Theorem 5.10 (Aizenman-Burchard [1]) Let D be a compact domain and
denote by Pε the law of a random curve γ̃ε with short-distance cut-off ε > 0. If
for any k > 0, there exists Ck <∞ and λk > 0 such that for all ε < r < R and
x ∈ D,

Pε(Ak(x; r,R)) ≤ Ck
( r
R

)λk
, (47)

and λk → ∞, then the curves (γ̃ε) are precompact for the weak convergence
associated with the curve distance.

This theorem can be applied to the family (γε) of exploration paths defined
in Theorem 5.9, using the following argument. If Ak(x; r,R) holds, then there
are k open paths, alternating with k dual paths, connecting the inner boundary
of the annulus to its outer boundary. Moreover, one can decompose the annulus
Sr,R(x) into roughly log2(R/r) annuli of the form Sr,2r(x), so that it is actually
sufficient to prove that

PDε,aε,bε(Ak(x; r, 2r)) ≤ ck (48)

for some constant c < 1. Since the paths are alternating, one can deduce that
there are k open crossings, each one being surrounded by two dual paths. Hence,
using successive conditionings and the domain Markov property, the probability
for each crossing is smaller than the probability that there is a crossing in the
annulus, which is less than some constant c < 1 by Corollary 5.1 (note that this
reasoning also holds on the boundary).

Hence, Theorem 5.10 implies that the family (γε) is precompact for the weak
convergence.

5.3 Spatial mixing at criticality

Theorem 1.1 also provides estimates on spatial mixing for both the FK Ising
and the Ising models. In the following proposition, we give an example of
decorrelation between events for the FK Ising model.

Proposition 5.11 There exist c, α > 0 such that for any k ≤ n,

∣∣PZ2(A ∩B)− PZ2(A)PZ2(B)
∣∣ ≤ c(k

n

)α
PZ2(A)PZ2(B) (49)

for any event A (resp. B) depending only on the edges in the box Sk (resp.
outside Sn), the measure PZ2 being the (unique) infinite-volume FK percolation
measure for q = 2 and p = psd.
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Proof First, it is sufficient to prove∣∣PξΛn(A)− P1
Λn(A)

∣∣ ≤ c(k
n

)α
PξΛn(A) (50)

for any event A depending on edges in Λk.
Claim: There exists a coupling P on configurations (ωξ, ω1) with the fol-

lowing properties:

• ωξ (resp. ω1) has law PξΛn (resp. P1
Λn

).

• if ω1 contains a closed circuit in Λn \ Λk, let Γ be the exterior most such
circuit. Then Γ is also closed in ωξ and ω1 and ωξ coincide inside Γ.

• if ωξ contains an open circuit in Λn \ Λk, let Γ̃ be the exterior most such
circuit. Then Γ̃ is also open in ω1 and ω1 and ωξ coincide inside Γ̃.

Proof of the claim Consider uniform random variables Ue for every edge
e. Sample both configurations based on the same random variables Ue from
the exterior, meaning that after k steps, you look at one edge with one end-
point connected to the boundary of Λn by an open path, until it is not possible
anymore (meaning that you discovered a closed circuit). Note that ω1 is larger
than ωξ by comparison between boundary conditions. Therefore, the circuit
will also be closed in ωξ. Then the configurations inside this circuit will be the
same since boundary conditions are free in this new domain. Similarly, the last
condition also holds.

�

Now, since A depends only on the edges in Λk, we can prove that condition-
ally to A, there exists a dual circuit in φ1

Λn
and φξΛn with probability 1−c(k/n)α.

Let E be this event. We deduce

PξΛn(A) ≥ PξΛn(A ∩ E)

= P (ωξ ∈ A ∩ E)
≥ P (ω1 ∈ A ∩ E)

= φ1(A ∩ E)

≥ (1− c(k/n)α)φ1(A)

where in the third line, we used the fact that if ωξ belongs to E, then ω1 belongs
to E, and they coincide in Λk, so that ωξ ∈ A if ω1 ∈ A.

Reciprocally, if F denotes the event that there is an open circuit in Λn \Λk,
we find

P1
Λn(A) ≥ P1

Λn(A ∩ F )
= P (ω1 ∈ A ∩ F )
≥ P (ωξ ∈ A ∩ F )

= φξ(A ∩ F )

≥ (1− c(k/n)α)φξ(A)
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where once again, we used in the third line that if ωξ ∈ F , then ω1 is in F , and
in this case, they coincide on Λk so that ωξ ∈ A implies that ω1 ∈ A. �

More generally, Theorem 1.1 would lead to ratio mixing properties, with an
explicit polynomial estimate. Away from criticality, estimates of this type can
be established by using the rate of spatial decay for the influence of a single
site. At criticality, the correlation between distant events does not boil down
to correlations between points and a finer argument must be found. Crossing-
probability estimates which are uniform in boundary conditions are perfectly
suited for these problems.

Recently, Lubetzky and Sly [26] used spatial mixing properties of the Ising
model in order to derive an important conjecture on the mixing time of the
Glauber dynamics of the Ising model at criticality. As a key step, they harness
Theorem 1.1 in order to prove a suitable analogue of the previous proposition.
Together with tools from the analysis of Markov chains, the spatial mixing
property provides polynomial upper bounds on the inverse spectral gap of the
Glauber dynamics (and also on the total variation mixing time).

6 Conjecture for general values of q

We conclude this article by stating a conjecture on FK models for other values
q ≥ 1. As we have seen, crossing estimates at criticality are useful for many
purposes, proving such bounds should thus be fundamental for studying two-
dimensional FK percolation models.

For 1 ≤ q < 4, the FK model at p = psd(q) is conjectured to be confor-
mally invariant in the scaling limit. More precisely, the collection of interfaces
in a domain with free boundary conditions should converge to the so-called
CLE(κ(q)) process, with κ(q) = 4π/ arccos(−√q/2). The following conjecture
is thus natural:

Conjecture 6.1 Consider the FK percolation model of parameter (psd(q), q)
with 1 ≤ q < 4 and let 0 < β1 < β2. There exist two constants 0 < c−(q) ≤
c+(q) < 1 such that for any rectangle R with side lengths n and m ∈ Jβ1n, β2nK,
one has

c−(q) ≤ Pξpsd(q),q,R(Cv(R)) ≤ c+(q)

for any boundary conditions ξ.

At q > 4, the random-cluster model (conjecturally) undergoes a first order
phase transition at psd(q) =

√
q/(1 +

√
q), in the following sense (this result has

been proved for q ≥ 25.72, see [13] and references therein): at criticality, there
exist different infinite-volume measures. If one considers the infinite-volume
measure with wired boundary conditions, the probability of having an infinite
cluster is 1, while if one considers the infinite-volume measure with free bound-
ary conditions, the probability of having an infinite cluster is 0 and the two-point
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functions decay exponentially fast. Therefore, the probability of having a cross-
ing goes to 1 (resp. to 0) with wired boundary conditions (resp. free boundary
conditions). A result analogue to Theorem 1.1 does not thus hold in this setting.

At q = 4, the picture should be slightly different. It is conjectured that the
family of interfaces converges to the CLE(4) process, which would imply that
the probability of having crossings between two opposite sides with free bound-
ary conditions converges to 0. Nevertheless, a slight modification of the previous
conjecture is expected to hold true: the probability of having a circuit surround-
ing the origin in an annulus of fixed modulus, with free boundary conditions,
stays bounded away from 0 and 1 uniformly in the size of the annulus.
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