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tWe show that in high dimensional Bernoulli per
olation, remov-ing from a thin in�nite 
luster a mu
h thinner in�nite 
luster leavesan in�nite 
omponent. This observation has impli
ations for the vanden Berg-Brouwer forest �re pro
ess, also known as self-destru
tiveper
olation, for dimension high enough.1 Introdu
tionThink about the open verti
es of super
riti
al per
olation as if they weretrees, and about the in�nite 
luster as a forest. Suddenly a �re breaks outand the entire forest is 
leared. New trees then start growing randomly.When 
an one expe
t a new in�nite 
luster to appear? The surprising
onje
ture in [vdBB04℄ is that in the two-dimensional 
ase, even if theoriginal forest were extremely thin, still a 
onsiderable amount of treesmust be added to 
reate a new in�nite 
luster. Heuristi
ally, the 
onje
-ture 
laims that the in�nite 
luster might o

upy a very low proportion ofverti
es but they sit in a way that separates the remaining �nite 
lustersby gaps that 
annot be easily bridged. This 
onje
ture is still open. See[vdBB04, vdBBV08, vdBdL09℄ for 
onne
tions to other models of forest�res and more.Let us de�ne the model formally, in three steps. The model was origi-nally introdu
ed as a site per
olation model, but we will de�ne it for bonds,as some of the auxiliary results we need have only been proved for bondper
olation. We are given a graph G, a probability p ∈ [0,1] (�the originaldensity�) and a probability ε ∈ [0,1] (�the re
overed density�). Let Pp bethe Bernoulli bond per
olation measure on G with parameter p.1. Assign independent uniformly distributed values from [0,1] to theedges of G. Let ωp ∈ {0,1}E(G) denote the set of edges with value atmost p. The 
on�guration ωp is distributed as Pp, and a 
luster refers1



to a maximal 
onne
ted 
omponent of edges. It will be of importan
ebelow that as p ranges over [0,1], we obtain a simultaneous 
ouplingof Bernoulli 
on�gurations on G su
h that ωp1 ⊂ ωp2 when p1 ≤ p2.2. Let P̃p be the law of the 
on�guration ω̃p 
onstru
ted as follows: forany edge e,̃
ωp(e) =

⎧⎪⎪
⎨⎪⎪⎩

ωp(e) if e is in a �nite 
luster of ωp,
0 otherwise.3. Let P̃p,ε be the law of ω̃p,ε where ω̃p,ε is de�ned as follows: for anyedge e, ω̃p,ε(e) = max{ω̃p(e), ω′ε(e)}, where ω′ε is a per
olation 
on�g-uration with edge-weight ε whi
h is independent of ωp.We 
an now de�ne our property of interest.De�nition We say that the graph G re
overs from �res if for every ε > 0,there exists p > pc(G) su
h that P̃p,ε has an in�nite 
onne
ted 
omponent,with probability 1. We say that G site-re
overs from �res if the analogousde�nitions for site per
olation hold.In [vdBB04℄ the authors showed that a binary tree site-re
overs from�res and 
onje
tured that Z2 latti
e does not site-re
over from �res. Thebinary tree is an example of a non-amenable graph, that is, a graph inwhi
h the boundary of a (�nite) set of verti
es is 
omparable in size to theset itself. Re
overy from �res, both in edge and site sense, was proven in[AST13℄ for a large 
lass of non-amenable transitive graphs. Our result
on
erns hyper-
ubi
 latti
es.Theorem 1. For d su�
iently large, Zd re
overs from �res.Here and below, Zd refers to the Zd nearest neighbour latti
e. The mainproperty of Zd that we will use is that Ppc(0 ←→ ∂B(0, r)) ≤ Cr−2 (seebelow for a dis
ussion on this 
ondition, and also for the notations). Thiswas proved in [KN11℄ based on results of Hara, van der Hofstad & Slade[HvdHS03, Har08℄. These establish the ne
essary estimate for d su�
ientlylarge (19 seems to be enough, though this 
an be improved) and also forstret
hed-out latti
es in d > 6. The number 6 is a
tually meaningful and isthe limit of the te
hnique involved, la
e expansion. Our proof easily extendsto stret
hed-out 7-dimensional latti
e (hen
e the title of the arti
le), but forsimpli
ity we will prove the theorem only for nearest-neighbour per
olationin d su�
iently high. In fa
t, our proof provides further information in thesuper
riti
al per
olation regime. Re
all the 
ommon notation C∞(ωp) forthe in�nite 
luster of edges present in ωp.2



Theorem 2. For every ε > 0 and d su�
iently large, there exists p > pcsu
h that ωpc+ε ∖C∞(ωp) 
ontains an in�nite 
luster almost surely.Theorem 1 is 
learly a 
orollary of Theorem 2. Another 
onsequen
eis that for every ε > 0, the 
riti
al probability for per
olation on the ran-dom graph obtained from Zd by removing a su�
iently `thin' super
riti
alper
olation 
luster is almost surely at most pc + ε. Theorem 2 and thelast statement 
annot possibly hold for (site) per
olation on Z2, sin
e anin�nite 
luster 
uts spa
e up into �nite pie
es.Proof sket
h We will show that for every ε > 0, there exists some p > pcsu
h that when removing the in�nite 
luster of p-per
olation from (pc +
ε)-per
olation, the remainder still per
olates. The proof pro
eeds by arenormalization pro
edure.1. We �rst 
hoose ℓ ∈ N su�
iently large su
h that for any L ≥ ℓ, 
on-ne
tivity properties of boxes of size L2 × ℓd−2 in (pc + ε)-per
olationbehave like (1−η)-per
olation on a 
oarse grain latti
e for some small

η. This is a standard appli
ation of Grimmett-Marstrand [GM90℄ andrenormalization theory.2. We then use the fa
t that the one-arm exponent in high dimensionsis 2 to note that for any L, only a small number M of verti
es in abox of size L2 × ℓd−2 
an 
onne
t to distan
e L in 
riti
al per
olation.3. Pi
king L su�
iently large, one 
an argue that these M points do notalter the 
onne
tivity properties of boxes of size L2 × ℓd−2 for (pc +ε)-per
olation. In parti
ular, the 
oarse grain per
olation still behaveslike (1 − η)-per
olation even after removing that small number ofverti
es.4. We now pi
k p su�
iently 
lose to pc that the behaviour (for ωp) ats
ale L is not altered by moving from pc to p. Sin
e there are lesssites in C∞(ωp) than sites 
onne
ted to distan
e L in ωp, this p givesthe result.Examining this a little shows that what the proof really needs is that theone-arm exponent is bigger than 1 i.e. that
Ppc(0←→ ∂B(0, r)) ≤ r−1−c c > 0.(the number of points removed in the se
ond renormalization step will nolonger be bounded independently of L, but would still be too small to blo
kthe 
luster of the boxes at s
ale ℓ). This is interesting as it is 
onje
turedto hold also below 6 dimensions. While nothing is proved, simulations hint3



that it might hold for Z5 [AS94, �2.7℄. On the other hand, let us note thatin Z3 this probability is larger than cr−1 (this is well-known but we arenot aware of a pre
ise referen
e � 
ompare to [vdBK85, (3.15)℄ and [Kes82,Theorem 5.1℄). Hen
e, the approa
h used here has no hope of working in
Z3 (though, of 
ourse, this does not pre
lude the possibility that Z3 doesre
over from �res). We remarks that a similar renormalization te
hniquewas re
ently used in [GHK13℄, also under the assumption that the one-armexponent is bigger than 1.Notations Identify Z2 with the subgraph of Zd of points with the d − 2last 
oordinates equal to 0. Let Sℓ = {x ∈ Zd ∶ ∣xi∣ ≤ ℓ ∀i ≥ 3} be the two-dimensional slab of height 2ℓ + 1. We will also use the following standardnotations: For a subgraph G of Zd, we say that x is 
onne
ted to y in G ifthey are in the same 
onne
ted 
omponent of G. We denote it by x

G
←→ y orsimply x←→ y when the 
ontext is 
lear. We also use the notation x ←→∞to denote the fa
t that x is 
ontained in an in�nite 
onne
ted 
omponent.Let ∣∣ ⋅ ∣∣∞ be the in�nity norm on Rd de�ned by

∣∣x∣∣∞ =max{∣xi∣ ∶ i = 1, . . . , d}.We 
onsider the hyper
ubi
 latti
e Zd for some large but �xed d. For
ℓ,L > 0, de�ne the ball Bx(L) = {y ∈ Zd

∶ ∣∣y − x∣∣∞ ≤ L} and let ∂Bx(L) beits inner vertex boundary.A
knowledgements Gady Kozma's work partially supported by the Is-rael S
ien
e Foundation. Hugo Duminil-Copin was supported by the ANRgrant BLAN06-3-134462, the ERC AG CONFRA, as well as by the SwissFNS.2 ProofFrom now on, d is �xed and is large enough. For x ∈ Z2, let A (x, ℓ,L,M)be the event that there are less than M sites y in the (6L + 1)× (6L + 1)×
(2ℓ+1)d−2 box Sℓ ∩Bx(3L) that are 
onne
ted to a site at distan
e L fromthemselves. Note that we do not assume that this 
onne
tion is 
ontainedin the slab Sℓ, the 
onne
tion may be anywhere in By(L).Lemma 3. Let η > 0 and ℓ > 0. There exists M > 0 su
h that for anyinteger L, there exists p > pc su
h that

Pp(A (x, ℓ,L,M)) ≥ 1 − η.

4



Proof. By [KN11℄, there exists C > 0 su
h that (for large enough d)
Ppc(0←→ ∂B0(n)) ≤

C

n2
. (1)Choose M in su
h a way that 49(2ℓ+1)d−2C

M
< η. For any integer L, Markov'sinequality implies

Ppc[∣{y ∈ Sℓ ∩Bx(3L) ∶ y↔ ∂By(L)}∣ ≥M]

≤
1

M
∑

y∈Sℓ∩Bx(3L)

Ppc(y↔ ∂By(L)).By (1) and the 
hoi
e of M , the right-hand side is thus stri
tly smallerthan η. By 
hoosing p 
lose enough to pc, we obtain that
Pp[∣{y ∈ Sℓ ∩Bx(3L) ∶ y ←→ ∂By(L)}∣ ≥M] ≤ η.For a set S ⊂ Zd, let ωS be the 
on�guration obtained from ω by 
losingthe edges adja
ent to a site in S. Let B(x, ℓ,L,M) be the event that forany set S of M sites 
ontained in Bx(3L), ωS 
ontains� a 
luster 
rossing from ∂Bx(L) to ∂Bx(3L) 
ontained in the slab Sℓ,� a unique 
luster in the box Sℓ ∩Bx(3L) of radius larger than L.Lemma 4. Let η > 0 and ε > 0. There exists ℓ > 0 su
h that for any M > 0,there is L > 0 so that

Ppc+ε(B(x, ℓ,L,M)) ≥ 1 − η.Proof. For a given ℓ and L denote by E = E(x, ℓ,L) the event that:1. There is a 
rossing from ∂Bx(L) to ∂Bx(3L) in Sℓ.2. There is exa
tly one 
luster in Sℓ ∩Bx(3L) of radius larger than L.Shortly, the event E is just B without the set S, or if you want B is theevent that E o

urred in ωS for all S with ∣S∣ ≤M .We 
laim that for ℓ su�
iently large, Ppc+ε(¬E) ≤ exp(−cL) for some
c = c(ε, ℓ) > 0 independent of L. Finding su
h an ℓ is a standard exer
ise inrenormalization theory, but let us give a few details nonetheless. Call a boxof side-length 2ℓ+1 good if it 
ontains 
rossings between opposite fa
es in alldire
tions, and if all 
lusters of diameter at least 1

4
ℓ 
onne
t inside the box.By 
hoosing ℓ large, we 
an require that a box is good with arbitrarilyhigh probability (see e.g. the appendix of [BBHK08℄). Considering su
hboxes 
entered around the sites in ℓZ2. The events that these boxes aregood are 2-dependent (in the sense of [LSS97℄ i.e. any box is independent5



of all boxes not neighbouring it), and hen
e by [LSS97℄, if the probabilitythat a box is good is su�
iently large, then the good boxes sto
hasti
allydominate two-dimensional per
olation at density, say, 9

10
. Now, a 
lusterof good boxes 
ontains a 
luster in the underlying per
olation, sin
e the
rossings of adja
ent boxes must interse
t. This means that if either ofthe 
onditions in the de�nition of E fail, then there is a 
luster of badboxes with at least L/ℓ boxes. But the probability for that, from Peierls'argument, is at most (4/10)L/ℓ ⋅ (6L/ℓ)2. This shows the 
laim.Fix M > 0. Let FM be the set of 
on�gurations in Bx(3L) for whi
hthere exists S ⊂ Bx(3L) with ∣S∣ =M and ωS /∈ E. We have

Ppc+ε(FM) ≤ ∑
S⊂Bx(3L)∶∣S∣=M

Ppc+ε(ωS /∈ E)

≤ ∑
S⊂Bx(3L)∶∣S∣=M

(1 − pc − ε)−2dM Ppc+ε(¬E)

≤ (1 − pc − ε)−2dM(6L + 1)dM Ppc+ε(¬E)
≤ (1 − pc − ε)−2dM(6L + 1)dM exp(−cL).For L large enough, this quantity is smaller than η. The lemma followsfrom the fa
t that if ω ∉ B(x, ℓ,L,M), then there exists S ⊂ Bx(3L) with

∣S∣ =M and ωS /∈ E, i.e. ω ∈ FM .In order to prove Theorem 1 and 2, we will use Lemma 4 to 
onstru
tan in�nite 
luster at density pc + ε, and Lemma 3 to make sure that thein�nite 
luster present at the lower density p does not interfere too mu
hwith this 
onstru
tion.Proof of Theorems 1 and 2. Re
all the notations ωp, ω̃p and ω′ε from page1. We need to show that for any ε > 0, there exists p > pc su
h that ω̃p,εhas an in�nite 
omponent. Note that (ωpc ∪ ω′ε) ∖C∞(ωp) is sto
hasti
allydominated by ω̃p,ε. Thus, it su�
es to show that for every ε > 0, there is
p > pc su
h that ωpc+ε ∖ C∞(ωp) 
ontains an in�nite 
omponent. That is,Theorem 1 follows from Theorem 2, and it su�
es to prove the latter.Let therefore ε > 0. Fix η > 0 su
h that 1−2η ex
eeds the 
riti
al param-eter for any 8-dependent per
olation on verti
es of Z2. De�ne su

essively
ℓ,M,L and p0 as follows. Fix ℓ = ℓ(ε, η) > 0 as de�ned in Lemma 4. Pi
k
M =M(η, ℓ) > 0 as de�ned in Lemma 3. This de�nes L = L(η, ε, ℓ,M) > 0by Lemma 4, and then p = p(η, ℓ,M,L) > pc by Lemma 3.Let P denote the joint law of (ωp, ωpc+ε) under the in
reasing 
ouplingdes
ribed above. A site x ∈ LZ2 is said to be good if ωp ∈A (x, ℓ,L,M) and
ωpc+ε ∈B(x, ℓ,L,M). By de�nition,

P[A (x, ℓ,L,M) ∩B(x, ℓ,L,M)] ≥ 1 − 2η.6



Sin
e these events depend on edges in Bx(4L) only, the site per
olation(on LZ2) thus obtained is 8-dependent. As a 
onsequen
e, there exists anin�nite 
luster of good sites on the 
oarse grained latti
e LZ2.On the event that there exists an in�nite 
luster of good sites on the
oarse grained latti
e, there exists an in�nite path in ωpc+ε ∖ C∞(ωp). In-deed, by indu
tion, 
onsider a path of adja
ent good sites x1, . . . , xn. Con-sider Ci to be a 
luster in
[ωpc+ε ∖C∞(ωp)] ∩ [Bxi

(3L) ∖Bxi
(L)]of radius larger than L. By the de�nition of A there are at most M sitesin the box Sl ∩ Bxi

(3L) 
onne
ted to distan
e L in ωp. Hen
e the samebox also 
ontains no more than M sites in C∞(ωp) sin
e any site 
onne
tedto in�nity must be 
onne
ted to distan
e L. Using the de�nition of Bwith S being exa
tly C∞(ωp) ∩ Sl ∩ Bxi
(3L) we see that ωpc+ε ∖ C∞(ωp)
ontains a 
rossing 
luster for the box Sl ∩Bxi

(3L) with all the propertieslisted before Lemma 4. In parti
ular, the uniqueness property ensures twosu
h 
rossing 
lusters in two neighbouring boxes must interse
t. The resultfollows readily.Referen
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