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Abstract

We show that in high dimensional Bernoulli percolation, remov-
ing from a thin infinite cluster a much thinner infinite cluster leaves
an infinite component. This observation has implications for the van
den Berg-Brouwer forest fire process, also known as self-destructive
percolation, for dimension high enough.

1 Introduction

Think about the open vertices of supercritical percolation as if they were
trees, and about the infinite cluster as a forest. Suddenly a fire breaks out
and the entire forest is cleared. New trees then start growing randomly.
When can one expect a new infinite cluster to appear? The surprising
conjecture in [vdBB04] is that in the two-dimensional case, even if the
original forest were extremely thin, still a considerable amount of trees
must be added to create a new infinite cluster. Heuristically, the conjec-
ture claims that the infinite cluster might occupy a very low proportion of
vertices but they sit in a way that separates the remaining finite clusters
by gaps that cannot be easily bridged. This conjecture is still open. See
[vdBB04, vdBBV08, vdBdL09| for connections to other models of forest
fires and more.

Let us define the model formally, in three steps. The model was origi-
nally introduced as a site percolation model, but we will define it for bonds,
as some of the auxiliary results we need have only been proved for bond
percolation. We are given a graph G, a probability p € [0, 1] (“the original
density”) and a probability € € [0,1] (“the recovered density”). Let P, be
the Bernoulli bond percolation measure on G with parameter p.

1. Assign independent uniformly distributed values from [0,1] to the
edges of G. Let w, € {0,1}#(¢) denote the set of edges with value at
most p. The configuration w, is distributed as P,, and a cluster refers



to a maximal connected component of edges. It will be of importance
below that as p ranges over [0, 1], we obtain a simultaneous coupling
of Bernoulli configurations on G such that w,, cw,, when p; < p,.

2. Let If”p be the law of the configuration w, constructed as follows: for
any edge e,

30 (e) wy(e) if eisin a finite cluster of wy,
wp(e) =
! 0 otherwise.

3. Let I@p,g be the law of w,. where @, is defined as follows: for any
edge e, W, (e) = max{w,(e),w’.(e)}, where w! is a percolation config-
uration with edge-weight ¢ which is independent of w,,.

We can now define our property of interest.

Definition We say that the graph G recovers from fires if for every € > 0,
there exists p > p.(G) such that P, has an infinite connected component,
with probability 1. We say that G site-recovers from fires if the analogous
definitions for site percolation hold.

In [vdBB04| the authors showed that a binary tree site-recovers from
fires and conjectured that Z? lattice does not site-recover from fires. The
binary tree is an example of a non-amenable graph, that is, a graph in
which the boundary of a (finite) set of vertices is comparable in size to the
set, itself. Recovery from fires, both in edge and site sense, was proven in
[AST13] for a large class of non-amenable transitive graphs. Our result
concerns hyper-cubic lattices.

Theorem 1. For d sufficiently large, Z recovers from fires.

Here and below, Z? refers to the Z¢ nearest neighbour lattice. The main
property of Z¢ that we will use is that P, (0 «— 0B(0,7)) < Cr=2 (see
below for a discussion on this condition, and also for the notations). This
was proved in [KN11] based on results of Hara, van der Hofstad & Slade
[HvdHS03, Har08|. These establish the necessary estimate for d sufficiently
large (19 seems to be enough, though this can be improved) and also for
stretched-out lattices in d > 6. The number 6 is actually meaningful and is
the limit of the technique involved, lace expansion. Our proof easily extends
to stretched-out 7-dimensional lattice (hence the title of the article), but for
simplicity we will prove the theorem only for nearest-neighbour percolation
in d sufficiently high. In fact, our proof provides further information in the
supercritical percolation regime. Recall the common notation ¢ (w,) for
the infinite cluster of edges present in w,,.



Theorem 2. For every € > 0 and d sufficiently large, there exists p > p.
such that wy, e \ G (wp) contains an infinite cluster almost surely.

Theorem 1 is clearly a corollary of Theorem 2. Another consequence
is that for every ¢ > 0, the critical probability for percolation on the ran-
dom graph obtained from Z¢ by removing a sufficiently ‘thin’ supercritical
percolation cluster is almost surely at most p.+e. Theorem 2 and the
last statement cannot possibly hold for (site) percolation on Z2, since an
infinite cluster cuts space up into finite pieces.

Proof sketch We will show that for every ¢ > 0, there exists some p > p.
such that when removing the infinite cluster of p-percolation from (p. +
g)-percolation, the remainder still percolates. The proof proceeds by a
renormalization procedure.

1. We first choose ¢ € N sufficiently large such that for any L > ¢, con-
nectivity properties of boxes of size L? x £%2 in (p. + ¢)-percolation
behave like (1-mn)-percolation on a coarse grain lattice for some small
n. This is a standard application of Grimmett-Marstrand [GM90] and
renormalization theory.

2. We then use the fact that the one-arm exponent in high dimensions
is 2 to note that for any L, only a small number M of vertices in a
box of size L2 x {42 can connect to distance L in critical percolation.

3. Picking L sufficiently large, one can argue that these M points do not
alter the connectivity properties of boxes of size L? x (4-2 for (p,. +¢)-
percolation. In particular, the coarse grain percolation still behaves
like (1 — n)-percolation even after removing that small number of
vertices.

4. We now pick p sufficiently close to p. that the behaviour (for w,) at
scale L is not altered by moving from p. to p. Since there are less
sites in % (w,) than sites connected to distance L in w,, this p gives
the result.

Examining this a little shows that what the proof really needs is that the
one-arm exponent is bigger than 1 i.e. that

P,.(0 <= dB(0,r)) <r '™ ¢>0.

(the number of points removed in the second renormalization step will no
longer be bounded independently of L, but would still be too small to block
the cluster of the boxes at scale ¢). This is interesting as it is conjectured
to hold also below 6 dimensions. While nothing is proved, simulations hint



that it might hold for Z5 [AS94, §2.7|. On the other hand, let us note that
in Z3 this probability is larger than cr=! (this is well-known but we are
not aware of a precise reference — compare to [vdBK85, (3.15)| and [Kes82,
Theorem 5.1]). Hence, the approach used here has no hope of working in
Z? (though, of course, this does not preclude the possibility that Z3 does
recover from fires). We remarks that a similar renormalization technique
was recently used in [GHK13], also under the assumption that the one-arm
exponent is bigger than 1.

Notations Identify Z? with the subgraph of Z? of points with the d -2
last coordinates equal to 0. Let S, = {& € Z¢ : |x;| < ¢ Vi > 3} be the two-
dimensional slab of height 2¢ + 1. We will also use the following standard
notations: For a subgraph G of Z?, we say that x is connected to y in G if

they are in the same connected component of G. We denote it by x &, y or

simply x «— y when the context is clear. We also use the notation x «— oo

to denote the fact that x is contained in an infinite connected component.
Let || -||s be the infinity norm on R? defined by

|z||oo = max{|z;|:i=1,...,d}.

We consider the hypercubic lattice Z¢ for some large but fixed d. For
¢, L >0, define the ball B,(L) ={y€Z%:||ly - 2|l < L} and let 0B,(L) be

its inner vertex boundary.
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2 Proof

From now on, d is fixed and is large enough. For x € Z2, let <7 (x,(, L, M)
be the event that there are less than M sites y in the (6L +1) x (6L +1) x
(20+1)%2 box Syn B,(3L) that are connected to a site at distance L from
themselves. Note that we do not assume that this connection is contained
in the slab Sy, the connection may be anywhere in B,(L).

Lemma 3. Let n > 0 and ¢ > 0. There exists M > 0 such that for any
integer L, there exists p > p. such that

P, (o (x,0,L,M)) >1-n.



Proof. By |[KN11], there exists C' > 0 such that (for large enough d)

B, (0 < OBo(m) < . 0

49(2¢+1)92C

Choose M in such a way that i

inequality implies

<n. For any integer L, Markov’s

Ppc“{y €SynBy(3L) :y < 0B,(L)}| > M]

Z Ppc(y‘_’aBy(L))-

yeSynB,(3L)

By (1) and the choice of M, the right-hand side is thus strictly smaller
than 7. By choosing p close enough to p., we obtain that

Po[[{y € S¢n B,(3L) : y «— OB, (L)} > M| <. O

For a set S c Z4, let w® be the configuration obtained from w by closing
the edges adjacent to a site in S. Let A(x,¢, L, M) be the event that for
any set S of M sites contained in B,(3L), w® contains

e a cluster crossing from 0B,(L) to 0B,(3L) contained in the slab Sy,
e a unique cluster in the box S, n B,(3L) of radius larger than L.

Lemma 4. Let n >0 and ¢ > 0. There exists ¢ >0 such that for any M > 0,
there is L >0 so that

Ppose(B(x, 0, L, M)) >1-n.
Proof. For a given ¢ and L denote by E = E(z,¢, L) the event that:
1. There is a crossing from 0B,(L) to 0B,(3L) in S,.
2. There is exactly one cluster in Sy n B,(3L) of radius larger than L.

Shortly, the event E is just % without the set S, or if you want % is the
event that F occurred in w® for all S with |S| < M.

We claim that for ¢ sufficiently large, P, ..(—E) < exp(—cL) for some
¢ =c(g,l) >0 independent of L. Finding such an ¢ is a standard exercise in
renormalization theory, but let us give a few details nonetheless. Call a box
of side-length 2¢+1 good if it contains crossings between opposite faces in all
directions, and if all clusters of diameter at least iﬁ connect inside the box.
By choosing ¢ large, we can require that a box is good with arbitrarily
high probability (see e.g. the appendix of [BBHKO08|). Considering such
boxes centered around the sites in ¢Z2?. The events that these boxes are
good are 2-dependent (in the sense of [LSS97| i.e. any box is independent

5



of all boxes not neighbouring it), and hence by [L.SS97|, if the probability
that a box is good is sufficiently large, then the good boxes stochastically
dominate two-dimensional percolation at density, say, 1%. Now, a cluster
of good boxes contains a cluster in the underlying percolation, since the
crossings of adjacent boxes must intersect. This means that if either of
the conditions in the definition of E fail, then there is a cluster of bad
boxes with at least L/¢ boxes. But the probability for that, from Peierls’
argument, is at most (4/10)%/¢- (6L/¢)2. This shows the claim.

Fix M > 0. Let Fy be the set of configurations in B,(3L) for which
there exists S ¢ B,(3L) with |S| = M and w® ¢ E. We have

Ppese(Far) < Z IP)10c+6("‘JS ¢ L)
ScB.(3L):|S|=M
< Z (1 _pc_g)_ZdM]P)pc%(_‘E)
ScB.(3L):|S|=M
<(1=pe—e)2MGL+1)MP, ,.(-F)

<(1=pe—e)2M6L +1)™ exp(~cL).

For L large enough, this quantity is smaller than 7. The lemma follows
from the fact that if w ¢ Z(x, ¢, L, M), then there exists S c B,(3L) with
|S|= M and wS ¢ E, i.e. w e Fy. O

In order to prove Theorem 1 and 2, we will use Lemma 4 to construct
an infinite cluster at density p. + e, and Lemma 3 to make sure that the
infinite cluster present at the lower density p does not interfere too much
with this construction.

Proof of Theorems 1 and 2. Recall the notations w,, w, and w. from page
1. We need to show that for any € > 0, there exists p > p. such that @,
has an infinite component. Note that (w, Uw!) \ €w(w,) is stochastically
dominated by @, .. Thus, it suffices to show that for every € > 0, there is
p > p. such that wy, - \ € (w,) contains an infinite component. That is,
Theorem 1 follows from Theorem 2, and it suffices to prove the latter.

Let therefore € > 0. Fix 1 > 0 such that 1-2n exceeds the critical param-
eter for any 8-dependent percolation on vertices of Z2. Define successively
¢, M, L and p, as follows. Fix ¢ = {(e,n) > 0 as defined in Lemma 4. Pick
M = M(n,¢) >0 as defined in Lemma 3. This defines L = L(n,e,¢, M) >0
by Lemma 4, and then p = p(n,¢, M, L) > p. by Lemma 3.

Let P denote the joint law of (w,,wy,.+c) under the increasing coupling
described above. A site x € LZ? is said to be good if w, € o7 (x, ¢, L, M) and
Wpetre € B(x, 0, L, M). By definition,

P/ (x,0,L,M) nB(x,(,L,M)]>1-2n.



Since these events depend on edges in B,(4L) only, the site percolation
(on LZ?) thus obtained is 8-dependent. As a consequence, there exists an
infinite cluster of good sites on the coarse grained lattice LZ?2.

On the event that there exists an infinite cluster of good sites on the
coarse grained lattice, there exists an infinite path in wy .. \ o (w,). In-
deed, by induction, consider a path of adjacent good sites z1,...,x,. Con-
sider C; to be a cluster in

[Wpere N Coo(wp) ] N[ By, (3L) N By, (L)]

of radius larger than L. By the definition of &7 there are at most M sites
in the box S;n B,,(3L) connected to distance L in w,. Hence the same
box also contains no more than M sites in %, (w,) since any site connected
to infinity must be connected to distance L. Using the definition of £
with S being exactly €w(w,) NS; N By, (3L) we see that w, .. \ G (w)p)
contains a crossing cluster for the box S;n B,,(3L) with all the properties
listed before Lemma 4. In particular, the uniqueness property ensures two
such crossing clusters in two neighbouring boxes must intersect. The result
follows readily. O
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