
Seven-dimensional forest �resDaniel Ahlberg, Hugo Duminil-Copin, Gady Kozmaand Vladas SidoraviiusFebruary 26, 2013AbstratWe show that in high dimensional Bernoulli perolation, remov-ing from a thin in�nite luster a muh thinner in�nite luster leavesan in�nite omponent. This observation has impliations for the vanden Berg-Brouwer forest �re proess, also known as self-destrutiveperolation, for dimension high enough.1 IntrodutionThink about the open verties of superritial perolation as if they weretrees, and about the in�nite luster as a forest. Suddenly a �re breaks outand the entire forest is leared. New trees then start growing randomly.When an one expet a new in�nite luster to appear? The surprisingonjeture in [vdBB04℄ is that in the two-dimensional ase, even if theoriginal forest were extremely thin, still a onsiderable amount of treesmust be added to reate a new in�nite luster. Heuristially, the onje-ture laims that the in�nite luster might oupy a very low proportion ofverties but they sit in a way that separates the remaining �nite lustersby gaps that annot be easily bridged. This onjeture is still open. See[vdBB04, vdBBV08, vdBdL09℄ for onnetions to other models of forest�res and more.Let us de�ne the model formally, in three steps. The model was origi-nally introdued as a site perolation model, but we will de�ne it for bonds,as some of the auxiliary results we need have only been proved for bondperolation. We are given a graph G, a probability p ∈ [0,1] (�the originaldensity�) and a probability ε ∈ [0,1] (�the reovered density�). Let Pp bethe Bernoulli bond perolation measure on G with parameter p.1. Assign independent uniformly distributed values from [0,1] to theedges of G. Let ωp ∈ {0,1}E(G) denote the set of edges with value atmost p. The on�guration ωp is distributed as Pp, and a luster refers1



to a maximal onneted omponent of edges. It will be of importanebelow that as p ranges over [0,1], we obtain a simultaneous ouplingof Bernoulli on�gurations on G suh that ωp1 ⊂ ωp2 when p1 ≤ p2.2. Let P̃p be the law of the on�guration ω̃p onstruted as follows: forany edge e,̃
ωp(e) =

⎧⎪⎪
⎨⎪⎪⎩

ωp(e) if e is in a �nite luster of ωp,
0 otherwise.3. Let P̃p,ε be the law of ω̃p,ε where ω̃p,ε is de�ned as follows: for anyedge e, ω̃p,ε(e) = max{ω̃p(e), ω′ε(e)}, where ω′ε is a perolation on�g-uration with edge-weight ε whih is independent of ωp.We an now de�ne our property of interest.De�nition We say that the graph G reovers from �res if for every ε > 0,there exists p > pc(G) suh that P̃p,ε has an in�nite onneted omponent,with probability 1. We say that G site-reovers from �res if the analogousde�nitions for site perolation hold.In [vdBB04℄ the authors showed that a binary tree site-reovers from�res and onjetured that Z2 lattie does not site-reover from �res. Thebinary tree is an example of a non-amenable graph, that is, a graph inwhih the boundary of a (�nite) set of verties is omparable in size to theset itself. Reovery from �res, both in edge and site sense, was proven in[AST13℄ for a large lass of non-amenable transitive graphs. Our resultonerns hyper-ubi latties.Theorem 1. For d su�iently large, Zd reovers from �res.Here and below, Zd refers to the Zd nearest neighbour lattie. The mainproperty of Zd that we will use is that Ppc(0 ←→ ∂B(0, r)) ≤ Cr−2 (seebelow for a disussion on this ondition, and also for the notations). Thiswas proved in [KN11℄ based on results of Hara, van der Hofstad & Slade[HvdHS03, Har08℄. These establish the neessary estimate for d su�ientlylarge (19 seems to be enough, though this an be improved) and also forstrethed-out latties in d > 6. The number 6 is atually meaningful and isthe limit of the tehnique involved, lae expansion. Our proof easily extendsto strethed-out 7-dimensional lattie (hene the title of the artile), but forsimpliity we will prove the theorem only for nearest-neighbour perolationin d su�iently high. In fat, our proof provides further information in thesuperritial perolation regime. Reall the ommon notation C∞(ωp) forthe in�nite luster of edges present in ωp.2



Theorem 2. For every ε > 0 and d su�iently large, there exists p > pcsuh that ωpc+ε ∖C∞(ωp) ontains an in�nite luster almost surely.Theorem 1 is learly a orollary of Theorem 2. Another onsequeneis that for every ε > 0, the ritial probability for perolation on the ran-dom graph obtained from Zd by removing a su�iently `thin' superritialperolation luster is almost surely at most pc + ε. Theorem 2 and thelast statement annot possibly hold for (site) perolation on Z2, sine anin�nite luster uts spae up into �nite piees.Proof sketh We will show that for every ε > 0, there exists some p > pcsuh that when removing the in�nite luster of p-perolation from (pc +
ε)-perolation, the remainder still perolates. The proof proeeds by arenormalization proedure.1. We �rst hoose ℓ ∈ N su�iently large suh that for any L ≥ ℓ, on-netivity properties of boxes of size L2 × ℓd−2 in (pc + ε)-perolationbehave like (1−η)-perolation on a oarse grain lattie for some small

η. This is a standard appliation of Grimmett-Marstrand [GM90℄ andrenormalization theory.2. We then use the fat that the one-arm exponent in high dimensionsis 2 to note that for any L, only a small number M of verties in abox of size L2 × ℓd−2 an onnet to distane L in ritial perolation.3. Piking L su�iently large, one an argue that these M points do notalter the onnetivity properties of boxes of size L2 × ℓd−2 for (pc +ε)-perolation. In partiular, the oarse grain perolation still behaveslike (1 − η)-perolation even after removing that small number ofverties.4. We now pik p su�iently lose to pc that the behaviour (for ωp) atsale L is not altered by moving from pc to p. Sine there are lesssites in C∞(ωp) than sites onneted to distane L in ωp, this p givesthe result.Examining this a little shows that what the proof really needs is that theone-arm exponent is bigger than 1 i.e. that
Ppc(0←→ ∂B(0, r)) ≤ r−1−c c > 0.(the number of points removed in the seond renormalization step will nolonger be bounded independently of L, but would still be too small to blokthe luster of the boxes at sale ℓ). This is interesting as it is onjeturedto hold also below 6 dimensions. While nothing is proved, simulations hint3



that it might hold for Z5 [AS94, �2.7℄. On the other hand, let us note thatin Z3 this probability is larger than cr−1 (this is well-known but we arenot aware of a preise referene � ompare to [vdBK85, (3.15)℄ and [Kes82,Theorem 5.1℄). Hene, the approah used here has no hope of working in
Z3 (though, of ourse, this does not prelude the possibility that Z3 doesreover from �res). We remarks that a similar renormalization tehniquewas reently used in [GHK13℄, also under the assumption that the one-armexponent is bigger than 1.Notations Identify Z2 with the subgraph of Zd of points with the d − 2last oordinates equal to 0. Let Sℓ = {x ∈ Zd ∶ ∣xi∣ ≤ ℓ ∀i ≥ 3} be the two-dimensional slab of height 2ℓ + 1. We will also use the following standardnotations: For a subgraph G of Zd, we say that x is onneted to y in G ifthey are in the same onneted omponent of G. We denote it by x

G
←→ y orsimply x←→ y when the ontext is lear. We also use the notation x ←→∞to denote the fat that x is ontained in an in�nite onneted omponent.Let ∣∣ ⋅ ∣∣∞ be the in�nity norm on Rd de�ned by

∣∣x∣∣∞ =max{∣xi∣ ∶ i = 1, . . . , d}.We onsider the hyperubi lattie Zd for some large but �xed d. For
ℓ,L > 0, de�ne the ball Bx(L) = {y ∈ Zd

∶ ∣∣y − x∣∣∞ ≤ L} and let ∂Bx(L) beits inner vertex boundary.Aknowledgements Gady Kozma's work partially supported by the Is-rael Siene Foundation. Hugo Duminil-Copin was supported by the ANRgrant BLAN06-3-134462, the ERC AG CONFRA, as well as by the SwissFNS.2 ProofFrom now on, d is �xed and is large enough. For x ∈ Z2, let A (x, ℓ,L,M)be the event that there are less than M sites y in the (6L + 1)× (6L + 1)×
(2ℓ+1)d−2 box Sℓ ∩Bx(3L) that are onneted to a site at distane L fromthemselves. Note that we do not assume that this onnetion is ontainedin the slab Sℓ, the onnetion may be anywhere in By(L).Lemma 3. Let η > 0 and ℓ > 0. There exists M > 0 suh that for anyinteger L, there exists p > pc suh that

Pp(A (x, ℓ,L,M)) ≥ 1 − η.
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Proof. By [KN11℄, there exists C > 0 suh that (for large enough d)
Ppc(0←→ ∂B0(n)) ≤

C

n2
. (1)Choose M in suh a way that 49(2ℓ+1)d−2C

M
< η. For any integer L, Markov'sinequality implies

Ppc[∣{y ∈ Sℓ ∩Bx(3L) ∶ y↔ ∂By(L)}∣ ≥M]

≤
1

M
∑

y∈Sℓ∩Bx(3L)

Ppc(y↔ ∂By(L)).By (1) and the hoie of M , the right-hand side is thus stritly smallerthan η. By hoosing p lose enough to pc, we obtain that
Pp[∣{y ∈ Sℓ ∩Bx(3L) ∶ y ←→ ∂By(L)}∣ ≥M] ≤ η.For a set S ⊂ Zd, let ωS be the on�guration obtained from ω by losingthe edges adjaent to a site in S. Let B(x, ℓ,L,M) be the event that forany set S of M sites ontained in Bx(3L), ωS ontains� a luster rossing from ∂Bx(L) to ∂Bx(3L) ontained in the slab Sℓ,� a unique luster in the box Sℓ ∩Bx(3L) of radius larger than L.Lemma 4. Let η > 0 and ε > 0. There exists ℓ > 0 suh that for any M > 0,there is L > 0 so that

Ppc+ε(B(x, ℓ,L,M)) ≥ 1 − η.Proof. For a given ℓ and L denote by E = E(x, ℓ,L) the event that:1. There is a rossing from ∂Bx(L) to ∂Bx(3L) in Sℓ.2. There is exatly one luster in Sℓ ∩Bx(3L) of radius larger than L.Shortly, the event E is just B without the set S, or if you want B is theevent that E ourred in ωS for all S with ∣S∣ ≤M .We laim that for ℓ su�iently large, Ppc+ε(¬E) ≤ exp(−cL) for some
c = c(ε, ℓ) > 0 independent of L. Finding suh an ℓ is a standard exerise inrenormalization theory, but let us give a few details nonetheless. Call a boxof side-length 2ℓ+1 good if it ontains rossings between opposite faes in alldiretions, and if all lusters of diameter at least 1

4
ℓ onnet inside the box.By hoosing ℓ large, we an require that a box is good with arbitrarilyhigh probability (see e.g. the appendix of [BBHK08℄). Considering suhboxes entered around the sites in ℓZ2. The events that these boxes aregood are 2-dependent (in the sense of [LSS97℄ i.e. any box is independent5



of all boxes not neighbouring it), and hene by [LSS97℄, if the probabilitythat a box is good is su�iently large, then the good boxes stohastiallydominate two-dimensional perolation at density, say, 9

10
. Now, a lusterof good boxes ontains a luster in the underlying perolation, sine therossings of adjaent boxes must interset. This means that if either ofthe onditions in the de�nition of E fail, then there is a luster of badboxes with at least L/ℓ boxes. But the probability for that, from Peierls'argument, is at most (4/10)L/ℓ ⋅ (6L/ℓ)2. This shows the laim.Fix M > 0. Let FM be the set of on�gurations in Bx(3L) for whihthere exists S ⊂ Bx(3L) with ∣S∣ =M and ωS /∈ E. We have

Ppc+ε(FM) ≤ ∑
S⊂Bx(3L)∶∣S∣=M

Ppc+ε(ωS /∈ E)

≤ ∑
S⊂Bx(3L)∶∣S∣=M

(1 − pc − ε)−2dM Ppc+ε(¬E)

≤ (1 − pc − ε)−2dM(6L + 1)dM Ppc+ε(¬E)
≤ (1 − pc − ε)−2dM(6L + 1)dM exp(−cL).For L large enough, this quantity is smaller than η. The lemma followsfrom the fat that if ω ∉ B(x, ℓ,L,M), then there exists S ⊂ Bx(3L) with

∣S∣ =M and ωS /∈ E, i.e. ω ∈ FM .In order to prove Theorem 1 and 2, we will use Lemma 4 to onstrutan in�nite luster at density pc + ε, and Lemma 3 to make sure that thein�nite luster present at the lower density p does not interfere too muhwith this onstrution.Proof of Theorems 1 and 2. Reall the notations ωp, ω̃p and ω′ε from page1. We need to show that for any ε > 0, there exists p > pc suh that ω̃p,εhas an in�nite omponent. Note that (ωpc ∪ ω′ε) ∖C∞(ωp) is stohastiallydominated by ω̃p,ε. Thus, it su�es to show that for every ε > 0, there is
p > pc suh that ωpc+ε ∖ C∞(ωp) ontains an in�nite omponent. That is,Theorem 1 follows from Theorem 2, and it su�es to prove the latter.Let therefore ε > 0. Fix η > 0 suh that 1−2η exeeds the ritial param-eter for any 8-dependent perolation on verties of Z2. De�ne suessively
ℓ,M,L and p0 as follows. Fix ℓ = ℓ(ε, η) > 0 as de�ned in Lemma 4. Pik
M =M(η, ℓ) > 0 as de�ned in Lemma 3. This de�nes L = L(η, ε, ℓ,M) > 0by Lemma 4, and then p = p(η, ℓ,M,L) > pc by Lemma 3.Let P denote the joint law of (ωp, ωpc+ε) under the inreasing ouplingdesribed above. A site x ∈ LZ2 is said to be good if ωp ∈A (x, ℓ,L,M) and
ωpc+ε ∈B(x, ℓ,L,M). By de�nition,

P[A (x, ℓ,L,M) ∩B(x, ℓ,L,M)] ≥ 1 − 2η.6



Sine these events depend on edges in Bx(4L) only, the site perolation(on LZ2) thus obtained is 8-dependent. As a onsequene, there exists anin�nite luster of good sites on the oarse grained lattie LZ2.On the event that there exists an in�nite luster of good sites on theoarse grained lattie, there exists an in�nite path in ωpc+ε ∖ C∞(ωp). In-deed, by indution, onsider a path of adjaent good sites x1, . . . , xn. Con-sider Ci to be a luster in
[ωpc+ε ∖C∞(ωp)] ∩ [Bxi

(3L) ∖Bxi
(L)]of radius larger than L. By the de�nition of A there are at most M sitesin the box Sl ∩ Bxi

(3L) onneted to distane L in ωp. Hene the samebox also ontains no more than M sites in C∞(ωp) sine any site onnetedto in�nity must be onneted to distane L. Using the de�nition of Bwith S being exatly C∞(ωp) ∩ Sl ∩ Bxi
(3L) we see that ωpc+ε ∖ C∞(ωp)ontains a rossing luster for the box Sl ∩Bxi

(3L) with all the propertieslisted before Lemma 4. In partiular, the uniqueness property ensures twosuh rossing lusters in two neighbouring boxes must interset. The resultfollows readily.Referenes[AS94℄ Amnon Aharony and Dietrih Stau�er, Introdution to pero-lation theory, Taylor & Franis, 1994.[AST13℄ Daniel Ahlberg, Vladas Sidoraviius, and Johan Tykesson,Bernoulli and self-destrutive perolation on non-amenablegraphs, preprint, 2013.[BBHK08℄ Noam Berger, Marek Biskup, Christopher E. Ho�man,and Gady Kozma, Anomalous heat-kernel deay for randomwalk among bounded random ondutanes, Ann. Inst. HenriPoinaré Probab. Stat. 44 (2008), no. 2, 374�392.[GHK13℄ Geo�rey Grimmett, Alexander Holroyd, and Gady Kozma,Perolation of �nite lusters and in�nite surfaes, preprint,2013.[GM90℄ Geo�rey R. Grimmett and John M. Marstrand, The superriti-al phase of perolation is well behaved, Pro. Roy. So. LondonSer. A 430 (1990), 439�457.[Har08℄ Takashi Hara, Deay of orrelations in nearest-neighbor self-avoiding walk, perolation, lattie trees and animals, Ann.Probab. 36 (2008), no. 2, 530�593.7
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