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Abstract

We consider the FK-Ising model in two dimension at criticality. We obtain RSW-
type crossing probabilities bounds in arbitrary topological rectangles, uniform with
respect to the boundary conditions, generalizing results of [DCHN10] and [CS09].
Our result relies on new discrete complex analysis techniques, introduced in [Che11].

We detail some applications, in particular the computation of so-called universal
exponents, proof of quasi-multiplicativity properties of arm probabilities, and crossing
bounds for the classical Ising model.

1 Introduction

The Ising model is one of the simplest and most fundamental models in equilibrium
statistical mechanics. It was proposed by Lenz in 1920 [Len20], and then studied by Ising
[Isi25], as a model for ferromagnetism, in an attempt to provide a microscopic explanation
for the thermodynamical behavior of magnets. In 1936, Peierls [Pei36] showed that the
model exhibits a phase transition at positive temperature in dimensions two and higher.
After the celebrated exact derivation of the free energy of the two-dimensional model by
Onsager in 1944 [Ons44], the Ising model became one of the most investigated models
in the study of phase transitions and in statistical mechanics. See [Nis05, Nis09] for a
historical review of the classical theory, for instance.

Recently, spectacular progress was made towards the rigorous description of the
continuous scaling limit of 2D lattice models at critical temperature, in particular the
Ising model [Smi10, CS09], notably thanks to the introduction of Schramm’s SLE curves
(see [Smi06] for a review of recent progress in this direction). In this paper, we develop
tools that improve the connection between the discrete Ising model and the continuous
objects describing its scaling limit.

Recall that the Ising model is a random assignment of ±1 spins to the vertices of a graph
G, where the probability of a spin configuration (σx)x∈G is proportional to exp (−βH (σ));
β > 0 is the inverse temperature and the H is the energy, defined as −∑i∼j σiσj (the sum
is over all pairs of adjacent vertices). The Ising model favors local alignment of spins, and
the strength of this effect is controlled by β. In the case we are interested in, namely the
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square grid Z2, an order/disorded phase transition occurs at the critical parameter value
βc := 1

2
ln
(√

2 + 1
)
. In order to avoid confusion with the FK-Ising model defined below,

we will call the Ising model the spin-Ising model.
In 1969, Fortuin and Kasteleyn [FK72] introduced a dependent bond percolation

model, called FK percolation or random-cluster model, that gives a powerful geometric
representation of a variety of models, among which the Ising model. The FK model
depends on two positive parameters, usually denoted p and q. Given p ∈ [0, 1] and q > 0,
the FK(p, q) model on a graph G is a model on random subgraphs of G containing all its
vertices: the probability of a configuration ω ⊂ G is proportional to(

p

1− p

)o(ω)

qk(ω),

where o (ω) is the number of edges of ω and k (ω) the number of clusters of ω (connected
components of vertices).

We call the FK model with q = 2 the FK-Ising model: in this case, the model provides
a graphical representation of the spin-Ising model, as is best seen through the so-called
Edwards-Sokal coupling: if one samples an FK-Ising configuration on G, assigns a ±1
spin to each cluster by an independent fair coin toss, and gives to each vertex of G the
spin of its cluster, the configuration thus obtained is a sample of the spin-Ising model
on G at inverse temperature β = 1

2
log(1 − p). The value of the FK-Ising parameter p

corresponding to the critical value of the spin-Ising parameter βc = 1
2

log(1 +
√

2) hence

equals
√

2√
2+1

.
Via the Edwards-Sokal coupling, the FK-Ising model describes how the influence

between the spins propagates across the graph: conditionally on the FK-Ising configuration,
two spins of the Ising model are aligned if they belong in the same cluster and independent
otherwise. For this reason, the spin-Ising and FK-Ising models are intimately related
(including in their scaling limit).

In this paper, we will work with the critical FK-Ising model, hence the FK model with
parameter values p =

√
2√

2+1
and q = 2.

1.1 Main statement

In this paper, we obtain uniform RSW-type crossing probabilities [Rus81, SW78] for the
critical FK-Ising model on general topological rectangles.

Given a topological rectangle (Ω, a, b, c, d) (i.e. a bounded simply connected subdomain
of Z2 with four marked boundary points) and boundary conditions ξ (see Section 2.2),
denote by φξΩ the critical FK-Ising probability measure on Ω with boundary conditions ξ
and by (ab)↔ (cd) the event that there is a crossing between the arcs (ab) and (cd), i.e.
that (ab) and (cd) are connected in the FK configuration.

Let us denote by `Ω [(ab) , (cd)] the discrete extremal length between (ab) and (cd) in
Ω with unit conductances (see Section 3 for a precise definition). Informally speaking,
`Ω [(ab) , (cd)] measures the distance between (ab) and (cd) from a random walk or electrical
resistance point of view.
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Our main result is a bound for FK-Ising crossing probabilities in terms of discrete
extremal length only:

Theorem 1.1. Let M > 0. There exists δ > 0 such that for any topological rectangle
(Ω, a, b, c, d) with `Ω [(ab) , (cd)] ≤M , and for any boundary conditions ξ, we have

φξΩ [(ab)↔ (cd)] ≥ δ.

Similarly, for any m > 0, there exists η < 1 such that for any topological rectangle
(Ω, a, b, c, d) with `Ω [(ab) , (cd)] ≥ m, and for any boundary conditions ξ, we have

φξΩ [(ab)↔ (cd)] ≤ η.

Such crossing probabilities bounds, uniform with respect to the boundary conditions,
have been obtained in a (straight) rectangle in [DCHN10, Theorem 1]; asymptotic exact
computations of crossing probability in arbitrary domains with specific boundary conditions
have been derived in [CS09, Theorem 6.1]. In this paper, the crossing bounds hold in
general topological rectangles with general boundary conditions, and are independent of
the local geometry of the boundary. Roughly speaking, our result is a generalization of
[DCHN10] to possibly “rough” discrete domains; this is for instance needed in order to
deal with domains generated by random interfaces (which usually have fractal scaling
limits).

As in [DCHN10], our result relies on discrete complex analysis: to connect the FK-Ising
model with discrete complex analysis objects, we use the discrete analytic observable for
the FK-Ising model introduced by Smirnov [Smi10] and crossing probability representation
(in terms of harmonic measure) introduced by Chelkak and Smirnov [CS09]. To obtain
the desired estimate, we adapt these results and use new harmonic measure techniques
developed by Chelkak in [Che11].

1.2 Applications

Crossing probabilities estimates play a very important role in rigorous statistical mechanics,
in particular for percolation models. They constitute the key argument enabling the use
of the following techniques:

• Spatial decorrelation: probabilities of certain events in disjoint ’well separated’
sets can be factorized at the expense of uniformly controlled constants. The main
ingredients to do so are the spatial Markov property of the model (see Section 2.2)
and the crossing probabilities bounds.

• Regularity estimates and precompactness: the crossing probabilities are instrumental
to pass to the scaling limit. They imply a priori regularity estimates on the discrete
random curves arising in the model.

• Discretization of continuous results: thanks to uniform estimates, one can connect
the discrete models (at finite scales) to their continuous limits, and transfer results
from the latter to the former.
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While the RSW bounds of [DCHN10] already allow for a number of interesting applications
(see for instance [CN09, LS10, CGN10, GP]), the stronger version of the RSW-type
estimates provided by Theorem 1.1 increases the scope of applications. In particular, we
get the following new consequences, that we describe in more details now.

In the rest of this paper, for two real-valued quantities A,B depending on a certain

number of parameters, we will write A <
_ B if there exists a constant c > 0 such that

A ≤ cB and A � B if there exists two constants c1, c2 > 0 such that c1A ≤ B ≤ c2A.

While A <
_ B is in fact equivalent to A = O(B), we prefer the first notation (we will be

using sequences of inequalities, for which the first notation is more suitable).

Arm exponents. Thanks to crossing probabilities, the (microscopic) arm exponents
for the FK-Ising model can be related to the (macroscopic) SLE arms exponents, which
in turn can be computed using stochastic calculus techniques. The microscopic arm
exponents are crucial to understand the fine structure of the phase transition of percolation
[Kes87, Nol08], as well as as for interface regularity [AB99] and noise sensitivity [GP]
questions.

Define Λn := [−n, n]2 and Sn,N = ΛN \ Λn. Dual edges are edges of (Z2)∗. Fix a
finite sequence σ of o’s (open) and c’s (closed). We say that a path of (primal) edges is
o-connected if its edges are open (in the FK-Ising model). We say that a path of dual
edges is c-connected if it consists of dual-open edges: edges of Z2 in correspondence with
dual edges of the path are closed (in the FK-Ising model). Fix σ = σ1 . . . σj. For n < N ,
define Aσ(n,N) to be the event that there are j disjoint paths from ∂Λn to ∂ΛN with
are σi-connected, for i ≤ j where the paths are indexed in counter-clockwise order. For
instance, Ao(n,N) is the one-arm event corresponding to the existence of a crossing from
the inner to the outer boundary of ΛN \ Λn.

The following theorem is crucial in the understanding of arm-exponents. The proof
follows ideas going back to Kesten [Kes87]. Importantly, it relies heavily on Theorem 1.1
and previous results on crossing probabilities would not be sufficient to derive the theorem.
Let φZ2 denotes the unique infinite-volume measure at q = 2, p = pc(2).

Theorem 1.2 (Quasi-multiplicativity). Fix a sequence σ. For every n1 < n2 < n3,

φZ2

[
Aσ(n1, n3)

]
� φZ2

[
Aσ(n1, n2)

]
φZ2

[
Aσ(n2, n3)

]
,

where the constants in � depend on σ only.

This important theorem has several consequences. We mention three of them.
let I = (Ik)k≤j be disjoint intervals of size δ on the boundary of the square Q = [−1, 1]2,

found in counter-clockwise order following ∂Q. For a sequence σ of length j, let AIσ(n,N)
be the event that Aσ(n,N) occurs and paths γ1, . . . , γj can be chosen in such a way that
γk ends on Ik for every k ≤ j.

Corollary 1.1. Fix j > 0. For any choice of I, σ and n < N ,

φZ2

[
AIσ(n,N)

]
� φZ2

[
Aσ(n,N)

]
,

where the constants in � depend on σ and I only.
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This leads to the computation of universal exponents.

Corollary 1.2 (Universal exponents). For every 0 < k < n,

φZ2

[
Aocooc(k, n)

]
� (k/n)2 , φZ2

[
AHPoc (k, n)

]
� k/n, φZ2

[
AHPoco (k, n)

]
� (k/n)2 .

where AHPσ (n,N) is the existence of j paths in [−N,N ] × [0, N ] \ [−n, n] × [0, n] from
[−n, n]× [0, n] to ([−N,N ]× [0, N ])c. Above, the constants in � are universal.

Another implication is the following one, which can be used to prove convergence of
critical FK-Ising interfaces to SLE(16/3).

Corollary 1.3. There exists α > 0 such that for every 0 < k < n ≤ Lp,

φZ2

[
Aocococ(k, n)

]
<
_ (k/n)2+α

φZ2

[
Aococ(k, n)

]
>
_ (k/n)2−α,

where the constants in <
_ and >

_ are universal.

Crossing probabilities for the spin Ising model. Their conformal invariance was
investigated numerically in [LPSA94]. Thanks to the Edwards-Sokal coupling, the FK-Ising
and the spin-Ising models can be coupled. This enables us to derive crossing probabilities
bounds for the spin Ising model from Theorem 1.1.

While it would be impossible to obtain crossing probabilities for the critical spin-Ising
that are uniform with respect to the boundary conditions (the probability of crossing of +
spins with − boundary conditions everywhere tends to 0 in the scaling limit, as can be
seen using SLE techniques), it is possible to get nontrivial bounds that allow to deal with
spin-Ising interfaces, notably in presence of free boundary conditions (which is the setup
considered in [LPSA94, HK11]).

Corollary 1.4. Let M > 1. Then there exists δ ∈
(
0, 1

2

)
such that the following holds:

Let (Ω, a, b, c, d) be a topological rectangle with 1
M
≤ `Ω [(ab) , (cd)] ≤M . Consider the

critical Ising model on (Ω, a, b, c, d) with free boundary conditions on (ab) ∪ (cd) and +
boundary conditions on (bc) ∪ (da). Then we have

δ ≤ P [There is a crossing of − spins (ab)↔ (cd)] ≤ 1− δ.

By monotonicity of the spin-Ising model with respect to the boundary conditions (this
is an easy consequence of the FKG inequality), this result implies that the probabilities of
− crossings in topological rectangles with free boundary conditions (the setup considered
in [LPSA94]) are also bounded away from below. By self-duality (for topological reason
there cannot be both a − crossing between (ab) and (cd) and a + crossing between (bc)
and (da)) and symmetry between − and + spins, such crossing probabilities are also
bounded from above.
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Figure 1: A domain Ω with two points x and y on its boundary. The set (xy) and
(xy)ext are depicted. The edge e appears twice in ∂Eext.

Coupling of discrete and continuous interfaces. It is useful to couple the critical
FK-Ising interfaces and their scaling limit SLE(16/3), in such a way that they are close to
each other and that whenever the SLE(16/3) interface hits the boundary of the domain,
so does the discrete interface with high probability. Such couplings are in particular useful
in order to obtain the full scaling limit of discrete interfaces [CN06, KS12].
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2 Graph, FK-Ising model and notations

2.1 Graph

For a planar graph G, we denote by E (G) the set of its edges. Most of the time G will be
identified with the set of its vertices, which we will also call sites. For any two vertices
x, y ∈ G, we write x ∼ y if they are adjacent and we denote by xy ∈ E (G) the edge
between them.

In this paper, we will consider finite connected and simply connected (meaning with
connected complement) graphs that are made of the union of faces of the square grid Z2

(vertices are points of Z2 and vertices at distance 1 are linked by an edge). We will call
these discrete domains.

For a discrete domain Ω, we denote by ∂Ω ⊂ Ω its boundary (when we view Ω a
domain consisting of the union of its faces); most of the time, we will identify ∂Ω with the
set of its vertices, called the boundary vertices. We denote by Int (Ω) the interior of the
graph, defined as Ω \ ∂Ω. We denote by ∂extE (Ω) the set of external edges of Ω, defined as
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the set of edges of E (Z2) \ E (Ω) incident to a vertex of Ω, counted with multiplicity : if an
edge of E (Z2) \ E (Ω) is incident to two vertices of Ω, it appears as two distinct elements
of ∂extE (Ω). We identify the edges of ∂extE (Ω) with the set ∂extΩ of external boundary
vertices, they are the formal endpoints in Z2 \ Ω of the edges of ∂E (Ω).

For two points x, y ∈ ∂Ω, we denote by (xy) ⊂ ∂Ω the counterclockwise arc of ∂Ω from
x to y (including x and y); as usual we identify (xy) with the set of the vertices located
on it; we will frequently identify x ∈ ∂Ω with the arc (xx); we denote by (xy)ext the set of
vertices of ∂extΩ adjacent to (xy). We call a discrete domain Ω with four marked vertices
a, b, c, d ∈ ∂Ω in counterclockwise order a topological rectangle.

We denote by (Z2)
∗

the dual of Z2: the vertices of (Z2)
∗

are the (centers) of the faces
of Z2 and nearest neighbors are linked by an edge. Given a discrete domain Ω, the dual
domain Ω∗ is the induced subgraph of (Z2)

∗
whose vertices correspond to faces of Ω. We

denote by ∂Ω∗ the set of vertices of Ω∗ corresponding to faces of Ω sharing an edge with
∂Ω. We denote by ∂extΩ

∗ the set of external dual vertices, corresponding to the faces of
Z2 \ Ω adjacent to ∂Ω, with multiplicity: it is in bijection with the edges of ∂Ω.

2.2 FK-Ising model

In order to remain as self-contained as possible, some basic features of the random-cluster
models are presented now. The reader can consult the reference book [Gri06] for additional
details.

2.2.1 Definition of FK-measures

We define the FK percolation measure on arbitrary finite graphs. Let G be a finite graph,
with a specified boundary ∂G. A configuration ω is a random subgraph of G given by the
vertices of G, together with a subset of E (G). An edge of G is called open if it belongs
to ω, and closed otherwise. Two sites x, y ∈ G are said to be connected if there is an
open path (a path composed of open edges only) connecting them. Similarly, two sets
of vertices X and Y are said to be connected if there exist two sites x ∈ X and y ∈ Y
that are connected; we use the notation X ↔ Y for this event. We also write x↔ Y for
{x} ↔ Y . Maximal connected components of the configuration are called clusters.

A set of boundary conditions ξ = E1, E2, . . . is a partition of ∂G into disjoint subsets
E1, E2, . . . ⊂ ∂G. For conciseness, singletons subsets are omitted from the notations. We
say that two boundary vertices x, y ∈ ∂G are wired if they belong to the same element of
ξ; we call boundary vertices that are not wired to other vertices free. Informally speaking,
the role of the boundary conditions conditions is to encode how sites are connected outside
G (see Section 2.2.2).

We denote by ω ∪ ξ the graph obtained from the configuration ω by artificially linking
together any two pair of vertices x, y ∈ ∂Ω that are wired by ξ. Let o(ω) (resp. c(ω))
denote the number of open (resp. closed) edges of ω and k(ω, ξ) the number of connected
components of ω ∪ ξ. The probability measure φξp,q,Ω of the random-cluster model on G
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with parameters p and q and boundary condition ξ is defined by

φξp,q,G({ω}) :=
po(ω)(1− p)c(ω)qk(ω,ξ)

Zξ
p,q,G

(2.1)

for every configuration ω on G, where Zξ
p,q,G is the partition function (normalizing constant).

2.2.2 Domain Markov property

The state of the edges in the FK model being highly dependent, what happens in a given
subgraph depends on the configuration outside the subgraph. The FK model possesses a
’screening effect’ known as domain (or spatial) Markov property, which usually makes it
possible to encode this dependence through boundary conditions. This property is used a
number of times in this paper.

Take a graph G. For a subset of edges F ⊂ E (G), consider the graph G′ having F as
a set of edges, and the endpoints of F as a set of vertices. Then, for any set of boundary
conditions ψ, φψp,q,Ω conditioned to match a configuration ω on E \ F is equal to φξp,q,G′ ,
where ξ is the set of connections inherited from ω (one wires in ξ the boundary vertices
that are connected in G \G′). In other words, the influence of the configuration outside
G′ is completely contained in the boundary conditions ξ.

2.2.3 FKG and monotonicity

The random-cluster model with parameters p ∈ [0, 1] and q ≥ 1 on a finite graph G has
the strong positive association property. More precisely, it satisfies the so-called Holley
criterion [Gri06], a fact which has two important consequences. A first consequence is the
well-known FKG inequality

φξp,q,Ω(A ∩B) ≥ φξp,q,Ω(A) φξp,q,Ω(B)

for any pair of increasing events A, B (increasing events are defined in the usual way
[Gri06]) and any boundary conditions ξ. This correlation inequality is fundamental to
the study FK percolation, for instance to combine several increasing events such as the
existence of crossings in various rectangles.

A second property implied by the strong positive association is the following mono-
tonicity with respect to boundary conditions, which is particularly useful when combined
with the Domain Markov property. For any two sets of boundary conditions ψ ≤ ξ (any
two vertices wired in ψ are wired in ξ), we have

φψp,q,G(A) ≤ φξp,q,G(A) (2.2)

for any increasing event A that depends only on Ω. We say that φψp,q,G is stochastically

dominated by φξp,q,G, and we write φψp,q,G ≤ φξp,q,G.
Among all the possible boundary conditions, four play a specific role in our paper:

• The free boundary condition corresponds to the case when there are no extra edges
connecting boundary vertices; we denote by φ0

p,q,Ω the corresponding measure.
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• The wired boundary condition corresponds to the case when all the boundary vertices
are pair-wise connected, and the corresponding measure is denoted by φ1

p,q,Ω.

• For a discrete domain Ω with two boundary points a, b ∈ ∂Ω, we call Dobrushin the
boundary conditions where the vertices of (ab) are wired together, and the other

vertices are free. The measure is denote by φ
(ab)
Ω .

• For a topological rectangle (Ω, a, b, c, d), we denote by φ
(ab),(cd)
Ω the random-cluster

measure with the vertices of (ab) wired together, the vertices of (cd) wired together
and the rest of the vertices free. These boundary conditions are called alternating
free/wired/free/wired boundary conditions.

Remark 2.1. The free and wired boundary conditions are extremal for stochastic domina-
tion: for any boundary condition ξ and any increasing event A,

φ0
p,q,Ω(A) ≤ φξp,q,Ω(A) ≤ φ1

p,q,Ω(A). (2.3)

Hence to get a lower bound (respectively an upper bound) on crossing probabilities that is
uniform with respect to the boundary conditions, it is enough to get such a bound for free
(respectively wired) boundary conditions.

2.2.4 Planar self-duality

Like the other critical FK models, the two-dimensional critical FK-Ising model is self-dual:
given a discrete domain Ω, we can couple the critical FK-Ising models on Ω (called the
primal model) and on Ω∗ (called the dual model) in such a way that whenever an edge
e ∈ E (Ω) is open, the dual edge e∗ ∈ E (Ω∗) is closed, and vice versa. The boundary
conditions of both models are dual to each other: if we consider wired boundary conditions
on Ω, the boundary conditions of the dual model on Ω∗ are free.

It can be shown that all critical FK models are self-dual [BDC10]. For more detail on
planar duality, see [Gri06], for instance.

3 Discrete complex analysis

In the section, we introduce the discrete harmonic measures and random walk partition
functions that will be used in this article. A number of their properties are provided,
including factorization properties and uniform comparability results obtained in [Che11].
Finally, we relate certain elementary critical FK-Ising model probabilities to discrete
harmonic measure, notably using the observables introduced in [Smi10, CS09]. These
results will be brought together in the next section to prove Theorem 1.1.

3.1 Laplacians, harmonic measures and random walks

Let Ω be a discrete domain, with boundary vertices ∂Ω and external boundary vertices
∂extΩ. Consider a collection of nonnegative conductances C = (ce)e defined on the set of
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the edges E and of external boundary edges ∂extE (Ω); we call the conductances on E (Ω) the
bulk conductances and the conductances on ∂extE (Ω) the boundary conductances. In this
paper, the bulk conductances are always assumed to be 1 and the boundary
conductances are in [ 1

µ
, µ] for some µ > 1.

With this set of conductances is associated a Laplacian ∆C defined (for a function
f : Ω ∪ ∂extΩ→ R) by:

∆Cf (x) :=
1

λx

∑
y∼x

cxy (f (y)− f (x)) ∀x ∈ Ω

λx :=
∑
y∼x

cxy

For x, y ∈ Ω, we denote by ZΩ,C [x, y] the partition function of the random walks (RW)
ω in Ω with conductances C from x to y, absorbed by ∂extΩ. More formally, the possible
realizations are the sequences ω1, . . . , ωn of vertices such that ω is adjacent to ω for each i,
ω1 = x, ω2,...,n−1 ∈ Ω \ {y} and ωn = y. The partition function is defined by

ZΩ,C [x, y] :=
∑
ω:x→y

length(ω)−1∏
k=1

cωkωk+1

λωk

= P [RW with generator ∆C starting from x hits y before ∂extΩ]

When the context is clear, we will omit the set of conductances C in the subscripts.
Let (cd) ⊂ ∂Ω be a boundary arc. We define for x ∈ Ω

ZΩ,C [x, (cd)] :=
∑
y∈(cd)

ZΩ,C [x, y]

= P [RW with generator ∆C starting from x hits (cd) before ∂extΩ] .

It is easy to check that x 7→ ZΩ,C [x, (cd)] is a ∆C-harmonic function on Ω \ ((cd) ∪ ∂extΩ)
which has boundary conditions 1 on (cd) and boundary conditions 0 on ∂extΩ.

If (ab) , (cd) ⊂ ∂Ω are boundary arcs, we define

ZΩ,C [(ab) , (cd)] :=
∑
x∈(ab)

ZΩ,C [x, (cd)] .

Given a discrete domain Ω, we define in the same manner partition functions of random
walks on Ω∗, taking ∂Ω∗ and ∂extΩ

∗ instead of ∂Ω and ∂extΩ.

3.2 Discrete extremal length

A very useful tool when dealing with discrete harmonic measures in topological rectangle
is a discrete version of the extremal length. It measures the distance, from the discrete
harmonic measures point of view, between two arcs of a domain, in a particularly robust
manner. In this paper, we will mostly use it to compare partition functions of random
walks on Ω and on the dual graph Ω∗.
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Consider a topological rectangle (Ω, a, b, c, d) and a collection of conductances C (recall
that bulk conductances are always 1). Denote by CDN

(Ω,a,b,c,d) the set of conductances C,

except that the conductances to the edges incident to a vertex of (bc) ∪ (da) are set to 0:
in other words, the Laplacian ∆CDN

(Ω,a,b,c,d)
is the generator of the random walk generated by

∆C reflected by the arcs (bc) and (da) (more precisely: reflected by the edges of ∂E (Ω)
incident to (bc) ∪ (da)).

Following [Che11], we define the extremal length `Ω,C [(ab) , (cd)] by

`Ω,C [(ab) , (cd)] :=
(
ZΩ,CDN

(Ω,a,b,c,d)
[(ab) , (cd)]

)−1

.

When no set of conductances is specified, like in Theorem 1.1, all conductances are set to
1.

The discrete extremal length is particularly powerful because of its robustness: the
discrete extremal lengths on a discrete domain with different boundary conductances are
uniformly comparable. Also, the discrete extremal length on a rectangle and its dual are
comparable (note that such a general result would not be true for partition functions of
random walks with purely Dirichlet boundary conditions):

Theorem 3.1 ([Che11]). Let µ > 1. Let (Ω, a, b, c, d) be a topological rectangle and

consider a set of conductances C on Ω with boundary conductances in
[

1
µ
, µ
]
. Let Ω∗ be

the dual to Ω∗ and let C∗ be a set of conductances on Ω∗ with boundary conductances in[
1
µ
, µ
]
. Then we have

`Ω,C [(ab) , (cd)] � `Ω∗;C∗ [(ab)∗ , (bc)∗] ,

where the constants in � depend on µ only.

The next theorem asserts that if the extremal length is of order 1 (like in the statement
of Theorem 1.1), then so are the partition functions of random walks with Dirichlet
boundary conditions:

Theorem 3.2 ([Che11]). Let M > 1 and µ > 1. For any topological rectangle (Ω, a, b, c, d)

and any set of conductances C with boundary conductances in
[

1
µ
, µ
]
, if

1

M
≤ `Ω,C [(ab) , (cd)] ≤M

then

`Ω,C [(bc) , (da)] � 1, ZΩ,C [(ab) , (cd)] � 1, ZΩ,C [(bc) , (da)] � 1,

where the constants in � depend on M and µ only.
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3.3 Factorization results

In this section, we review the main results of [Che11] concerning factorization properties of
discrete harmonic measure. While in the continuum such results are rather easy to derive
(for instance using explicit expressions and conformal invariance), it requires a much more
delicate analysis to obtain them (up to uniform constants) on the discrete level.

Theorem 3.3 ([Che11]). Let µ > 1. Let (Ω, a, b, c) be a topological triangle and consider

a set of conductances C on Ω with boundary conductances in
[

1
µ
, µ
]
. We have

ZΩ,C [a, (bc)] �
√
ZΩ,C [a, b]ZΩ,C [a, c]

ZΩ,C [b, c]
,

where the constants in � depend on µ only.

The following estimate will also be needed. It involves a discrete version of the
cross-ratio (the left-hand side of 3.1):

Theorem 3.4 ([Che11]). Let M,µ > 1. Let (Ω, a, b, c, d) be a topological rectangle

and consider a set of conductances C on Ω with boundary conductances in
[

1
µ
, µ
]
. If

`Ω,C [(ab) , (cd)] ≤M , then√
ZΩ,C [a, d]ZΩ,C [b, c]

ZΩ,C [a, b]ZΩ,C [c, d]
� ZΩ,C [(ab) , (cd)] , (3.1)

where the constants in � depend on M and µ only.

3.4 Separators

A crucial concept in the following study is the notion of separators. These separators will
allow us to perform efficient surgery of the discrete domains.

Informally speaking, separators of a domain are discrete curves that separate a domain
in two pieces, in a “good” manner from harmonic measure point of view: the product of
partition functions of random walks in the two pieces is of the same order as the partition
function of random walks in the original domain.

If (Ω, a, b, c, d) is a topological rectangle, a separating curve between (ab) and (cd) is
a simple discrete curve Γ in Ω from (bc) to (da) (it separates (ab) from (cd) in Ω). The
connected components of Ω \Γ containing (ab) and (cd) respectively are denoted by ΩΓ,(ab)

and ΩΓ,(cd) respectively.

Theorem 3.5 ([Che11]). Let M,µ > 1. Let (Ω, a, b, c, d) be a topological rectangle and

consider a set of conductances C on Ω with boundary conductances in
[

1
µ
, µ
]
. Assume

that Z := ZΩ,C [(ab) , (cd)] ≤M . Then for any k ∈
[
Z
M
, M
Z

]
, there exists a separating curve

Γ ⊂ Ω between (ab) and (cd) such that we have

ZΩΓ,(ab),C [(ab) ,Γ] · ZΩΓ,(cd),C [Γ, (cd)] � ZΩ,C [(ab) , (cd)] , (3.2)

ZΩΓ,(cd),C [Γ, (cd)] � k · ZΩΓ,(ab),C [(ab) ,Γ] ,

12



where the constants in � depend on M and µ only.

We will call separator a separating curve satisfying (3.2). Let us give a corollary that
will be particularly useful for us:

Corollary 3.1. Let M,µ > 1. Let (Ω, a, b, c, d) be a topological rectangle and consider

a set of conductances C on Ω with boundary conductances in
[

1
µ
, µ
]
. Then there exists

ε ∈ (0, 1) (depending on M and µ only) such that for any topological rectangle (Ω, a, b, c, d)
with Z := ZΩ [(ab) , (cd)] ≤ M and any κ ∈

[
Z
ε
, ε
]

there exists a separating curve Γ ⊂ Ω
between (ab) and (cd) with

ZΩΓ,(ab),C [(ab) ,Γ] · ZΩΓ,(cd),C [Γ, (cd)] � ZΩ,C [(ab) , (cd)] ,

ZΩ,C [Γ, (cd)] ∈ [εκ, κ] ,

where the constant in � depends on M and µ only.

Proof By Theorem 3.5, there exists C1, C2, C3, C4 > 0 such that for any k ∈
[
Z
M
, M
Z

]
we

have

C1Z ≤ ZΩ [(ab) ,Γ] · ZΩ [Γ, (cd)] ≤ C2Z and C3k ≤
ZΩ [Γ, (cd)]

ZΩ [(ab) ,Γ]
≤ C4k.

Hence, we obtain √
C1C3kZ ≤ ZΩ [Γ, (cd)] ≤

√
C2C4kZ.

Take ε := min{
√
C1C3/(C2C4),

√
C2C4/M}. If κ ∈

[
Z
ε
, ε
]
, we can choose k := κ2

C2C4Z
∈[

Z
M
, M
Z

]
in Theorem 3.5 to get the result. �

We will also need the following corollary, which says that we can split a topological
rectangle in “fair” shares:

Corollary 3.2. Let M,µ > 1. For any topological rectangle (Ω, a, b, c, d) and any set of

conductances C on Ω with boundary conductances in
[

1
µ
, µ
]

such that

M−1 ≤ `Ω,C [(ab) , (cd)] ≤M,

there exists separating curve Γ ⊂ Ω between (ab) and (cd) such that

`Ω(ab),C [(ab) ,Γ] � `Ω(cd),C [(cd) ,Γ] � `Ω,C [(ab) , (cd)] ,

where the constants in � depend on M only.

Proof By Theorem 3.2, we have that ZΩ,C [(ab) , (cd)] � 1 (where the constant depends
on M only). Applying Theorem 3.5 with k = 1, we obtain a simple curve Γ separating
(ab) from (cd) with

ZΩ(ab),C [(ab) , (xy)] � ZΩ(cd),C [(xy) , (cd)] � ZΩ,C [(ab) , (cd)] ,

where the constants in � depend on M only. Applying once more Theorem 3.2, we get
the result. �

13



3.5 From FK-Ising model to discrete harmonic measure

In this section, we relate critical FK-Ising crossing probabilities with free/wired/free/wired
boundary conditions to discrete harmonic measures. The main tool consists of the
observables introduced in [Smi10, CS09], where the scaling limit of FK-Ising crossing
probabilities (with free/wired/free/wired boundary conditions) is computed.

The probability that two wired arcs are connected (with free boundary conditions
elsewhere) can be bounded from above in terms of discrete harmonic measure.

Let C∗◦ denote the set of unit conductances on the edges of Ω∗δ and let Z◦ be the
corresponding random walk partition function. Let C• be the set of conductances on Ωδ,
where each bulk edge has conductance 1, the boundary edges incident to (bc) ∪ (da) have
conductance 1 and the boundary edges incident to (ab) ∪ (cd) have conductance 2√

2+1
.

Proposition 3.3. For any M > 0, for any (Ω, a, b, c, d) topological rectangle with
ZΩ,C• [(ab) , (cd)] ≤M , we have

φ
(ab),(cd)
Ω [(ab)↔ (cd)] <_

√
ZΩ,C• [(ab) , (cd)],

where the constant in <
_ depends on M only.

The proof is given below. It follows the ideas of the proof of [CS09, Theorem 6.1],
where the above crossing probability is computed in the scaling limit.

When we degenerate the arc (ab) to a singleton, the partition function ZΩ,C• becomes
less than one and we obtain the following upper bound (see also [DCHN10, Proposition 6],
where a double-sided estimate is derived):

Corollary 3.4. With the notation of Proposition 3.3, we have

φ
(cd)
Ω [a↔ (cd)] <_

√
ZΩ,C• [a, (cd)],

where the constant in <
_ is universal.

If we also degenerate the arc (cd) to a singleton, we have a double-sided harmonic
measure estimate for the probability that two boundary vertices are connected with free
boundary conditions.

Proposition 3.5. Let Ω be a discrete domain. For any two sites a, b ∈ ∂Ω, we have√
ZΩ∗;C∗◦ [a∗, b∗] <_ φ0

Ω (a↔ b) <
_

√
ZΩ,C• [a, b],

for any a∗ ∈ ∂Ω∗ at distance
√

2
2

from a and b∗ ∈ ∂Ω∗ at distance
√

2
2

from b. The constants

in <
_ are universal.

This proposition is directly obtained from [DCHN10, Proposition 6], by looking at the
case where the wired arc is reduced to a single vertex.
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Proof of Proposition 3.3 Fix a domain (Ω, a, b, c, d) and consider the critical FK-Ising
model with boundary conditions wired on (ab) and on (cd), and free elsewhere. In [CS09,
Proof of Theorem 6.1], two discrete holomorphic observables F1 and F2 for this setup are
introduced, and it is shown that there exists a unique linear combination F of F1, F2 and a
unique κ ∈ R such that a discrete version H, defined on Ω∪ (ab)ext ∪ (bc)ext of =m

(∫
F 2
)

satisfies the following boundary conditions:

H = 0 on (da) , H = 1 on (cd) and H = κ on (ab)ext ∪ (bc)ext .

This discrete function H is ∆C•-subharmonic on Ω \ ((ab) ∪ (cd)). The constant κ ∈ [0, 1]

is shown to be in one-to-one continuous correspondence with φ
(ab),(cd)
Ω [(ab)↔ (cd)]; from

[CS09, Formula 6.6], we get in particular that
√
κ � φ

(ab),(cd)
Ω [(ab)↔ (cd)] , (3.3)

where the constants are universal.
Let ain be a vertex of Int (Ω) adjacent to a. By construction of H (see [CS09, Proof

of Theorem 6.1]), we have that H (ain) ≥ H (aext) = κ, where aext is the vertex of (ab)ext

closest to a. If we now consider the function H − κ, we obtain the following estimate in
terms of discrete harmonic measure

0 = H(aext)− κ ≤ H (ain)− κ
≤ ZΩ,C• [ain, (cd)] + κZΩ,C• [ain, (ab)ext] + κZΩ,C• [ain, (bc)ext]− κ
= (1− κ)ZΩ,C• [ain, (cd)]− κZΩ,C• [ain, (bc)ext] ,

In the first equality, we used the boundary condition for H, in the second the fact that
H − κ is ∆C•-subharmonic on Ω and the boundary conditions of H − κ. This leads to

κ ≤ ZΩ,C• [ain, (cd)]

ZΩ,C• [ain, (bc)ext]
<
_

ZΩ,C• [a, (cd)]

ZΩ,C• [a, (bc)]
.

We used the fact that harmonic measures are comparable for neighboring vertices and
neighboring arcs. Using the factorization for the harmonic measure given by Proposition
3.3, we get

κ <
_

ZΩ,C• [a, (cd)]

ZΩ,C• [a, (bc)]
�
√
ZΩ,C• [a, c]ZΩ,C• [a, d]ZΩ,C• [b, c]

ZΩ,C• [a, b]ZΩ,C• [a, c]ZΩ,C• [c, d]
=

√
ZΩ,C• [a, d]ZΩ,C• [b, c]

ZΩ,C• [a, b]ZΩ,C• [c, d]
.

Using the assumption ZΩ,C• [(ab) , (cd)] ≤M , we get by Theorem 3.4 that

κ <
_

√
ZΩ,C• [a, d]ZΩ,C• [b, c]

ZΩ,C• [a, b]ZΩ,C• [c, d]
� ZΩ,C• [(ab) , (cd)] .

Hence, (3.3) implies

φ
(ab),(cd)
Ω [(ab)↔ (cd)] � √κ <

_

√
ZΩ,C• [(ab) , (cd)].

�

15



4 Proof of Theorem 1.1

In this section, we will be considering partition functions of random walks on a topological
rectangles, and will omit the dependence on the domain in the notation when the context
is clear. Recall that ZΩ,C• [Γ1,Γ2] is the partition function function of random walks on Ω
as previously defined, with unit conductances everywhere, except on the external edges
incident to Γ1 ∪ Γ2, where the conductances are set to 2

1+
√

2
.

Lemma 4.1. Let M > 1. For any (Ω, a, b, c, d) with ZΩ,C• [(ab), (cd)] ≤M , we have

φ(cd)
(
a↔ (cd), b↔ (cd)

)
<
_

√
ZΩ,C• [a, (cd)]ZΩ,C• [b, (cd)]

ZΩ,C• [(ab), (cd)]
,

where the constant in <
_ depends only on M .

Proof In this proof, constants in � and <
_ are depending only on M . Note that

ZΩ,C• [a, (cd)] ≤ ZΩ,C• [(ab), (cd)] ≤ M . Fix ε = ε(M) ∈ (0, 1) as given by Corollary 3.1.
Then we have two cases:

Case 1: ZΩ,C• [a, (cd)] > ε
3
ZΩ,C• [(ab), (cd)] or ZΩ,C• [b, (cd)] > ε

3
ZΩ,C• [(ab), (cd)].

Suppose we are in the first case (the other case is symmetric). Then Corollary 3.4
implies

φ
(cd)
Ω

(
a, b↔ (cd)

)
≤ φ

(cd)
Ω

(
b↔ (cd)

)
≤
√
ZΩ,C• [b, (cd)]

≤
√

3ZΩ,C• [a, (cd)]ZΩ,C• [b, (cd)]

εZΩ,C• [(ab), (cd)]
.

Case 2: ZΩ,C• [a, (cd)] ≤ ε
3
ZΩ,C• [(ab), (cd)] and ZΩ,C• [b, (cd)] ≤ ε

3
ZΩ,C• [(ab), (cd)].

By Corollary 3.1 (setting κ := 1
3
ZΩ,C• [(ab) , (cd)]), there exists a separator Γa between

a and (cd) such that

ε

3
ZΩ,C• [(ab), (cd)] ≤ ZΩ,C• [Γa, (cd)] ≤ 1

3
ZΩ,C• [(ab), (cd)]. (4.1)

Denote by Ωa the connected component of Ω \ Γa containing a.
Similarly, there exists a separator Γb of b and (cd) such that

ε

3
ZΩ,C• [(ab), (cd)] ≤ ZΩ,C• [Γb, (cd)] ≤ 1

3
ZΩ,C• [(ab), (cd)]. (4.2)

Denote by Ωb the connected component of Ω \ Γb containing b.
Note that the two separators do not intersect: Ωa ∩ Ωb = ∅. Otherwise, their union

would separate the whole arc (ab) from (cd), which is impossible, since

ZΩ,C• [Γa ∪ Γb, (cd)] ≤ ZΩ,C• [Γa, (cd)] + ZΩ,C• [Γb, (cd)] ≤ 2/3 · ZΩ,C• [(ab), (cd)].
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We are thus facing the following topological picture: the two arcs Γa and Γb are not
intersecting and are separating a, b and (cd). Wiring the arc Γa and Γb, we find:

φ
(cd)
Ω [a, b↔ (cd)] ≤ φΓa

Ωa
[a↔ Γa]φ

Γb
Ωb

[b↔ Γb]φ
(cd),Γa∪Γb
Ω\(Ωa∪Ωb)

[Γa ∪ Γb ↔ (cd)].

Let us deal with the first term on the right-side. Using Corollary 3.4 and the fact that Γa
is a separator between a and (cd), we obtain

φΓa
Ωa

[a↔ Γa] ≤
√
ZΩ,C• [a,Γa] �

√
ZΩ,C• [a, (cd)]

ZΩ,C• [Γa, (cd)]
≤
√

ZΩ,C• [a, (cd)]

ZΩ,C• [(ab), (cd)]
,

where in the last inequality we used (4.1). Similarly:

φΓb
Ωb

[b↔ Γb] <
_

√
ZΩ,C• [b, (cd)]

ZΩ,C• [(ab), (cd)]

For the last term, we get

φ
(cd),Γa∪Γb
Ω\(Ωa∪Ωb)

[Γa ∪ Γb ↔ (cd)] ≤ φ
(cd),Γa∪Γb∪(ab)
Ω\(Ωa∪Ωb)

[Γa ∪ Γb ∪ (ab)↔ (cd)]

≤
√
ZΩ,C• [Γa ∪ Γb ∪ (ab), (cd)]

≤
√

5
3
ZΩ,C• [(ab), (cd)]

where in the second inequality we used Proposition 3.3 and in the third one, (4.1) and
(4.2). Putting everything together we find

φ
(cd)
Ω [a, b↔ (cd)] <

_

√
ZΩ,C• [a, (cd)]ZΩ,C• [b, (cd)]

ZΩ,C• [(ab), (cd)]
.

�

Let us now reduce Theorem 1.1 to a lower bound for crossing probabilities, with free
boundary conditions, assuming double-sided estimates for the discrete extremal length. In
the following, let `Ω[(ab), (cd)] be the discrete extremal length with conductances all equal
to 1.

Lemma 4.2. To prove Theorem 1.1, we only need to prove the following: for any M >
1, there exists δ > 0 such that for any topological rectangle (Ω, a, b, c, d) with M−1 ≤
`Ω[(ab), (cd)] ≤M , we have

φ0
Ω [(ab)↔ (cd)] ≥ δ.
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Proof Let us first notice that to prove both estimates of Theorem 1.1, we can assume
that we have a double-sided control on the discrete extremal length of (Ω, a, b, c, d) (instead
of the one-sided bounds in the assumptions of the theorem). Indeed, if we want a lower
bound on the probability of a crossing (ab)↔ (cd) in Ω when `Ω[(ab), (cd)] ≤M (we can
always take M > 1), we can also assume that `Ω[(ab), (cd)] ≥ M−1 by bringing a and b
close enough to each other, if necessary (clearly, this will increase `Ω[(ab), (cd)] ≤M , while
decreasing the probability of a crossing (ab)↔ (cd)). Similarly, if we want an upper bound
on the probability of a crossing (ab)↔ (cd), under the assumption `Ω[(ab), (cd)] ≥ m (we
can always take m = M−1 < 1), we can also assume `Ω[(ab), (cd)] ≤ m−1, by bringing b
and c close enough to each other if necessary.

Using the monotonicity with respect to the boundary conditions (Remark 2.1), in
order to get a lower bound for the crossing probabilities that is uniform with respect to
the boundary conditions, it is enough to get such a bound for free boundary conditions.
Similarly, it is sufficient to get a uniform upper bound in the case of fully wired boundary
conditions.

Using the self-duality of the model (see Section 2.2.4), we see that obtaining an upper
bound for the probability of a crossing (ab)↔ (cd) on Ω (with wired boundary conditions)
is equivalent to obtaining a lower bound for the probability of a crossing (bc)∗ ↔ (da)∗

for the critical FK-Ising model on Ω∗ (with free boundary condition). It is hence enough
to bound from below the probability φ0

Ω∗ [(bc)
∗ ↔ (da)∗] of a dual crossing from (bc)∗ to

(da)∗ (by a constant depending on M only). The extremal length `Ω[(ab)∗, (cd)∗] is of the
same order as `Ω[(ab), (cd)] by Theorems 3.1 and 3.2, so it is enough to prove the lower
bound of Theorem 1.1, and this proves the lemma. �

Proof of Theorem 1.1 Let M > 1. Once again, constants in �, <
_ and >

_ depend

only on M . Fix a domain (Ω, a, b, c, d) with `Ω[(ab), (cd)] ∈ [M−1,M ].
By Lemma 4.2, it is enough to prove that there exists δ > 0 such that the probability

of a crossing (ab)↔ (cd) with free boundary conditions is at least δ.
The proof relies on a second-moment estimate for the random variable

N :=
∑

u∈(ab), v∈(cd)

φ0
Ω[u↔ v] Iu↔v. (4.3)

Step 1: First moment of N .
Let us start by estimating the first moment:

φ0
Ω[N ] =

∑
u∈(ab), v∈(cd)

φ0
Ω[u↔ v]2 >

_

∑
w∈(ab)∗,t∈(cd)∗

ZΩ∗,C∗◦(w ↔ t)

= ZΩ∗,C∗◦ [(ab)
∗ , (cd)∗] � 1,

Note that in order to obtain the first inequality, we used Proposition 3.5. For the last one,
we used Theorems 3.3 and 3.4 to show that

1 � `Ω[(ab), (cd)] � `Ω∗,C∗◦ [(ab), (cd)] � ZΩ∗,C∗◦ [(ab)
∗ , (cd)∗].
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Step 2: Second moment of N .
Corollary 3.2 applied in (Ω, a, b, c, d) gives a separator Γ ⊂ Ω between (ab) and (cd)

splitting Ω in two parts of comparable sizes (in terms of harmonic measure):

ZΩ,C• [(ab),Γ] � ZΩ,C• [Γ, (cd)] � ZΩ,C• [(ab), (cd)] � 1. (4.4)

We find:

φ0
Ω[N2] =

∑
u,v∈(ab), u′,v′∈(cd)

φ0
Ω[u↔ v]φ0

Ω[u′ ↔ v′]φ0
Ω[u↔ v, u′ ↔ v′]

≤
∑

u,v∈(ab), u′,v′∈(cd)

φ0
Ω[u↔ Γ]φ0

Ω[u′ ↔ Γ]φ0
Ω[v ↔ Γ]φ0

Ω[v′ ↔ Γ]φ0
Ω[u, u′ ↔ Γ, v, v′ ↔ Γ].

Let Ω1 and Ω2 be the connected components of Ω \Γ containing (ab), and (cd) respectively.
Wiring the arc Γ, the right-hand side factorizes into the product of two terms

SΩ1 =
∑

u,v∈(ab)

φΓ
Ω1

[u↔ Γ]φΓ
Ω1

[v ↔ Γ]φΓ
Ω1

[u, v ↔ Γ],

SΩ2 =
∑

u′,v′∈(cd)

φΓ
Ω2

[u′ ↔ Γ]φΓ
Ω2

[v′ ↔ Γ]φΓ
Ω1

[u′, v′ ↔ Γ].

Assume for a moment that we possess the bounds

SΩ1
<
_ ZΩ,C• [(ab),Γ]3/2 and SΩ2

<
_ ZΩ,C• [Γ, (cd)]3/2. (4.5)

They imply, thanks to the definition of separators,

φ0
Ω[N2] ≤

(
ZΩ,C• [(ab),Γ] · ZΩ,C• [Γ, (cd)]

)3/2 <
_ ZΩ,C• [(ab), (cd)]3/2.

Now, by Theorems 3.3 and 3.4, we get that

1 � `Ω[(ab), (cd)] � `Ω∗,C∗◦ [(ab), (cd)] � `Ω,C• [(ab), (cd)] � ZΩ,C• [(ab), (cd)].

We conclude that φ0
Ω[N2] <_ 1.

Step 3: Proof of the two estimates in (4.5).
We only show the first one, since the second one is the same. Using Lemma 4.1 and

Corollary 3.4, we find

SΩ1 =
∑

u,v∈(ab)

φΓ
Ω1

[u↔ Γ]φΓ
Ω1

[v ↔ Γ]φΓ
Ω1

[u, v ↔ Γ]

<
_

∑
u,v∈(ab)

ZΩ,C•(u,Γ)ZΩ,C•(v,Γ)√
ZΩ,C• [(uv),Γ]
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Note that for any sequence of positive real numbers (un)n≥0, and α > 0, a comparison
between series and integral implies

n∑
k=1

uk

(
k∑
j=1

uj

)α−1

≤ 1

α

(
n∑
k=1

uk

)α

. (4.6)

Say that u ≺ v if u and v are found in this order when going along the arc (ab) in the
counterclockwise order. In our case, (4.6) implies that,∑

u,v∈(ab)

ZΩ,C• [u,Γ]ZΩ,C• [v,Γ]√
ZΩ,C• [(uv),Γ]

≤ 2
∑

u≺v∈(ab)

ZΩ,C• [u,Γ]ZΩ,C• [v,Γ]√
ZΩ,C• [(uv),Γ]

= 2
∑
v∈(ab)

ZΩ,C• [v,Γ]
∑
u∈(av)

ZΩ,C• [u,Γ]√
ZΩ,C• [(uv),Γ]

≤
∑
v∈(ab)

ZΩ,C• [v,Γ]
√
ZΩ,C• [(av),Γ]

≤
∑
v∈(ab)

ZΩ,C• [u,Γ]
√
ZΩ,C• [(ab),Γ]

≤ ZΩ,C• [(ab),Γ]
3
2 ,

thus giving (4.5).

Step 4: Lower bound for crossing probabilities.
By the Cauchy-Schwarz inequality,

φ0
Ω

(
(ab)↔ (cd)

)
= φ0

Ω(N > 0) = φ0
Ω[(IN>0)2] ≥ φ0

Ω[N ]2

φ0
Ω[N2]

>
_ 1,

where we used the two first steps. Our bound depends on M only. �

5 Arm exponents

5.1 Quasi-multiplicativity

Define Λn(x) := x + [−n, n]2 and Λn = Λn(0). Also set Sn,N(x) = ΛN(x) \ Λn(x) and
Sn,N = Sn,N(0).

A classical use of Theorem 1.1 implies the following lemma

Lemma 5.1. For any σ, there exist βσ > 0 and β′σ > 0 such that

(n/N)βσ ≤ φ[Aσ(n,N)] ≤ (n/N)β
′
σ .

Another easy consequence of Theorem 1.1 (in fact of a weaker result, see Proposition 5.11
of [DCHN10]) is the following
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Proposition 5.2 ([DCHN10]). There exist c, α > 0 such that for any k ≤ n,

∣∣φ(A ∩B)− φ(A)φ(B)
∣∣ ≤ c

(
k

n

)α
φ(A)φ(B)

for any event A (resp. B) depending only on the edges in the box Λk (resp. outside Λn).

An important consequence of this property is the following: up to uniform constants,
the probability of existence of j arms does not depend on the boundary conditions. In
particular,

φ
(
Aσ(n,N)

∣∣ FZ2\Λ2N

)
� φ(Aσ(n,N)) a.s. (5.1)

uniformly in n, N , where FΩ is the σ-algebra generated by (the state of) the edges in Ω.

Let us define the notion of well-separated arms. In words, well-separated arms extend
slightly outside the boxes and their ends are at macroscopic distance of each others,
see Fig. 2. More precisely, for small, fixed δ > 0, j paths γ1, . . . , γj with end-points
xk = γk ∩ ∂Λn, yk = γk ∩ ∂ΛN are said to be well-separated if

• the points yk are at distance larger than 2δN from each other.

• the points xk are at distance larger than 2δn from each other.

• For every k, yk is σk-connected up to distance δN of Sn,N in ΛδN(yk),

• For every k, xk is σk-connected up to distance δn of Sn,N in Λδn(xk).

Let Asep;δσ (n,N) = Asep
σ (n,N) be the event that Aσ(n,N) holds true and there exist

arms realizing Aσ(n,N) which are δ well-separated. The previous definition has several
convenient properties.

Lemma 5.3. Fix δ < 1 small enough. For every n1 ≤ n2,

φ[Asep
σ (n1, n2)] >_ φ[Asep

σ (2n1, n2)].

Proof Condition on Asep
σ (2n1, n2) and construct j disjoint tubes of width ε = ε(δ)

connecting (xk + Λ2δn1) \ Λ2n1 to disjoint boxed x̃k + ∂Λδn1 for every k ≤ j, where
x̃k ∈ ∂Λn1 . It easily follows from topological considerations that this is possible when δ
is small enough. Via Theorem 1.1, the σk-paths connecting xk to ∂Λ2δn1(xk) ∩ Λ2n1 to
∂Λn2 can be extended to connect to ∂Λn1 while staying in tubes with positive probability
c = c(δ, p0). �

Proposition 5.4. Fix δ < 1 small enough. For every n1 ≤ n2 ≤ n3

2
,

φ[Asep
σ (n1, n3)] >_ φ[Asep

σ (n1, n2)] · φ[Asep
σ (n2, n3)].
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∂Λn

∂ΛN ∂ΛN

∂Λn

y1

x1

y2

x2

y3

x3x4

x5

y5 y4

Figure 2: On the left, the five-arm event Aocooc(n,N). On the right, the event
Asep
ocooc(n,N) with well-separated arms. Note that these arms are not at macroscopic

distance of each others inside the domain, but only at their end-points.

Proof of Proposition 5.4 We have

φ
[
Asep
σ (n1, n2) ∩ Asep

σ (2n2, n3)
]

= φ
[
Asep
σ (n1, n2)|Asep

σ (2n2, n3)
]
· φ
[
Asep
σ (2n2, n3)

]
>
_ φ

[
Asep
σ (n1, n2)

]
· φ
[
Asep
σ (2n2, n3)

]
>
_ φ

[
Asep
σ (n1, n2)

]
· φ
[
Asep
σ (n2, n3)

]
thanks to (5.1) and Lemma 5.3 and it suffices to prove that φ

[
Asep
σ (n1, n2)∩Asep

σ (2n2, n3)
]

and φ
[
Asep
σ (n1, n3)

]
are comparable. To do so, condition on Asep

σ (n1, n2)∩Asep
σ (2n2, n3) and

construct j disjoint tubes of width ε = ε(δ) connecting (yk+Λδn2)\Λn2 to (xk+Λ2δn2)∩Λ2n2

for every k ≤ j. It easily follows from topological considerations that this is possible
when δ is small enough. Via Theorem 1.1, the σk-paths connecting xk to ∂Λ2δn2(xk)∩Λn2 ,
and yk to ∂Λδn2(yk) \ Λn2 can be connected by a σk-path staying in a tube with positive
probability c = c(δ, p0). Therefore,

φ(Asep
σ (n1, n3)) ≥ cφ

[
Asep
σ (n1, n2) ∩ Asep

σ (2n2, n3)
]
,

which concludes the proof. �

This proposition, together with Lemma 5.1, has the following consequence. Fix p ∈ (0, 1)
and δ < 1 small enough. There exists α = α(δ) > 0 such that for every n1 ≤ n2 ≤ n3,

φ
[
Asep
σ (n1, n2)

]
<
_

(
n3

n2

)α
· φ
[
Asep
σ (n1, n3)

]
(5.2)

φ
[
Asep
σ (n2, n3)

]
<
_

(
n2

n1

)α
· φ
[
Asep
σ (n1, n3)

]
. (5.3)

Our main objective is now to prove the following:
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Proposition 5.5. Fix σ. For every n < N , we have

φ
[
Asep
σ (n,N)

]
� φ

[
Aσ(n,N)

]
.

Indeed, if Asep
σ (n,N) and Aσ(n,N) have uniformly comparable probabilities, Theo-

rem 1.2 follows from the previous statement:

Proof of Theorem 1.2 We have for n1 ≤ n2 ≤ n3:

φ
[
Aσ(n1, n3)

]
≤ φ

[
Aσ(n1, n2)|Aσ(2n2, n3)

]
· φ
[
Aσ(2n2, n3)

]
� φ

[
Aσ(n1, n2)

]
· φ
[
Aσ(2n2, n3)

]
� φ

[
Asep
σ (n1, n2)

]
· φ
[
Asep
σ (2n2, n3)

]
<
_ φ

[
Asep
σ (n1, n2)

]
· φ
[
Asep
σ (n2, n3)

]
≤ φ

[
Aσ(n1, n2)

]
· φ
[
Aσ(n2, n3)

]
,

where in the second line we used (5.1), in the third, Proposition 5.5, and in the fourth,
(5.3). Now,

φ
[
Aσ(n1, n3)

]
≥ φ

[
Asep
σ (n1, n3)

]
>
_ φ

[
Asep
σ (n1, n2)

]
· φ
[
Asep
σ (n2, n3)

]
� φ

[
Aσ(n1, n2)

]
· φ
[
Aσ(n2, n3)

]
where in the first and third lines, we used Proposition 5.5, in the second Proposition 5.4.
�

Therefore, we only need to prove Proposition 5.5. Let us start with the following two
lemmas:

Lemma 5.6. For any ε > 0, there exists T > 0 such that for every n > 0

φξSn,2n(∃ T disjoint crossings of Sn,2n) ≤ ε

uniformly in boundary conditions ξ.

Proof It is sufficient to show that for ε > 0, there exists T > 0 such that the probability
of T disjoint vertical crossings of [0, 4n]× [0, n] is bounded by ε uniformly in n and the
boundary conditions. In fact, we only need to prove that conditionally on the existence of
k crossings, the probability of existence of an additional crossing is bounded from above
by some constant c < 1.

In order to prove this statement, condition on the k-th left-most crossing γk. Assume
without loss of generality that γk is a dual crossing. Construct a subdomain of [0, 4n]×[0, n]
by considering the connected component of [0, 4n]× [0, n]\γk containing {4n}× [0, n]. The
configuration in Ω is a random-cluster configuration with boundary conditions ξ on the
outside and free elsewhere (i.e. on the arc bordering the dual arc γk). Now, Theorem 1.1
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implies that Ω is crossed from left to right by a primal and a dual crossing with probability
bounded from below by a universal constant. Indeed, cut the domain Ω into two domains
Ω1 = Ω ∩ [0, 4n]× [0, n/2] and Ω2 = Ω ∩ [0, 4n]× [n/2, n] and assume Ω1 is horizontally
crossed and Ω2 is horizontally dual crossed). This prevents the existence of an additional
vertical crossing or dual crossing, therefore implying the claim. �

The previous proof harnesses Theorem 1.1 in a crucial way, the left boundary of Ω
being possibly very rough, previous results on crossing estimates would not have been
strong enough.

Lemma 5.7. For any ε > 0, there exists δ > 0 such that for every 2n ≤ N ,

φξSn/2,2N ( any set of crossings of Sn,N can be made well-separated ) ≥ 1− ε

uniformly with respect to the boundary conditions ξ.

Proof Fix n and the boundary conditions ξ.
Consider T large enough so that the probability that there exist more than T disjoint

crossings of Sn,2n is less than ε.
Fix δ > 0 such that in any subdomain of the annulus Sδr,r, ∂Λδr is not connected or

dual connected to ∂Λr with probability 1−ε/T , uniformly in the domain and the boundary
conditions on Sδr,r. The existence of δ can be proved using Theorem 1.1.

With probability 1− 4ε, no crossing ends at distance less than δN of a corner of Sn,N .
It is thus sufficient to work with vertical crossings in the rectangle [−N,N ]× [n,N ].

Now, condition on the left-crossing γ1 of [−N,N ]× [n,N ] and set y to be the ending
point of γ1 on the top. As before, construct the domain Ω to be the connected component
of {N}× [n,N ] in [−N,N ]× [n,N ]\γ1. With probability 1−ε/T , no vertical crossing will
land at distance δN of y by ensuring that Ω∩Sδ2N,δN contains open and dual-open circuits.
Moreover, Theorem 1.1 allows to construct a path P in Λδ2N(y) \ ([−N,N ]× [n,N ] \ Ω)
connecting γ1 to the top of Λδ2N (y) with probability c > 0. The construction costs at most
a factor of cε/T (in terms of probabilities) and γ1 is guaranteed to be isolated from other
crossings. Iterating the construction T times, we find the result.

The same reasoning applies to the interior side and we obtain the result. �

Proof of Proposition 5.5 The lower bound φ[Asep
σ (n,N)] ≤ φ[Aσ(n,N)] is straight-

forward. Let us prove the upper bound for S2n,2N , first with only the separation on the
exterior (the definition is an obvious extension of the definition of well-separated paths).

Define A
sep/ext
σ (2n, 2k) to be the event Aσ(2n, 2k) with separation on the exterior only. Let

Bk be the event that crossings in S2k−1,2k can be made well separated. Lemma 5.7 ensures

that φ(Bc
k) ≤ ε. Note that Aσ(2n, 2k) ∩Bk ⊂ A

sep/ext
σ (2n, 2k). We thus have
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γ

Ω

y
y′

Figure 3: The construction of open and closed paths extending the crossing and
preventing other crossings of finishing close to the path.

φ
[
Aσ(2n, 2N)

]
≤

N−1∑
k=n

φ
[
Aσ(2n, 2k), Bk, B

c
k+1, . . . , B

c
N−1

]
≤

N−1∑
k=n

φ
[
Aσ(2n, 2k), Bk, B

c
k+2, B

c
k+4, . . .

]
Since annuli are separated by macroscopic areas, we can use (5.1) repeatedly to find

φ(Aσ(2n, 2N)) ≤
N−1∑
k=n

φ
[
Aσ(2n, 2k), Bk

]
Cφ(Bk+2)Cφ(Bk+4) . . .

≤
N−1∑
k=n

φ
[
Asep/ext
σ (2n, 2k)

]
(Cε)(N−n)/2

<
_

(
N−1∑
k=n

(2N−n)α(Cε)(N−n)/2

)
φ
[
Asep/ext
σ (2n, 2N)

]
where we used (5.2) in the third line. Choosing ε small enough, we obtain δ such that

φ
[
Aσ(2n, 2N)

]
<
_ φ

[
Asep/ext
σ (2n, 2N)

]
One can then obtain the separation on the interior in the same way. Now, fix n < N

arbitrary. take s, r ∈ N such that 2s−1 < n ≤ 2s and 2r ≤ N < 2r+1. We have

φ
[
Aσ(n,N)

]
≤ φ

[
Aσ(2s, 2r)

]
� φ

[
Asep
σ (2s, 2r)

]
� φ

[
Asep
σ (n,N)

]
using (5.2) and (5.3) a last time. �

5.2 Corollaries of Theorem 1.2

Proof of Corollary 1.1 The proof is classical and uses Proposition 5.5. �

Let AIσ(n,N) be the event that there exist arms from the interior to the exterior of
Sn,N , and such that γk ends on NIk.
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∂ΛN

Figure 4: Only one site per rectangle can satisfy the following topological picture.

Proof of Corollary 1.2 We treat the first case only, as the other cases are similar and
easier. By quasi-multiplicativity, we only need to look at the case k = 1.

Let us first prove the lower bound. Fix n > 0. Consider the following construction:
assume there exist a horizontal crossing of [−n, n] × [−n/4, 0] and a dual horizontal
crossing of [−n, n]× [0, n/4]. This happens with probability bounded from below by c > 0
not depending on n. By conditioning on the lowest interface Γ between an open and a
closed crossing of [−n, n] × [−n/4, n/4], the configuration above it is a random-cluster
configuration with free boundary conditions. Let Ω be the connected component of Λn \ Γ
containing [−n, n]× {n}. Assume that [−n/4, 0]× [−n, n] ∩ Ω is crossed horizontally by
a closed path, and that [0, n/4]× [−n, n] ∩ Ω is crossed horizontally. The probability of
this event is once again bounded from below uniformly in n, thanks to Theorem 1.1. Note
that we need a strong form of crossing probabilities in order to guarantee the existence of
the last crossing since the boundary of Ω can be very rough.

Summarizing, all these events occur with probability larger than c′ > 0. Moreover,
the existence of all these crossings implies the existence of a site in Λn/4 with five arms
emanating from it. The union bound implies

(n/4)2φ[Aocooc(n/4)] ≥ c′.

In order to prove an upper bound for φ[Aocooc(n)], recall that it suffices to show it for
well-separated arms for which we choose landing sequences. Consider the event described
in Fig. 4. Topologically, no two sites in Λn can satisfy this event simultaneously, which
implies the claim. �
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Proof of Corollary 1.3 Fix n < N , we have

φ(Aocococ(n,N)) � φ(Aocococ(n,N), no arm finishing at the bottom).

Conditioning on five arms (starting the exploration from the bottom for instance), it can
be shown that

φ(Aocococ(n,N), no arm finishing at the bottom) ≤ φ0(Ac(n,N))φ(Aococc(n,N)).

The result follows from Corollary 1.2 and the fact that Theorem 1.1 implies

φ0(Ac(n,N)) ≤ (n/N)α

for some α > 0. The same proof works with ococc replacing ocococ. �

5.3 Spin-Ising crossing probabilities

The FK-Ising model (q = 2) and the spin-Ising model are coupled, through (a special case
of) what is usually referred to as the Edwards-Sokal coupling [ES88].

Let us first recall that the Ising model (with free boundary conditions) on a discrete
domain Ω (or more generally a graph) is a random assignment of ±1 spins (σx)x∈Ω to the
vertices of Ω, where the probability of a spin configuration is proportional to

exp (−βH (σ)) ,

where
H (σ) = −

∑
i∼j

σiσj,

and where β > 0 is the inverse temperature; the sum is over all pairs of adjacent vertices.
We can specify boundary conditions by imposing (i.e. conditioning) that spins σx at
vertices x ∈ ∂Ω take a specified ±1 value (we speak of ± boundary conditions) or let them
free (free boundary conditions).

Theorem 5.1. Let Ω be a discrete domain, let ξ = E be the set of boundary conditions,
where the vertices in E ⊂ ∂Ω are wired together and the other vertices are free. Consider
a realization ω of the FK-Ising model on Ω with boundary conditions ξ and parameter
p ∈ [0, 1]. Let σ ∈ {±1}Ω be the spin configuration obtained in the following manner:

• Set the spins of all the vertices belonging to the cluster containing E to +1.

• For each cluster K that is not the cluster containing E, sample an independent fair
±1 coin toss, and give that value to the spins of all the vertices of K.

Then σ has the law of an spin-Ising configuration, at inverse temperature β = 1− e−p, with
+ boundary conditions on the wired vertices of E and free boundary conditions elsewhere.

As explained in the introduction, through this coupling, crossing probabilities are
related to spin correlations (see [DCHN10], for example of applications).

We now make use of this coupling to prove Corollary 1.4.
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Proof of Corollary 1.4 Let us show the lower bound only (the upper bound can be
obtained by self-duality arguments).

By Theorem 5.1, we can couple this Ising model with an FK-Ising model with boundary
conditions (bc)∪(da) (the sites on (bc)∪(da) are wired, and the sites on (ab)∪(cd) are free).
Use Corollary 3.2 to split Ω into three “fair shares” (Ω1, a, xa, xb, b), (Ω2, xb, xa, xc, xd) and
(Ω3, c, d, xd, xc), with

`Ω1 [(axa) , (xbb)] � `Ω2 [(xbxa) , (xcxd)] � `Ω3 [(cd) , (xdxc)] � 1

(the constants depend on M only). By Theorem 1.1 there exists α > 0 such that with
probability at least α, there is no FK crossing (axa)↔ (xbb) in Ω1, with probability at
least α there is no FK crossing (cd) ↔ (xdxc), with probability at least α there is an
FK-Ising crossing (xbxa)↔ (xdxc). So, with probability at least α3, we can ensure that
there is an FK-Ising crossing (ab)↔ (cd) in Ω, that does not touch (bc) ∪ (da). Sampling
a spin-Ising configuration from the FK-Ising model, we get that with probability at least
1
2
α3, there is an FK-Ising crossing with spin −. Note that we use the fact that this crossing

is not connected to (bc) ∪ (da). �

References
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